JP6646455B2 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
JP6646455B2
JP6646455B2 JP2016021546A JP2016021546A JP6646455B2 JP 6646455 B2 JP6646455 B2 JP 6646455B2 JP 2016021546 A JP2016021546 A JP 2016021546A JP 2016021546 A JP2016021546 A JP 2016021546A JP 6646455 B2 JP6646455 B2 JP 6646455B2
Authority
JP
Japan
Prior art keywords
rubber
polybutadiene
mol
rubber composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016021546A
Other languages
Japanese (ja)
Other versions
JP2017141316A (en
Inventor
裕輝 橋本
裕輝 橋本
寿晃 西沢
寿晃 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2016021546A priority Critical patent/JP6646455B2/en
Publication of JP2017141316A publication Critical patent/JP2017141316A/en
Application granted granted Critical
Publication of JP6646455B2 publication Critical patent/JP6646455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、新規なゴム組成物に関する。   The present invention relates to a novel rubber composition.

ジエン系ゴム及び水素添加液状ポリブタジエンを含むビードエイぺックス用ゴム組成物が知られており、水素添加液状ポリブタジエンの二重結合の水素添加率としては、20モル%以上が好ましく、30モル%以上がより好ましいことが知られている。(特許文献1を参照)
また、ジエン系ゴムからなるゴム成分100重量部に対して、水素添加前の1,2−ビニル結合量が90%以上であり、数平均分子量が3300であり、水素添加率が90%以上である液状ポリブタジエン1〜25重量部を添加したタイヤビードフィラー用ゴム組成物が知られている。(特許文献2を参照)
一方、ポリマー成分中、シンジオタクチック−1,2−ポリブタジエン含有ポリブタジエンゴムを10〜40質量%およびスズ変性ポリブタジエンゴムを10〜30質量%を含み、前記ポリマー成分100質量部に対してシリカを10〜40質量部含むサイドウォール用ゴム組成物が、耐カット性および耐オゾン性、ならびに車の低燃費性を向上させることができることが知られている。(特許文献3を参照)
A rubber composition for bead axes containing a diene rubber and a hydrogenated liquid polybutadiene is known, and the hydrogenation rate of the double bond of the hydrogenated liquid polybutadiene is preferably 20 mol% or more, and more preferably 30 mol% or more. It is known to be more preferable. (See Patent Document 1)
Further, based on 100 parts by weight of a rubber component composed of a diene rubber, the 1,2-vinyl bond amount before hydrogenation is 90% or more, the number average molecular weight is 3300, and the hydrogenation rate is 90% or more. There is known a rubber composition for a tire bead filler to which 1 to 25 parts by weight of a certain liquid polybutadiene is added. (See Patent Document 2)
On the other hand, the polymer component contains 10 to 40% by mass of the syndiotactic-1,2-polybutadiene-containing polybutadiene rubber and 10 to 30% by mass of the tin-modified polybutadiene rubber. It is known that a rubber composition for a sidewall containing up to 40 parts by mass can improve cut resistance and ozone resistance, and fuel efficiency of a vehicle. (See Patent Document 3)

特開2010−174102号公報JP 2010-174102 A 特開2014−15585号公報JP 2014-15585 A 特開2010−95554号公報JP 2010-95554 A

