JP6645868B2 - Hole diameter measuring device and measuring method using the same - Google Patents

Hole diameter measuring device and measuring method using the same Download PDF

Info

Publication number
JP6645868B2
JP6645868B2 JP2016038557A JP2016038557A JP6645868B2 JP 6645868 B2 JP6645868 B2 JP 6645868B2 JP 2016038557 A JP2016038557 A JP 2016038557A JP 2016038557 A JP2016038557 A JP 2016038557A JP 6645868 B2 JP6645868 B2 JP 6645868B2
Authority
JP
Japan
Prior art keywords
light
hole
prism
measurement
hole diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016038557A
Other languages
Japanese (ja)
Other versions
JP2017156182A (en
Inventor
健人 布田
健人 布田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2016038557A priority Critical patent/JP6645868B2/en
Publication of JP2017156182A publication Critical patent/JP2017156182A/en
Application granted granted Critical
Publication of JP6645868B2 publication Critical patent/JP6645868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、穴径計測装置及びそれを用いた計測方法に係り、特に微小径の貫通穴について、分光スペクトルを用いて穴径を計測する穴径計測装置及びそれを用いた計測方法に関する。   The present invention relates to a hole diameter measuring device and a measuring method using the same, and particularly to a hole diameter measuring device for measuring a hole diameter of a through hole having a small diameter by using a spectral spectrum and a measuring method using the same.

穴径の正確な測定には、プローブを用いた接触及び非接触方式の測定と、光学式または電子式の顕微鏡を用いた計測が知られている。例えば、特許文献1に記載の微小内径の測定では、被測定物の微小孔にプローブを挿入し、プローブを微小孔に挿入させたままプローブまたは被測定物を動かし、プローブが微小孔に接触した時の接触位置を記憶している。そして、プローブを微小孔に複数個所で接触させ、3点以上の接触点の情報から円を同定し、微小孔の孔径を算出している。   For accurate measurement of the hole diameter, contact and non-contact measurement using a probe and measurement using an optical or electronic microscope are known. For example, in the measurement of the minute inner diameter described in Patent Document 1, a probe is inserted into a minute hole of an object to be measured, and the probe or the object to be measured is moved while the probe is inserted into the minute hole, and the probe comes into contact with the minute hole. The contact position at the time is stored. Then, the probe is brought into contact with the micropore at a plurality of locations, a circle is identified from information on three or more contact points, and the diameter of the micropore is calculated.

また、特許文献2では、クロマチック・ポイント・センサ(CPS)を用いて、光学ペンを回転させずに穴径などの幾何学的特性を測定している。具体的には、ビーム分割偏向素子が設けられた光学ペンを有する上記CPS装置を設け、光学ペンを穴内に挿入し、光学ペンの中心軸に直交する3つの測定方向へ測定光を同時に照射し、その反射光を光学ペンの共焦点のアパーチャを通じて受け取っている。そして、受け取った反射光のスペクトルから、光学ペンと穴壁までの距離等を求めて、穴径などの幾何学的特性を測定している。   Further, in Patent Document 2, a chromatic point sensor (CPS) is used to measure a geometric characteristic such as a hole diameter without rotating an optical pen. Specifically, the above CPS device having an optical pen provided with a beam splitting / deflecting element is provided, the optical pen is inserted into a hole, and measurement light is simultaneously irradiated in three measurement directions orthogonal to the central axis of the optical pen. The reflected light is received through a confocal aperture of the optical pen. The distance between the optical pen and the hole wall is determined from the spectrum of the received reflected light, and the geometrical characteristics such as the hole diameter are measured.

さらに、穴径ではないが、レーザを用いて鋼材の外径を求めることが、特許文献3に記載されている。この公報においては、投光器と受光器からなるレーザ走査式寸法測定器を用いて鋼材を搬送中に全長に渡り、その外径を測定している。その際、寸法測定器の光軸を円周方向に前後2段に配置するとともに、鋼材搬送テーブルの流れ方向に対して垂直方向に据え付け、前後2段で測定時期の異なる外径位置を同一断面円周上の外径値となるように演算処理している。   Further, Patent Literature 3 describes that the outer diameter of a steel material is determined using a laser, not the hole diameter. In this publication, the outer diameter of the steel material is measured over the entire length while the steel material is being conveyed using a laser scanning type dimension measuring device including a light emitter and a light receiver. At that time, the optical axis of the dimension measuring instrument is arranged in two steps in the circumferential direction and in the vertical direction with respect to the flow direction of the steel material transfer table. Calculation processing is performed so that the outer diameter value on the circumference is obtained.

特開2003−4433号公報JP-A-2003-4433 特開2015−114326号公報JP-A-2015-114326 特開2006−153545号公報JP 2006-153545 A

上記特許文献1、2に記載のプローブを用いた穴径計測装置では、いずれもプローブを穴内に挿入する都合上、プローブ径は穴径より小さい。したがって、接触式であれ、非接触式であれ、プローブの剛性を確保するため、及び光学式の場合には光の照射と反射検出のために、所定以上の外径を必要とし、プローブの小型化には制限が生じる。例えば、被測定対象物が、1mm以下さらにはサブmm以下の微小穴の計測では、接触式の場合にはプローブ径が小さくなりすぎ、剛性不足や機能確保が困難になる恐れがある。また、特許文献3に記載のものでは、外径測定が目的であるので、微小孔径の測定については考慮されていない。   In the hole diameter measuring apparatus using the probe described in Patent Documents 1 and 2, the probe diameter is smaller than the hole diameter because the probe is inserted into the hole. Therefore, whether the probe is of the contact type or the non-contact type, the outer diameter of the probe is required to be more than a predetermined value to secure the rigidity of the probe and, in the case of the optical type, to irradiate light and to detect reflection. There are restrictions on the conversion. For example, in the measurement of a minute hole of an object to be measured of 1 mm or less or even sub-mm or less, in the case of a contact type, the probe diameter becomes too small, and there is a possibility that the rigidity is insufficient or the function is difficult to secure. Further, in the device described in Patent Document 3, the purpose of measuring the outer diameter is not considered, and therefore the measurement of the micropore diameter is not considered.

一方、光学顕微鏡を用いて微小孔径を測定しようとすると、穴の縁部を明確にするためにはコントラストを上げざるを得ず、ハレーション等の不都合を生じる場合がある。また、回折による影響も無視できなくなる。さらに、測定対象物が顕微鏡等に載る大きさであることが求められるので、使用できる測定対象物が限定される。電子顕微鏡(SEM)の場合には、さらに真空容器内に測定対象物を入れる必要があり、測定対象物の前処理等が必要になる場合もある。   On the other hand, if an attempt is made to measure the diameter of a minute hole using an optical microscope, the contrast must be increased in order to clarify the edge of the hole, which may cause problems such as halation. Further, the influence of diffraction cannot be ignored. Furthermore, since it is required that the measurement target be large enough to be mounted on a microscope or the like, the measurement target that can be used is limited. In the case of an electron microscope (SEM), it is necessary to further place an object to be measured in a vacuum vessel, and pretreatment of the object to be measured may be required.

