JP6647916B2 - Water-based polyurethane composition and method for applying the same to underfloor concrete - Google Patents

Water-based polyurethane composition and method for applying the same to underfloor concrete Download PDF

Info

Publication number
JP6647916B2
JP6647916B2 JP2016039311A JP2016039311A JP6647916B2 JP 6647916 B2 JP6647916 B2 JP 6647916B2 JP 2016039311 A JP2016039311 A JP 2016039311A JP 2016039311 A JP2016039311 A JP 2016039311A JP 6647916 B2 JP6647916 B2 JP 6647916B2
Authority
JP
Japan
Prior art keywords
weight
polyol
parts
polyurethane composition
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016039311A
Other languages
Japanese (ja)
Other versions
JP2017155128A (en
Inventor
鈴木 宏一
宏一 鈴木
晃太 鹿志村
晃太 鹿志村
正宏 地田
正宏 地田
浩 久保田
浩 久保田
恵英 若山
恵英 若山
俊彦 鹿毛
俊彦 鹿毛
賢 高井
賢 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Aica Kogyo Co Ltd
Original Assignee
Taisei Corp
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Aica Kogyo Co Ltd filed Critical Taisei Corp
Priority to JP2016039311A priority Critical patent/JP6647916B2/en
Publication of JP2017155128A publication Critical patent/JP2017155128A/en
Application granted granted Critical
Publication of JP6647916B2 publication Critical patent/JP6647916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Floor Finish (AREA)

Description

本発明は、塗床材として適したモルタル状の水系ポリウレタン組成物に関し、詳しくは、ポリオール、ポリイソシアネート、希釈剤、セメント、骨材及び水を含有して成る水系ポリウレタン組成物であって、組成物全体を100重量部とするとセメント及び骨材から成る骨材部は75〜90重量部であるような骨材部の含有量が多い水系ポリウレタン組成物及びこの床下地コンクリートへの施工方法に関する。   The present invention relates to a mortar-like aqueous polyurethane composition suitable as a floor covering material, and more particularly to an aqueous polyurethane composition comprising a polyol, a polyisocyanate, a diluent, cement, aggregate and water, The present invention relates to a water-based polyurethane composition having a high aggregate content such that the aggregate portion composed of cement and aggregate is 75 to 90 parts by weight, assuming that the entire product is 100 parts by weight, and a method of applying the same to the floor foundation concrete.

従来、セメント及び骨材から成る骨材部が組成物全体100重量部中の71重量部程度である組成物を実施例として示し、硬化後の塗膜に剥離や反りが生じないポリマーセメント組成物として、水硬性セメント、水、ポリオール(a)、イソシアネート化合物、及び骨材を必須成分とするポリマーセメント組成物であって、イソシアネート化合物が、ひまし油系ポリオール、ポリブタジエン系ポリオール、及び水添ポリブタジエン系ポリオールから選ばれる疎水性のポリオール(b)とジイソシアネート化合物を反応させて得られるイソシアネート基末端プレポリマーを含有することを特徴とする、ポリマーセメント組成物が提案されている(特許文献1)。   Conventionally, a composition in which an aggregate portion composed of cement and aggregate is about 71 parts by weight in 100 parts by weight of the whole composition is shown as an example, and a polymer cement composition which does not cause peeling or warpage in a cured coating film is shown. Is a polymer cement composition containing hydraulic cement, water, polyol (a), an isocyanate compound, and an aggregate as essential components, wherein the isocyanate compound is a castor oil-based polyol, a polybutadiene-based polyol, and a hydrogenated polybutadiene-based polyol (Patent Document 1) A polymer cement composition characterized by containing a isocyanate group-terminated prepolymer obtained by reacting a hydrophobic polyol (b) selected from the above with a diisocyanate compound has been proposed.

これに対して、セメント及び骨材の含有量が、組成物全体100重量物に対して83重量部程度のモルタル状の樹脂セメント組成物を実施例として示した耐熱性、耐熱水性及び耐衝撃性を有する樹脂セメント組成物が提案されている(特許文献2)。該樹脂セメント組成物は、分子量が1000〜3000で両末端に水酸基を持ち、側鎖を持つポリエステルポリオールとポリフェニルポリメチルポリイソシアネート並びに水硬性セメントを含む骨材とが配合されていることを特徴とする樹脂セメント組成物である。   On the other hand, the heat resistance, hot water resistance and impact resistance of a mortar-like resin cement composition in which the content of cement and aggregate is about 83 parts by weight based on 100 parts by weight of the whole composition are shown as examples. (Patent Document 2). The resin cement composition is characterized in that a polyester polyol having a molecular weight of 1,000 to 3,000, having hydroxyl groups at both ends and having a side chain, and an aggregate containing polyphenyl polymethyl polyisocyanate and hydraulic cement are blended. Is a resin cement composition.

特開2000−72507号公報JP 2000-72507 A 特開2004−292209号公報JP-A-2004-292209

しかしながら、特許文献1に示されるポリマーセメント組成物は混合粘度が5000〜6000cP/20℃であって(特許文献1の実施例参照)、その性状はペースト状であり下地への塗布厚みは5mm程度である。このためセメント及び骨材から成る骨材部が組成物全体100重量部中の75〜90重量部であるようなモルタル状の水系ポリウレタン組成物と比較して、重量物の落下に対する耐衝撃性や、95℃熱水と20℃冷水の繰り返し流下に対する耐熱衝撃性が十分ではないという課題がある。   However, the polymer cement composition disclosed in Patent Literature 1 has a mixing viscosity of 5,000 to 6000 cP / 20 ° C. (see Examples of Patent Literature 1), and has a paste-like property and a coating thickness of about 5 mm on a base. It is. For this reason, compared with a mortar-like water-based polyurethane composition in which the aggregate part composed of cement and aggregate is 75 to 90 parts by weight in 100 parts by weight of the whole composition, the impact resistance to the falling of heavy objects and There is a problem that the thermal shock resistance against repeated flowing of hot water of 95 ° C. and cold water of 20 ° C. is not sufficient.

また、特許文献2に示される樹脂セメント組成物は耐熱水性や耐衝撃性は従来のままに維持しながら十分な可使時間を得るものである。該樹脂セメント組成物は、95℃熱水と20℃冷水が繰り返し流下すると、樹脂の硬化反応が徐々にではあるが遂には十分に進むことになって骨材と骨材を結合している樹脂や塗膜表面の樹脂が硬化収縮する。しかし下地コンクリート表面に付着している塗膜は全体として動きが拘束されているため塗膜に大きな収縮応力が発生する。このため該収縮応力が塗膜の端部を下地コンクリートから剥離させることがあり、また下地コンクリートの表層強度が不十分なときには該表層を破壊して塗膜裏面にコンクリートが付着した状態で塗膜の浮きが生じるという課題がある。また逆に骨材と樹脂との付着が不十分な場合は骨材と樹脂との間に付着破壊が生じ、結果として塗膜表面にひび割れが発生するという課題がある。   In addition, the resin cement composition disclosed in Patent Literature 2 obtains a sufficient pot life while maintaining the hot water resistance and the impact resistance as before. When the 95 ° C. hot water and the 20 ° C. cold water flow repeatedly, the resin cement composition gradually progresses the curing reaction of the resin gradually but finally sufficiently, and the resin bonding the aggregate and the aggregate And the resin on the surface of the coating film cures and contracts. However, the movement of the coating film adhering to the surface of the underlying concrete is constrained as a whole, and a large shrinkage stress is generated in the coating film. For this reason, the shrinkage stress may cause the edge of the coating film to peel off from the foundation concrete, and when the surface layer of the foundation concrete is insufficient, the surface layer is destroyed and the concrete is adhered to the back surface of the coating film. There is a problem that floating occurs. Conversely, when the adhesion between the aggregate and the resin is insufficient, there is a problem that the adhesion and the destruction occur between the aggregate and the resin, and as a result, cracks are generated on the surface of the coating film.