しかし、特許文献1記載の組成物では、良好な加工性、高い強度、優れた操縦安定性、及び良好な転がり抵抗性を有するものの、耐オゾン性については記載されていない。また、特許文献2記載の組成物では、加工性、硬度が、未添加のものよりも劣り、耐オゾン性については記載されていない。特許文献3には、耐オゾン性のゴム組成物が記載されているが、耐オゾン性に寄与するのは、シリカ及びシランカップリング剤であり、用いられているポリブタジエンは、硬度、低発熱性に寄与することが記載されており、特定ポリブタジエンが耐オゾン性に寄与することは知られていない。
本発明は、ゴム強度、摩耗性等の性質を維持しつつ、耐オゾン性に優れたゴム組成物を提供することを目的とする。
However, the composition described in Patent Document 1 has good workability, high strength, excellent steering stability, and good rolling resistance, but does not describe ozone resistance. Further, the composition described in Patent Document 2 is inferior in workability and hardness as compared with those not added, and does not describe ozone resistance. Patent Document 3 describes an ozone-resistant rubber composition, but it is silica and a silane coupling agent that contribute to ozone resistance, and the polybutadiene used has a hardness and a low heat build-up property. It is described that the specific polybutadiene contributes to ozone resistance.
An object of the present invention is to provide a rubber composition having excellent ozone resistance while maintaining properties such as rubber strength and abrasion.

本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の構造を有するポリブタジエンを添加することで、未添加のものに比して耐オゾン性が改良されたゴム組成物を得ることができることを見出し、本発明を完成するに至った。   The present inventors have conducted intensive studies to solve the above problems, and as a result, by adding a polybutadiene having a specific structure, to obtain a rubber composition having improved ozone resistance as compared with a non-added one. And found that the present invention was completed.

即ち、本発明は、
(1)ゴム成分、及び1,2−ビニル結合量が50モル%以上であり、二重結合の水素添加率が、20〜40モル%の範囲である水素添加ポリブタジエンを含むゴム組成物、
(2)ゴム成分100質量部に対して、水素添加ポリブタジエンを1〜25質量部の範囲で含む(1)に記載のゴム組成物、及び、
(3)水素添加ポリブタジエンの数平均分子量が1000〜4000の範囲である(1)又は(2)に記載のゴム組成物
に関する。
That is, the present invention
(1) a rubber composition comprising a rubber component and a hydrogenated polybutadiene having a 1,2-vinyl bond amount of 50 mol% or more and a hydrogenation ratio of a double bond in a range of 20 to 40 mol%;
(2) The rubber composition according to (1), which contains hydrogenated polybutadiene in a range of 1 to 25 parts by mass with respect to 100 parts by mass of the rubber component.
(3) The rubber composition according to (1) or (2), wherein the number average molecular weight of the hydrogenated polybutadiene is in the range of 1,000 to 4,000.

本発明の組成物を用いることにより、耐オゾン性が向上したゴム組成物を得ることができる。   By using the composition of the present invention, a rubber composition having improved ozone resistance can be obtained.

本発明のゴム組成物に用いられるゴム成分としては、特に制限されないが、具体的には、天然ゴム、ジエン系重合体ゴム、オレフィン系重合体ゴム等を例示することができる。
ジエン系重合体ゴムとして、具体的には、イソプレンゴム、ブタジエンゴム、1,2−ポリブタジエン、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム等を例示することができる。
オレフィン系ゴムとして、具体的には、ブチルゴム、塩素化ブチルゴム、臭素化ブチルゴム、エチレン−プロピレン−ジエンゴム等を例示することができる。
中でも、ジエン化合物の単独重合体またはジエン化合物と芳香族ビニル化合物の共重合体であることが好ましく、具体的にはイソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム等を好ましく例示することができる。
これらのゴムは、いずれか一種単独で、又は二種以上ブレンドして用いることができる。
The rubber component used in the rubber composition of the present invention is not particularly limited, but specific examples thereof include natural rubber, diene-based polymer rubber, and olefin-based polymer rubber.
Specific examples of the diene-based polymer rubber include isoprene rubber, butadiene rubber, 1,2-polybutadiene, styrene-butadiene rubber, chloroprene rubber, and nitrile rubber.
Specific examples of the olefin rubber include butyl rubber, chlorinated butyl rubber, brominated butyl rubber, and ethylene-propylene-diene rubber.
Among them, a homopolymer of a diene compound or a copolymer of a diene compound and an aromatic vinyl compound is preferable, and specific examples thereof include isoprene rubber, butadiene rubber, and styrene-butadiene rubber.
These rubbers can be used alone or as a blend of two or more.