本発明は、上記従来技術の不具合に鑑みなされたものであり、その目的は、穴径が1mm以下の微小貫通穴を有する測定対象物について、正確にその微小穴径を測定することにある。本発明の他の目的は、上記目的に加え、プローブの挿入が困難な微小穴について、穴内へのプローブの挿入を不要とし、さらに測定のための前処理等をすることなく、微小穴径を測定することにある。   The present invention has been made in view of the above-described disadvantages of the related art, and has as its object to accurately measure a minute hole diameter of a measurement object having a minute through hole having a hole diameter of 1 mm or less. Another object of the present invention, in addition to the above objects, is to make it unnecessary to insert a probe into a hole for a micro hole in which it is difficult to insert a probe, and to further reduce the diameter of the micro hole without performing a pretreatment for measurement. Is to measure.

上記目的を達成するための本発明の特徴は、微小貫通穴を有する測定対象物の前記穴を測定する穴径計測装置において、連続スペクトルを有する白色光源と、前記光源から照射される白色光を屈折させるプリズムと、前記測定対象物を載置する載置手段と、前記プリズムで屈折された光を前記測定対象物の前記穴近傍に位置づける位置決め手段と、前記載置手段の背面側に配置され、前記穴を通過した光を検出する光検出手段と、前記光検出手段が検出した信号から前記穴を通過した光の上限波長及び下限波長を求め、求めた上限波長及び下限波長を用いて前記穴の穴径を演算する演算手段とを有することにある。本発明の穴径計測装置は、内径1mm以下の微小貫通穴を測定することでき、そのような微小貫通穴の測定に適している。   The feature of the present invention for achieving the above object is a hole diameter measuring device for measuring the hole of a measurement object having a small through hole, a white light source having a continuous spectrum, and a white light emitted from the light source. A prism for refraction, mounting means for mounting the object to be measured, positioning means for positioning the light refracted by the prism near the hole of the object to be measured, and a positioning means arranged on the back side of the mounting means. The light detection means for detecting the light passing through the hole, the upper limit wavelength and the lower limit wavelength of the light passed through the hole from the signal detected by the light detection means, and using the obtained upper limit wavelength and lower limit wavelength, Calculating means for calculating the hole diameter of the hole. The hole diameter measuring device of the present invention can measure a minute through hole having an inner diameter of 1 mm or less, and is suitable for measuring such a minute through hole.

そしてこの特徴において、前記載置手段の上面であって、前記測定対象物の下面側に前記測定対象物の前記穴より大きな口径の開口を有するマスクを配置するのがよく、前記プリズムを保持する保持手段を有し、前記保持手段と前記測定対象物との距離を一定に保持する機構を前記保持手段または前記位置決め手段に設けるのが好ましい。   In this feature, it is preferable that a mask having an opening having a larger diameter than the hole of the measurement target is disposed on the lower surface side of the measurement target on the upper surface of the placing means, and holds the prism. It is preferable that a mechanism having a holding means and maintaining a constant distance between the holding means and the object to be measured is provided in the holding means or the positioning means.

また、前記プリズムと前記測定対象物との間に、前記プリズム側から順に、平行光レンズとスリット板とを配置し、前記スリット板を前記平行光レンズの光軸に垂直な方向に移動可能にし、前記光検出手段がCMOS、CCD、ダイレクト・イメージセンサ、カラー分離フォトダイオードのいずれかであってもよく、前記プリズムと前記測定対象物との間に、前記プリズム側から順に、平行光レンズとスリット板を配置し、前記載置手段と前記光検出手段との間に集光レンズを配置し、前記スリット板を前記平行光レンズの光軸に垂直な方向に移動可能にし、前記光検出手段が光電子増倍管であってもよい。   Further, between the prism and the object to be measured, a parallel light lens and a slit plate are arranged in order from the prism side, and the slit plate can be moved in a direction perpendicular to the optical axis of the parallel light lens. The light detecting means may be any one of a CMOS, a CCD, a direct image sensor, and a color separation photodiode, and a parallel light lens is provided between the prism and the object to be measured in order from the prism side. Disposing a slit plate, disposing a condenser lens between the placing means and the light detecting means, enabling the slit plate to move in a direction perpendicular to the optical axis of the parallel light lens, May be a photomultiplier tube.

さらに上記特徴において、前記プリズムで屈折された光の測定に使用する上限波長をλa、下限波長をλb、前記プリズムを出た光の前記測定対象物上面に対応する位置での広がり幅をDとし、前記光検出手段が検出した光の上限波長をλa'、下限波長をλb'としたときに、前記演算手段は、前記穴の径dを、
d=D×(λa'−λb')/(λa−λb) ……(式1)
から求めるのがよい。
Further, in the above features, the upper limit wavelength used for measuring the light refracted by the prism is λa, the lower limit wavelength is λb, and the spread width of the light exiting the prism at a position corresponding to the upper surface of the measurement target is D. When the upper limit wavelength of the light detected by the light detection unit is λa ′ and the lower limit wavelength is λb ′, the calculation unit sets the diameter d of the hole to:
d = D × (λa′−λb ′) / (λa−λb) (Equation 1)
It is better to get from.

上記目的を達成する本発明の他の特徴は、穴径1.0mm以下の貫通穴の穴径を計測する方法であって、連続スペクトルを有する光源から照射される白色光をプリズムで屈折させて測定対象物に照射するものにおいて、測定対象物を載置する載置手段の上面と、前記プリズムとの間の距離である基準高さをHとした状態で前記プリズムを出た光の広がり範囲Dと、その時の上限波長λa、下限波長λbを求める校正ステップと、前記載置手段に前記測定対象物を載置し、前記測定対象物の上面と前記プリズムの間の距離を基準高さHとして前記穴を通り抜ける光の上限波長λa'と下限波長λb'を求める計測ステップと、求めたこれらの値から次式により、前記穴の穴径dを演算する演算ステップとを有することにある。
d=D×(λa'−λb')/(λa−λb) ……(式1)
Another feature of the present invention that achieves the above object is a method of measuring a hole diameter of a through hole having a hole diameter of 1.0 mm or less, wherein white light emitted from a light source having a continuous spectrum is refracted by a prism. In the case of irradiating the object to be measured, the spread range of the light exiting the prism when the reference height, which is the distance between the upper surface of the mounting means for mounting the object to be measured and the prism, is H. D, a calibration step for obtaining an upper limit wavelength λa and a lower limit wavelength λb at that time, and mounting the measurement target on the mounting means, and determining a distance between an upper surface of the measurement target and the prism as a reference height H. And a calculating step of calculating a hole diameter d of the hole from the obtained values by the following equation from the obtained upper limit wavelength λa ′ and lower limit wavelength λb ′ of the light passing through the hole.
d = D × (λa′−λb ′) / (λa−λb) (Equation 1)

この特徴において、前記計測ステップでは、前記プリズムと前記測定対象物間に介在させたスリット板を、前記測定対象物の上面に実質的に平行な方向に移動させるようにしてもよい。   In this aspect, in the measurement step, the slit plate interposed between the prism and the measurement target may be moved in a direction substantially parallel to an upper surface of the measurement target.

