JP6647631B2 - 電気測定装置 - Google Patents
電気測定装置 Download PDFInfo
- Publication number
- JP6647631B2 JP6647631B2 JP2016555224A JP2016555224A JP6647631B2 JP 6647631 B2 JP6647631 B2 JP 6647631B2 JP 2016555224 A JP2016555224 A JP 2016555224A JP 2016555224 A JP2016555224 A JP 2016555224A JP 6647631 B2 JP6647631 B2 JP 6647631B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- sample
- channel
- electrode
- sample movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 claims description 367
- 239000000758 substrate Substances 0.000 claims description 29
- 230000005611 electricity Effects 0.000 claims description 10
- 239000000523 sample Substances 0.000 description 269
- 210000004027 cell Anatomy 0.000 description 45
- 230000008859 change Effects 0.000 description 36
- 239000011148 porous material Substances 0.000 description 21
- 230000001052 transient effect Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 230000035945 sensitivity Effects 0.000 description 18
- 239000007788 liquid Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 238000001514 detection method Methods 0.000 description 10
- 239000011325 microbead Substances 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- DDVBPZROPPMBLW-IZGXTMSKSA-N latrunculin A Chemical compound C([C@H]1[C@@]2(O)C[C@H]3C[C@H](O2)CC[C@@H](\C=C/C=C/CC\C(C)=C/C(=O)O3)C)SC(=O)N1 DDVBPZROPPMBLW-IZGXTMSKSA-N 0.000 description 8
- DDVBPZROPPMBLW-UHFFFAOYSA-N latrunculin-A Natural products O1C(=O)C=C(C)CCC=CC=CC(C)CCC(O2)CC1CC2(O)C1CSC(=O)N1 DDVBPZROPPMBLW-UHFFFAOYSA-N 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 208000031481 Pathologic Constriction Diseases 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 230000036262 stenosis Effects 0.000 description 5
- 208000037804 stenosis Diseases 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 108091005461 Nucleic proteins Proteins 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- -1 polydimethylsiloxane Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- OSBLTNPMIGYQGY-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;boric acid Chemical compound OB(O)O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O OSBLTNPMIGYQGY-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000008051 TBE buffer Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 210000004292 cytoskeleton Anatomy 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/1031—Investigating individual particles by measuring electrical or magnetic effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