ゴム成分は、架橋されていることが好ましく、通常、ゴム業界で用いられている、架橋剤、架橋促進剤を、適宜配合することで、架橋することができる。
架橋剤として、具体的には、硫黄、フェノール樹脂、金属酸化物、過酸化物等を例示することができる。これらは、通常、ゴム成分100質量部に対し、約0.5〜10質量部使用される。
架橋促進剤として、具体的には、酸化亜鉛、ステアリン酸、2,2−ジチオビスベンゾチアゾール、1,3−ジフェニルグアニジン、テトラメチルチウラムジスルフィド、亜鉛ジメチルチオカルバメート、メルカプトベンゾチアジルジスルフィドが例示される。これらは、例えば、ゴム成分100質量部に対し、約0.2〜5質量部を使用することができる。
The rubber component is preferably cross-linked, and can be cross-linked by appropriately mixing a cross-linking agent and a cross-linking accelerator usually used in the rubber industry.
Specific examples of the crosslinking agent include sulfur, a phenol resin, a metal oxide, and a peroxide. These are usually used in an amount of about 0.5 to 10 parts by mass based on 100 parts by mass of the rubber component.
Specific examples of the crosslinking accelerator include zinc oxide, stearic acid, 2,2-dithiobisbenzothiazole, 1,3-diphenylguanidine, tetramethylthiuram disulfide, zinc dimethylthiocarbamate, and mercaptobenzothiazyl disulfide. You. These can be used, for example, in an amount of about 0.2 to 5 parts by mass with respect to 100 parts by mass of the rubber component.

本発明に用いられる水素添加ポリブタジエンの水素添加前のポリブタジエンは、常温(23℃)で液状のポリマーであり、常温で固形状をなす上記ゴム成分には含まれない。該液状ポリブタジエンは、数平均分子量(Mn)が通常1,000〜100,000であり、数平均分子量が通常200,000以上である上記ゴム成分のジエン系ゴムとは明確に区別される。該液状ポリブタジエンの数平均分子量は、1,000〜50,000であることが好ましく、より好ましくは1,000〜10,000であり、更に好ましくは2,000〜4,000である。数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)、溶媒:THF(テトラヒドロフラン)、40℃で測定される値である。   The polybutadiene before hydrogenation of the hydrogenated polybutadiene used in the present invention is a polymer that is liquid at normal temperature (23 ° C.) and is not included in the rubber component that forms a solid at normal temperature. The liquid polybutadiene has a number average molecular weight (Mn) of usually 1,000 to 100,000 and is clearly distinguished from the diene rubber of the rubber component having a number average molecular weight of usually 200,000 or more. The number average molecular weight of the liquid polybutadiene is preferably from 1,000 to 50,000, more preferably from 1,000 to 10,000, and still more preferably from 2,000 to 4,000. The number average molecular weight is a value measured at 40 ° C., GPC (gel permeation chromatography), solvent: THF (tetrahydrofuran).

該液状ポリブタジエンは、1,2−ビニル結合量が50モル%以上であり、さらに70モル%以上が好ましく、さらに80〜95モル%の範囲が好ましい。
1,2−ビニル結合量は、そのポリマー中に含まれるブタジエンユニットの含有量に対する1,2−ビニル結合ユニットの含有量であり、1HNMRスペクトルの積分比により算出される。
The liquid polybutadiene has a 1,2-vinyl bond content of 50 mol% or more, preferably 70 mol% or more, more preferably 80 to 95 mol%.
The 1,2-vinyl bond amount is the content of the 1,2-vinyl bond unit with respect to the content of the butadiene unit contained in the polymer, and is calculated from the integration ratio of the 1H NMR spectrum.

