JP6647113B2 - Manufacturing method of all solid state secondary battery - Google Patents

Manufacturing method of all solid state secondary battery Download PDF

Info

Publication number
JP6647113B2
JP6647113B2 JP2016069859A JP2016069859A JP6647113B2 JP 6647113 B2 JP6647113 B2 JP 6647113B2 JP 2016069859 A JP2016069859 A JP 2016069859A JP 2016069859 A JP2016069859 A JP 2016069859A JP 6647113 B2 JP6647113 B2 JP 6647113B2
Authority
JP
Japan
Prior art keywords
electrode current
positive electrode
pressure
negative electrode
temporary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069859A
Other languages
Japanese (ja)
Other versions
JP2017183121A (en
Inventor
健児 岡本
健児 岡本
英之 福井
英之 福井
高野 靖
靖 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2016069859A priority Critical patent/JP6647113B2/en
Priority to PCT/JP2017/006977 priority patent/WO2017150354A1/en
Priority to CN201780011523.8A priority patent/CN108701868B/en
Priority to EP17759820.8A priority patent/EP3425719A4/en
Priority to KR1020187022222A priority patent/KR20180118619A/en
Priority to US16/080,557 priority patent/US11101497B2/en
Publication of JP2017183121A publication Critical patent/JP2017183121A/en
Application granted granted Critical
Publication of JP6647113B2 publication Critical patent/JP6647113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、例えばリチウムイオン伝導性の固体電解質を用いた全固体二次電池の製造方法に関する。   The present invention relates to a method for manufacturing an all-solid secondary battery using, for example, a lithium ion conductive solid electrolyte.

近年、電池の電解質としてリチウムイオン伝導性の固体電解質を用いた全固体二次電池が知られている。この全固体二次電池は、正極合材層と、負極合材層と、固体電解質層と、正極集電体と、負極集電体と、を有する。ここで、正極合材層は、正極活物質とリチウムイオン伝導性の固体電解質とからなる。負極合材層は、負極活物質とリチウムイオン伝導性の固体電解質とからなる。固体電解質層は、これら正極合材層と負極合材層との間に配置されている。正極集電体は、金属製であって、正極合材層の表面に設けられている。負極集電体は、金属製であって、負極合材層の表面に設けられている。   In recent years, an all-solid secondary battery using a lithium ion conductive solid electrolyte as a battery electrolyte has been known. This all-solid-state secondary battery includes a positive electrode mixture layer, a negative electrode mixture layer, a solid electrolyte layer, a positive electrode current collector, and a negative electrode current collector. Here, the positive electrode mixture layer includes a positive electrode active material and a lithium ion conductive solid electrolyte. The negative electrode mixture layer includes a negative electrode active material and a lithium ion conductive solid electrolyte. The solid electrolyte layer is disposed between the positive electrode mixture layer and the negative electrode mixture layer. The positive electrode current collector is made of metal and provided on the surface of the positive electrode mixture layer. The negative electrode current collector is made of metal and provided on the surface of the negative electrode mixture layer.

この全固体二次電池は、例えば、筒状の金型内に粉末状の正極合材層を充填した後、粉末状の固体電解質を充填し、次に粉末状の負極合材層を充填した後、プレスピンなどの押さえ具により高圧力で加圧成型することによって製造されていた。   This all-solid-state secondary battery is, for example, after filling a powdery positive electrode mixture layer in a cylindrical mold, filling a powdery solid electrolyte, and then filling a powdery negative electrode mixture layer. Thereafter, it was manufactured by press-molding with high pressure using a pressing tool such as a press pin.

ところで、上記の製造方法によると、高圧力でプレスが行われるため、正極合材層及び負極合材層(以下、両者をまとめて「電極合材層」と総称することがある。)に内部応力が発生する。さらに、成型圧力を解放すると、正極合材と負極合材と正極集電体と負極集電体との延び率の相違に起因して、電池がその厚み方向に湾曲してしまうこととなる。   By the way, according to the above-described manufacturing method, since the pressing is performed at a high pressure, the inside of the positive electrode mixture layer and the negative electrode mixture layer (hereinafter, both may be collectively referred to as “electrode mixture layer”). Stress occurs. Further, when the molding pressure is released, the battery is bent in the thickness direction due to the difference in the elongation rate between the positive electrode mixture, the negative electrode mixture, the positive electrode current collector, and the negative electrode current collector.

このような湾曲を防ぐ方法として、正極集電体及び負極集電体(以下、両者をまとめて「電極集電体」と総称することがある。)の両面に、互いに対称に変形する電極合材層を配置して、電池自体が湾曲しないようにしたものがある(例えば、特許文献1)。そして、この電池を例えば乾式により製造する場合には、電極集電体の両面に電極合材層が静電塗布などにより形成されていた。   As a method for preventing such a curvature, an electrode assembly which is symmetrically deformed on both surfaces of a positive electrode current collector and a negative electrode current collector (hereinafter, sometimes collectively referred to as an “electrode current collector”). There is one in which a material layer is arranged so that the battery itself does not curve (for example, Patent Document 1). When this battery is manufactured by, for example, a dry method, an electrode mixture layer is formed on both surfaces of an electrode current collector by electrostatic coating or the like.

特許第5131686号公報Japanese Patent No. 5131686

上述した特許文献1の製造方法によると、電極集電体の両面に電極合材層を形成するのに、静電塗布が用いられている。そのため、実際に製造する場合には、一方の表面に電極合材を静電塗布した後、反転させて、他方の表面に電極合材を静電塗布することになる。そして、反転させて他方の表面に電極合材を静電塗布する際に、一方の表面に静電塗布された電極合材が落下するおそれがある。また、このような事態を回避するために、電極集電体を鉛直にしてその両面に電極合材を静電塗布することも考えられるが、その作業が非常に難しくなるという問題がある。
そこで、本発明は、製造時に生じる全固体二次電池の湾曲を容易に防止し得る全固体二次電池の製造方法を提供することを目的とする。
According to the manufacturing method of Patent Document 1 described above, electrostatic coating is used to form an electrode mixture layer on both surfaces of an electrode current collector. Therefore, in actual manufacturing, the electrode mixture is electrostatically applied to one surface, then inverted, and the electrode mixture is electrostatically applied to the other surface. When the electrode mixture is electrostatically applied to the other surface after being turned over, there is a possibility that the electrode mixture electrostatically applied to one surface falls. Further, in order to avoid such a situation, it is conceivable that the electrode current collector is vertical and the electrode mixture is electrostatically applied to both surfaces thereof, but there is a problem that the operation becomes extremely difficult.
Therefore, an object of the present invention is to provide a method of manufacturing an all-solid secondary battery that can easily prevent the bending of the all-solid secondary battery that occurs during manufacturing.