(1)サンプルを流すことができるサンプル移動流路を形成し、該サンプル移動流路に接続する第1測定流路及び前記第1測定流路とは反対側から前記サンプル移動流路に接続する第2測定流路を形成することで、サンプルの駆動回路と測定回路を別回路として設計できること、
(2)サンプルの駆動回路と測定回路を別回路とすることで、駆動回路の電圧を高く設定することで検出感度を高めることができ、従来はノイズに埋もれていた過渡電流を測定できること、
(3)測定回路に可変抵抗を組み込むと、より高感度検出が可能となり過渡電流をより精度良く測定できること、
(4)過渡電流を読み取ることで、サンプル移動流路へのサンプルの入出タイミングを正確に測定することができ、その結果、サンプルの通過速度を計算することでサンプルの表面電荷及び変形能を測定できること、
(5)過渡電流とは別に、第1測定流路及第2測定流路間の定常電流の変化を測定できることから、従来の細孔と異なりサンプル移動流路を長く設計することができ、サンプル移動流路内でサンプルの伸長状態を作り出して核酸やタンパク質等の生体分子を測定できること、を新たに見出した。
前記サンプル測定流路は、前記サンプル移動流路に接続する第1測定流路、及び前記第1測定流路とは反対側から前記サンプル移動流路に接続する第2測定流路を含む、
電気測定用チップ。
(2)前記第1測定流路及び前記第2測定流路の幅が、前記サンプル移動流路と接続している部分の長さより、前記サンプル移動流路から離れるにしたがって長くなる上記(1)に記載の電気測定用チップ。
(3)前記第1測定流路及び前記第2測定流路が、前記サンプル移動流路を挟んで非対称の位置に形成されている上記(1)又は(2)に記載の電気測定用チップ。
(4)前記サンプル移動流路に狭窄部が少なくとも1以上形成されている上記(1)〜(3)の何れか一に記載の電気測定用チップ。
(5)前記サンプル移動流路の一端に形成されたサンプル投入流路、前記サンプル移動流路の他端に形成されたサンプル回収流路を含む、上記(1)〜(4)の何れか一に記載の電気測定用チップ。
(6)前記第1測定流路及び前記第2測定流路に換え、第1測定電極及び第2測定電極が形成されている上記(1)〜(5)の何れか一に記載の電気測定用チップ。
(7)上記(1)〜(5)の何れか一に記載の電気測定用チップ、
サンプルがサンプル移動流路を移動できるようにするための駆動回路、
第1測定流路及び第2測定流路に電圧を印加し、サンプルがサンプル移動回路を移動する際の電流の変化を測定する測定回路、
を含む電気測定装置。
(8)上記(6)に記載の電気測定用チップ、
サンプルがサンプル移動流路を移動できるようにするための駆動回路、
第1測定電極及び第2測定電極に電圧を印加し、サンプルがサンプル移動回路を移動する際の電流の変化を測定する測定回路、
を含む電気測定装置。
(9)前記測定回路が、前記駆動回路と前記測定回路の抵抗を釣り合った状態にするための可変抵抗を含み、
前記測定回路が、釣り合った状態からの電流の差分を測定する上記(7)又は(8)に記載の電気測定装置。
(10)前記測定回路が、過渡電流及び定常電流の変化を測定する上記(7)〜(9)の何れか一に記載の電気測定装置。
(11)蛍光顕微鏡を更に含む上記(7)〜(10)の何れか一に記載の電気測定装置。
そのため、本発明の電気測定用チップを用いた電気測定装置は、サンプルの駆動回路と測定回路を別回路として設計できるので、駆動回路の電圧を高く設定し、検出感度を高めることができるので過渡電流も正確に読み取ることができる。更に、測定回路に可変抵抗を組み込むと、駆動回路と測定回路が釣り合った状態からの差分を読み取ることができるので、検出感度をより高めることができる。
そして、本発明の電気測定装置は、過渡電流を読み取ることでサンプル移動流路へのサンプルの入出タイミングを正確に測定でき、通過速度からサンプルの表面電荷及び変形能を測定することが可能となる。また、過渡電流とは別に、第1測定流路及び第2測定流路間の定常電流の変化を測定できることから、従来の細孔と異なりサンプル移動流路を長く設計することができ、サンプル移動流路内で核酸やタンパク質等の生体分子の伸長状態を作り出して測定することが可能となる。
更に、本発明の電気測定チップは横置きで使用できることから、蛍光顕微鏡観察と組み合わせて使用することで、より正確な分析をすることができる。
また、サンプル移動流路に狭窄部を設けることで、同種の細胞であっても変形能が異なる細胞を測定することができる。
(1)基板2の上に、エッチング可能な材料8を化学蒸着で塗布する。
(2)ポジ型フォトレジスト9をスピンコータで塗布する。