本発明に用いられる水素添加ポリブタジエンの水素添加率(水素添加前のポリブタジエンの二重結合に対する水素添加された二重結合の比率)は、特に限定されないが、20〜40モル%が好ましく、さらに25〜35モル%の範囲が好ましい。水素添加率は、1HNMRスペクトルにおける不飽和結合部のスペクトル減少率から算出される。水素添加は、パラジウムなどの触媒を使用した公知の方法で行うことができ、特に限定されない。
なお、1,2−ビニル結合ユニットは水素添加によりビニル基がエチル基になるが、炭素数2の炭化水素基の側鎖を持つという1,2−結合の形態自体は保持されるので、水素添加及び未水素添加の1,2−ビニル結合ユニットを併せて1,2−結合成分とすれば、該水素添加ポリブタジエンは1,2−結合成分を50モル%以上含むものであり、さらに70モル%以上であることが好ましく、より好ましくは80〜95モル%の範囲である。
水素添加ポリブタジエンの数平均分子量は、水素添加前のポブタジエンの数平均分子量に水素添加率に応じて水素数を加えた数の範囲となる。
The hydrogenation rate of hydrogenated polybutadiene used in the present invention (the ratio of hydrogenated double bonds to double bonds of polybutadiene before hydrogenation) is not particularly limited, but is preferably 20 to 40 mol%, and more preferably 25 to 40 mol%. A range of ~ 35 mol% is preferred. The hydrogenation rate is calculated from the spectrum reduction rate of the unsaturated bond in the 1H NMR spectrum. Hydrogenation can be performed by a known method using a catalyst such as palladium, and is not particularly limited.
In the 1,2-vinyl bond unit, the vinyl group becomes an ethyl group by hydrogenation. However, since the 1,2-bond form itself having a side chain of a hydrocarbon group having 2 carbon atoms is maintained, hydrogen is added. If the added and unhydrogenated 1,2-vinyl bonding units are combined into a 1,2-bonding component, the hydrogenated polybutadiene contains the 1,2-bonding component in an amount of 50 mol% or more, and 70 mol% or more. %, More preferably 80 to 95 mol%.
The number average molecular weight of hydrogenated polybutadiene is in the range of the number average molecular weight of pobutadiene before hydrogenation plus the number of hydrogens according to the hydrogenation rate.

本発明のゴム組成物は、上記の他に、通常、ゴム業界で用いられている、充填剤、可塑剤、老化防止剤等の配合剤をその目的、用途に合わせ、適宜配合することができる。
充填剤として、具体的には、カーボンブラック、シリカ、フィラー、炭酸カルシウム、マイカ、フレークグラファイト等を例示することができる。より具体的には、カーボンブラックとして、ISAF、HAF、FEF、GPF等を例示することができ、その配合量は、特に限定されないが、ゴム成分100質量部に対して30〜100質量部であることが好ましく、より好ましくは50〜90質量部である。
可塑剤としては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどの石油系プロセスオイル、フタル酸ジエチル、フタル酸ジオクチル、アジピン酸ジブチルなどの二塩基酸ジアルキル、液状ポリブテン、液状ポリイソプレンなどの低分子量液状ポリマーが例示され、なかでも、ゴム成分との相溶性から、液状ポリブテン、液状ポリイソプレン、芳香族系プロセスオイルが好ましい。
In addition to the above, the rubber composition of the present invention can be appropriately compounded with a compounding agent such as a filler, a plasticizer, or an antioxidant, which is generally used in the rubber industry, according to its purpose and application. .
Specific examples of the filler include carbon black, silica, filler, calcium carbonate, mica, flake graphite, and the like. More specifically, examples of carbon black include ISAF, HAF, FEF, and GPF, and the amount of the carbon black is not particularly limited, but is 30 to 100 parts by mass with respect to 100 parts by mass of the rubber component. And more preferably 50 to 90 parts by mass.
Examples of the plasticizer include petroleum-based process oils such as paraffin-based process oils, naphthene-based process oils, and aromatic-based process oils; dialkyl dibasates such as diethyl phthalate, dioctyl phthalate, and dibutyl adipate; liquid polybutene; Low molecular weight liquid polymers such as isoprene are exemplified, and among them, liquid polybutene, liquid polyisoprene, and aromatic process oil are preferable from the viewpoint of compatibility with the rubber component.