本発明が解決しようとする課題は、塗膜全体として十分な強度があるため重量物に対する耐衝撃性を有すると共に、塗膜に発生する収縮応力が従来と比して極めて低く、このため従来のように塗膜の端部が下地コンクリートから剥離することが無く、また下地コンクリートの表層強度が不十分なときであっても塗膜の浮きが生じることが無く、さらには塗膜表面にひび割れが発生することがなく、塗膜の色調安定性が良好な水系ポリウレタン組成物を提供することにある。   The problem to be solved by the present invention is that the coating film as a whole has sufficient strength to have impact resistance to heavy objects, and the shrinkage stress generated in the coating film is extremely low as compared with the conventional one. In this way, the edge of the coating does not peel off from the underlying concrete, and even when the surface strength of the underlying concrete is insufficient, there is no lifting of the coating, and there is no crack on the coating surface. An object of the present invention is to provide a water-based polyurethane composition which does not occur and has good color tone stability of a coating film.

また、同様に塗膜に発生する収縮応力が従来と比して極めて低いため、従来、収縮応力が高い際に下地コンクリート表面に適宜の間隔で凹状の目地部を設けることにより塗膜の裏面の一部を該目地部に噛み合った状態として塗膜端部や塗膜裏面を下地コンクリートに機械的に付着させて剥離等を未然に防止するというような、施工上の余分な工程や工夫を必要としない、施工が容易な水系ポリウレタン組成物及び該水系ポリウレタン組成物の床下地コンクリートへの施工方法を提供することにある。   Similarly, since the shrinkage stress generated in the coating film is extremely low as compared with the related art, conventionally, when the shrinkage stress is high, by providing concave joints at appropriate intervals on the surface of the base concrete, the back surface of the coating film is formed. Excessive steps and ingenuity in the construction are required, such that a part of the coating is engaged with the joint and the end of the coating film or the back surface of the coating film is mechanically attached to the underlying concrete to prevent exfoliation and the like. It is an object of the present invention to provide a water-based polyurethane composition which is easy to perform, and a method for applying the water-based polyurethane composition to a floor foundation concrete.

請求項1記載の発明は、ポリオール、ポリイソシアネート、希釈剤、セメント、骨材及び水を含有してなるモルタル状の水系ポリウレタン組成物であって、ポリオールはヒマシ油変性3官能ポリオールとビスフェノールA骨格を有する4官能ポリオールとビスフェノールA骨格を有する2官能ポリエーテルポリオールから成り、希釈剤は安息香酸グリコールエステルを含み、安息香酸グリコールエステルは少なくともジエチレングルコールジベンゾエート又はジプロピレングリコールジベンゾエートのいずれかを含み、ヒマシ油変性3官能ポリオール及びビスフェノールA骨格を有する4官能ポリオールは水酸基当量が250〜450であり、ビスフェノールA骨格を有する2官能ポリエーテルポリオールは水酸基当量が300〜500であり、組成物全体を100重量部とするとセメント及び骨材から成る骨材部は75〜90重量部であり、希釈剤は、ポリオールとポリイソシアネートと希釈剤と水から成る樹脂部100重量部中の7〜25重量部であることを特徴とする水系ポリウレタン組成物を提供する。

The invention according to claim 1 is a mortar-like aqueous polyurethane composition containing a polyol, a polyisocyanate, a diluent, cement, an aggregate, and water, wherein the polyol is a castor oil-modified trifunctional polyol and a bisphenol A skeleton. And a difunctional polyether polyol having a bisphenol A skeleton, wherein the diluent contains benzoic acid glycol ester, and the benzoic acid glycol ester contains at least either diethylene glycol dibenzoate or dipropylene glycol dibenzoate. wherein, tetrafunctional polyols having a castor oil-modified trifunctional polyol and bisphenol a skeleton is a hydroxyl group equivalent 250 to 450, bifunctional polyether polyol is a hydroxyl group equivalent of 300 to 500 der having a bisphenol a skeleton Assuming that the total composition is 100 parts by weight, the aggregate part composed of cement and aggregate is 75 to 90 parts by weight, and the diluent is 100 parts by weight of the resin part composed of polyol, polyisocyanate, diluent and water. An aqueous polyurethane composition is provided, which is 7 to 25 parts by weight.

請求項2記載の発明は、硬化物のJIS K 6911の圧縮強度は20N/mm以上であり、収縮応力は1.5N/mm未満であることを特徴とする請求項1記載の水系ポリウレタン組成物を提供する。 According to a second aspect of the invention, the compressive strength of JIS K 6911 of the cured product is at 20 N / mm 2 or more, water-based polyurethane of claim 1, wherein the shrinkage stress and less than 1.5 N / mm 2 A composition is provided.

請求項3記載の発明は、床下地コンクリート表面を、連続した凹状の溝部を設けることなく平面に形成し、該床下地コンクリート表面上に請求項1又は請求項2記載の水系ポリウレタン組成物を厚さ4〜9mmに塗付することを特徴とする水系ポリウレタン組成物の床下地コンクリートへの施工方法を提供する。   According to a third aspect of the present invention, the surface of the underground concrete is formed flat without forming a continuous concave groove, and the water-based polyurethane composition of the first or second aspect is thickened on the surface of the underground concrete. The present invention provides a method for applying a water-based polyurethane composition to floor foundation concrete, characterized by being applied to a thickness of 4 to 9 mm.

本発明の水系ポリウレタン組成物及びこの床下地コンクリートへの施工方法は、塗膜全体として十分な強度があるため重量物に対する耐衝撃性を有すると共に、塗膜に発生する収縮応力が従来と比して極めて低く、このため従来のように塗膜の端部が下地コンクリートから剥離することが無く、また下地コンクリートの表層強度が低いときであっても塗膜の浮きが生じることが無く、さらには塗膜表面にひび割れが発生することがない、という効果がある。   The water-based polyurethane composition of the present invention and the method for applying the same to underfloor concrete have sufficient strength as a whole coating film, so that the coating film has impact resistance to heavy objects, and shrinkage stress generated in the coating film is lower than that of the conventional one. It is extremely low, so that the edge of the coating does not peel off from the underlying concrete as in the past, and even when the surface strength of the underlying concrete is low, the coating does not float, and furthermore, There is an effect that cracks do not occur on the coating film surface.

また、塗膜に発生する収縮応力が従来と比して極めて低いため、下地コンクリート表面に適宜の間隔で連続した凹状の溝部を設けて、いわゆるファスナー効果によって塗膜端部や塗膜裏面を一定間隔で下地コンクリートに機械的に付着させる必要がない、という効果がある。   In addition, since the shrinkage stress generated in the coating film is extremely low compared to the conventional method, continuous concave grooves are provided at appropriate intervals on the surface of the underlying concrete, and the coating film edge and the coating film back surface are fixed by the so-called fastener effect. There is an effect that there is no need to mechanically adhere to the underlying concrete at intervals.

また、本発明の水系ポリウレタン組成物が塗付されて硬化した塗膜表面の色調は、施工直後の色調(発色状態)がその後徐々に変化して白化することが無く色調安定性に優れ、美観と意匠性が良好であるという効果がある。   In addition, the color tone of the coating film surface after application and curing of the water-based polyurethane composition of the present invention is excellent in color tone stability without any change in color tone (colored state) immediately after application and no whitening. This has the effect that the design is good.