(3)流路を形成する個所に光が照射するように、フォトマスクを用いて露光・現像処理し、流路を形成する部分のポジ型フォトレジスト9を除去する。なお、図3、図5及び図6に示す電気測定用チップ1を作製する際には、フォトマスクの形状を変えればよい。
(4)流路を形成する個所の材料8をエッチングし、流路を形成する。
(5)ポジ型フォトレジスト9を除去する。
(1)フォトマスクの形状を変えることで、転写後に流路を形成する凸部8を基板2上に形成し、鋳型を作製する。
(2)鋳型を、転写用の材料21に転写する。
(3)鋳型を剥離することで、流路が形成された電気測定用チップ1を作製する。
<実施例1>
以下の手順により、電気測定用チップ1を作製した。
(1)厚さ600μmのシリコン基板2(フェローテックシリコン社製 直径76mm)を準備した。
(2)ネガ型フォトレジストSU−8 3005(MICRO CHEM社製)をスピンコータにより塗布した。
(3)フォトリソグラフィにより、流路を形成する個所に光が照射するように、フォトマスクを用いて露光した。露光後は、SU−8 developer(MICRO CHEM社製)を用いてレジストを現像した。現像後は、超純水を用いてリンスし、スピンドライヤーで水分を飛ばし乾燥させ、鋳型を作製した。
(4)作製した鋳型に、ポリジメチルシロキサン(東レ社製、SILPOT184)を流し込み、硬化させた。
(5)硬化したPDMSを鋳型から取り外し、次いで、市販のカバーガラス(厚み:0.17mm)をPDMSに密着させて電気測定用チップ1を作製した。
実施例1のフォトマスクの形状を換え、第1測定流路6と第2測定流路7の位置のズレを5μmとした以外は、実施例1と同様の手順で電気測定用チップ1を作製した。図13(1)は、実施例2で作製した電気測定用チップ1の第1測定流路6及び第2測定流路7付近の拡大写真である。
実施例1のフォトマスクの形状を換え、サンプル移動流路3を挟んで対称の位置に第1測定流路6と第2測定流路7を形成した以外は、実施例1と同様の手順で電気測定用チップ1を作製した。図13(2)は、実施例3で作製した電気測定用チップ1の第1測定流路6及び第2測定流路7付近の拡大写真である。
<実施例4>
(1)駆動回路30の作製
第1電極31及び第2電極32は、電線(オヤイデ電気社製FTVS−408)の皮を剥いで金属部分を露出させて作製した。電圧印加手段33は、電池ボックス(誠南工業社製)を用いた。
(2)測定回路40の作製
第3電極41及び第4電極42は、電線(オヤイデ電気社製FTVS−408)の皮を剥いで金属部分を露出させて作製した。増幅手段は、FEMTO社製Variable Gain Low Noise Current Amplifierを用いた。電圧印加手段44は、電池ボックス(誠南工業社製)を用いた。可変抵抗45は、BI Technologies社製精密ポテンションメーターを用いた。電流計43は、増幅手段で増幅したシグナルをUSB−DAQ(National Instruments社製)を用いてPC用の電気信号に変換し、Lab View(National Instruments社製)を用いて作成したソフトウェアで読み取った。抵抗46は、金属皮膜抵抗(1kΩ パナソニック製)を用いた。
(3)実施例1で作製した電気測定用チップ1の、サンプル投入流路4に第1電極31、サンプル回収流路5に第2電極32、第1測定流路6に第3電極41、第2測定流路7に第4電極42を挿入することで、本発明の電気測定装置10を作製した。
<実施例5>
超純水にサンプルとして蛍光マイクロビーズ(Polyscience社製Fluoresbrite)を分散することで、サンプル液を作製した。次に、5×TBEバッファーを毛管現象により流路に導入し、作製したサンプル液30μlをサンプル投入流路4に投入し、駆動回路30に53Vの電圧を印加した。また、測定回路40には、18Vの電圧を印加した。可変抵抗45を操作し、駆動回路30及び測定回路40の見かけ上の抵抗を釣り合った状態にした。サンプルがサンプル移動流路3を流れた際の定常電流の変化と過渡電流の発生を計測した。図14(1)は、実施例5における測定時間と測定された定常電流値の関係を示すグラフである。
実施例2で作製した電気測定用チップ1を用いた以外は、実施例5と同様の手順で測定を行った。図14(2)は、実施例6における測定時間と測定された定常電流値の関係を示すグラフである。
実施例3で作製した電気測定用チップ1を用いた以外は、実施例5と同様の手順で測定を行った。図14(3)は、実施例7における測定時間と測定された定常電流値の関係を示すグラフである。
(1)第1測定流路6及び第2測定流路7が対称となる位置関係に配置されているため、実施例1及び実施例2の配置のチップより測定回路40の電流が流れやすい、
(2)第1測定流路6及び第2測定流路7の端にサンプルが流れて来た時に定常電流の変化を測定するが、上記のとおり、実施例3の電気測定用チップ1は電気が流れやすいため、サンプルがサンプル移動流路3との接続部分の中間に来た時に定常電流値がベース値に近い値に戻り、
(3)そして、接続部分からサンプルが流れ出る際に、定常電流値の変化を測定した、
為と考えられる。
<実施例8>