該ゴム組成物は、通常に用いられるバンバリーミキサーやニーダー、ロール等の混合機を用いて、常法に従い混練し作製することができる。すなわち、第一混合段階で、ゴム成分に対し、上記水素添加ポリブタジエンとともに、加硫剤及び加硫促進剤を除く他の添加剤を添加混合し、次いで、得られた混合物に、最終混合段階で加硫剤及び加硫促進剤を添加混合してゴム組成物を調製することができる。   The rubber composition can be produced by kneading using a commonly used mixer such as a Banbury mixer, a kneader, or a roll according to a conventional method. That is, in the first mixing stage, the rubber component, together with the hydrogenated polybutadiene, and other additives other than the vulcanizing agent and the vulcanization accelerator are added and mixed. A rubber composition can be prepared by adding and mixing a vulcanizing agent and a vulcanization accelerator.

以下本発明を、実施例を用いて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

バンバリーミキサーを使用し、下記表1に示す配合(質量部)に従い、まず、第一混合段階で、硫黄と加硫促進剤を除く成分を添加混合し(加熱温度=100℃)、次いで、得られた混合物に、最終混合段階で硫黄と加硫促進剤を添加混合してロール機(ロール温度=50±10℃)で混練し、ゴム組成物を調製した。表1中の各成分の詳細は以下の通りである。   Using a Banbury mixer, according to the composition (parts by mass) shown in Table 1 below, first, in the first mixing stage, components other than sulfur and the vulcanization accelerator were added and mixed (heating temperature = 100 ° C.). To the resulting mixture, sulfur and a vulcanization accelerator were added and mixed in a final mixing stage and kneaded with a roll machine (roll temperature = 50 ± 10 ° C.) to prepare a rubber composition. Details of each component in Table 1 are as follows.

[ゴム成分]
・合成ゴム:SBR1500(日本ゼオン社製、Nipol(登録商標)1500)
[液状ポリブタジエン]
・液状ポリブタジエン1:日本曹達株式会社製「B−3000」(未変性の液状ポリブタジエン、Mn=3,000、1,2−ビニル結合量=90モル%、水素添加率=0モル%)
・液状ポリブタジエン2:日本曹達株式会社製「BI−3030」(未変性の水素添加液状ポリブタジエン、Mn=3,030、1,2−ビニル結合量(Vi)=82モル%、水素添加率=27モル%)
・液状ポリブタジエン3:日本曹達株式会社製「BI−3060」(未変性の水素添加液状ポリブタジエン、Mn=3,060、1,2−ビニル結合量(Vi)=72モル%、水素添加率=59モル%)
・液状ポリブタジエン4:日本曹達株式会社製「BI−3000」(未変性の水素添加液状ポリブタジエン、Mn=3,100、水素添加前の1,2−ビニル結合量(Vi)=90モル%、水素添加率=99モル%以上)
[その他の成分]
・カーボンブラック:東海カーボン株式会社製「シースト6」(ISAF)(登録商標)
・亜鉛:ハクスイテック株式会社 酸化亜鉛(2種)
・老化防止剤:大内新興化学工業株式会社製「ノクラック6C(登録商標)」:「ノクラックAW(登録商標)」=1:2(質量比)
・ステアリン酸:日本精化株式会社
・硫黄:細井化学工業株式会社 オイル硫黄
・加硫促進剤:大内新興化学工業株式会社製「ノクセラーCM(登録商標)」
[Rubber component]
-Synthetic rubber: SBR 1500 (Nipol (registered trademark) 1500, manufactured by Zeon Corporation)
[Liquid polybutadiene]
Liquid polybutadiene 1: "B-3000" manufactured by Nippon Soda Co., Ltd. (unmodified liquid polybutadiene, Mn = 3,000, 1,2-vinyl bond content = 90 mol%, hydrogenation rate = 0 mol%)
Liquid polybutadiene 2: "BI-3030" manufactured by Nippon Soda Co., Ltd. (unmodified hydrogenated liquid polybutadiene, Mn = 3,030, 1,2-vinyl bond amount (Vi) = 82 mol%, hydrogenation rate = 27) Mol%)
Liquid polybutadiene 3: "BI-3060" manufactured by Nippon Soda Co., Ltd. (unmodified hydrogenated liquid polybutadiene, Mn = 3,060, 1,2-vinyl bond amount (Vi) = 72 mol%, hydrogenation rate = 59) Mol%)
Liquid polybutadiene 4: "BI-3000" manufactured by Nippon Soda Co., Ltd. (unmodified hydrogenated liquid polybutadiene, Mn = 3,100, 1,2-vinyl bond amount before hydrogenation (Vi) = 90 mol%, hydrogen) (Addition rate = 99 mol% or more)
[Other ingredients]
・ Carbon black: “Seast 6” (ISAF) (registered trademark) manufactured by Tokai Carbon Co., Ltd.
・ Zinc: Hakusui Tech Co., Ltd. Zinc oxide (2 types)
-Anti-aging agent: "Nocrack 6C (registered trademark)" manufactured by Ouchi Shinko Chemical Co., Ltd .: "Nocrack AW (registered trademark)" = 1: 2 (mass ratio)
・ Stearic acid: Nippon Seika Co., Ltd. ・ Sulfur: Hosoi Chemical Industry Co., Ltd. Oil sulfur ・ Vulcanization accelerator: “Noxeller CM (registered trademark)” manufactured by Ouchi Shinko Chemical Industry Co., Ltd.