本発明によれば、測定対象物である口径1mm以下の微小穴に分光した光を進入させ、その穴を通過した光の波長を検出して、微小穴径を計測するようにしたので、正確に微小穴径を測定することができる。また、プローブの挿入が困難な微小穴について、穴内へのプローブの挿入を不要とし、さらに測定のための前処理等をすることがなく、微小穴径を容易に測定できる。   According to the present invention, light that has been dispersed enters a minute hole having a diameter of 1 mm or less, which is an object to be measured, and the wavelength of the light passing through the hole is detected to measure the minute hole diameter. The diameter of the minute hole can be measured. In addition, for a minute hole in which it is difficult to insert a probe, it is not necessary to insert the probe into the hole, and the diameter of the minute hole can be easily measured without performing a pretreatment or the like for measurement.

本発明に係る穴径計測装置の一実施例の正面断面図であり、(a)は校正時の状態を、(b)は計測時の状態を示す。It is a front sectional view of one example of a hole diameter measuring device concerning the present invention, (a) shows a state at the time of calibration, and (b) shows a state at the time of measurement. 微小穴径の計測原理を説明する図であり、(a)は装置概要、(b)はスペクトル範囲、(c)は検出手段のゲインの例を示す図である。It is a figure explaining the measurement principle of a minute hole diameter, (a) is an outline of an apparatus, (b) is a figure showing an example of a spectrum range, and (c) showing an example of a gain of a detecting means. 本発明の実施例1を説明する図であり、(a)は概略正面図、(b)はマスク部の詳細を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining Example 1 of this invention, (a) is a schematic front view, (b) is a figure which shows the detail of a mask part. 本発明に係る穴径計測装置の変形例の正面断面図である。It is a front sectional view of the modification of the hole diameter measuring device concerning the present invention. 本発明に係る穴径計測装置のさらに他の変形例の正面断面図である。It is a front sectional view of other modification of a hole diameter measuring device concerning the present invention.

以下、本発明に係る微小穴の穴径計測装置のいくつかの実施例を、図面を用いて説明する。なお以下の実施例では、対象とする微小孔の穴径は1mm以下であり、穴は貫通穴である。また、本発明では、穴径の計測に光のスペクトルを利用している。   Hereinafter, several embodiments of the hole diameter measuring device for micro holes according to the present invention will be described with reference to the drawings. In the following examples, the hole diameter of the target minute hole is 1 mm or less, and the hole is a through hole. In the present invention, the light spectrum is used for measuring the hole diameter.

図1は、本発明に係る穴径計測装置100の一実施例の正面断面図であり、図1(a)は穴径計測装置100の校正時の状態を、図1(b)は測定対象物70に形成された穴71(測定穴または測定対象穴とも称する)の穴径dを計測する時の状態を示している。初めに、図1(a)を用いて、校正時の状態を説明する。   FIG. 1 is a front sectional view of one embodiment of a hole diameter measuring device 100 according to the present invention. FIG. 1A shows a state of the hole diameter measuring device 100 at the time of calibration, and FIG. This figure shows a state when a hole diameter d of a hole 71 (also referred to as a measurement hole or a measurement target hole) formed in the object 70 is measured. First, the state at the time of calibration will be described with reference to FIG.

穴径計測装置100は、連続スペクトルを有する白色光源12と、この白色光源12から出射された光を屈折させて光のスペクトルを発生するプリズム14と、これら白色光源12とプリズム14との位置関係を保持したまま収容するケーシング16とを有するプリズム保持手段10を備えている。白色光源12には、波長180nm〜400nm付近までの連続スペクトルを有する重水素ランプや、波長350nm〜300nm付近までの連続スペクトルを有するタングステンライト、または波長185nm〜2000nm付近までの連続スペクトルを有するキセノンランプ等を用いる。プリズム14には、屈折率が15程度の正常分散ガラス製のプリズムを使用するが、プリズムはこれに限るものではなく、種々のプリズムを使用できる。   The hole diameter measuring apparatus 100 includes a white light source 12 having a continuous spectrum, a prism 14 that refracts light emitted from the white light source 12 to generate a light spectrum, and a positional relationship between the white light source 12 and the prism 14. And a casing 16 for accommodating and holding the prism. The white light source 12 includes a deuterium lamp having a continuous spectrum from about 180 nm to 400 nm, a tungsten light having a continuous spectrum from about 350 nm to 300 nm, or a xenon lamp having a continuous spectrum from about 185 nm to 2000 nm. And so on. As the prism 14, a prism made of normal dispersion glass having a refractive index of about 15 is used, but the prism is not limited to this, and various prisms can be used.

白色光源12は、本実施例ではケーシング16の左斜め上に配置され、左斜め上から右斜め下へ向けて白色光を放射する。白色光源12から放射された放射光81は、白色光源12の下方に配置されたプリズム14に入射し、その波長に応じてプリズム14での屈折が変化し、短波長側の下限側屈折光82と長波長側の上限側屈折光83との間に光のスペクトルを形成する。   In the present embodiment, the white light source 12 is disposed on the upper left of the casing 16 and emits white light from the upper left to the lower right. The radiated light 81 emitted from the white light source 12 enters the prism 14 disposed below the white light source 12, the refraction of the prism 14 changes according to the wavelength thereof, and the lower limit side refracted light 82 on the short wavelength side A light spectrum is formed between the light and the upper limit side refracted light 83 on the long wavelength side.

一方、測定対象物70を載置するために、テーブル状の載置手段60がプリズム保持手段10の下方に配置されている。載置手段60は、プリズム保持手段10が上方を覆っている計測用の右側の部分と、プリズム保持手段10を上下方向に移動させるための位置決め手段20が配置される左側の部分に分かれている。載置手段60の計測用部分には、測定対象物70に形成された測定対象穴71より十分大径の開口61が形成されている。   On the other hand, in order to place the measuring object 70, a table-like placing means 60 is arranged below the prism holding means 10. The mounting means 60 is divided into a right part for measurement, in which the prism holding means 10 covers the upper part, and a left part, in which the positioning means 20 for moving the prism holding means 10 in the vertical direction are arranged. . An opening 61 having a diameter sufficiently larger than the measurement target hole 71 formed in the measurement target 70 is formed in the measurement portion of the mounting means 60.

開口61は開口のままか、もしくは透明な板が嵌め込まれており、詳細を後述するプリズム14を出た光のスペクトルを検出できるようになっている。載置手段60の計測部分に形成された開口61とほぼ同程度の径またはやや小径の開口32が形成されたマスク30が、開口61の上面に配置されている。マスク30は、本穴径計測装置100の基準となる光のスペクトルを定めるのに使用される。   The opening 61 is left as an opening or a transparent plate is fitted therein so that the spectrum of light that has exited the prism 14, which will be described in detail later, can be detected. The mask 30 in which the opening 32 having a diameter substantially the same as or slightly smaller than that of the opening 61 formed in the measurement portion of the mounting means 60 is disposed on the upper surface of the opening 61. The mask 30 is used to determine a light spectrum that is a reference of the hole diameter measuring device 100.