サンプルとして蛍光マイクロビーズ(Polyscience社製Fluoresbrite)を用い、電気測定用チップ1の第1測定流路6と第2測定流路7の間が観察できるように蛍光顕微鏡(Nikon社製TE300)を配置して蛍光強度を測定した以外は、実施例5と同様の手順で測定を行った。図16は、電気測定用チップ1の写真及び第1測定流路6〜第2測定流路7の間を流れる蛍光マイクロビーズの写真、並びに、蛍光マイクロビーズが流れる際の定常電流値の変化(シグナル強度)と蛍光強度の変化を示すグラフ(グラフ中の線で囲った部分が、蛍光マイクロビーズが第1測定流路6〜第2測定流路7の間を流れた際の測定結果)である。図16に示すように、本発明の電気測定装置10を用いることで、過渡電流及び定常電流値の変化を測定しつつ、蛍光顕微鏡で電気測定用チップ1のサンプル移動流路3を流れるサンプルを観察することができるので、電気測定用チップ1の測定部位で起こっている事象を正確に観察することができる。
サンプルとして、粒径が約3.1μm、2.08μm、1μmの蛍光マイクロビーズ(Polyscience社製Fluoresbrite)を用いた以外は、実施例8と同様の手順で測定を行った。図17は実施例9で測定した定常電流値の変化(シグナル強度)を示すグラフである。従来の定常電流値の変化の測定のみでは、同じ大きさの物質が重なったものであるのか、又は、大きさの異なる物質であるのか判別が困難であったが、蛍光顕微鏡と併せて観察することで、サンプルを正確に判別できた。なお、蛍光顕微鏡は異なる色を判別できることから、例えば、グラム陰性菌と陽性菌を染色して蛍光顕微鏡で観察しつつ、過渡電流及び定常電流値の変化を測定することで、大凡の種類の判別も可能となる。
<実施例10>
サンプルとして、粒径が約3.1μm、2.08μm、1.75μm、1.1μm、1μm、0.75μmの蛍光マイクロビーズ(Polyscience社製Fluoresbrite)を用いて実施例8と同様の手順で測定を行った。図18はサンプルの体積と定常電流値の変化(シグナル強度)を示すグラフである。図18に示すように、シグナル強度とサンプルの体積は相関関係があることが確認できた。
<実施例11>
実施例5において、駆動回路30の電圧を、53V、32V、12Vの3種類に代えて測定した以外は実施例5と同様の手順で測定を行った。図19は、駆動回路の電圧とサンプルがサンプル移動流路を通過する時間の関係を示す図である。図19に示すように、駆動電圧30の電圧を大きくすることで、測定感度を上げることができる一方で、サンプルの表面電荷により、通過時間が短くなることが明らかとなった。また、12Vの場合は、シグナル強度のバラツキは少なかったものの、通過時間のバラツキが大きかった。一方、駆動電圧を32V以上にした場合、通過時間のバラツキはほとんどなかったが、シグナル強度のバラツキが見られた。これは、低電圧下では、電荷を持つサンプルへの駆動力が小さくなり、壁面から受ける摩擦力によってサンプルの移動速度に影響を与えたためと考えられる。
本発明においては、サンプル移動流路3の長さ、及び第1測定流路6及び第2測定流路7の間隔を任意に設定できる。したがって、駆動回路30の電圧を高くしても、定常電流の変化を読み取るのに必要で且つ最短となる時間となるようにサンプル移動流路3の長さ、及び第1測定流路6及び第2測定流路7を設定できることから、短時間で高感度検出を行うことができる。
<実施例12>
上記実施例10では、形状が一定の蛍光マイクロビーズを用いたが、形状が変化する細胞を用いた場合のシグナル強度とサンプル体積の相関関係を調べた。
先ず、実施例1のフォトマスクの形状を変えることで、サンプル移動流路3の幅が20μm、第1測定流路6の端部と第2測定流路7の端部の距離が20μmの電気測定用チップ1を作製した。図20(1)は、実施例12で作製した電気測定用チップ1のサンプル移動流路付近の拡大写真、図20(2)は実施例12で作製した電気測定用チップ1のサンプル移動流路付近の寸法を説明するための図である。その他のサイズは、実施例1と同様である。
そして、駆動回路30に加え、作製した電気測定用チップ1のPDMSのサンプル投入流路4及びサンプル回収流路5の一部に孔をあけ、シリコンチューブの一端をサンプル回収流路5の形成した孔に接続し他端をシリンジポンプ(kd Scientific,KDS210)に接続した以外は、実施例4と同様の手順で電気測定装置10を作製した。
次に、サンプルとして、
・HeLa細胞(ヒト子宮頸がん由来細胞):約15μm(ATCC,CCL−2)
・Jurkat細胞(ヒトT細胞)浮遊系 :約10μm(ATCC,TIB−152)、
を用いた。なお、HeLa細胞は、HeLa用細胞培地であるMEM(Sigma aldrich,M4655)を用いて培養した。また、Jurkatは、Jurkat用細胞培地であるRPMI1640(gibco,11875−093)を用いて培養した。
そして、蛍光マイクロビーズに変え上記の細胞を用い、駆動回路30に印加する電圧を3V、シリンジポンプでサンプル溶液を5〜10μL/minで吸引した以外は、実施例10と同様の手順で実験を行った。