上記課題を解決するため、本発明の全固体二次電池の製造方法は、複数の仮電池体で構成される全固体二次電池の製造方法であって、正極合材、固体電解質および負極合材が積層されたものを、正極集電体と負極集電体との間で押圧することによって、複数の仮電池体をそれぞれ形成する工程と、前記形成された複数の仮電池体の正極集電体同士または負極集電体同士が向き合うように複数の仮電池体を重ね合わせた状態で加圧成型する工程と、前記加圧成型する工程の後、その加圧成型の圧力以下の圧力を継続して加える工程と、を備えることを特徴とする。   In order to solve the above-mentioned problems, a method for manufacturing an all-solid secondary battery of the present invention is a method for manufacturing an all-solid secondary battery including a plurality of temporary battery bodies, and includes a positive electrode mixture, a solid electrolyte, and a negative electrode composite. Pressing the laminated material between the positive electrode current collector and the negative electrode current collector to form a plurality of temporary battery bodies, respectively; Pressure molding in a state in which a plurality of temporary battery bodies are overlapped so that the current collectors or the negative electrode current collectors face each other, and after the pressure molding step, a pressure equal to or less than the pressure of the pressure molding. And a step of continuously adding.

本発明の全固体二次電池の製造方法は、複数の仮電池体を使用して、これらの正極集電体同士または負極集電体同士を向い合せた状態で加圧成型する工程を備える。また、加圧成形工程の後に、その成型圧力を直ちに解除せずに、成型圧力以下の圧力を継続して加える工程を備える。そのため、一対の仮電池体が変形しないまま維持され、これらの仮電池体に残った残留応力が緩和されるとともに、一対の仮電池体同士が互いに接合することによって湾曲を防止することができる。これにより、全固体二次電池の湾曲を容易に防止することが可能となる。   The method for manufacturing an all-solid secondary battery of the present invention includes a step of using a plurality of temporary battery bodies and performing pressure molding with these positive electrode current collectors or negative electrode current collectors facing each other. Further, after the pressure molding step, the method includes a step of continuously applying a pressure equal to or lower than the molding pressure without immediately releasing the molding pressure. Therefore, the pair of temporary battery bodies is maintained without being deformed, the residual stress remaining in these temporary battery bodies is reduced, and the pair of temporary battery bodies can be joined to each other to prevent bending. This makes it possible to easily prevent the all-solid secondary battery from bending.

本発明の実施の形態1に係る全固体二次電池の製造方法を説明する断面図である。FIG. 4 is a cross-sectional view for explaining the method for manufacturing the all-solid-state secondary battery according to Embodiment 1 of the present invention. 同全固体二次電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the all-solid-state secondary battery. 仮電池体の湾曲が発生するメカニズムを説明する図である。It is a figure explaining the mechanism which curvature of a temporary battery body generates. 仮電池体の湾曲が発生するメカニズムを説明する図である。It is a figure explaining the mechanism which curvature of a temporary battery body generates. 仮電池体の湾曲が発生するメカニズムを説明する図である。It is a figure explaining the mechanism which curvature of a temporary battery body generates. 仮電池体の湾曲を防止するメカニズムを説明する図である。It is a figure explaining the mechanism which prevents bending of a temporary battery body. 仮電池体の湾曲を防止するメカニズムを説明する図である。It is a figure explaining the mechanism which prevents bending of a temporary battery body. 湾曲した状態の仮電池体を示す図である。It is a figure which shows the temporary battery body of the curved state. 同全固体二次電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the all-solid-state secondary battery. 凹凸部の一例であるピットを説明する図である。FIG. 3 is a diagram illustrating a pit which is an example of an uneven portion. 凹凸部の一例である穴を説明する図である。It is a figure explaining the hole which is an example of an uneven part. 凹凸部の一例である山谷を説明する図である。It is a figure explaining the mountain valley which is an example of an uneven part. 本発明の実施の形態2に係る全固体二次電池の製造方法を説明する断面図である。FIG. 7 is a cross-sectional view illustrating a method for manufacturing an all-solid secondary battery according to Embodiment 2 of the present invention. 同全固体二次電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the all-solid-state secondary battery.

(実施の形態1)
以下、本発明の実施の形態に係る全固体二次電池及びその製造方法を、図面に基づき説明する。
(Embodiment 1)
Hereinafter, an all-solid secondary battery and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings.

(仮電池体の形成工程)
まず、図1に示すように、薄い板状の金属製の正極集電体1と、この正極集電体1の上面に配置される正極合材層2と、この正極合材層2の上面に配置されるリチウムイオン伝導性の固体電解質層3と、この固体電解質層3の上面に配置される負極合材層4と、この負極合材層4の上面に配置される薄い板状の金属製の負極集電体5とを積層して積層体を形成する。
(Step of forming temporary battery body)
First, as shown in FIG. 1, a thin plate-shaped metal positive electrode current collector 1, a positive electrode mixture layer 2 disposed on the upper surface of the positive electrode current collector 1, and an upper surface of the positive electrode mixture layer 2 , A negative electrode mixture layer 4 disposed on the upper surface of the solid electrolyte layer 3, and a thin plate-shaped metal disposed on the upper surface of the negative electrode mixture layer 4. And a negative electrode current collector 5 made of the same to form a laminate.