Figure 0006646455
Figure 0006646455

各ゴム組成物について、未加硫状態で加硫試験を行うとともに、160℃で15分間(2mm四方の試験片の場合)、または20分間(大型の試験片の場合)電熱プレス機を用いて加熱加工して得られた所定形状の試験片を用いて、各種性能を評価した。各評価方法は以下の通りである。   For each rubber composition, a vulcanization test is performed in an unvulcanized state, and at 160 ° C. for 15 minutes (for a 2 mm square test piece) or 20 minutes (for a large test piece) using an electric heating press machine. Various performances were evaluated using test pieces having a predetermined shape obtained by heating. Each evaluation method is as follows.

引張試験:JIS K 6251に準じて、引張試験機(ALPHA TECHNOLOGIES社製、TENSOMETER 10K)を用いて、厚さ2mm、幅5mmの試験片(ダンベル状3号形、シートより加工)を、つかみ具間距離20mm、引張り速度500mm/分、試験温度23℃で引張強さ、切断時の伸び率を測定した。
ゴム強度:下記計算式により計算して求めた。
ゴム強度=(引張強さ×切断時伸び率)/2
耐オゾン性試験:JIS K 6259に準じて、オゾンウェザーメータ(スガ試験機(株)製、OMS−H)を用いて、厚さ2mm、幅10mmの試験片(ダンベル状1号形、シートより加工)を、つかみ具間距離40mmで設置し、引張ひずみ20%、オゾン濃度:50±5pphm(=0.5±0.05ppm)、温度40±2℃、試験時間96時間(24,48,72時間経過時に途中観察)でき裂の有無とその程度を下記指標に基づいて目視で測定を行った。
き裂の数
A:き裂少数
B:き裂多数
C:き裂無数
き裂の大きさ
1:肉眼では見えないが10倍拡大鏡では確認できるもの
2:肉眼で確認できるもの
3:き裂が深く比較的大きいもの(1mm未満)
4:き裂が深く大きいもの(1mm以上3mm未満)
5:3mm以上のき裂または切断を起こしそうなもの