図20(3)は、定常電流値のヒストグラムで、各定常電流値においてカウントされた細胞数の分布を示すグラフである。図20(2)に示すように、細胞等の形状が変化し易いサンプルを用いた場合でも、定常電流値の強度とサンプルの体積には相関関係があることが確認できた。
<実施例13>
実施例1のフォトマスクの形状を変えることで、狭窄部34を有する電気測定用チップ1を作製した。図21(1)は、実施例13で作製した電気測定用チップ1のサンプル移動流路3の狭窄部34付近の拡大写真である。また、図21(2)は、実施例13で作製した電気測定用チップ1のサンプル移動流路3と狭窄部34の長さ及び幅を示す図である。サンプル移動流路3の幅は25μmで、幅15μmの狭窄部及び幅10μmの狭窄部を、間隔を設けて形成した。幅15μmの狭窄部及び幅10μmの狭窄部、並びに両狭窄部の間のサンプル移動流路3の長さは30μmであった。また、幅15μmの狭窄部及びサンプル移動流路3は約45°の角度で接続し、接続部分の長さは約5μmであった。幅10μmの狭窄部及びサンプル移動流路3は約45°の角度で接続し、接続部分の長さは約7.5μmであった。
次に、作製した電気測定用チップ1を用い、実施例12と同様の手順で電気測定装置10を作製した。
次に、サンプルとして実施例12に記載のHeLa細胞を用い、シリンジポンプで5μl/minの量で吸引した。
図22(1)は、図21に示すチップの左から右側(流路幅は、15μm→25μm→10μm)にHeLa細胞を流した時の各幅の流路に入った時間(in)と出た時間(out)、及び定常電流値の変化を示すグラフである。図22(2)は、HeLa細胞を逆方向(流路幅は、10μm→25μm→15μm)に流した時の各幅の流路に入った時間(in)と出た時間(out)、及び定常電流値を示すグラフである。上記のとおりHeLa細胞の大きさは約15μmである。図22(1)及び(2)から明らかなように、同じ長さの流路であっても、流路幅が狭くなるに従ってHeLa細胞が通過する時間が長くなった。特に、HeLa細胞が変形しないと通過できない幅である10μmの狭窄部を通過する時には、15μm及び25μmの幅の時より非常に長い時間を要した。以上の結果より、サンプル移動流路3に狭窄部34を形成することで、サンプルの変形能を測定することができた。
上記実施例13において、狭窄部34を設けることでサンプルの変形能を測定できたことから、本実施例では、変形能が異なる同種の細胞を準備し測定を行った。
先ず、フォトマスクの形状を変えることで、幅が10μm、長さが40μmの狭窄部34を1つ有する電気測定用チップ1を作製した。図23(1)は、実施例14で作製した電気測定用チップ1のサンプル移動流路3の狭窄部34付近の拡大写真である。次に、作製した電気測定用チップ1を用いて、実施例13と同様の手順で電気測定装置を作製した。
次に、アクチンの重合を阻害することで細胞骨格を作ることを阻害する物質であるラトランクリンA(wako,125−04363)を、上記実施例12のHeLa細胞に0.5μMの濃度で作用させた。なお、ラトランクリンAをHeLa細胞に作用させると細胞骨格の形成が阻害されることから、ラトランクリンAを作用しないHeLa細胞と比較して、細胞は変形能が異なる。
そして、作製した電気測定装置を用い、ラトランクリンAを作用したHeLa細胞(LatA)及びラトランクリンAを作用していないHeLa細胞(Without LatA)を、シリンジポンプを用いて10μl/minの量で吸引した以外は、実施例12と同様の手順で実験を行った。
図23(2)は、定常電流値と通過時間の関係を示すグラフである。図23(2)から明らかなように、同じ定常電流値、つまり、細胞の大きさが同じ場合、ラトランクリンAを作用していないHeLa細胞(Without LatA)の方が明らかに狭窄部を通過する時間が長かった。
以上の結果から、同種の細胞であっても、狭窄部を通過する時間を測定することで細胞の変形能の違いを測定することができた。がん化した細胞は正常細胞と比較して変形能が高くなることから、例えば、狭窄部を設けた電気測定用チップに同じ細胞集団の溶液を流すことで、細胞集団の中から、がん化した細胞を区別・選別する装置(セルソーター)を作製することができる。
したがって、企業、研究機関等において、サンプルを正確に分析するための測定機器の開発に有用である。
Claims (4)
- 電気測定用チップと、駆動回路と、測定回路と、を含む電気測定装置であって、
前記電気測定用チップは、
基板、該基板上に形成したサンプル移動流路及びサンプル測定流路を含み、
前記サンプル測定流路は、
前記サンプル移動流路に接続する、第1測定流路及び第2測定流路を含み、
前記第1測定流路と前記サンプル移動流路の接続部と、前記第2測定流路と前記サンプル移動流路の接続部が、前記サンプル移動流路のサンプルが流れる方向に離間した位置に形成され、
前記駆動回路は、
前記サンプル移動流路に配置された第1電極及び第2電極を含み、
前記第1電極及び前記第2電極の間に電位差を与えることで、前記第1電極と前記第2電極に挟まれた前記サンプル移動流路にイオン電流を流すことができ、
前記測定回路は、
前記第1測定流路に配置された第3電極及び前記第2測定流路に配置された第4電極を含み、