正極合材層2、固体電解質3、負極合材層4としては粉末(粉体)のものが用いられる。なお、図1において、正極集電体1および負極集電体5についてはハッチングが省略されている。他の図面においても同様である。正極合材層2、固体電解質3、及び負極合材層4の各層の具体的な形成方法は、静電スクリーン法、静電スプレー法、その他粉体を堆積させる方法ならば、どのような方法であってもよい。   Powder (powder) is used as the positive electrode mixture layer 2, the solid electrolyte 3, and the negative electrode mixture layer 4. In FIG. 1, hatching is omitted for the positive electrode current collector 1 and the negative electrode current collector 5. The same applies to other drawings. The specific method of forming each of the positive electrode mixture layer 2, the solid electrolyte 3, and the negative electrode mixture layer 4 is an electrostatic screen method, an electrostatic spray method, or any other method for depositing powder. It may be.

その後、所要の力(例えば、0.1〜100MPaの力)でこの積層体を押圧(仮押圧)することによって仮電池体7を形成する。ここで、正極集電体1の両面(両方の表面)及び負極集電体5の両面には、粗化処理が施された表面(以下、凹凸部とも表現することがある)が形成されており、この押圧により、内側表面(正極合材層2又は負極合材層4と接する表面)の凹凸部に粉末状の正極合材及び負極合材が噛み込んだ状態(喰い込んだ状態とも表現できる)となる。また、このときの押圧力は仮電池体7が変形しない程度の大きさであるため、仮電池体7は略平坦な形状である。   Thereafter, the temporary battery body 7 is formed by pressing (temporarily pressing) the laminate with a required force (for example, a force of 0.1 to 100 MPa). Here, on both surfaces (both surfaces) of the positive electrode current collector 1 and both surfaces of the negative electrode current collector 5, a surface subjected to a roughening treatment (hereinafter, also referred to as an uneven portion) is formed. Due to this pressing, a state in which the powdered positive electrode mixture and the negative electrode mixture are bitten into the uneven portions on the inner surface (the surface in contact with the positive electrode mixture layer 2 or the negative electrode mixture layer 4) (also expressed as a biting state) Can be). Further, the pressing force at this time is so large that the temporary battery body 7 is not deformed, so that the temporary battery body 7 has a substantially flat shape.

(加圧成型工程)
次に、図2に示すように、一対の仮電池体7、7をそれぞれの正極集電体1、1同士が互いに接触するように重ねあわせ、所定の成型圧力(例えば、100MPa〜1000MPaの圧力)で加圧成型する。この工程は、例えば、一対の平板ブロック9、9の間に一対の仮電池体7、7を挟んで押圧することによって行われる。この加圧成型工程の後、直ちに圧力を解除すると、仮電池体7、7は大きく湾曲することとなる。
(Press molding process)
Next, as shown in FIG. 2, the pair of temporary battery bodies 7, 7 are overlapped so that the respective positive electrode current collectors 1, 1 are in contact with each other, and a predetermined molding pressure (for example, a pressure of 100 MPa to 1000 MPa) is applied. ). This step is performed by, for example, pressing the pair of temporary battery bodies 7 and 7 between the pair of flat plate blocks 9 and 9 and pressing them. If the pressure is released immediately after this pressure molding step, the temporary battery bodies 7 will be greatly curved.

ここで、仮電池体7が湾曲するメカニズムについて、図3〜5を参照しながら説明する。なお、ここでは、説明のため、一対の仮電池体7、7ではなく、1個の仮電池体7を用いながら説明する。図3の破線部分は加圧成型工程の前の仮電池体7を示し、実線部分は加圧成型中の仮電池体7を示す。図3に示すように、仮電池体7に成型圧力pを加えて圧縮すると、鉛直方向の内部応力a及び水平方向の内部応力bが発生する。このとき、仮電池体7は平板ブロックから摩擦力cを受けることとなる。加圧成型中において、鉛直方向の内部応力aは成型圧力pと相殺し、水平方向の内部応力bは摩擦力cと相殺する。   Here, a mechanism of bending the temporary battery body 7 will be described with reference to FIGS. Here, for the sake of explanation, the description will be made using one temporary battery body 7 instead of the pair of temporary battery bodies 7 and 7. The broken line part in FIG. 3 shows the temporary battery body 7 before the pressure molding step, and the solid line part shows the temporary battery body 7 during the pressure molding. As shown in FIG. 3, when the molding pressure p is applied to the temporary battery body 7 and compressed, a vertical internal stress a and a horizontal internal stress b are generated. At this time, the temporary battery body 7 receives the frictional force c from the flat plate block. During the pressure molding, the internal stress a in the vertical direction offsets the molding pressure p, and the internal stress b in the horizontal direction offsets the frictional force c.

図4の破線部分は加圧成型工程中の仮電池体7、実線部分は成型圧力p(図3参照)が解除された後の仮電池体7を示す。図3に示す成型圧力pが解除されると、同時に摩擦力cも解除されるため、図4に示すように、鉛直方向の内部応力a及び水平方向の内部応力bが開放される。そのため、仮電池体7は水平方向及び鉛直方向に延びることとなる。   4 shows the temporary battery body 7 during the pressure molding process, and the solid line part shows the temporary battery body 7 after the molding pressure p (see FIG. 3) is released. When the molding pressure p shown in FIG. 3 is released, the frictional force c is also released at the same time, so that the internal stress a in the vertical direction and the internal stress b in the horizontal direction are released as shown in FIG. Therefore, the temporary battery body 7 extends in the horizontal direction and the vertical direction.

ただし、電極合材層の延びが完了するためには時間がかかる。すなわち、内部応力a、bは、瞬時に開放されるものではなく、残留応力として蓄積されながら電極合材層の延びと共に徐々に開放される。鉛直方向の延びに関しては、仮電池体7の厚みが100〜500μm程度であるため、無視できるほど小さいが、水平方向の延びに関しては、仮電池体7の幅が30〜300mm程度であるため、無視できないほど大きくなる。   However, it takes time to complete the extension of the electrode mixture layer. That is, the internal stresses a and b are not released instantaneously, but are gradually released as the electrode mixture layer extends while being accumulated as residual stress. Regarding the extension in the vertical direction, since the thickness of the temporary battery body 7 is about 100 to 500 μm, it is negligibly small, but regarding the horizontal extension, the width of the temporary battery body 7 is about 30 to 300 mm. It becomes so large that it cannot be ignored.