反発弾性試験:JIS K 6255に準じて、リュプケ式反発弾性試験機(高分子計器(株)製)を用いて、φ29.0mm×厚さ約12mmの試験片を、リュプケ式測定方法で、測定温度23±2℃、保持力29〜39Nで測定を行った。
摩耗性試験:JIS K 6264−2に準じて、アクロン式摩耗試験機(上島製作所製)を用いて、円盤状試験片をB試験方法で、傾角20°、試験片への付加力44.1N、回転速度250回/分、試験回数を予備試験500回、本試験500回として、測定温度23±2℃で測定を行った。
各試験結果をまとめて表2に示す。
Tensile test: According to JIS K6251, using a tensile tester (manufactured by ALPHA TECHNOLOGIES, TENSOMETER 10K), a test piece (dumbbell-shaped No. 3, shaped from a sheet) having a thickness of 2 mm and a width of 5 mm is gripped by a gripping tool. The tensile strength and the elongation at break were measured at a distance of 20 mm, a tensile speed of 500 mm / min, and a test temperature of 23 ° C.
Rubber strength: It was calculated by the following formula.
Rubber strength = (tensile strength x elongation at break) / 2
Ozone resistance test: Using a ozone weather meter (OMS-H, manufactured by Suga Test Instruments Co., Ltd.) according to JIS K 6259, a test piece (dumbbell-shaped No. 1 type, 2 mm thick, 10 mm wide, from a sheet) Processing) was installed at a distance of 40 mm between the gripping tools, tensile strain 20%, ozone concentration: 50 ± 5 pphm (= 0.5 ± 0.05 ppm), temperature 40 ± 2 ° C., test time 96 hours (24, 48, The presence or absence of cracks and the degree thereof were visually measured based on the following index.
Number of cracks A: Few cracks B: Many cracks C: Infinite number of cracks
Crack size 1: not visible to the naked eye but visible with a 10x magnifier 2: visible to the naked eye 3: deep and relatively large (less than 1 mm)
4: Large and deep cracks (1 mm or more and less than 3 mm)
5: Cracks or breaks of 3 mm or more are likely to occur

Rebound resilience test: A Lupke rebound resilience tester (manufactured by Kobunshi Keiki Co., Ltd.) was used to measure a φ29.0 mm × about 12 mm thick test piece according to JIS K 6255 by a Rupke measurement method. The measurement was performed at a temperature of 23 ± 2 ° C. and a holding power of 29 to 39N.
Abrasion test: According to JIS K 6264-2, using a Akron abrasion tester (manufactured by Ueshima Seisakusho), a disc-shaped test piece was subjected to a B test method by a tilt angle of 20 ° and an applied force to the test piece of 44.1 N. The measurement was performed at a measurement temperature of 23 ± 2 ° C., with a rotation speed of 250 times / min and a test frequency of 500 preliminary tests and 500 main tests.
Table 2 summarizes the results of each test.

Figure 0006646455
Figure 0006646455

実施例1は、水素添加ポリブタジエン無添加の比較例1に比して、引張強さにおいては劣るものの、切断時の伸び率に向上が見られ、ゴム強度としては、比較例に比して優位な値が得られた。このことより、特定の水素添加ポリブタジエンを添加することによりゴム強度を向上できることがわかった。
また、耐オゾン性試験においても、比較例に比して優位な値が得られ、特定の水素添加ポリブタジエンを添加することにより耐オゾン性において、性能の向上が見られた。
また、摩耗性において、実施例1は、水素添加ポリブタジエン未添加の比較例1とほぼ同程度の値であったにも関わらず、他の比較例においては、著しく低下していた。
以上のことより、ゴム強度、耐摩耗性を維持しながらも、耐オゾン性を向上したゴム組成物を提供することができた。
In Example 1, although the tensile strength was inferior to Comparative Example 1 in which no hydrogenated polybutadiene was added, the elongation at break was improved, and the rubber strength was superior to the Comparative Example. Value was obtained. From this, it was found that the rubber strength can be improved by adding a specific hydrogenated polybutadiene.
Also, in the ozone resistance test, a value superior to that of the comparative example was obtained, and improvement in ozone resistance was observed by adding a specific hydrogenated polybutadiene.
In addition, the abrasion resistance of Example 1 was substantially the same as that of Comparative Example 1 in which hydrogenated polybutadiene was not added, but was significantly reduced in other Comparative Examples.
As described above, it was possible to provide a rubber composition having improved ozone resistance while maintaining rubber strength and abrasion resistance.

Claims (1)

ゴム成分、及び1,2−ビニル結合量が50モル%以上であり、数平均分子量が1000〜4000の範囲であり、二重結合の水素添加率が20〜40モル%の範囲である水素添加ポリブタジエンを含み、かつ、上記ゴム成分100質量部に対して上記水素添加ポリブタジエンを1〜25質量部の範囲で含むゴム組成物。 Hydrogenation in which the rubber component and the amount of 1,2-vinyl bonds are 50 mol% or more, the number average molecular weight is in the range of 1,000 to 4,000, and the hydrogenation ratio of double bonds is in the range of 20 to 40 mol%. polybutadiene only it contains, and including a rubber composition in the range of 1 to 25 parts by weight of the hydrogenated polybutadiene based on 100 parts by mass of the rubber component.
JP2016021546A 2016-02-08 2016-02-08 Rubber composition Active JP6646455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021546A JP6646455B2 (en) 2016-02-08 2016-02-08 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021546A JP6646455B2 (en) 2016-02-08 2016-02-08 Rubber composition

Publications (2)

Publication Number Publication Date
JP2017141316A JP2017141316A (en) 2017-08-17
JP6646455B2 true JP6646455B2 (en) 2020-02-14

Family

ID=59628909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021546A Active JP6646455B2 (en) 2016-02-08 2016-02-08 Rubber composition

Country Status (1)

Country Link
JP (1) JP6646455B2 (en)

Also Published As

Publication number Publication date
JP2017141316A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
EP3225657B1 (en) Rubber composition, process for producing same, and tire
JP5198746B2 (en) Rubber composition and pneumatic tire using the same
US7371791B2 (en) Rubber composition and pneumatic tire using the same
JP7135392B2 (en) Rubber composition and pneumatic tire
JP5065650B2 (en) Rubber composition for tire base tread
JP5154059B2 (en) Rubber composition for tire cap tread
JP2007514022A (en) Butyl rubber composition for tire tread
JP2009138025A (en) Rubber composition for tire and tire using the same
JP5445638B2 (en) Rubber composition for tire rim cushion or gum finishing and pneumatic tire using the same
JP2008255168A (en) Rubber composition for tire tread and pneumatic tire having tread produced by using the same
JP4402530B2 (en) Rubber composition and tire using the same
EP3467017A1 (en) Rubber composition and tire
JP2021063184A (en) Rubber composition for tires and pneumatic tire using the same
JP2009138094A (en) Rubber composition for tire
JP6852985B2 (en) Rubber composition
EP3854843A1 (en) Rubber composition and tire
JP6646455B2 (en) Rubber composition
JP7529960B2 (en) Rubber composition for tires and pneumatic tire using same
JP4899322B2 (en) Rubber composition
JP2008255167A (en) Rubber composition for tire tread and pneumatic tire having tread produced by using the same
JP6791277B2 (en) Rubber composition for tires and pneumatic tires using it
WO2012054458A1 (en) Tread rubber compounds having improved abrasion resistance using functionalized liquid polybutadiene
JP5192331B2 (en) Rubber composition and tire for clinch apex
JP2021070778A (en) Rubber composition for tire and pneumatic tire using the same
JP2020203962A (en) Rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200110

R150 Certificate of patent or registration of utility model

Ref document number: 6646455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350