前記第1電極と前記第2電極に挟まれた前記サンプル移動流路に流れるイオン電流を測定することができ、
前記第1電極及び前記第2電極の間で、前記第1測定流路及び前記第2測定流路が前記サンプル移動流路に接続し、
前記測定回路は更に可変抵抗及び前記第3電極と前記第4電極に挟まれた抵抗を含み、前記可変抵抗を操作することで、前記抵抗の両端にかかる電位差を調整することができる、
電気測定装置。 - 電気測定用チップと、駆動回路と、測定回路と、を含む電気測定装置であって、
前記電気測定用チップは、
基板、該基板上に形成したサンプル移動流路、該サンプル移動流路に形成された第1測定電極及び第2測定電極を含み、
前記第1測定電極と、前記第2測定電極が、前記サンプル移動流路のサンプルが流れる方向に離間した位置に形成され、
前記駆動回路は、
前記サンプル移動流路に配置された第1電極及び第2電極を含み、
前記第1電極及び第2電極の間に電位差を与えることで、前記第1電極と前記第2電極に挟まれた前記サンプル移動流路にイオン電流を流すことができ、
前記測定回路は、
前記第1測定電極及び前記第2測定電極を含み、
前記第1電極と前記第2電極に挟まれた前記サンプル移動流路に流れるイオン電流を測定することができ、
前記第1電極及び前記第2電極の間で、前記第1測定電極及び前記第2測定電極が前記サンプル移動流路に形成され、
前記測定回路は更に可変抵抗及び前記第1測定電極及び前記第2測定電極に挟まれた抵抗を含み、前記可変抵抗を操作することで、前記抵抗の両端にかかる電位差を調整することができる、
電気測定装置。 - 前記サンプル移動流路に狭窄部が少なくとも1以上形成されている請求項1または2に記載の電気測定装置。
- 前記サンプル移動流路の一端に形成されたサンプル投入流路、前記サンプル移動流路の他端に形成されたサンプル回収流路を含む、請求項1〜3の何れか一項に記載の電気測定装置。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014214090 | 2014-10-20 | ||
JP2014214090 | 2014-10-20 | ||
JP2015078223 | 2015-04-07 | ||
JP2015078223 | 2015-04-07 | ||
PCT/JP2015/079532 WO2016063858A1 (ja) | 2014-10-20 | 2015-10-20 | 電気測定用チップ、及び電気測定装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019235981A Division JP2020098211A (ja) | 2014-10-20 | 2019-12-26 | 電気測定用チップ、及びサンプルの測定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016063858A1 JPWO2016063858A1 (ja) | 2017-08-10 |
JP6647631B2 true JP6647631B2 (ja) | 2020-02-14 |
Family
ID=55760891
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016555224A Expired - Fee Related JP6647631B2 (ja) | 2014-10-20 | 2015-10-20 | 電気測定装置 |
JP2019235981A Pending JP2020098211A (ja) | 2014-10-20 | 2019-12-26 | 電気測定用チップ、及びサンプルの測定方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019235981A Pending JP2020098211A (ja) | 2014-10-20 | 2019-12-26 | 電気測定用チップ、及びサンプルの測定方法 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6647631B2 (ja) |
WO (1) | WO2016063858A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018066597A1 (ja) * | 2016-10-07 | 2018-04-12 | 国立大学法人名古屋大学 | サンプルの分析方法、及びサンプル分析用デバイス |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3944917A (en) * | 1973-08-13 | 1976-03-16 | Coulter Electronics, Inc. | Electrical sensing circuitry for particle analyzing device |
JP2680022B2 (ja) * | 1988-03-16 | 1997-11-19 | 株式会社日立製作所 | 粒子計測装置 |