以下本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の水系ポリウレタン組成物は、ポリオール、ポリイソシアネート、希釈剤、セメント、骨材及び水を含有してなるモルタル状の水系ポリウレタン組成物であって、ポリオールはヒマシ油変性3官能ポリオールとビスフェノールA骨格を有する4官能ポリオールとビスフェノールA骨格を有する2官能ポリエーテルポリオールから成り、希釈剤は安息香酸グリコールエステルを含み、ヒマシ油変性3官能ポリオール及びビスフェノールA骨格を有する4官能ポリオールは水酸基当量が250〜450であり、ビスフェノールA骨格を有する2官能ポリエーテルポリオールは水酸基当量が300〜500であり、組成物全体を100重量部とするとセメント及び骨材から成る骨材部は75〜90重量部であり、希釈剤は、ポリオールとポリイソシアネートと希釈剤と水から成る樹脂部100重量部中の7〜25重量部であることを特徴とする水系ポリウレタン組成物であり、必要に応じてこれらの他に、顔料や分散剤、消泡剤等の添加剤が配合される。   The aqueous polyurethane composition of the present invention is a mortar-like aqueous polyurethane composition containing a polyol, a polyisocyanate, a diluent, cement, an aggregate and water, wherein the polyol is a castor oil-modified trifunctional polyol and bisphenol A It comprises a tetrafunctional polyol having a skeleton and a bifunctional polyether polyol having a bisphenol A skeleton. The diluent contains benzoic acid glycol ester. The castor oil-modified trifunctional polyol and the tetrafunctional polyol having a bisphenol A skeleton have a hydroxyl equivalent of 250 The bifunctional polyether polyol having a bisphenol A skeleton has a hydroxyl equivalent of 300 to 500. When the total composition is 100 parts by weight, the aggregate comprising cement and aggregate is 75 to 90 parts by weight. Yes, diluents are polyol and poly A water-based polyurethane composition comprising 7 to 25 parts by weight of 100 parts by weight of a resin part comprising a cyanate, a diluent, and water. An additive such as an agent is blended.

本発明の水系ポリウレタン組成物に使用されるポリオールは、ヒマシ油変性3官能ポリオールとビスフェノールA骨格を有する4官能ポリオールとビスフェノールA骨格を有する2官能ポリエーテルポリオールから成る。   The polyol used in the aqueous polyurethane composition of the present invention comprises a castor oil-modified trifunctional polyol, a tetrafunctional polyol having a bisphenol A skeleton, and a bifunctional polyether polyol having a bisphenol A skeleton.

ヒマシ油変性3官能ポリオールは、ヒマシ油及びその誘導体で、例えばヒマシ油脂肪酸のジグリセライド、モノグリセライド及びそれらの混合物であり、水酸基数が3のポリオールである。本発明に使用するヒマシ油変性3官能ポリオールの水酸基当量は、250〜450が好ましく、250未満では硬化物の収縮応力が大きくなって塗膜が下地コンクリートから剥離したり、硬化が速くなって作業性が不良となり、450超では水系ポリウレタン組成物として硬化後の強度が不十分となる。   The castor oil-modified trifunctional polyol is castor oil and its derivatives such as diglyceride and monoglyceride of castor oil fatty acid and a mixture thereof, and is a polyol having 3 hydroxyl groups. The hydroxyl equivalent of the castor oil-modified trifunctional polyol used in the present invention is preferably from 250 to 450. If the hydroxyl equivalent is less than 250, the shrinkage stress of the cured product increases, and the coating film peels off from the underlying concrete or the curing speed is increased. If it exceeds 450, the water-based polyurethane composition will have insufficient strength after curing.

ビスフェノールA骨格を有する4官能ポリオールは、ビスフェノールA骨格を有するポリエポキシ化合物に活性水素化合物を反応させて得られるエポキシ開環ポリオールであり、水酸基当量は250〜450が好ましい。水酸基当量が250未満では硬化物の収縮応力が大きくなって塗膜が下地コンクリートから剥離したり、硬化が速くなって作業性が不良となり、450超では水系ポリウレタン組成物として硬化後の強度が不十分となる。   The tetrafunctional polyol having a bisphenol A skeleton is an epoxy ring-opening polyol obtained by reacting a polyepoxy compound having a bisphenol A skeleton with an active hydrogen compound, and the hydroxyl equivalent is preferably from 250 to 450. If the hydroxyl equivalent is less than 250, the shrinkage stress of the cured product becomes large, and the coating film peels off from the foundation concrete, and the curing speed is reduced, resulting in poor workability. If it is more than 450, the water-based polyurethane composition has poor strength after curing. Will be enough.

ビスフェノールA骨格を有する2官能ポリエーテルオールは、ビスフェノールAにエチレンオキシド、プロピレンオキシド等のアルキレンオキシドを1種または2種類以上付加反応させることにより得られるポリエーテルポリオールであり、水酸基当量は300〜500が好ましい。水酸基当量が300未満では硬化物の収縮応力が大きくなって塗膜が下地コンクリートから剥離したり、硬化が速くなって作業性が不良となり、500超では水系ポリウレタン組成物として硬化後の強度が不十分となる。   Bifunctional polyetherol having a bisphenol A skeleton is a polyether polyol obtained by adding one or more alkylene oxides such as ethylene oxide and propylene oxide to bisphenol A, and has a hydroxyl equivalent of 300 to 500. preferable. When the hydroxyl group equivalent is less than 300, the shrinkage stress of the cured product becomes large, and the coating film peels off from the foundation concrete, and the curing speed increases, resulting in poor workability. When it exceeds 500, the aqueous polyurethane composition has poor strength after curing. Will be enough.

本発明の水系ポリウレタン組成物は上記ポリオールに加えて希釈剤を含有し、該希釈剤は安息香酸グリコールエステルを含み、上記ポリオールと希釈剤と水を混合して1液とし、主剤として形成することが好ましい。安息香酸グリコールエステルは、安息香酸とグリコール化合物との縮合化エステル化合物であり、グリコール化合物としてはジエチレングリコールやジプロピレングリコール等を使用することが出来る。また、希釈剤には該安息香酸グリコールエステルの他、スルホン酸エステル化合物を配合することが出来る。また該主剤には塗膜を着色するためのトナーを配合することが出来る。市販の安息香酸グリコールエステルとしては、ジエチレングリコールジベンゾエートとジプロピレングリコールジベンゾエートの混合物である、安息香酸グリコールエステル JP120(商品名、株式会社ジェイプラス社製)があり、スルホン酸エステル化合物としてはアルキルスルホン酸エステルであるメザモール(商品名、バイエル社製)がある。   The water-based polyurethane composition of the present invention contains a diluent in addition to the polyol, the diluent contains benzoic acid glycol ester, and the polyol, diluent, and water are mixed to form one liquid, which is formed as a main agent. Is preferred. The benzoic acid glycol ester is a condensed ester compound of benzoic acid and a glycol compound. As the glycol compound, diethylene glycol, dipropylene glycol, or the like can be used. The diluent may contain a sulfonic acid ester compound in addition to the benzoic acid glycol ester. Further, a toner for coloring a coating film can be blended with the base material. Commercially available glycol esters of benzoic acid include benzoic acid glycol ester JP120 (trade name, manufactured by J-Plus Co., Ltd.), which is a mixture of diethylene glycol dibenzoate and dipropylene glycol dibenzoate. There is mesamol (trade name, manufactured by Bayer AG) which is an acid ester.