位置決め手段20は、載置手段60に載置されるベース25と、ベース25から垂直上方に延びたレール22と、レール22に嵌合するスライダ21とを有している。レール22とスライダ21は、例えばボールスプラインやリニアモータのような直動手段でよく、スライダ21またはレール22をステッピングモータ等で駆動するように構成されていてもよいし、手動で垂直方向に上下させるようにしてもよい。スライダ21を手動で移動させる場合には、スライダ21に取り付けた回転ノブ23を回動させる。回転ノブ23は、スライダ21の停止保持にも用いられる。   The positioning means 20 includes a base 25 mounted on the mounting means 60, a rail 22 extending vertically upward from the base 25, and a slider 21 fitted to the rail 22. The rail 22 and the slider 21 may be linear motion means such as a ball spline or a linear motor, and the slider 21 or the rail 22 may be configured to be driven by a stepping motor or the like, or may be manually moved vertically in the vertical direction. You may make it do. When the slider 21 is moved manually, the rotation knob 23 attached to the slider 21 is rotated. The rotation knob 23 is also used to stop and hold the slider 21.

スライダ21は、支持腕24でプリズム保持手段10のケーシング16に接続されており、スライダ21が上下するとスライダ21とともにプリズム14が上下する。プリズム保持手段10の下面であってマスク30の上面に対向する位置には、接触子18が設けられており、校正時に、マスク30の上面からプリズム14を出た光の放射位置までの高さHを、一定に保つことを可能にしている。なお、本実施例では接触子18を用いて、校正時に、マスク30の上面からプリズム14の屈折光放射位置までの高さHを一定にするようにしているが、接触子18の代わりに測距装置を設け、それを用いて高さHを一定にすることも可能であることは言うまでもない。   The slider 21 is connected to the casing 16 of the prism holding means 10 by a support arm 24. When the slider 21 moves up and down, the prism 14 moves up and down together with the slider 21. A contact 18 is provided at a position on the lower surface of the prism holding means 10 and opposed to the upper surface of the mask 30, and the height from the upper surface of the mask 30 to the radiation position of the light exiting the prism 14 during calibration. H can be kept constant. In the present embodiment, the height H from the upper surface of the mask 30 to the position where the refracted light is emitted from the prism 14 is fixed at the time of calibration using the contact 18, but measurement is performed instead of the contact 18. It goes without saying that it is also possible to provide a distance device and use it to keep the height H constant.

載置手段60の下面側であって、この載置手段60に設けた開口61の部分には、校正時にマスク30の開口32を通過した光を検出する光検出手段40が設けられている。光検出手段40としては、CCDやCMOS、ダイレクト・イメージセンサ、カラー分離フォトダイオード、米国FOVEON社製FOVEON等のフォトダイオード41[図4(a)に記載]を用いることができる。光検出手段40の検出信号は、演算手段50に送られる。   On the lower surface side of the mounting means 60, at a portion of the opening 61 provided in the mounting means 60, a light detecting means 40 for detecting light passing through the opening 32 of the mask 30 at the time of calibration is provided. As the light detecting means 40, a photodiode 41 (described in FIG. 4A) such as a CCD or CMOS, a direct image sensor, a color separation photodiode, or a FOVEON manufactured by FOVEON, USA can be used. The detection signal of the light detecting means 40 is sent to the calculating means 50.

このように構成した穴径計測装置100の校正時には、初めに、マスク30をその開口32が載置手段60の開口61上に位置するように、位置決めする。次いで、プリズム保持手段10の下面に設けた接触子18を、マスク30の開口32部以外の部分に当接させて、プリズム14の屈折光の放射面からマスク30の上面までの距離を、予め定めた高さHに設定する。次いで、マスク30の開口32および載置手段60の開口61を通り抜けた白色光源12に由来する光のスペクトルを光検出手段40が検出する。その際、光検出手段40は、マスク30により遮られた白色光源の限界、すなわち内径または幅Dのマスク30の開口32を通り抜けたスペクトルの短波長側の下限側屈折光82の波長λbと長波長側の上限側屈折光83の波長λaを検出する。以上で、校正を終了する。   At the time of calibration of the hole diameter measuring apparatus 100 configured as described above, first, the mask 30 is positioned so that the opening 32 is positioned above the opening 61 of the mounting means 60. Next, the contact 18 provided on the lower surface of the prism holding means 10 is brought into contact with a portion other than the opening 32 of the mask 30, and the distance from the refracted light emission surface of the prism 14 to the upper surface of the mask 30 is determined in advance. Set to the determined height H. Next, the light detection means 40 detects the spectrum of the light originating from the white light source 12 passing through the opening 32 of the mask 30 and the opening 61 of the mounting means 60. At this time, the light detection means 40 determines the wavelength λb and the length of the lower limit side refracted light 82 on the short wavelength side of the spectrum passing through the opening 32 of the mask 30 having the inner diameter or the width D, that is, the limit of the white light source blocked by the mask 30. The wavelength λa of the upper-limit refracted light 83 on the wavelength side is detected. This completes the calibration.

次いで、実際に測定対象物70に形成された穴(測定対象穴)71の内径を、測定する。校正時と同じ状態で、プリズム保持手段10を上方に移動させ、マスク30の上面に測定対象物70を載置する。その際、測定対象物70の穴71が、マスク30の開口32内に位置するようにする。次いで、位置決め手段20を用いてプリズム保持手段10の下面に取り付けた接触子18を、測定対象物70の上面に当接させる。これにより、プリズム14の屈折光放射位置から測定対象物70の上面までの高さHを、校正時の高さHに一致させることが可能になる。   Next, the inner diameter of the hole (measurement object hole) 71 actually formed in the measurement object 70 is measured. In the same state as at the time of calibration, the prism holding means 10 is moved upward, and the measurement target 70 is placed on the upper surface of the mask 30. At this time, the hole 71 of the measurement target 70 is located within the opening 32 of the mask 30. Next, the contact 18 attached to the lower surface of the prism holding means 10 using the positioning means 20 is brought into contact with the upper surface of the measuring object 70. Thereby, the height H from the refracted light emission position of the prism 14 to the upper surface of the measurement object 70 can be made to match the height H at the time of calibration.

この状態で白色光源12から連続スペクトルを有する光を放射すると、放射光81はプリズム14に入射して屈折し、光のスペクトルを形成する。放射光81は、プリズム14を通過して校正時と同じ下限側屈折光82から上限側屈折光83の間の波長域で広がるが、測定対象物70の測定穴71を通過する光のスペクトルは、穴進入下限光85と穴進入上限光86の間の波長域に狭められる。載置手段60の下面に配置した光検出手段40は、この穴進入下限光85の波長λb'と穴進入上限光86の波長λa'を検出する。   When light having a continuous spectrum is emitted from the white light source 12 in this state, the emitted light 81 enters the prism 14 and is refracted to form a light spectrum. The emitted light 81 passes through the prism 14 and spreads in the same wavelength range between the lower limit refracted light 82 and the upper limit refracted light 83 as in calibration, but the spectrum of the light passing through the measurement hole 71 of the measurement target 70 is , The wavelength range between the hole entrance lower limit light 85 and the hole entrance upper limit light 86. The light detecting means 40 arranged on the lower surface of the placing means 60 detects the wavelength λb ′ of the hole entering lower limit light 85 and the wavelength λa ′ of the hole entering upper limit light 86.

演算手段50には、校正時のデータλa、λb、Dが記憶されているので、そのデータと今回計測して求めた上記波長λb'、λa'とを用いて、測定対象物70の測定穴71の内径dを、次式により求める。
d=D×(λa'−λb')/(λa−λb) ……(式1)
Since the data λa, λb, and D at the time of calibration are stored in the arithmetic means 50, the measurement hole of the measuring object 70 is obtained by using the data and the wavelengths λb ′ and λa ′ obtained by the current measurement. The inner diameter d of 71 is obtained by the following equation.
d = D × (λa′−λb ′) / (λa−λb) (Equation 1)

上記の計測原理を、図2を用いてさらに説明する。図2(a)は、上記穴径計測装置100の主要部を抜き出して示した図であり、図2(b)はプリズム14で発生した光のスペクトルとそのスペクトル上の測定対象物70の測定穴71の位置110を、模式的に示した図である。図2(c)は、光検出手段40が検出する検出信号の大きさAmpを縦軸とし、横軸を波長λとして模式的に示した図である。なお、図2(a)では、マスク30を省いている。マスク30を使用しない校正の場合には、基準高さHの基準位置が載置手段60の上面となり、マスク30の開口32の内径の代わりに、載置手段60の開口61の内径をDとして用いることにより、上記式を適用できる。   The above measurement principle will be further described with reference to FIG. FIG. 2A is a diagram illustrating a main part of the hole diameter measuring device 100 extracted therefrom. FIG. 2B is a diagram illustrating a spectrum of light generated by the prism 14 and measurement of a measurement target 70 on the spectrum. FIG. 3 is a diagram schematically showing a position 110 of a hole 71. FIG. 2C is a diagram schematically showing the amplitude Amp of the detection signal detected by the light detection means 40 as the vertical axis and the horizontal axis as the wavelength λ. In FIG. 2A, the mask 30 is omitted. In the case of calibration without using the mask 30, the reference position of the reference height H is the upper surface of the mounting means 60, and the internal diameter of the opening 61 of the mounting means 60 is D instead of the internal diameter of the opening 32 of the mask 30. By using, the above equation can be applied.

光源12が連続スペクトルを有する白色光源の場合、プリズム14で屈折された光の中で載置手段60に形成された開口62を通過した光のスペクトルは、例えば図2(b)に示すように光源12にキセノンランプを使用すれば、紫外光λbから赤外光λaまでを含む。すなわち、可視光領域のほか、可視光外の領域も含む。要するに、短波長から長波長の連続スペクトルを利用できればよい。これが校正時に光検出手段40が検出するゲイン112に対応する。   When the light source 12 is a white light source having a continuous spectrum, the spectrum of the light refracted by the prism 14 and passed through the opening 62 formed in the mounting means 60 is, for example, as shown in FIG. If a xenon lamp is used as the light source 12, the light from the ultraviolet light λb to the infrared light λa is included. That is, in addition to the visible light region, the region outside the visible light is included. In short, it is only required that a continuous spectrum from short wavelength to long wavelength can be used. This corresponds to the gain 112 detected by the light detection means 40 at the time of calibration.

一方、計測時には、目視で確認できるので、測定対象物70の穴71の位置110をスペクトルの可視光範囲にくるようにする。本実施例では短波長側が紫色の範囲であり、長波長側が黄色の範囲である。この時、光検出手段40のゲイン111では、λb'が約450nm、λa'が約550nmである。   On the other hand, at the time of measurement, since it can be visually confirmed, the position 110 of the hole 71 of the measurement object 70 is set to be within the visible light range of the spectrum. In this embodiment, the short wavelength side is a purple range and the long wavelength side is a yellow range. At this time, in the gain 111 of the light detecting means 40, λb ′ is about 450 nm, and λa ′ is about 550 nm.

次にさらに具体的な例を、図3を用いて、実施例1に示す。図3(a) は、測定装置の概略正面図であり、図3(b)はマスク部だけを取り出した図である。   Next, a more specific example will be described in Example 1 with reference to FIG. FIG. 3A is a schematic front view of the measuring device, and FIG. 3B is a diagram showing only the mask portion.

白色光源12にタングステン系ライトまたは昼色光を発光可能な光源を用いる。光源12からは、短波長側のスペクトルi線(365.01nm)から長波長側のスペクトルt線(1013.98nm)までを含む連続光が、放射されている。プリズム14は、正常分散ガラスの基準となるHOYA−C7(商品名)相当品を用いている。プリズム14の入射側面1と出射側面2とのなす頂角μは、μ=60°である。   As the white light source 12, a tungsten light source or a light source capable of emitting daylight is used. The light source 12 emits continuous light including a spectrum i-line (365.01 nm) on the short wavelength side to a spectrum t-line (1013.98 nm) on the long wavelength side. As the prism 14, a product equivalent to HOYA-C7 (trade name), which is a reference of the normal dispersion glass, is used. The apex angle μ between the entrance side surface 1 and the exit side surface 2 of the prism 14 is μ = 60 °.

初めに、既知の開口径またはスリット幅を有するマスク30について、校正する。マスク30の開口径または開口幅はDであり、プローブを用いた3次元計測等により、D=2mmである。入射角θでプリズム14に入射した光源12からの放射光81は、プリズム14内を通る際、光のスペクトルの屈折率nの違いにより、紫外側(下限側)屈折光5と赤外側(上限側)屈折光6の間に分光される。この分光された光のスペクトルは、それぞれ下限側屈折光82(λa=365.01nm)と上限側屈折光83(λb=1013.98nm)の間のスペクトルとして、プリズム14から出射される。プリズム14の出射側面2からマスク30の上面までの高さHは、H=80mmである。プリズム14の各スペクトルに対する屈折率nが既知であるから、スネルの法則等から各スペクトルにおける偏角εが(式2)で、求まる。
したがって、上限側屈折光83の偏角εと下限側屈折光82の偏角εの差Δεが、Δε=ε−εで求まる。基準幅Dは、偏角差Δεと高さHの関数D=f(Δε、H)であるから、それを(式3)で求めた基準幅Dと比較することにより、校正が完了する。基準幅Dは、D=2.76854mmであった。
First, the mask 30 having a known opening diameter or slit width is calibrated. The opening diameter or the aperture width of the mask 30 is D 1, the three-dimensional measurement or the like using a probe, which is D 1 = 2 mm. When the radiated light 81 from the light source 12 incident on the prism 14 at the incident angle θ 1 passes through the prism 14, due to the difference in the refractive index n of the light spectrum, the ultraviolet (lower limit) refracted light 5 and the infrared ( The light is split between the refracted lights 6. The spectrum of the split light is emitted from the prism 14 as a spectrum between the lower limit refracted light 82 (λa = 365.01 nm) and the upper limit refracted light 83 (λb = 1013.98 nm). The height H from the emission side surface 2 of the prism 14 to the upper surface of the mask 30 is H = 80 mm. Since the refractive index n of each spectrum of the prism 14 is known, the argument ε in each spectrum can be obtained by (Equation 2) from Snell's law or the like.
Therefore, the difference [Delta] [epsilon] of the deflection angle epsilon 1 of declination epsilon 2 and lower side refracted light 82 of the upper side refracted light 83 is obtained in Δε = ε 12. Since the reference width D is a function D = f (Δε, H) of the deviation angle Δε and the height H, the calibration is completed by comparing the reference width D with the reference width D obtained by (Equation 3). The reference width D was D = 2.776854 mm.

=D×(λa−λb)/(λa−λb) (式3)
マスク30の開口32を通過した光のスペクトルが、455.086nm〜923.903nmであると、光検出手段40が検出したので、D=2.00mmが得られる。
D 1 = D × (λa 1 −λb 1 ) / (λa−λb) (Equation 3)
When the spectrum of the light that has passed through the opening 32 of the mask 30 is 455.086 nm to 923.903 nm, the light detection unit 40 detects the spectrum, so that D 1 = 2.00 mm is obtained.

次に、穴71が形成された測定対象物70を、プリズム14から上面までの高さHを80mmに設定して、マスク30上に載置する。マスク30の測定の場合と同様に、光源12から放射光81をプリズム14に放射し、マスク30の背面側に配置した光検出手段40が、穴71およびマスク30の開口32を通過した光のスペクトルを検出する。この時の穴進入下限光85の波長λa'は、λa'=500nm、穴進入上限光86の波長λb'は、λb'=680nmであった。(式1)を用いて、穴71の径dは、d=0.769mmとして得られる。   Next, the measurement object 70 having the hole 71 formed thereon is set on the mask 30 with the height H from the prism 14 to the upper surface set to 80 mm. As in the case of the measurement of the mask 30, the emitted light 81 is emitted from the light source 12 to the prism 14, and the light detecting means 40 arranged on the back side of the mask 30 detects the light passing through the hole 71 and the opening 32 of the mask 30. Detect the spectrum. At this time, the wavelength λa ′ of the hole entrance lower limit light 85 was λa ′ = 500 nm, and the wavelength λb ′ of the hole entrance upper limit light 86 was λb ′ = 680 nm. Using (Equation 1), the diameter d of the hole 71 is obtained as d = 0.969 mm.

なお、マスク30の開口32の幅Dに測定誤差として、±0.05mmの誤差があったとして、上記計算を行うと、穴径dの誤差Δdは、Δd=±0.0187mm程度であった。したがって、本実施例の方法により高精度に微小孔径を計測できることを確認できた。 In this connection, the measurement error in the width D 1 of the opening 32 of the mask 30, if there is an error of ± 0.05 mm, when performing the above calculations, the error [Delta] d of the hole diameter d is there at about Δd = ± 0.0187mm Was. Therefore, it was confirmed that the micropore diameter can be measured with high accuracy by the method of this example.

次に、図4及び図5を用いて、本発明の上記実施例の変形例を説明する。図4に示した変形例が、上記実施例と大きく異なる点は、プリズム14と測定対象物70の間に、平行光レンズ15と水平方向に移動可能なスリット板90を設けたことにある。図4(a)では、その他の部品は図1に示した実施例のものと同一であるが、図4(b)では、光検出手段40側に、さらに集光レンズ42を設けている。   Next, a modification of the above embodiment of the present invention will be described with reference to FIGS. The modification shown in FIG. 4 is significantly different from the above-described embodiment in that a slit plate 90 that can move in the horizontal direction with the parallel light lens 15 is provided between the prism 14 and the object 70 to be measured. In FIG. 4A, other components are the same as those in the embodiment shown in FIG. 1, but in FIG. 4B, a condenser lens 42 is further provided on the light detecting means 40 side.

これらは、プリズム14で分光された光を平行光として測定対象物70に導き、所定のスペクトルの光だけ、穴71に垂直に通過させることにより、よりスペクトルの測定を正確に実行しようとするためである。そのため、スリット板90には、スペクトル幅だけのスリット95を形成している。スリット95の幅は、できるだけ狭い方がよいが、加工性を考慮して50μm程度である。   These are because the light separated by the prism 14 is guided to the measurement object 70 as parallel light, and only light having a predetermined spectrum is allowed to pass perpendicularly to the hole 71 so as to perform more accurate spectrum measurement. It is. Therefore, the slit plate 90 is provided with a slit 95 having only a spectral width. The width of the slit 95 is preferably as narrow as possible, but is about 50 μm in consideration of workability.

スリット板90を、水平方向に移動可能にするため、ケーシング16には、スリット板90移動用の穴と、スリット板90を直動可能に支持するすべり軸受17が設けられている。スリット板90のケーシング16外部側にはラック91が取り付けられており、サーボモータ93(サーボモータの代わりにステッピングモータを用いてもよい)に連結したピニオン92とかみ合っている。サーボモータ93を制御して、スリット板90の移動が制御される。なお、本実施例ではスリット板をサーボモータで動かしているが、例えばシグマ光機製の可変スリットを集光レンズの下方に設けるようにしてもよい。   In order to allow the slit plate 90 to move in the horizontal direction, the casing 16 is provided with a hole for moving the slit plate 90 and a slide bearing 17 that supports the slit plate 90 so as to be able to move directly. A rack 91 is attached to the outer side of the casing 16 of the slit plate 90 and meshes with a pinion 92 connected to a servomotor 93 (a stepping motor may be used instead of the servomotor). The movement of the slit plate 90 is controlled by controlling the servomotor 93. In this embodiment, the slit plate is moved by the servo motor. However, for example, a variable slit made by Sigma Kogyo may be provided below the condenser lens.

図4(b)の光検出手段40では、集光レンズ42及び集光レンズ42を通過した光を検出する光電子増倍管44を保持するため、ケーシング43が載置手段60の下方に設けられている。微小孔71を通過した光のスペクトルを集光レンズ42で集光し、光電子増倍管44で増幅して、検出精度を高めている。なお、図4(a)、(b)のいずれの変形例においても、微小孔71を通過するスペクトルは、スリット板90の移動に同期した計測となる。   In the light detecting means 40 of FIG. 4B, a casing 43 is provided below the mounting means 60 to hold the condenser lens 42 and the photomultiplier tube 44 for detecting the light passing through the condenser lens 42. ing. The spectrum of the light passing through the minute holes 71 is condensed by the condenser lens 42 and amplified by the photomultiplier 44 to improve the detection accuracy. 4A and 4B, the spectrum passing through the minute hole 71 is measured in synchronization with the movement of the slit plate 90.

図5は、図1に示した実施例において、光検出手段40に、グレーティング47とラインセンサ48を設けている。微小穴71を通過したスペクトルを、グレーティング47でその進行方向を変え、多数上下に配置したラインセンサ(フォトダイオード等)48で検出している。穴進入下限光(短波長側)45は、ラインセンサ48の上部のセンサで、穴進入上限光(長波長側)46は、ラインセンサ48の下部のセンサで検出することにより、各波長(スペクトル)ごとの強度が分かり、穴径を測定できる。なお、この変形例で示した光検出手段40の代わりに、同様の機能を有する、例えば、コニカミノルタ社製分光器BW−T6を、載置手段60の背面側に光ファイバ接続して検出するようにしてもよい。   FIG. 5 shows the embodiment shown in FIG. 1 in which the light detecting means 40 is provided with a grating 47 and a line sensor 48. The traveling direction of the spectrum passing through the minute holes 71 is changed by a grating 47 and detected by a number of line sensors (photodiodes or the like) 48 arranged vertically. The hole entry lower limit light (short wavelength side) 45 is detected by a sensor above the line sensor 48, and the hole entry upper limit light (long wavelength side) 46 is detected by the sensor below the line sensor 48, thereby detecting each wavelength (spectrum). ), And the hole diameter can be measured. Instead of the light detection means 40 shown in this modification, for example, a spectroscope BW-T6 manufactured by Konica Minolta, Inc. having a similar function is detected by connecting an optical fiber to the rear side of the mounting means 60. You may do so.