EP1208240A4 (en) * | 1999-08-26 | 2006-10-04 | Univ Princeton | MICROFLUIDIC AND MACROFLUIDIC ELECTRONIC DEVICES FOR DETECTING CHANGES IN THE CAPACITY OF LIQUIDS AND METHOD FOR THEIR USE. |
JP2007147602A (ja) * | 2005-10-27 | 2007-06-14 | Kyocera Corp | 流体検査用チップ、および流体検査用チップの製造方法、並びに流体検査用光学システム、流体検査用電気システム、および検知方法 |
JP5053810B2 (ja) * | 2007-11-20 | 2012-10-24 | 積水化学工業株式会社 | 微粒子カウンター及び微粒子カウンターチップ |
CN102186989B (zh) * | 2008-09-03 | 2021-06-29 | 纳伯塞斯2.0有限责任公司 | 用于流体通道中生物分子和其它分析物的电压感测的纵向移位纳米级电极的使用 |
JP5604862B2 (ja) * | 2009-01-09 | 2014-10-15 | ソニー株式会社 | 流路デバイス、複素誘電率測定装置及び誘電サイトメトリー装置 |
US8188438B2 (en) * | 2009-10-20 | 2012-05-29 | Diagnostics Chips, LLC | Electrokinetic microfluidic flow cytometer apparatuses with differential resistive particle counting and optical sorting |
JP2013090576A (ja) * | 2011-10-24 | 2013-05-16 | Hitachi Ltd | 核酸分析デバイス及びそれを用いた核酸分析装置 |
US9535033B2 (en) * | 2012-08-17 | 2017-01-03 | Quantum Biosystems Inc. | Sample analysis method |
US8963095B2 (en) * | 2012-11-27 | 2015-02-24 | Diagnostic Chips, LLC | Electrokinetic microfluidic flow cytometer apparatuses with differential resistive particle counting and optical sorting |
HU230593B1 (hu) * | 2013-02-05 | 2017-02-28 | NORMA Instruments Zártkörűen Működő Részvénytársaság | Mérőegység folyadékot tartalmazó minták fizikai jellemzőinek meghatározásához |
JP5904958B2 (ja) * | 2013-03-07 | 2016-04-20 | 株式会社東芝 | 半導体マイクロ分析チップ及びその製造方法 |
-
2015
- 2015-10-20 JP JP2016555224A patent/JP6647631B2/ja not_active Expired - Fee Related
- 2015-10-20 WO PCT/JP2015/079532 patent/WO2016063858A1/ja active Application Filing
-
2019
- 2019-12-26 JP JP2019235981A patent/JP2020098211A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JPWO2016063858A1 (ja) | 2017-08-10 |
JP2020098211A (ja) | 2020-06-25 |
WO2016063858A1 (ja) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bai et al. | Microfluidic strategies for the isolation and profiling of exosomes | |
JP4932066B2 (ja) | 流路デバイス及びそれを含むサンプル処理装置 | |
Errico et al. | Mitigating positional dependence in coplanar electrode Coulter-type microfluidic devices | |
Shrirao et al. | Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification | |
Moon et al. | Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP) | |