希釈剤は、ポリオールとポリイソシアネートと希釈剤と水から成る樹脂部100重量部中7〜25重量部であり、7重量部未満では硬化物の収縮応力が高くなり、25重量部超では硬化物の強度が低下する。希釈剤中の安息香酸グリコールエステルの含有割合は40%以上100%以下が好ましい。40%未満では硬化物の収縮応力が高くなる。   The diluent is 7 to 25 parts by weight in 100 parts by weight of the resin part composed of polyol, polyisocyanate, diluent and water. If the amount is less than 7 parts by weight, the shrinkage stress of the cured product is increased, and if it is more than 25 parts by weight, the cured product is The strength of the steel decreases. The content of glycol benzoate in the diluent is preferably 40% or more and 100% or less. If it is less than 40%, the shrinkage stress of the cured product increases.

本発明の水系ポリウレタン組成物に使用するポリイソシアネートは、作業性が良好となり、また低温での速硬化性さらには硬化後の強度が高いことより、4,4´−ジフェニルメタンジイソシアネート(クルードMDI(ポリメリックMDI))を使用することが好ましいが、他の脂肪族ポリイソシアネートや芳香族ポリイソシアネートや脂環式ポリイソシアネート等も使用することもでき、また併用することも可能である。なおクルードMDI(ポリメリックMDI)は以下の一般式で示され、市販品としては、ルプラネートM5S(商品名、BASF INOACポリウレタン株式会社製、NCO重量%31.4〜32.6%)がある。
The polyisocyanate used in the water-based polyurethane composition of the present invention has good workability, fast curability at a low temperature, and high strength after curing. Therefore, the polyisocyanate is 4,4′-diphenylmethane diisocyanate (crude MDI (polymeric MDI)) is preferably used, but other aliphatic polyisocyanates, aromatic polyisocyanates, alicyclic polyisocyanates, and the like can also be used, and can be used in combination. Crude MDI (polymeric MDI) is represented by the following general formula, and as a commercially available product, luplanate M5S (trade name, manufactured by BASF INOAC Polyurethane Co., Ltd., NCO weight% 31.4 to 32.6%) is available.

ポリオール及びアルコール化合物の水酸基一個に対するイソシアネート基の数は、6.0〜7.0が好ましく、6.0未満では硬化が遅延し、7.0超では硬化物に炭酸ガスによる発泡が生じる場合がある。   The number of isocyanate groups with respect to one hydroxyl group of the polyol and the alcohol compound is preferably 6.0 to 7.0. If the number is less than 6.0, the curing is delayed, and if it exceeds 7.0, foaming due to carbon dioxide gas may occur in the cured product. is there.

本発明の水系ポリウレタン組成物に使用するセメントは、本発明の水系ポリウレタン組成物が床下地コンクリートに塗布し美観を付与することを目的としているため、特定の色調の付与できるように、主として白色ポルトランドセメントを使用することが好ましい。他に普通ポルトランドセメント、アルミナセメント、高炉セメント、早強ポルトランドセメントを併用することができる。セメントの配合量は組成物全体100重量部中の5〜10重量部である。   The cement used in the water-based polyurethane composition of the present invention is intended to impart an aesthetic appearance by applying the water-based polyurethane composition of the present invention to a concrete floor, so that a white Portland cement is mainly used so that a specific color tone can be imparted. It is preferred to use In addition, ordinary Portland cement, alumina cement, blast furnace cement, and early strength Portland cement can be used in combination. The amount of the cement is 5 to 10 parts by weight based on 100 parts by weight of the whole composition.

本発明の水系ポリウレタン組成物に使用する骨材には、粒子径が1.0〜3.0mmのガイシ粉末と、粒子径が0.6〜2.36mmの硅砂と、粒子径が0.21〜1.18mmの硅砂と、粒子径が0.15〜0.85mmの硅砂を併用して使用する。ガイシ粉末は、ガイシの生産工場において破損若しくは廃棄されたガイシを粉砕処理したもので、陶磁器の持つ強度、耐摩耗性、耐熱性などを床に付与する効果がある。粒子径が1.0mm未満では床下地コンクリートへの塗布作業性が悪くなり、3.0mm超では組成物中への分散性及び硬化後の塗膜表面の凹凸が大きくなりすぎる。   The aggregate used in the water-based polyurethane composition of the present invention includes porcelain powder having a particle diameter of 1.0 to 3.0 mm, silica sand having a particle diameter of 0.6 to 2.36 mm, and 0.21 to 0.21 mm. Silica sand having a particle diameter of 0.15 to 0.85 mm is used in combination with silica sand having a particle diameter of 0.15 to 0.85 mm. The insulator powder is obtained by pulverizing the insulator that has been damaged or discarded in an insulator production plant, and has the effect of imparting the strength, wear resistance, heat resistance, and the like of ceramics to the floor. If the particle diameter is less than 1.0 mm, the workability of application to the floor foundation concrete is deteriorated, and if it exceeds 3.0 mm, the dispersibility in the composition and the unevenness of the coating film surface after curing become too large.

粒子径が0.6〜2.36mmの硅砂は3号硅砂が、粒子径が0.21〜1.18mmの硅砂は硅砂4号が、粒子径が0.15〜0.85mmの硅砂は5号硅砂がそれぞれ該当する。粒子径が1.0〜3.0mmのガイシ粉末と粒子径が0.6〜2.36mmの硅砂と、粒子径が0.21〜1.18mmの硅砂と、粒子径が0.15〜0.85mmの硅砂の併用比率は、重量で0.9〜1.1:0.9〜1.1:1.8〜2.2:1.8〜2.2が床下地コンクリートへの塗布作業性と強度発現及び耐衝撃性の観点から好ましい。セメント及びガイシ粉末及びこれらの硅砂の合計部数が組成物全体に対する割合は、組成物全体100重量部中75〜90重量部である。75重量部未満では硬化物表面に樹脂が浮いて防滑性が低下し、90重量部超では塗布作業性が不良となる。   Silica sand having a particle diameter of 0.6 to 2.36 mm is No. 3 silica sand, silica sand having a particle diameter of 0.21 to 1.18 mm is silica sand No. 4, and silica sand having a particle diameter of 0.15 to 0.85 mm is 5 sand. No. Silica sand corresponds to each. Porcelain powder having a particle size of 1.0 to 3.0 mm, silica sand having a particle size of 0.6 to 2.36 mm, silica sand having a particle size of 0.21 to 1.18 mm, and a particle size of 0.15 to 0 The combined ratio of 0.85mm silica sand is 0.9-1.1: 0.9-1.1: 1.8-2.2: 1.8-2.2 by weight. It is preferable from the viewpoints of properties, strength development and impact resistance. The ratio of the total number of parts of the cement and sap powder and their silica sand to the whole composition is 75 to 90 parts by weight based on 100 parts by weight of the whole composition. If the amount is less than 75 parts by weight, the resin floats on the surface of the cured product, and the slip resistance is reduced.

本発明の水系ポリウレタン組成物には、上記のほかに消石灰を配合することが好ましい。該消石灰は、ポリイソシアネートと水とのウレア反応で発生する炭酸ガスを吸収し、組成物が床下地コンクリート上に塗布され硬化するまでに発生する炭酸ガスが特定部分に集中して塗膜を押上げて膨れを生じさせることを抑制する効果がある。   It is preferable to add slaked lime to the aqueous polyurethane composition of the present invention in addition to the above. The slaked lime absorbs the carbon dioxide gas generated by the urea reaction between the polyisocyanate and water, and the carbon dioxide gas generated before the composition is applied on the concrete foundation and hardens is concentrated on a specific portion to push the coating film. This has the effect of suppressing the occurrence of swelling.

本発明の水系ポリウレタン組成物は、JIS K 6911 の圧縮強度が20N/mm以上であり、収縮応力は1.5N/mm未満である。圧縮強度が20N/mm未満では、重量物が硬化塗膜上に落下した際の耐衝撃性が不十分となる。 Aqueous polyurethane composition of the present invention, the compressive strength of JIS K 6911 is not less 20 N / mm 2 or more, shrinkage stress is less than 1.5 N / mm 2. When the compressive strength is less than 20 N / mm 2 , the impact resistance when a heavy object falls on the cured coating film becomes insufficient.

収縮応力は、下記の評価方法で示した方法によって算出し、該収縮応力が1.5N/mm以上では塗膜が下地コンクリートより剥離する場合がある。 The shrinkage stress is calculated by the method shown in the following evaluation method. If the shrinkage stress is 1.5 N / mm 2 or more, the coating film may peel from the base concrete.

本発明の水系ポリウレタン組成物を床下地コンクリート上に塗布する際には、まず床下地コンクリート表面にあるレイタンス等の脆弱層をポリッシング等により除去する。次に、床下地コンクリート表面を連続した凹状の溝部を設けることなく平面に形成する。これは床下地コンクリートの一の辺が10m超の長さであっても同様である。次に、直接本発明のモルタル状の水系ポリウレタン組成物を塗付するが、必要に応じてプライマーを塗付し乾燥させた後、本発明のモルタル状の水系ポリウレタン組成物を塗付してもよい。本発明の水系ポリウレタン組成物は、まず木鏝等で床全体に配り、その後金鏝等で十分に押さえながら塗膜の厚さが4〜9mmとなるように塗付する。   When applying the water-based polyurethane composition of the present invention on the concrete floor, first, a brittle layer such as latence on the surface of the concrete floor is removed by polishing or the like. Next, the floor foundation concrete surface is formed flat without providing a continuous concave groove. This is the same even if one side of the floor foundation concrete is longer than 10 m. Next, the mortar-like aqueous polyurethane composition of the present invention is directly applied.However, if necessary, a primer is applied and dried, and then the mortar-like aqueous polyurethane composition of the present invention is applied. Good. The water-based polyurethane composition of the present invention is first distributed over the entire floor with a wooden trowel or the like, and then coated with a gold trowel or the like so that the thickness of the coating film is 4 to 9 mm.

床下地コンクリート上に塗布する本発明の水系ポリウレタン組成物の厚さは、重量物が落下して塗膜が割れたり剥離したりする耐衝撃性の観点及び床下地コンクリート上への塗布作業性の観点から、上述のように4〜9mmが好ましい。4mm未満では塗布作業性及び耐衝撃性が不十分と成り、9mm超では樹脂の収縮力の絶対量が増して塗膜が剥離したり浮きが発生する場合がある。   The thickness of the water-based polyurethane composition of the present invention to be applied on the floor foundation concrete is determined from the viewpoint of impact resistance in which a heavy object falls and the coating film cracks or peels off, and the workability of application on the floor foundation concrete. From the viewpoint, 4 to 9 mm is preferable as described above. If it is less than 4 mm, the coating workability and impact resistance will be insufficient, and if it exceeds 9 mm, the absolute amount of shrinkage of the resin will increase, and the coating film may peel or float.

以下,実施例及び比較例にて具体的に説明する。   Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples.

[実施例]
水酸基当量が350のヒマシ油変性3官能ポリオールを10〜15重量部と、水酸基当量が360のビスフェノールA骨格を有する4官能ポリオールを5〜10重量部と、水酸基当量が300〜500のビスフェノールA骨格を有する2官能ポリエーテルポリオールを23〜28重量部と、希釈剤としてスルホン酸エステル化合物(メザモール;商品名、バイエル社製)を20〜25重量部と、水(イオン交換水)30重量部を含み、ポリオールと希釈剤と水の混合物全体として100重量部と成り水酸基当量が770である、ポリオールと希釈剤と水の混合物350重量部に、さらに希釈剤として安息香酸グリコールエステル JP120を100重量部配合し、さらに着色トナー50重量部を混合して実施例の水系ポリウレタン組成物の主剤とした。またポリイソシアネートとして、クルードMDI(4,4´−ジフェニルメタンジイソシアネート) ルプラネートM5S(商品名、BASF INOACポリウレタン株式会社製、NCO重量%:31.4〜32.6%)400重量部を実施例の水系ポリウレタン組成物の硬化剤とした。また骨材には、ガイシ粉末として粒子径1.0〜3.0mmのセルベン(商品名、株式会社オクムラセラム製)720重量部と、粒子径0.6〜2.36mmの硅砂:乾燥硅砂3号(商品名、篠沢硅砂工業株式会社製)720重量部と、粒子径0.21〜1.18mmの硅砂:東北硅砂4号(商品名、東北硅砂株式会社製)1416重量部と、粒子径0.15〜0.85mmの硅砂:東北硅砂5号(商品名、東北硅砂株式会社製)1416重量部を使用し、セメントとして白色ポルトランドセメント(太平洋セメント社製)を432重量部を使用して実施例の水系ポリウレタン組成物の骨材及びセメントとした。
[Example]
10 to 15 parts by weight of a castor oil-modified trifunctional polyol having a hydroxyl equivalent of 350, 5 to 10 parts by weight of a tetrafunctional polyol having a bisphenol A skeleton having a hydroxyl equivalent of 360, and a bisphenol A skeleton having a hydroxyl equivalent of 300 to 500 23 to 28 parts by weight of a bifunctional polyether polyol having the following formula, 20 to 25 parts by weight of a sulfonate compound (mesamol; trade name, manufactured by Bayer AG) as a diluent, and 30 parts by weight of water (ion-exchanged water). 100 parts by weight of a mixture of polyol, diluent, and water and having a hydroxyl equivalent of 770. 350 parts by weight of a mixture of polyol, diluent, and water, and 100 parts by weight of glycol benzoate JP120 as a diluent. And 50 parts by weight of a colored toner were further mixed to obtain the main component of the aqueous polyurethane composition of the example. Agent. In addition, as a polyisocyanate, 400 parts by weight of crude MDI (4,4'-diphenylmethane diisocyanate) luplanate M5S (trade name, manufactured by BASF INOAC Polyurethane Co., Ltd., NCO weight%: 31.4 to 32.6%) was used as an aqueous system. It was used as a curing agent for the polyurethane composition. The aggregate contains 720 parts by weight of selben (trade name, manufactured by Okumura Seram Co., Ltd.) having a particle diameter of 1.0 to 3.0 mm as silica powder and silica sand having a particle diameter of 0.6 to 2.36 mm: dry silica sand 3 No. (trade name, manufactured by Shinozawa Silica Industry Co., Ltd.): 720 parts by weight, and silica sand having a particle diameter of 0.21 to 1.18 mm: Tohoku Silica Sand No. 4 (trade name, manufactured by Tohoku Silica Sand Co., Ltd.): 1416 parts by weight, and particle diameter 0.15 to 0.85 mm silica sand: Tohoku silica sand No. 5 (trade name, manufactured by Tohoku silica sand Co., Ltd.), 1416 parts by weight, and white Portland cement (manufactured by Taiheiyo Cement Corporation) as a cement, 432 parts by weight The water-based polyurethane composition of the example was used as an aggregate and cement.

骨材とセメントは、上記ガイシ粉末と3種類の硅砂と白色ポルトランドセメントを予め均一に混合し、さらにこれらの他に消石灰96重量部を加えて実施例の水系ポリウレタン組成物の骨材部とした。床下地コンクリートへの塗布及び下記評価項目の評価に当たっては上記実施例の主剤500重量部と実施例の硬化剤400重量部と実施例の骨材部4800重量部を混合し実施例の水系ポリウレタン組成物とした。   Aggregate and cement were prepared by uniformly mixing the above powder of ash, three types of silica sand and white Portland cement in advance, and adding 96 parts by weight of slaked lime to the mixture to obtain an aggregate of the aqueous polyurethane composition of the example. . For application to the floor foundation concrete and evaluation of the following evaluation items, 500 parts by weight of the main agent of the above example, 400 parts by weight of the curing agent of the example, and 4800 parts by weight of the aggregate part of the example were mixed, and the aqueous polyurethane composition of the example was mixed. Things.

[比較例1]
水酸基当量が350のヒマシ油変性3官能ポリオールを10〜15重量部と、水酸基当量が360のビスフェノールA骨格を有する4官能ポリオールを10〜15重量部と、水酸基当量が180のビスフェノールA骨格を有する2官能ポリエーテルポリオールを5〜10重量部と、水酸基当量が156で1個の水酸基を有するアルコール化合物(メントール)を1〜5重量部と、希釈剤としてスルホン酸エステル化合物(メザモール;商品名、バイエル社製)を25〜30重量部と、水(イオン交換水)30重量部とを含み、ポリオールと希釈剤と水の混合物全体として100重量部と成り水酸基当量が685である、ポリオールと希釈剤と水の混合物270重量部に着色トナー30重量部を混合して比較例1の水系ポリウレタン組成物の主剤とした。またポリイソシアネートとしてクルードMDI(4,4´−ジフェニルメタンジイソシアネート)ルプラネートM5S(商品名、BASF INOACポリウレタン株式会社製、NCO重量%:31.4〜32.6%)300重量部を比較例1の水系ポリウレタン組成物の硬化剤とした。
[Comparative Example 1]
10 to 15 parts by weight of a castor oil-modified trifunctional polyol having a hydroxyl equivalent of 350, 10 to 15 parts by weight of a tetrafunctional polyol having a bisphenol A skeleton having a hydroxyl equivalent of 360, and a bisphenol A skeleton having a hydroxyl equivalent of 180 5 to 10 parts by weight of a bifunctional polyether polyol, 1 to 5 parts by weight of an alcohol compound (menthol) having a hydroxyl equivalent of 156 and one hydroxyl group, and a sulfonate compound (mesamol; trade name, (Bayer), 25 to 30 parts by weight, water (ion-exchanged water) 30 parts by weight, the total mixture of polyol, diluent and water is 100 parts by weight, and the hydroxyl equivalent is 685. 30 parts by weight of the colored toner was mixed with 270 parts by weight of the mixture of the agent and water to obtain the main component of the aqueous polyurethane composition of Comparative Example 1. And the. In addition, 300 parts by weight of crude MDI (4,4'-diphenylmethane diisocyanate) ruplanate M5S (trade name, manufactured by BASF INOAC Polyurethane Co., Ltd., NCO weight%: 31.4 to 32.6%) as a polyisocyanate was used as an aqueous system of Comparative Example 1. It was used as a curing agent for the polyurethane composition.

比較例1の骨材とセメントは、実施例の骨材及びセメントと同一とし、比較例1の骨材部も実施例の骨材部と同一とした。床下地コンクリートへの塗布及び下記評価項目の評価に当たっては比較例1の主剤300重量部と比較例1の硬化剤300重量部と比較例1の骨材部3000重量部を混合し比較例1の水系ポリウレタン組成物とした。   The aggregate and cement of Comparative Example 1 were the same as the aggregate and cement of Example, and the aggregate portion of Comparative Example 1 was also the same as the aggregate portion of Example. For application to the floor foundation concrete and evaluation of the following evaluation items, 300 parts by weight of the main agent of Comparative Example 1, 300 parts by weight of the hardener of Comparative Example 1, and 3000 parts by weight of the aggregate part of Comparative Example 1 were mixed. An aqueous polyurethane composition was obtained.

[比較例2]
水酸基当量が350のヒマシ油変性3官能ポリオールを10〜15重量部と、水酸基当量が360のビスフェノールA骨格を有する4官能ポリオールを5〜10重量部と、水酸基当量が300〜500のビスフェノールA骨格を有する2官能ポリエーテルポリオールを23〜28重量部と、希釈剤としてスルホン酸エステル化合物(メザモール;商品名、バイエル社製)を20〜25重量部と、水(イオン交換水)30重量部とを含み、ポリオールと希釈剤と水の混合物全体として100重量部と成り水酸基当量が770である、ポリオールと希釈剤と水の混合物350重量部に、さらに希釈剤としてアジピン酸ジイソノニルを100重量部配合し、さらに着色トナー50重量部を混合して比較例2の水系ポリウレタン組成物の主剤とした。またポリイソシアネートとしてクルードMDI(4,4´−ジフェニルメタンジイソシアネート)ルプラネートM5S(商品名、BASF INOACポリウレタン株式会社製、NCO重量%:31.4〜32.6%)400重量部を比較例2の水系ポリウレタン組成物の硬化剤とした。
[Comparative Example 2]
10 to 15 parts by weight of a castor oil-modified trifunctional polyol having a hydroxyl equivalent of 350, 5 to 10 parts by weight of a tetrafunctional polyol having a bisphenol A skeleton having a hydroxyl equivalent of 360, and a bisphenol A skeleton having a hydroxyl equivalent of 300 to 500 23 to 28 parts by weight of a bifunctional polyether polyol having the following, 20 to 25 parts by weight of a sulfonate compound (mesamol; trade name, manufactured by Bayer AG) as a diluent, and 30 parts by weight of water (ion-exchanged water). 100 parts by weight of a mixture of a polyol, a diluent and water and having a hydroxyl equivalent of 770. 350 parts by weight of a mixture of a polyol, a diluent and water, and 100 parts by weight of diisononyl adipate as a diluent Then, 50 parts by weight of a colored toner was further mixed to obtain a main component of the aqueous polyurethane composition of Comparative Example 2. Further, 400 parts by weight of crude MDI (4,4'-diphenylmethane diisocyanate) ruplanate M5S (trade name, manufactured by BASF INOAC Polyurethane Co., Ltd., NCO weight%: 31.4 to 32.6%) was used as the polyisocyanate in the aqueous system of Comparative Example 2. It was used as a curing agent for the polyurethane composition.

比較例2の骨材とセメントは、実施例の骨材及びセメントと同一とし、比較例2の骨材部も実施例の骨材部と同一とした。床下地コンクリートへの塗布及び下記評価項目の評価に当たっては比較例2の主剤500重量部と比較例2の硬化剤400重量部と比較例2の骨材部4800重量部を混合し比較例2の水系ポリウレタン組成物とした。   The aggregate and cement of Comparative Example 2 were the same as the aggregate and cement of Example, and the aggregate portion of Comparative Example 2 was also the same as the aggregate portion of Example. For application to the floor foundation concrete and evaluation of the following evaluation items, 500 parts by weight of the main agent of Comparative Example 2, 400 parts by weight of the hardener of Comparative Example 2, and 4800 parts by weight of the aggregate part of Comparative Example 2 were mixed. An aqueous polyurethane composition was obtained.

[評価項目及び評価方法] [Evaluation items and evaluation methods]

[圧縮強度]
JIS K 6911 5.19 圧縮強さ に準じ、実施例、比較例1及び比較例2の水系ポリウレタン組成物を25.4×12.7×12.7mmの形状にて硬化させ、23℃7日間養生後に載荷速度1mm/分で圧縮し、圧縮強度(N/mm)を測定した。
[Compressive strength]
According to JIS K 6911 5.19 Compressive strength, the aqueous polyurethane compositions of Examples, Comparative Examples 1 and 2 were cured in a shape of 25.4 × 12.7 × 12.7 mm, and were heated at 23 ° C. for 7 days. After curing, compression was performed at a loading speed of 1 mm / min, and the compression strength (N / mm 2 ) was measured.

[耐衝撃性]
23℃下でJISA5371の300mm×300mm×厚さ60mmの乾燥したコンクリート平板(ケット水分計HI−520コンクリートレンジにて5%以下)の表面に、均一に混合した実施例、比較例1又は比較例2の水系ポリウレタン組成物を厚さ4〜9mmに金ゴテで塗布して7日間養生し、中央部に高さ1mから1kgの鋼球を30回落下させ、塗膜に割れ、剥がれ等の異常のないものを○、割れ、剥がれ等の異常が生じたものを×と評価した。
[Shock resistance]
Example, Comparative Example 1 or Comparative Example uniformly mixed at 23 ° C. on the surface of a dried concrete flat plate of 300 mm × 300 mm × thickness of 60 mm (5% or less in a HI-520 concrete moisture range HI-520 concrete range) of JIS 5371 at 23 ° C. Apply the water-based polyurethane composition of No. 2 to a thickness of 4 to 9 mm with a gold trowel and cure for 7 days, drop a 1 kg steel ball from a height of 1 m to the center 30 times, and crack or peel off the coating film. A sample without any of them was evaluated as ○, and a sample with abnormalities such as cracks and peeling was evaluated as ×.

[耐熱衝撃性]
JISA5371の300mm×300mm×厚さ60mmの乾燥したコンクリート平板(ケット水分計HI−520コンクリートレンジにて5%以下)を4分の1にカットして150mm×150mm×厚さ60mmの試験板とし、該の試験板の表面をサンドペーパー#80で十分に目荒らしをして脆弱層を除去し、均一に混合した実施例、比較例1又は比較例2の水系ポリウレタン組成物を厚さ4〜9mmに塗布し7日間養生する。その後試験体中央部に95℃熱水を5分流下させ次に20℃の冷水を10分流下させることを1サイクルとして4000サイクル繰り返し、塗膜に剥がれ、浮き等異常が生じないものを○、異常が生じたものを×と評価した。
[Heat shock resistance]
A 300 mm x 300 mm x 60 mm thick dried concrete plate (5% or less in a HI-520 concrete range moisture meter) of JIS 5371 is cut into quarters to form a 150 mm x 150 mm x 60 mm test plate. The surface of the test plate was sufficiently roughened with sandpaper # 80 to remove the fragile layer, and the aqueous polyurethane composition of Example, Comparative Example 1 or Comparative Example 2 having a uniform thickness was 4 to 9 mm. And cure for 7 days. Thereafter, 95 ° C. hot water was allowed to flow down to the center of the test specimen for 5 minutes, and then 20 ° C. cold water was allowed to flow down for 10 minutes. Those having an abnormality were evaluated as x.

[付着性]
23℃下でJISA5371の300mm×300mm×厚さ60mmの乾燥したコンクリート平板(ケット水分計HI−520コンクリートレンジにて5%以下)の表面に、均一に混合した実施例、比較例1又は比較例2の水系ポリウレタン組成物を厚さ4〜9mmに金ゴテで塗布して7日間養生し、建研式接着力試験器により、40×40mm部分の水系ポリウレタン組成物とコンクリート平板との付着強度(N/mm)を測定した。破壊状態は下地コンクリート100%凝集破壊を○と、それ以外を×と評価した。
[Adhesiveness]
Example, Comparative Example 1 or Comparative Example uniformly mixed at 23 ° C. on the surface of a dried concrete flat plate of 300 mm × 300 mm × thickness of 60 mm (5% or less in a HI-520 concrete moisture range HI-520 concrete range) of JIS 5371 at 23 ° C. The aqueous polyurethane composition of No. 2 was applied to a thickness of 4 to 9 mm with a gold iron and cured for 7 days, and the adhesion strength between the 40 × 40 mm portion of the aqueous polyurethane composition and the concrete plate was measured by a Kenken-type adhesion tester ( N / mm 2 ). The fracture state was evaluated as ○ for 100% cohesive failure of the foundation concrete, and as X for the others.

[収縮応力]
実施例、比較例1又は比較例2の水系ポリウレタン組成物を、幅19.0mm×長さ220.0mm×深さ10.0mmの型枠に充填して試験片を作製し、23℃7日間養生する。その後95℃7日間養生した後、23℃に徐冷し、試験片の長さ方向の収縮長さ(ΔL(mm))を測定する。その後該試験片を1mm/分で長さ方向に引張り、引張ヤング率E(N/mm)を測定する。該引張ヤング率Eと型枠の長さL(220.0mm)と試験片の収縮長さΔLから次式により収縮応力(N/mm)を算出した。
収縮応力(N/mm)=E×(ΔL/L)
[Shrinkage stress]
A test piece was prepared by filling the water-based polyurethane composition of Example, Comparative Example 1 or Comparative Example 2 into a mold having a width of 19.0 mm, a length of 220.0 mm and a depth of 10.0 mm. Cure. After curing at 95 ° C. for 7 days, the sample is gradually cooled to 23 ° C., and the contraction length (ΔL (mm)) in the length direction of the test piece is measured. Thereafter, the test piece is pulled in the length direction at 1 mm / min, and the tensile Young's modulus E (N / mm 2 ) is measured. The contraction stress (N / mm 2 ) was calculated from the tensile Young's modulus E, the length L (220.0 mm) of the mold and the contraction length ΔL of the test piece by the following equation.
Shrinkage stress (N / mm 2 ) = E × (ΔL / L)

[表面仕上がり性]
23℃下において、床下地コンクリート上に均一に混合した実施例、比較例1又は比較例2の水系ポリウレタン組成物を厚さ4〜9mmに金鏝で塗布した際の塗膜の表面状態を目視にて観察し、平滑な仕上がりである場合を○とし、凹凸のある仕上がりとなっている場合を×と評価した。
[Surface finish]
At 23 ° C., the aqueous polyurethane composition of Example, Comparative Example 1 or Comparative Example 2 uniformly mixed on the floor foundation concrete was applied to a thickness of 4 to 9 mm with a gold iron to visually observe the surface state of the coating film. And the case of smooth finish was evaluated as ○, and the case of uneven finish was evaluated as x.

[色調安定性]
床下地コンクリート上に均一に混合した実施例、比較例1又は比較例2の水系ポリウレタン組成物を厚さ4〜9mmに金鏝で塗布して硬化した塗膜表面の色調(発色状態)が良好であることを目視にて確認し該状態を初期色調とする。その後23℃28日間放置し再度塗膜表面の色調を目視にて観察し、初期色調が変化して白化しているものを×とし、初期色調が白化することなく保持されているものを○と評価した。
[Color tone stability]
The water-based polyurethane composition of Example, Comparative Example 1 or Comparative Example 2 uniformly mixed on the floor foundation concrete was applied to a thickness of 4 to 9 mm with a gold trowel and cured, and the color tone (coloring state) of the coating film surface was good. Is visually confirmed, and this state is set as the initial color tone. After that, the sample was left at 23 ° C. for 28 days, and the color tone of the coating film surface was visually observed again, and x was obtained when the initial color tone was changed and whitened, and x was obtained when the initial color tone was maintained without whitening. evaluated.

[硬化速度]
実施例の水系ポリウレタン組成物については、実施例の主剤と実施例の硬化剤と白色ポルトランドセメントを62.5g:50g:60gにて、比較例1の水系ポリウレタン組成物については比較例1の主剤と比較例1の硬化剤と白色ポルトランドセメントを50g:50g:50gにて、比較例2の水系ポリウレタン組成物につては比較例2の主剤と比較例2の硬化剤と白色ポルトランドセメントを62.5g:50g:60gにて、それぞれ主剤と硬化剤を60秒混合した後、白色ポルトランドセメントを投入してさらに120秒混合する。主剤と硬化剤の混合開始時を0分として、混合開始後の経過時間毎に発熱温度を測定し、最高発熱温度到達時間を硬化速度(分)とした。
[Curing speed]
For the aqueous polyurethane composition of the example, the main agent of the example, the hardener of the example, and white Portland cement at 62.5 g: 50 g: 60 g were used. For the aqueous polyurethane composition of the comparative example 1, the main agent of the comparative example 1 was used. And 50 g of the hardener of Comparative Example 1 and 50 g of white Portland cement. For the aqueous polyurethane composition of Comparative Example 2, the main agent of Comparative Example 2 and the hardener of Comparative Example 2 and the white Portland cement were mixed at 62. After mixing the main agent and the curing agent for 60 seconds each at 5 g: 50 g: 60 g, white Portland cement is added and mixed for another 120 seconds. With the start of mixing of the main agent and the curing agent as 0 minutes, the exothermic temperature was measured for each elapsed time after the start of mixing, and the time to reach the maximum exothermic temperature was defined as the curing speed (minutes).

[評価結果]
評価結果を表1に示す。
[Evaluation results]
Table 1 shows the evaluation results.

Claims (3)

ポリオール、ポリイソシアネート、希釈剤、セメント、骨材及び水を含有してなるモルタル状の水系ポリウレタン組成物であって、ポリオールはヒマシ油変性3官能ポリオールとビスフェノールA骨格を有する4官能ポリオールとビスフェノールA骨格を有する2官能ポリエーテルポリオールから成り、希釈剤は安息香酸グリコールエステルを含み、安息香酸グリコールエステルは少なくともジエチレングルコールジベンゾエート又はジプロピレングリコールジベンゾエートのいずれかを含み、ヒマシ油変性3官能ポリオール及びビスフェノールA骨格を有する4官能ポリオールは水酸基当量が250〜450であり、ビスフェノールA骨格を有する2官能ポリエーテルポリオールは水酸基当量が300〜500であり、組成物全体を100重量部とするとセメント及び骨材から成る骨材部は75〜90重量部であり、希釈剤は、ポリオールとポリイソシアネートと希釈剤と水から成る樹脂部100重量部中の7〜25重量部であることを特徴とする水系ポリウレタン組成物。 A mortar-like aqueous polyurethane composition comprising a polyol, a polyisocyanate, a diluent, a cement, an aggregate and water, wherein the polyol is a castor oil-modified trifunctional polyol, a tetrafunctional polyol having a bisphenol A skeleton, and a bisphenol A A bifunctional polyether polyol having a skeleton, wherein the diluent contains glycol benzoate, and the glycol benzoate contains at least either diethylene glycol dibenzoate or dipropylene glycol dibenzoate, and is a castor oil-modified trifunctional polyol. And a tetrafunctional polyol having a bisphenol A skeleton has a hydroxyl equivalent of 250 to 450, a bifunctional polyether polyol having a bisphenol A skeleton has a hydroxyl equivalent of 300 to 500, In terms of parts by weight, the aggregate part composed of cement and aggregate is 75 to 90 parts by weight, and the diluent is 7 to 25 parts by weight in 100 parts by weight of the resin part composed of polyol, polyisocyanate, diluent and water. An aqueous polyurethane composition, which is characterized in that: 硬化物のJIS K 6911の圧縮強度は20N/mm以上であり、収縮応力は1.5N/mm未満であることを特徴とする請求項1記載の水系ポリウレタン組成物。 Compressive strength of JIS K 6911 of the cured product is at 20 N / mm 2 or more, shrinkage stresses aqueous polyurethane composition according to claim 1, wherein less than 1.5 N / mm 2. 床下地コンクリート表面を、連続した凹状の溝部を設けることなく平面に形成し、該床下地コンクリート表面上に請求項1又は請求項2記載の水系ポリウレタン組成物を厚さ4〜9mmに塗付することを特徴とする水系ポリウレタン組成物の床下地コンクリートへの施工方法。
The underfloor concrete surface is formed flat without providing a continuous concave groove, and the aqueous polyurethane composition according to claim 1 or 2 is applied to the underfloor concrete surface to a thickness of 4 to 9 mm. A method for applying a water-based polyurethane composition to floor foundation concrete, characterized in that:
JP2016039311A 2016-03-01 2016-03-01 Water-based polyurethane composition and method for applying the same to underfloor concrete Active JP6647916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016039311A JP6647916B2 (en) 2016-03-01 2016-03-01 Water-based polyurethane composition and method for applying the same to underfloor concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016039311A JP6647916B2 (en) 2016-03-01 2016-03-01 Water-based polyurethane composition and method for applying the same to underfloor concrete

Publications (2)

Publication Number Publication Date
JP2017155128A JP2017155128A (en) 2017-09-07
JP6647916B2 true JP6647916B2 (en) 2020-02-14

Family

ID=59808084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016039311A Active JP6647916B2 (en) 2016-03-01 2016-03-01 Water-based polyurethane composition and method for applying the same to underfloor concrete

Country Status (1)

Country Link
JP (1) JP6647916B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6731838B2 (en) * 2016-12-13 2020-07-29 アイカ工業株式会社 Hydraulic polymer cement composition
JP6989943B2 (en) * 2017-09-13 2022-01-12 日米レジン株式会社 Epoxy resin mortar and epoxy resin mixing method
JP6937206B2 (en) * 2017-09-27 2021-09-22 アイカ工業株式会社 Hydraulic polymer cement composition

Also Published As

Publication number Publication date
JP2017155128A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6407594B2 (en) Water-based polyurethane composition and method for applying this to floor concrete
SK279263B6 (en) The mastic composition
JP6208533B2 (en) Water-based polyurethane composition and method for applying the same to floor concrete
JP6647916B2 (en) Water-based polyurethane composition and method for applying the same to underfloor concrete
JP5283308B2 (en) Water-based urethane cement composition
EP2746358A1 (en) Polyurea silicate resin for wellbore application
JP2017039623A (en) Hydraulic setting polymer cement composition
KR101876806B1 (en) Waterproofing method using polyurea
JP2020037508A (en) Hydraulic polymer cement composition and construction method therefor
CN108137774A (en) The method for improving the fracture toughness of the reaction product comprising poly-isocyanurate
JP6721371B2 (en) Polyurethane cement composition and its concrete floor construction method
US4559239A (en) Method for repairing cementitious substrate
KR101039376B1 (en) Inorganic polyurethan waterproofing material and waterproof method thereof
KR101801833B1 (en) Inorganic-based Paint Composition for Spraying and Method for Preparing Floor Finish Structure Using the Same
JP6659385B2 (en) Hydraulic polymer cement composition and floor structure using the same
JP2005047719A (en) Polyurethane-based cement composition and method for costruction
US9221996B2 (en) Process for repairing road surfacing systems, in particular for open-pore asphalts
JP6659402B2 (en) Polyurethane cement composition and concrete floor construction method
JP2000072507A (en) Polymer cement composition
KR101284602B1 (en) Method of repairing surface of concrete structure according to result of safety inspection and check-up of the concrete structure
JP2017065942A (en) Hydraulic polymer cement composition
JP6731838B2 (en) Hydraulic polymer cement composition
JP7410841B2 (en) Hydraulic polymer cement composition and its construction method
JP2019218230A (en) Polyurethane-based cement composition and its constructing method
JP6917191B2 (en) Hydraulic polymer cement composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6647916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250