要するに本発明では、測定対象物である口径1mm以下の微小穴に分光した光を進入させることにより、その穴を通過した光の波長を検出するだけで、微小穴径を正確に計測するものであり、この本発明の精神に基づくすべての実施例は本発明の範囲内である。   In short, in the present invention, the spectroscopic light enters the minute hole having a diameter of 1 mm or less, which is an object to be measured, and the diameter of the minute hole is accurately measured only by detecting the wavelength of the light passing through the hole. Yes, all embodiments based on the spirit of the invention are within the scope of the invention.

1…入射側面、2…出射側面、5…紫外側(下限側)屈折光、6…赤外側(上限側)屈折光、10…プリズム保持手段、12…白色光源、14…プリズム(屈折手段)、15…平行光レンズ、16…ケーシング、17…すべり軸受、18…接触子、20…位置決め手段、21…スライダ、22…レール、23…回転ノブ、24…支持腕、25…ベース、30…マスク、32…開口、40…光検出手段、41…CCDまたはCMOS等、42…集光レンズ、43…ケーシング、44…光電子増倍管、45…穴進入下限光、46…穴進入上限光、47…グレーティング、48…ラインセンサ(フォトダイオード)、50…演算手段、60…載置手段、61…開口または透明部、70…測定対象物、71…測定穴(微小穴)、81…放射光、82…下限側屈折光、83…上限側屈折光、85…穴進入下限光、86…穴進入上限光、90…スリット板、91…ラック、92…ピニオン、93…サーボモータ、95…スリット、100…穴径計測装置、110…測定穴位置、111…屈折光のゲイン、112…穴進入光のゲイン、d…穴径、D…基準幅(広がり幅)、D…マスク開口径または開口幅、H…基準高さ、θ…入射角、ε…偏角、λ…波長、λa…屈折光上限波長、λa'…穴進入光上限波長、λb…屈折光下限波長、λb'…穴進入光下限波長、μ…頂角 DESCRIPTION OF SYMBOLS 1 ... incident side surface, 2 ... outgoing side surface, 5 ... violet outside (lower limit side) refraction light, 6 ... infrared side (upper limit side) refraction light, 10 ... prism holding means, 12 ... white light source, 14 ... prism (refraction means) , 15: Parallel light lens, 16: Casing, 17: Slide bearing, 18: Contact, 20: Positioning means, 21: Slider, 22: Rail, 23: Rotary knob, 24: Support arm, 25: Base, 30 ... Mask, 32 aperture, 40 light detecting means, 41 CCD or CMOS, 42 condenser lens, 43 casing, 44 photomultiplier tube, 45 hole lower limit light, 46 hole upper limit light, 47 ... Grating, 48 ... Line sensor (photodiode), 50 ... Calculation means, 60 ... Placement means, 61 ... Opening or transparent part, 70 ... Measurement object, 71 ... Measurement hole (micro hole), 81 ... Emitted light , 82 ... Limited side refraction light, 83: Upper limit side refraction light, 85: Hole entry lower limit light, 86: Hole entry upper limit light, 90: Slit plate, 91: Rack, 92: Pinion, 93: Servo motor, 95: Slit, 100 ... diameter measuring device, 110 ... measured hole position, 111 ... gain of refracted light, 112 ... hole enters the light gain, d ... diameter, D ... reference width (spreading width), D 1 ... mask opening diameter or opening width, H: reference height, θ 1 : incident angle, ε: declination, λ: wavelength, λa: upper limit wavelength of refracted light, λa ': upper limit wavelength of light entering hole, λb: lower wavelength of refracted light, λb': light entering hole Lower limit wavelength, μ ... Vertical angle

Claims (8)

貫通穴を有する測定対象物の前記穴の径を測定する穴径計測装置において、
連続スペクトルを有する白色光源と、
前記光源から照射される白色光を屈折させるプリズムと、
前記測定対象物を載置する載置手段と、
前記プリズムで屈折された光を前記測定対象物の前記穴近傍に位置づける位置決め手段と、
前記載置手段の背面側に配置され、前記穴を通過した光を検出する光検出手段と、
前記光検出手段が検出した信号から前記穴を通過した光の上限波長及び下限波長を求め、求めた上限波長及び下限波長を用いて前記穴の穴径を演算する演算手段と、
を有することを特徴とする穴径計測装置。
In a hole diameter measuring device for measuring the diameter of the hole of the measurement object having a through hole,
A white light source having a continuous spectrum;
A prism that refracts white light emitted from the light source,
Mounting means for mounting the measurement object,
Positioning means for positioning the light refracted by the prism in the vicinity of the hole of the measurement object,
Light detection means arranged on the back side of the placement means, for detecting light passing through the hole,
Calculating means for calculating an upper limit wavelength and a lower limit wavelength of light passing through the hole from the signal detected by the light detecting means, and calculating a hole diameter of the hole using the obtained upper limit wavelength and lower limit wavelength;
A hole diameter measuring device comprising:
前記載置手段の上面であって、前記測定対象物の下面側に前記測定対象物の前記穴より大きな口径の開口を有するマスクを配置したことを特徴とする請求項1に記載の穴径計測装置。   The hole diameter measurement according to claim 1, wherein a mask having an opening having a larger diameter than the hole of the measurement object is arranged on an upper surface of the mounting means and on a lower surface side of the measurement object. apparatus. 前記プリズムを保持する保持手段を有し、前記保持手段と前記測定対象物との距離を一定に保持する機構を前記保持手段または前記位置決め手段に設けたことを特徴とする請求項1または2に記載の穴径計測装置。   3. The apparatus according to claim 1, further comprising a holding unit for holding the prism, wherein a mechanism for holding a distance between the holding unit and the object to be measured constant is provided in the holding unit or the positioning unit. The described hole diameter measuring device. 前記プリズムと前記測定対象物との間に、前記プリズム側から順に、平行光レンズとスリット板とを配置し、前記スリット板を前記平行光レンズの光軸に垂直な方向に移動可能にし、前記光検出手段がCMOS、CCD、ダイレクト・イメージセンサ、カラー分離フォトダイオードのいずれかであることを特徴とする請求項1から3のいずれか1項に記載の穴径計測装置。   Between the prism and the object to be measured, in order from the prism side, a parallel light lens and a slit plate are arranged, and the slit plate is movable in a direction perpendicular to the optical axis of the parallel light lens, 4. The hole diameter measuring device according to claim 1, wherein the light detecting means is any one of a CMOS, a CCD, a direct image sensor, and a color separation photodiode. 前記プリズムと前記測定対象物との間に、前記プリズム側から順に、平行光レンズとスリット板を配置し、前記載置手段と前記光検出手段との間に集光レンズを配置し、前記スリット板を前記平行光レンズの光軸に垂直な方向に移動可能にし、前記光検出手段が光電子増倍管であることを特徴とする請求項1から3のいずれか1項に記載の穴径計測装置。   Between the prism and the object to be measured, a parallel light lens and a slit plate are arranged in this order from the prism side, and a condenser lens is arranged between the placing means and the light detecting means, 4. The hole diameter measuring device according to claim 1, wherein the plate is movable in a direction perpendicular to the optical axis of the parallel light lens, and the light detecting means is a photomultiplier tube. apparatus. 前記プリズムで屈折された光の測定に使用する上限波長をλa、下限波長をλb、前記屈折された光の前記測定対象物上面に対応する位置での広がり幅をDとし、前記光検出手段が検出した光の上限波長をλa'、下限波長をλb'としたときに、前記演算手段は、前記穴の穴径dを、
d=D×(λa'−λb')/(λa−λb)
から求めることを特徴とする請求項1から5のいずれか1項に記載の穴径計測装置。
The upper limit wavelength used for the measurement of the light refracted by the prism is λa, the lower limit wavelength is λb, and the spread width of the refracted light at a position corresponding to the upper surface of the measurement target is D, and the light detection unit is When the upper limit wavelength of the detected light is λa ′ and the lower limit wavelength is λb ′, the calculating unit sets the hole diameter d of the hole to:
d = D × (λa′−λb ′) / (λa−λb)
The hole diameter measuring device according to any one of claims 1 to 5, wherein the hole diameter is determined from the following.
貫通穴の穴径を計測する方法であって、
連続スペクトルを有する光源から照射される白色光をプリズムで屈折させて測定対象物に照射するものにおいて、
測定対象物を載置する載置手段の上面と、前記プリズムとの間の距離をHとした状態で前記プリズムからの屈折光の広がり範囲Dと、その時の上限波長λa、下限波長λbとを求める校正ステップと、
前記載置手段に前記測定対象物を載置し、前記測定対象物の上面と前記プリズムの間の距離をHとして前記穴を通り抜ける光の上限波長λa'と下限波長λb'を求める計測ステップと、
求めたこれらの値から次式により、前記穴の穴径を演算する演算ステップとを有することを特徴とする穴径計測方法。
d=D×(λa'−λb')/(λa−λb)
A method of measuring the diameter of a through hole,
In what irradiates the measurement object by refracting white light emitted from a light source having a continuous spectrum with a prism,
With the distance between the upper surface of the mounting means for mounting the measurement object and the prism being H, the spread range D of the refracted light from the prism, and the upper limit wavelength λa and the lower limit wavelength λb at that time. The required calibration steps,
A measuring step of placing the object to be measured on the mounting means and determining an upper limit wavelength λa ′ and a lower limit wavelength λb ′ of light passing through the hole with a distance between the upper surface of the measurement object and the prism being H; ,
A calculating step of calculating the hole diameter of the hole from the obtained values according to the following equation:
d = D × (λa′−λb ′) / (λa−λb)
前記計測ステップでは、前記プリズムと前記測定対象物間に介在させたスリット板を、前記測定対象物の上面に実質的に平行な方向に移動させることを特徴とする請求項7に記載の穴径計測方法。   The hole diameter according to claim 7, wherein in the measuring step, a slit plate interposed between the prism and the measurement target is moved in a direction substantially parallel to an upper surface of the measurement target. Measurement method.
JP2016038557A 2016-03-01 2016-03-01 Hole diameter measuring device and measuring method using the same Active JP6645868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038557A JP6645868B2 (en) 2016-03-01 2016-03-01 Hole diameter measuring device and measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038557A JP6645868B2 (en) 2016-03-01 2016-03-01 Hole diameter measuring device and measuring method using the same

Publications (2)

Publication Number Publication Date
JP2017156182A JP2017156182A (en) 2017-09-07
JP6645868B2 true JP6645868B2 (en) 2020-02-14

Family

ID=59808577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038557A Active JP6645868B2 (en) 2016-03-01 2016-03-01 Hole diameter measuring device and measuring method using the same

Country Status (1)

Country Link
JP (1) JP6645868B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174426A (en) * 1992-12-09 1994-06-24 Mitsubishi Cable Ind Ltd Seal material measuring device
JP3361777B2 (en) * 1999-07-05 2003-01-07 株式会社半導体先端テクノロジーズ Mask inspection method and inspection apparatus
JP2002310626A (en) * 2001-04-18 2002-10-23 Omron Corp Lighting system
ES2247890B1 (en) * 2003-10-10 2006-11-16 Universitat Politecnica De Catalunya OPTICAL METROLOGY PROCEDURE AND EQUIPMENT FOR THE DETERMINATION OF THE THREE-DIMENSIONAL TOPOGRAPHY OF A HOLE, IN PARTICULAR FOR THE MEASUREMENT OF TRONCOCONIC AND SIMILAR MICROMETRIC NOZZLES.
IL188029A0 (en) * 2007-12-10 2008-11-03 Nova Measuring Instr Ltd Optical method and system
JP6367041B2 (en) * 2014-08-05 2018-08-01 株式会社ミツトヨ External dimension measuring apparatus and external dimension measuring method

Also Published As

Publication number Publication date
JP2017156182A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
TWI480501B (en) Displacement measurement method and displacement measuring device
US10864570B2 (en) Bending angle measuring apparatus and method for measuring a bending angle by means of the bending angle measuring apparatus
KR100624256B1 (en) Outer and Inner Diameter Measuring Apparatus and Method for Transparent Tube
US20150292866A1 (en) Film thickness measurement device and method
CN105829971B (en) For the apparatus and method by the legal position mask of non-contact optical
KR100967470B1 (en) Surface form measuring apparatus and stress measuring apparatus and surface form measuring method and stress measuring method
JP6005641B2 (en) Drug detection device and drug detection method
JP2010133934A (en) Surface measuring apparatus having two measuring unit
JP2012255781A (en) Device for referenced measurement of reflected light and method for calibrating the device
JP2008039771A (en) Apparatus and method for measuring height profile of structural substrate
TW201830005A (en) Optical characteristic measuring apparatus and optical characteristic measuring method
JP6288280B2 (en) Surface shape measuring device
JP2012531616A (en) Processing system
JP6485498B2 (en) Total reflection microscope and adjustment method of total reflection microscope
KR101794641B1 (en) A slope spectrum system for measuring height of object by using wavelength division
JP2008139062A (en) Spectrum measuring apparatus, and spectrometry
JP6645868B2 (en) Hole diameter measuring device and measuring method using the same
EP3460386B1 (en) Displacement sensor
JP2007024646A (en) Optical measuring instrument
US8541760B2 (en) Method for calibrating a deflection unit in a TIRF microscope, TIRF microscope, and method for operating the same
TW201510474A (en) Gap measurement device
JP2018109544A (en) Optical scanning height measuring device
JP2006292513A (en) Refractive index distribution measuring method for refractive index distribution type lens
JP4853961B2 (en) Beam divergence angle measuring device
WO2006050978A2 (en) Optical device for determining the in-focus position of a fourier optics set-up

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200109

R150 Certificate of patent or registration of utility model

Ref document number: 6645868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250