ここで、水平方向の延び率は、各層の材料や電極合材層の粒径、厚さに依存する。負極合材層4の延び率が正極合材層2の延び率を上回る場合、成型圧力pの解除とともに水平方向の内部応力bが開放されることによって、図5に示すように、仮電池体7は負極合材層4が外側に膨らむように円弧形状に変形する。言い換えれば、仮電池体7の正極集電体1側には凹状部8が形成されたことになる。   Here, the elongation rate in the horizontal direction depends on the material of each layer and the particle size and thickness of the electrode mixture layer. When the extension rate of the negative electrode mixture layer 4 exceeds the extension rate of the positive electrode mixture layer 2, the internal stress b in the horizontal direction is released together with the release of the molding pressure p, and as shown in FIG. 7 is deformed into an arc shape so that the negative electrode mixture layer 4 expands outward. In other words, the concave portion 8 is formed on the positive electrode current collector 1 side of the temporary battery body 7.

一方で、成型圧力pを完全には解除せずに、一定時間仮電池体7の形状を維持すると、変形しないまま残留応力が緩和される。仮電池体7の形状を維持するための具体的な方法としては、例えば、図6及び7に示す方法がある。図6では、加圧成型工程において、一対の平板ブロック(治具)9、9を使用して、これら平板ブロック9、9同士の間に仮電池体7を挟んだ状態で成型圧力pを加える。次に、図7では、成型圧力pを加えたまま平板ブロック9、9同士をネジSで互いに固定する。その後、成型圧力pを解除する。このとき、平板ブロック9の自重とネジSの加圧力によって、仮電池体7の形状は維持される。ここで、平板ブロック9の自重とネジSの加圧力(以下、形状維持圧力と称す。)は、例えば、□100mmの電池に対して1000N以下(圧力換算にて0.1MPa以下)である。   On the other hand, if the shape of the temporary battery body 7 is maintained for a certain period of time without completely releasing the molding pressure p, the residual stress is reduced without being deformed. As a specific method for maintaining the shape of the temporary battery body 7, there is, for example, a method shown in FIGS. In FIG. 6, in a pressure molding step, a molding pressure p is applied using a pair of flat plate blocks (jigs) 9, with the temporary battery body 7 sandwiched between the flat plate blocks 9, 9. . Next, in FIG. 7, the flat plate blocks 9, 9 are fixed to each other with the screw S while the molding pressure p is applied. Thereafter, the molding pressure p is released. At this time, the shape of the temporary battery body 7 is maintained by the weight of the flat plate block 9 and the pressing force of the screw S. Here, the weight of the flat plate block 9 and the pressing force of the screw S (hereinafter, referred to as a shape maintaining pressure) are, for example, 1000 N or less (0.1 MPa or less in terms of pressure) for a 100 mm square battery.

表1は、平板ブロック9、9同士をネジSで固定した状態で、成型圧力pを解除した後に放置した時間(緩和時間)と、仮電池体7の湾曲量との関係を示す。ここで、湾曲量とは、仮電池体7の全体高さT(図8参照)から電池厚さtを差し引いた値である。また、成型圧力pは、1000MPaとし、形状維持圧力は、同じ圧力を加えることが困難であったため、□100mmの電池に対して50N〜1000N(圧力換算にて0.005MPa〜0.1MPa)の範囲内とした。なお、上記圧力の数値は、大気圧を考慮していない。表1からわかるように、緩和時間が2時間以上の場合、緩和時間が0.5時間や1時間のときと比較して、湾曲量を半分以下に抑えることができた。   Table 1 shows the relationship between the time (relaxation time) in which the flat plate blocks 9 and 9 are fixed to each other with the screws S after the molding pressure p is released and the temporary battery body 7 is bent. Here, the amount of bending is a value obtained by subtracting the battery thickness t from the overall height T of the temporary battery body 7 (see FIG. 8). The molding pressure p was 1000 MPa, and the shape maintaining pressure was 50 N to 1000 N (0.005 MPa to 0.1 MPa in terms of pressure) for a 100 mm battery because it was difficult to apply the same pressure. Within the range. The above pressure values do not take atmospheric pressure into consideration. As can be seen from Table 1, when the relaxation time was 2 hours or longer, the amount of bending could be suppressed to half or less as compared to when the relaxation time was 0.5 hour or 1 hour.

Figure 0006647113
Figure 0006647113

この結果は、1個の仮電池体7のみならず、一対の仮電池体7、7においても当てはまる。そこで、本実施の形態に係る全固体二次電池の製造方法は、一対の仮電池体7、7を加圧成型する工程の後に、その圧力を完全には解除せず、成型圧力p以下の圧力(形状維持圧力)で2時間以上継続して圧力を加える工程を備える。これにより、一対の仮電池体7、7が変形しないまま、これらの仮電池体7、7に残った残留応力が緩和される。そのため、一対の仮電池体7、7の湾曲を抑制することが可能となる。   This result is applicable not only to one temporary battery body 7 but also to a pair of temporary battery bodies 7 and 7. Therefore, the method of manufacturing the all-solid secondary battery according to the present embodiment does not completely release the pressure after the step of pressure-forming the pair of temporary battery bodies 7 A step of continuously applying pressure at a pressure (shape maintaining pressure) for 2 hours or more. Thereby, the residual stresses remaining in these temporary battery bodies 7, 7 are relaxed without the pair of temporary battery bodies 7, 7 being deformed. Therefore, it is possible to suppress the bending of the pair of temporary battery bodies 7 and 7.

一対の仮電池体7、7の形状を維持する具体的な態様としては、図9に示すように、一対の平板ブロック9、9をネジSで固定して、平板ブロック9、9同士の間に一対の仮電池体7、7を挟んで、平板ブロック9の自重とネジSの加圧力によって形状維持圧力を加えることによって行われる。この場合、一対の仮電池7、7に圧力をかけ続ける必要がなく、放置するだけで一対の仮電池体7、7の形状を維持することが可能である。ただし、本発明はこの態様に限られず、プレスピン等で仮電池体7に形状維持圧力をかけ続ける態様を含む。   As a specific mode for maintaining the shape of the pair of temporary battery bodies 7, 7, as shown in FIG. 9, the pair of flat plate blocks 9, 9 are fixed with screws S, and between the flat plate blocks 9, 9. Is carried out by applying a shape maintaining pressure between the pair of temporary battery bodies 7 and 7 by the weight of the flat plate block 9 and the pressing force of the screw S. In this case, there is no need to continuously apply pressure to the pair of temporary batteries 7, 7, and the shape of the pair of temporary batteries 7, 7 can be maintained only by leaving the battery. However, the present invention is not limited to this mode, and includes a mode in which the shape maintaining pressure is continuously applied to the temporary battery body 7 with a press pin or the like.

さらに、本実施の形態では、前述したように、正極集電体1及び負極集電体5の両面には凹凸部が形成されている。そして、加圧成型工程によって正極集電体1、1同士の表面の凹凸部を互いに喰い込んだ状態(噛み込んだ状態とも言える)となり、正極集電体1、1同士が、それぞれの凹凸部により互いに接合(接着)する。そのため、湾曲によって仮電池体7、7同士が離れようとする力が打ち消され、これにより、成型圧力を解除しても湾曲しない全固体二次電池10が得られる。   Further, in the present embodiment, as described above, the concave and convex portions are formed on both surfaces of the positive electrode current collector 1 and the negative electrode current collector 5. Then, by the pressure molding process, the concave and convex portions on the surfaces of the positive electrode current collectors 1 and 1 are brought into a state of being engaged with each other (also referred to as a biting state). Bond (adhere) to each other. For this reason, the force that tends to separate the temporary battery bodies 7 from each other is canceled out by the bending, whereby the all-solid-state secondary battery 10 that does not bend even when the molding pressure is released is obtained.

ここで、正極合材層2は、正極活物質にリチウムイオン伝導性の無機固体電解質が混合されたものである。正極活物質としては、例えば酸化物系のコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)などが用いられる。また無機固体電解質としては、例えば硫化物系のLiS(80mol%)−P(20mol%)が用いられる。これら正極活物質と固体電解質との混合比率は95対5〜30対70の範囲とされ、例えば70対30である。 Here, the positive electrode mixture layer 2 is a mixture of a positive electrode active material and a lithium ion conductive inorganic solid electrolyte. As the positive electrode active material, for example, lithium cobalt oxide (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), or the like is used. As the inorganic solid electrolyte, for example, sulfide-based Li 2 S (80 mol%)-P 2 S 5 (20 mol%) is used. The mixing ratio between the positive electrode active material and the solid electrolyte is in the range of 95: 5 to 30:70, for example, 70:30.

負極合材層4は、負極活物質にリチウムイオン伝導性の無機固体電解質が混合されたものである。負極活物質としては、例えば天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などの炭素材料、シリコン、錫、リチウムなどが用いられ、また固体電解質としては、上記正極合材層2の場合と同様のLiS(80mol%)−P(20mol%)が用いられる。これら負極活物質と固体電解質との混合比率は95対5〜30対70の範囲とされ、例えば60対40である。 The negative electrode mixture layer 4 is obtained by mixing a lithium ion conductive inorganic solid electrolyte with a negative electrode active material. As the negative electrode active material, for example, natural graphite, artificial graphite, graphite carbon fiber, carbon materials such as resin calcined carbon, silicon, tin, lithium and the like are used, and as the solid electrolyte, the same as the case of the positive electrode mixture layer 2 The same Li 2 S (80 mol%)-P 2 S 5 (20 mol%) is used. The mixing ratio between the negative electrode active material and the solid electrolyte is in the range of 95: 5 to 30:70, for example, 60:40.

固体電解質層3には、上述したように、硫化物系の無機固体電解質であるLiS−P(例えば、組成比が80対20のもの)が用いられる。また、1000MPaでの圧縮時の歪が40%以上となるものが用いられる。 As described above, the solid electrolyte layer 3 is made of Li 2 S—P 2 S 5 (for example, having a composition ratio of 80 to 20), which is a sulfide-based inorganic solid electrolyte. Further, a material having a strain at the time of compression at 1000 MPa of 40% or more is used.

正極集電体1としては、例えば、厚さ20μmのエッチドアルミニウム(表面電解処理アルミ箔ともいう)が用いられる。このエッチドアルミニウムは、その両面(両方の表面)に粗化処理が施されたもので、具体的には、図10に示すように、エッチングにより拡面処理が施されて多数のピット(細い穴)dが形成されたものである。なお、エッチドアルミニウムの粗化処理としては、ピットdの代わりに、図11に示すように内部が膨らむように窪んだ穴eであってもよく、また図12に示す鋭角状の山谷fが形成されたものでもよい。また、正極集電体1の厚さは、例えば5〜40μmの範囲であるのに対し、ピットd、穴e、山谷fなどの深さhは、2〜20μmとすることができ、4〜10μmとすることが好ましい。前述した粗化処理が施された表面は、まとめて凹凸部と称されている。   As the positive electrode current collector 1, for example, etched aluminum (also referred to as a surface electrolytically treated aluminum foil) having a thickness of 20 μm is used. This etched aluminum has both surfaces (both surfaces) subjected to a roughening treatment. Specifically, as shown in FIG. 10, a surface enlargement treatment is performed by etching to form a large number of pits (narrow pits). (Hole) d is formed. In addition, as a roughening treatment of the etched aluminum, instead of the pit d, a hole e which is depressed so that the inside may expand as shown in FIG. 11 may be used. It may be formed. The thickness of the positive electrode current collector 1 is, for example, in the range of 5 to 40 μm, while the depth h of the pits d, the holes e, the valleys f, and the like can be 2 to 20 μm. It is preferably 10 μm. The surface subjected to the above-described roughening treatment is collectively referred to as an uneven portion.

負極集電体5としては、両面が粗化処理された、つまり凹凸部が形成された厚さ18μm程度の薄い板状の銅が用いられる。具体的には、負極集電体5の表面に銅粒子を析出させる粗化処理が施される。この板状の銅を表面電解処理銅箔とも言う。この場合の凹凸部の深さについては、2〜20μm(負極集電体5の板厚が20μm以下の場合は、その板厚以下)とすることができ、4〜10μmとすることが好ましい。   As the negative electrode current collector 5, a thin plate-shaped copper having a thickness of about 18 μm in which both surfaces are roughened, that is, in which uneven portions are formed, is used. Specifically, a roughening treatment for depositing copper particles on the surface of the negative electrode current collector 5 is performed. This plate-shaped copper is also called a surface electrolytically treated copper foil. In this case, the depth of the concavo-convex portion can be 2 to 20 μm (or less than 20 μm when the thickness of the negative electrode current collector 5 is 20 μm or less), and preferably 4 to 10 μm.

なお、本実施の形態は、形状維持圧力を継続して加える時間(緩和時間)が2時間以上である態様であるが、本発明は、この態様に限られない。緩和時間は、仮電池体7、7のサイズや各構成の延び率等に依存し、これらの要素によって緩和時間は適宜決定される。表1の結果から、特に仮電池体7、7の幅が30mm〜300mm程度であって、仮電池体7を構成する材料として上記の材料を用いた場合、2時間以上形状維持圧力を継続して加えることが好ましい。   Although the present embodiment is an embodiment in which the time (relaxation time) for continuously applying the shape maintaining pressure is 2 hours or more, the present invention is not limited to this embodiment. The relaxation time depends on the size of the temporary battery bodies 7, the elongation of each component, and the like, and the relaxation time is appropriately determined based on these factors. From the results in Table 1, in particular, when the width of the temporary battery bodies 7 and 7 is about 30 mm to 300 mm and the above-described material is used as the material forming the temporary battery body 7, the shape maintaining pressure is maintained for 2 hours or more. It is preferable to add them.

ところで、上記実施の形態においては、正極集電体1同士が向き合うようにして、仮電池体7、7を加圧成型する態様を述べたが、これに限られない。すなわち、正極合材層1の延び率が負極合材層4の延び率を上回る場合は、負極集電体5に凹状部が形成される。この場合、凹状部を向い合せにするためには、正極集電体1同士ではなく、負極集電体5同士を向き合うようする。   By the way, in the above-described embodiment, the mode in which the temporary battery bodies 7 are pressure-formed so that the positive electrode current collectors 1 face each other has been described, but the present invention is not limited to this. That is, when the extension ratio of the positive electrode mixture layer 1 exceeds the extension ratio of the negative electrode mixture layer 4, a concave portion is formed in the negative electrode current collector 5. In this case, in order to face the concave portions, not the positive electrode current collectors 1 but the negative electrode current collectors 5 face each other.

また、電極集電体1、5は、両面が粗化処理されたものに限定されない。電極集電体1、5の表面のうち、電極合材層2、4と接触する表面や、他の仮電池体7の電極集電体1、5と接合する表面のみが粗化処理される態様であってもよい。すなわち、これらの表面については、電極合材層2、4の粉末や他の仮電池体7の電極集電体1、5の凹凸部が、電極集電体1、5の凹凸部に噛み込んで接合力を得るために、粗化処理が施される必要がある。一方で、電極合材層2、4に接触しない表面や他の仮電池体7の電極集電体1、5と接合しない表面は粗化される必要はない。   Further, the electrode current collectors 1 and 5 are not limited to those having both surfaces roughened. Of the surfaces of the electrode current collectors 1 and 5, only the surface that is in contact with the electrode mixture layers 2 and 4 and the surface of another temporary battery body 7 that is bonded to the electrode current collectors 1 and 5 are roughened. It may be an aspect. That is, with respect to these surfaces, the powder of the electrode mixture layers 2 and 4 and the uneven portions of the electrode current collectors 1 and 5 of the other temporary battery body 7 bite into the uneven portions of the electrode current collectors 1 and 5. In order to obtain a bonding force, it is necessary to perform a roughening treatment. On the other hand, the surface that does not contact the electrode mixture layers 2 and 4 and the surface of the temporary battery body 7 that does not join with the electrode current collectors 1 and 5 do not need to be roughened.

また、上記実施の形態においては、仮電池体同士を重ねる際に、凹状部8同士が向かい合うようにすることを述べたが、これに限られない。すなわち、凹状部8の反対側の凸状部同士が向かい合うように重ねてもよい。   Further, in the above-described embodiment, the case where the concave portions 8 face each other when the temporary battery bodies are overlapped with each other has been described, but the present invention is not limited to this. That is, you may overlap so that the convex parts of the opposite side of the concave part 8 may face each other.

さらに、上記実施の形態においては、2個の仮電池7、7で構成された全固体二次電池10について説明したが、本発明はこの態様に限られない。2個に限られず、3個以上を重ねて保持する場合は、3個以上の仮電池体7で全固体二次電池が構成される態様であってもよい。3個以上の場合、向かい合う負極集電体5、5同士もそれぞれの表面の凹凸部により互いに接合した状態となる。   Further, in the above-described embodiment, the all-solid-state secondary battery 10 including the two temporary batteries 7 has been described, but the present invention is not limited to this embodiment. In the case where three or more temporary battery bodies 7 are held in an overlapping manner without being limited to two, an all-solid-state secondary battery may be configured with three or more temporary battery bodies 7. In the case of three or more, the negative electrode current collectors 5 facing each other are in a state of being joined to each other by the uneven portions on the respective surfaces.

(実施の形態2)
次に、実施の形態2に係る全固体二次電池の製造方法について、図13及び14を参照しながら説明する。以下、実施の形態1と同様の部分については説明を省略し、異なる部分について主に説明する。
(Embodiment 2)
Next, a method for manufacturing the all-solid-state secondary battery according to Embodiment 2 will be described with reference to FIGS. Hereinafter, description of the same parts as in the first embodiment will be omitted, and different parts will be mainly described.

実施の形態1に係る全固体二次電池10の製造方法は、仮電池体7、7の正極集電体1、1同士が、それぞれの凹凸部により互いに接合させる態様であるが、実施の形態2に係る全固体二次電池10aの製造方法は、図13及び14に示すように、正極集電体1、1同士の間に接合材11を介在させることによって両者を接合する態様である。   The method for manufacturing the all-solid-state secondary battery 10 according to Embodiment 1 is a mode in which the positive electrode current collectors 1 and 1 of the temporary battery bodies 7 and 7 are joined to each other by respective concave and convex portions. As shown in FIGS. 13 and 14, the method of manufacturing the all-solid-state secondary battery 10a according to No. 2 is a mode in which the positive and negative electrode current collectors 1 and 1 are joined by interposing a joining material 11 therebetween.

すなわち、本実施の形態に係る全固体二次電池10aの製造方法では、図13に示す加圧成型工程のときに、正極集電体1、1同士または負極集電体5、5同士の間に接合材11を介在させた状態で、仮電池体7、7同士を重ね合わせて加圧成型することとしている。ここで、接合材11は、塑性変形可能なものであって、例えば樹脂シートである。   That is, in the method of manufacturing the all-solid-state secondary battery 10a according to the present embodiment, during the pressing and molding step shown in FIG. With the bonding material 11 interposed therebetween, the temporary battery bodies 7, 7 are overlaid and pressure molded. Here, the joining material 11 is plastically deformable, and is, for example, a resin sheet.

本実施の形態に係る全固体二次電池10aの製造方法によれば、加圧成型工程によって接合材11が塑性変形して正極集電体1の外側表面(正極合材層2が形成される表面と反対側の表面)の凹凸部に噛み込み、アンカー効果によって正極集電体1同士が強固に接合される。これにより、接合材11を介して正極集電体1同士が接合一体化することにより、仮電池体7a、7bが湾曲しようとする力を打ち消して、湾曲の無い全固体二次電池10aを得ることができる。   According to the method of manufacturing all-solid-state secondary battery 10a according to the present embodiment, bonding material 11 is plastically deformed by the pressure molding step, so that outer surface of positive electrode current collector 1 is formed. The positive electrode current collectors 1 are firmly joined to each other by the anchor effect by being engaged with the concave and convex portions (the surface opposite to the surface). As a result, the positive electrode current collectors 1 are joined and integrated via the bonding material 11, thereby canceling the force of the temporary battery bodies 7a and 7b to be bent, and obtaining an all-solid secondary battery 10a having no bent. be able to.

また、本実施の形態に係る全固体二次電池10aの製造方法は、実施の形態1に係る製造方法と同様に、加圧成型工程の後に、成型圧力以下の形状維持圧力で押圧を維持する工程を備える。そのため、一対の仮電池体7、7に残った残留応力が緩和され、仮電池体7の湾曲を抑制することが可能となる。   Further, in the method of manufacturing the all-solid-state secondary battery 10a according to the present embodiment, similarly to the manufacturing method according to the first embodiment, after the pressure molding step, the pressing is maintained at a shape maintaining pressure equal to or lower than the molding pressure. Process. Therefore, the residual stress remaining in the pair of temporary battery bodies 7 is alleviated, and the bending of the temporary battery body 7 can be suppressed.

ところで、接合材11としては、塑性変形可能なものに限定されず、電極集電体同士を接合可能な材料であればよい。例えば、樹脂シートの他に、接着剤や両面粘着テープ、ハンダ等が挙げられる。電極集電体が凹凸部を有しており、接合材11として流体の接着剤やハンダが用いられる場合、この接合材11が凹凸部に流れ込んだ状態で硬化することによって、アンカー効果による接合力が発生する。   By the way, the joining material 11 is not limited to a plastically deformable material, and may be any material that can join the electrode current collectors. For example, in addition to the resin sheet, an adhesive, a double-sided pressure-sensitive adhesive tape, solder, and the like may be used. In the case where the electrode current collector has an uneven portion and a fluid adhesive or solder is used as the bonding material 11, the bonding material 11 is cured while flowing into the uneven portion, thereby forming a bonding force by an anchor effect. Occurs.

また、実施の形態2は、電極集電体の表面に凹凸部が設けられている態様であるが、本発明はこの態様に限られない。すなわち、本発明は、電極集電体が粗化処理されたものに限られない。電極集電体が粗化処理されなくとも、アンカー効果による接合以外の接合法、例えば、静電気力や減圧吸着、あるいは化学的接合法等によって電極集電体同士を接合させることができる。静電気力は、接合材11を摩擦帯電させることによって得られる。減圧吸着は、例えば、表面に微細な孔が形成された接合材11を加圧することで、その微細な孔から接合材11の外部へ空気が抜けだすことにより、吸盤の原理を利用して得られる。化学的接合法としては、ファンデルワールス力や共有結合などが挙げられる。また、これらの接合法を組み合わせて接合してもよい。   In the second embodiment, an unevenness portion is provided on the surface of the electrode current collector, but the present invention is not limited to this. That is, the present invention is not limited to the one in which the electrode current collector is roughened. Even if the electrode current collectors are not roughened, the electrode current collectors can be joined to each other by a joining method other than the joining by the anchor effect, for example, an electrostatic force, a reduced pressure adsorption, a chemical joining method, or the like. The electrostatic force is obtained by frictionally charging the bonding material 11. The vacuum suction is obtained by using the principle of a suction cup by, for example, pressing the bonding material 11 having fine holes formed on the surface thereof, and releasing air from the fine holes to the outside of the bonding material 11. Can be Examples of the chemical bonding method include a van der Waals force and a covalent bond. Moreover, you may join by combining these joining methods.

1 正極集電体
2 正極合材層
3 固体電解質層
4 負極合材層
5 負極集電体
6 積層体
7 仮電池体
8 凹状部
9 平板ブロック
10 全固体二次電池
11 接合材
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode mixture layer 3 Solid electrolyte layer 4 Negative electrode mixture layer 5 Negative electrode collector 6 Laminate 7 Temporary battery body 8 Concave part 9 Flat plate block 10 All solid secondary battery 11 Joining material

Claims (3)

複数の仮電池体で構成される全固体二次電池の製造方法であって、
正極合材、固体電解質および負極合材が積層されたものを、正極集電体と負極集電体との間で押圧することによって、複数の仮電池体をそれぞれ形成する工程と、
前記形成された複数の仮電池体の正極集電体同士または負極集電体同士が向き合うように複数の仮電池体を重ね合わせた状態で加圧成型する工程と、
前記加圧成型する工程の後、その加圧成型の圧力以下の圧力を継続して加える工程と、を備える
ことを特徴とする全固体二次電池の製造方法。
A method for manufacturing an all-solid secondary battery including a plurality of temporary battery bodies,
A step of forming a plurality of temporary battery bodies, respectively, by pressing the positive electrode mixture, the solid electrolyte and the negative electrode mixture, which are laminated, between the positive electrode current collector and the negative electrode current collector.
Pressure molding in a state where a plurality of temporary battery bodies are overlapped so that the positive electrode current collectors or the negative electrode current collectors of the plurality of formed temporary battery bodies face each other,
A step of continuously applying a pressure equal to or lower than the pressure of the pressure molding after the pressure molding step.
前記正極集電体および負極集電体として、表面が粗化されたものを用いる
ことを特徴とする請求項1に記載の全固体二次電池の製造方法。
The method for manufacturing an all-solid secondary battery according to claim 1, wherein a surface roughened material is used as the positive electrode current collector and the negative electrode current collector.
前記加圧成型する工程のときに、前記正極集電体同士または負極集電体同士の間に接合材を介在させた状態で、前記複数の仮電池体同士を重ね合わせて加圧成型する
ことを特徴とする請求項1又は2に記載の全固体二次電池の製造方法。

At the time of the step of press-molding, the plurality of temporary battery bodies are superimposed and press-molded in a state where a bonding material is interposed between the positive electrode current collectors or the negative electrode current collectors. The method for producing an all-solid secondary battery according to claim 1, wherein:

JP2016069859A 2016-02-29 2016-03-31 Manufacturing method of all solid state secondary battery Active JP6647113B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016069859A JP6647113B2 (en) 2016-03-31 2016-03-31 Manufacturing method of all solid state secondary battery
PCT/JP2017/006977 WO2017150354A1 (en) 2016-02-29 2017-02-24 All-solid state secondary battery and method for manufacturing same
CN201780011523.8A CN108701868B (en) 2016-02-29 2017-02-24 All-solid-state secondary battery and method for manufacturing same
EP17759820.8A EP3425719A4 (en) 2016-02-29 2017-02-24 All-solid state secondary battery and method for manufacturing same
KR1020187022222A KR20180118619A (en) 2016-02-29 2017-02-24 All solid secondary battery and manufacturing method thereof
US16/080,557 US11101497B2 (en) 2016-02-29 2017-02-24 All-solid state secondary battery and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069859A JP6647113B2 (en) 2016-03-31 2016-03-31 Manufacturing method of all solid state secondary battery

Publications (2)

Publication Number Publication Date
JP2017183121A JP2017183121A (en) 2017-10-05
JP6647113B2 true JP6647113B2 (en) 2020-02-14

Family

ID=60007575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069859A Active JP6647113B2 (en) 2016-02-29 2016-03-31 Manufacturing method of all solid state secondary battery

Country Status (1)

Country Link
JP (1) JP6647113B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7148600B2 (en) * 2018-03-30 2022-10-05 本田技研工業株式会社 solid state battery
JP2020136200A (en) * 2019-02-25 2020-08-31 合同会社シナプス Secondary battery current collector, negative electrode using the same, and manufacturing method of negative electrode
JP7390635B2 (en) * 2019-04-26 2023-12-04 株式会社日本製鋼所 Solid electrolyte membrane manufacturing method, all-solid-state battery manufacturing method, solid-state electrolyte membrane manufacturing device, and all-solid-state battery manufacturing device
JPWO2021065173A1 (en) * 2019-09-30 2021-04-08
JP7425600B2 (en) 2019-12-27 2024-01-31 太陽誘電株式会社 All-solid-state battery and its manufacturing method
JP7245437B2 (en) 2020-03-05 2023-03-24 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126756A (en) * 1999-10-25 2001-05-11 Kyocera Corp Lithium solid electrolyte battery and manufacturing method therefor
JP5104492B2 (en) * 2008-04-07 2012-12-19 トヨタ自動車株式会社 Solid battery
JP5644858B2 (en) * 2010-08-09 2014-12-24 株式会社村田製作所 Stacked solid battery
JP2015060721A (en) * 2013-09-19 2015-03-30 株式会社村田製作所 Solid battery
WO2015147122A1 (en) * 2014-03-28 2015-10-01 日立造船株式会社 All-solid-state secondary battery

Also Published As

Publication number Publication date
JP2017183121A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6647113B2 (en) Manufacturing method of all solid state secondary battery
WO2017150354A1 (en) All-solid state secondary battery and method for manufacturing same
CN107683543B (en) All-solid-state secondary battery and method for manufacturing same
JP6639383B2 (en) All-solid secondary battery
JP5895827B2 (en) Solid battery and manufacturing method thereof
JP6324296B2 (en) All solid state secondary battery
KR102221805B1 (en) Manufacturing method for curved secondary battery
JP2018116812A (en) Manufacturing method of all-solid lithium ion battery
JP6774771B2 (en) All-solid-state secondary battery and its manufacturing method
JP6647077B2 (en) All-solid secondary battery and method of manufacturing the same
KR102514166B1 (en) Laminated battery and production method thereof
WO2017187494A1 (en) All-solid-state secondary battery
JP6726503B2 (en) All-solid secondary battery and manufacturing method thereof
JP7008813B2 (en) Manufacturing method of bipolar electrode
CN110114931A (en) The manufacturing method and its manufacturing device of all-solid-state battery
CN115602912A (en) All-solid-state battery and method for manufacturing all-solid-state battery
KR20170099213A (en) Roll press and lamination method using roll press
JP6937124B2 (en) Manufacturing method of all-solid-state secondary battery
JP2020109747A (en) All-solid battery and method of manufacturing the same
TWI553161B (en) Method for manufacturing electrode
JP6071225B2 (en) Manufacturing method of all-solid-state secondary battery
JP2010251018A (en) Battery electrode manufacturing method and manufacturing apparatus
JP2011086546A (en) Lithium battery and electronic equipment using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200114

R150 Certificate of patent or registration of utility model

Ref document number: 6647113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250