CA2658122C (en) | Nanonozzle device arrays: their preparation and use for macromolecular analysis | |
Vaclavek et al. | Resistive pulse sensing as particle counting and sizing method in microfluidic systems: Designs and applications review | |
US20210331169A1 (en) | Microfluidic apparatus for separation of particulates in a fluid | |
TW201417889A (zh) | 一種分子富集的裝置及方法 | |
Bilican et al. | Focusing-free impedimetric differentiation of red blood cells and leukemia cells: A system optimization | |
Guo et al. | Design of a fluidic circuit-based microcytometer for circulating tumor cell detection and enumeration | |
Guo et al. | Precise enumeration of circulating tumor cells using support vector machine algorithm on a microfluidic sensor | |
Civelekoglu et al. | Wrap-around sensors for electrical detection of particles in microfluidic channels | |
WO2016163387A1 (ja) | 電気測定用デバイス、及び電気測定装置 | |
Khodaparastasgarabad et al. | A novel microfluidic high-throughput resistive pulse sensing device for cells analysis | |
Chen et al. | Portable Coulter counter with vertical through-holes for high-throughput applications | |
JP6647631B2 (ja) | 電気測定装置 | |
Kim et al. | High-throughput multi-gate microfluidic resistive pulse sensing for biological nanoparticle detection | |
Shen et al. | A simple 3-D microelectrode fabrication process and its application in microfluidic impedance cytometry | |
KR101071116B1 (ko) | 체액 미생물 검침 장치 | |
Kim et al. | Potentiometric multichannel cytometer microchip for high-throughput microdispersion analysis | |
Wang et al. | Cell density detection based on a microfluidic chip with two electrode pairs | |
Castillo-Fernandez et al. | High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation | |
JP6846719B2 (ja) | サンプルの分析方法、及びサンプル分析用デバイス | |
Chung et al. | High‐Speed Microfluidic Manipulation of Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170502 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190805 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190805 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190904 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191028 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20191119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6647631 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |