JP6643609B2 - Storage device and manufacturing method thereof - Google Patents

Storage device and manufacturing method thereof Download PDF

Info

Publication number
JP6643609B2
JP6643609B2 JP2015003554A JP2015003554A JP6643609B2 JP 6643609 B2 JP6643609 B2 JP 6643609B2 JP 2015003554 A JP2015003554 A JP 2015003554A JP 2015003554 A JP2015003554 A JP 2015003554A JP 6643609 B2 JP6643609 B2 JP 6643609B2
Authority
JP
Japan
Prior art keywords
electrode
layer
magnetization direction
magnetic memory
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015003554A
Other languages
Japanese (ja)
Other versions
JP2016129206A (en
Inventor
実 大谷
実 大谷
タン クン グエン
タン クン グエン
宮本 良之
良之 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015003554A priority Critical patent/JP6643609B2/en
Publication of JP2016129206A publication Critical patent/JP2016129206A/en
Application granted granted Critical
Publication of JP6643609B2 publication Critical patent/JP6643609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Description

本発明はエレクトロニクス技術、主にデータ記憶技術における磁気メモリー素子に関する。   The present invention relates to magnetic memory devices in electronics technology, mainly data storage technology.

メモリー保持のための消費電力を抑えるため、電荷蓄積ではなく磁気モーメントにより“0”と“1”のビット情報を保持する。
具体的には絶縁体を強磁性体材料で挟んだ構造を1ビット素子とする。
絶縁体をトンネルして強磁性体材料に電流を流した際の抵抗の高い時を“1”、低い時を“0”と読むことでメモリー素子とする。
In order to suppress the power consumption for holding the memory, the bit information of “0” and “1” is held not by charge storage but by a magnetic moment.
Specifically, a structure in which an insulator is sandwiched between ferromagnetic materials is defined as a 1-bit element.
When a resistance is high when a current flows through the ferromagnetic material through a tunnel through the insulator, "1" is read, and "0" is read when the resistance is low.

磁気メモリー素子では、抵抗を変化させるには、強磁性体のうち一方の磁化を固定し、もう一方を外場によって可変する。
古くは配線による誘導磁場を利用して磁化を変化させていたが、それでは磁気メモリー素子を集積するのに限界があり、漏れ出た磁場により近接するメモリーセルを意図せずして書き変えてしまうなどの欠点があるので、近年は図1(a)のようにスピン注入によ磁化を反転させることがなされている(非特許文献1)。
In the magnetic memory element, in order to change the resistance, the magnetization of one of the ferromagnetic materials is fixed, and the other is changed by an external field.
In the old days, magnetization was changed using an induced magnetic field by wiring, but this limits the integration of magnetic memory elements and unintentionally rewrites nearby memory cells due to leaked magnetic fields since there are drawbacks such as, in recent years to invert the by Ri magnetization spin as shown in FIG. 1 (a) have been made (non-patent document 1).

更に、スピン注入よりも容易に磁化を反転させる方法として、電圧変化により磁化を反転させる方法も近年採用されている。
これは、電圧印加により磁性体材料のフェルミ準位を変化させ磁気モーメントを担う電子軌道の占有率を変えることを原理とする。
図1(b)では、その素子の構造を示している(特許文献1、非特許文献2)。
Further, as a method of inverting magnetization more easily than spin injection, a method of inverting magnetization by changing a voltage has been recently adopted.
This is based on the principle that, by applying a voltage, the Fermi level of the magnetic material is changed to change the occupancy of the electron orbits that carry the magnetic moment.
FIG. 1B shows the structure of the element (Patent Document 1, Non-Patent Document 2).

以下に、何故磁気モーメントを担う電子軌道の占有率を変えることが、磁化を反転させることにつながるのかを説明する。鉄を磁性材料として用いる場合には磁化を担うのは鉄原子3d軌道の電子スピンであるが、通常は図3にて模式的に示されたように電子スピンが揃う場合にどの方向に揃うかに任意性があり、外部から印加された磁場の方向が決める。   The following explains why changing the occupancy of the electron orbits that carry the magnetic moment leads to the reversal of the magnetization. When iron is used as a magnetic material, it is the electron spin of the 3d orbit of the iron atom that bears the magnetization. However, when the electron spin is aligned as shown schematically in FIG. The direction of the externally applied magnetic field is determined.

しかし、電子のスピン・軌道相互作用が大きい時には、スピンの向きは鉄3d電子軌道の向きに対して決まっており、電子軌道は結晶構造にて決定されていることから、電子スピンの向き易い方向は磁性体結晶に置ける結晶方位に対して決まった方向に定まっている(非特許文献3)。これを図4に模式的に示した。   However, when the spin-orbit interaction of electrons is large, the spin direction is determined with respect to the direction of the iron 3d electron orbit, and the electron orbit is determined by the crystal structure. Is determined in a direction determined with respect to the crystal orientation of the magnetic crystal (Non-Patent Document 3). This is shown schematically in FIG.

その電子軌道の占有率を、電場を印加すること、すなわちフェルミ準位を変えることで、鉄原子の3d軌道を占める電子数が変化する。
結果として磁化が容易になる結晶中の方向が変わることを原理的に利用している。
図1(b)では、磁化可変部位を囲むような絶縁ゲートから電位をかけることで磁化反転を行う素子を示している。
鉄以外の元素(コバルトなど)を用いた磁性を有する材料による素子を形成した場合も、同様の原理の技術を用いることができる。
By applying an electric field to the occupancy of the electron orbitals, that is, by changing the Fermi level, the number of electrons occupying the 3d orbitals of the iron atom changes.
It utilizes in principle the fact that the direction in the crystal, which facilitates magnetization, changes.
FIG. 1B shows an element that performs magnetization reversal by applying a potential from an insulated gate that surrounds a variable magnetization region.
Even when an element is formed of a magnetic material using an element other than iron (such as cobalt), a technique based on the same principle can be used.

特開2014−53546号公報JP 2014-53546 A

Yiming.Huai,“Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects”, AAPPS Bulletin December 2008, Vol.18, No.6, page.33)Yiming.Huai, “Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects”, AAPPS Bulletin December 2008, Vol.18, No.6, page.33) T.Maruyama, Y.Shiota, T.Nozaki, K.Ohta, N.Toda, M.Mizuguchi, A.A.Tulapurkar, T.Shinjo, M.Shiraishi, S.Mizukami, Y.Ando & Y.Suzuki,“Large voltage-induced magnetic anisotropy change in a few atomic layers of iron”, Nature Nanotechnology 4, 158, (2009)T.Maruyama, Y.Shiota, T.Nozaki, K.Ohta, N.Toda, M.Mizuguchi, AATulapurkar, T.Shinjo, M.Shiraishi, S.Mizukami, Y.Ando & Y.Suzuki, “Large voltage -induced magnetic anisotropy change in a few atomic layers of iron ”, Nature Nanotechnology 4, 158, (2009) T.Oda, A.Pasquarello, and R.Car,“Fully Unconstrained Approach to Noncollinear Magnetism: Application to Small Fe Clusters”Phys. Rev. Lett. 80, 3622, (1998)T. Oda, A. Pasquarello, and R. Car, “Fully Unconstrained Approach to Noncollinear Magnetism: Application to Small Fe Clusters” Phys. Rev. Lett. 80, 3622, (1998) P.Hohenberg and W.Kohn,“Inhomogeneous Electron Gas”Phys. Rev. 136, 864, (1964)P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas” Phys. Rev. 136, 864, (1964) W.Kohn and L.Sham,“Self-Consistent Equations Including Exchange and Correlation Effects”Phys. Rev. 140, 1133, (1965)W. Kohn and L. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects” Phys. Rev. 140, 1133, (1965) Y.Lee, S.Bae, H.Jang, S.Jang, S.-E.Zhu, S.-H.Sim, Y.-I.Song, B.-H.Hong, and J.-H.Ahn, “Wafer-Scale Synthesis and Transfer of Graphene Films”Nano Lett. 10, 490 (2010)Y.Lee, S.Bae, H.Jang, S.Jang, S.-E.Zhu, S.-H.Sim, Y.-I.Song, B.-H.Hong, and J.-H. Ahn, “Wafer-Scale Synthesis and Transfer of Graphene Films” Nano Lett. 10, 490 (2010)

磁気メモリー素子を構成する磁化可変部に磁化方向の変化をさせるには、磁性体の持つ磁気異方性エネルギーを下げる必要がある。   In order to change the direction of magnetization in the magnetization variable section constituting the magnetic memory element, it is necessary to reduce the magnetic anisotropy energy of the magnetic material.

そのために磁化方向を変える際には磁性体に電圧をかける必要があるが、絶縁体と強磁性体における界面で、それぞれの材料を構成する電子軌道の混ざりのために、電界印加時に界面に電位降下が起こり磁性体に十分な電界がかからない問題があった。   To change the magnetization direction, it is necessary to apply a voltage to the magnetic material.However, at the interface between the insulator and the ferromagnetic material, a potential is applied to the interface when an electric field is applied due to the mixing of the electron orbits of each material. There is a problem that a drop occurs and a sufficient electric field is not applied to the magnetic body.

すなわち、界面にて電子軌道が混ざると、界面に垂直な方向に広がった電子軌道が生まれ、この電子は印加電界を遮蔽しやすくなるのである。   That is, when the electron orbits are mixed at the interface, an electron orbit that spreads in a direction perpendicular to the interface is generated, and the electrons easily block the applied electric field.

背景技術に述べた電圧印加による方法においても、電圧印加する絶縁ゲートと強磁性体材料の界面で同様の軌道の混ざりが起き、やはり界面における電位降下により電界が強磁性体にかからない。   Also in the method based on voltage application described in the background art, similar orbital mixing occurs at the interface between the insulating gate to which voltage is applied and the ferromagnetic material, and the electric field does not reach the ferromagnetic material due to the potential drop at the interface.

以上の事より、磁性体材料にかける電位差以上に印加電位をかける必要があり、書き込み動作時における印加電位を高く設定する必要があった。
このことは、電圧印加によりどうしても避けられないリーク電流による消費電力(ジュール熱)増大を招く。
In view of the above, it is necessary to apply an applied potential higher than the potential difference applied to the magnetic material, and it is necessary to set the applied potential at the time of the writing operation to be high.
This causes an increase in power consumption (Joule heat) due to a leak current which cannot be avoided by applying a voltage.

磁気メモリー素子を構成する強磁性体と絶縁体の界面における化学結合を抑制するために、界面をなす双方の材料と化学結合をもたない薄い材料を挿入する。
挿入した薄膜自身が印加電界を遮蔽しない材料、例えばグラフェン、或いは六方窒化ホウ素などの原子層からなる低次元物質が望ましい。
In order to suppress the chemical bonding at the interface between the ferromagnetic material and the insulator constituting the magnetic memory element, a thin material having no chemical bonding with both materials forming the interface is inserted.
It is preferable that the inserted thin film itself does not shield the applied electric field, for example, a low-dimensional substance made of an atomic layer such as graphene or hexagonal boron nitride.

このよう薄い材料を挿入することにより、強磁性体材料と絶縁材料の間の電子軌道の混成が抑制され、素子への電界印加時に界面における電位降下が抑制される。
以下、具体的な特徴を示す。
1.第1電極と、磁化方向可変層と、絶縁層と、磁化方向固定相、第2電極とを順次積層した磁気メモリー素子であって、さらに該磁化方向可変層と該絶縁層の間に原子が層状に配列している層状物質からなる層を挿入して、該磁化方向可変層と該絶縁層との界面における電子軌道の混成を抑制して第1電極と第2電極の間の電界印加時に該界面における電位降下を抑制したことを特徴とする磁気メモリー素子。
2.さらに前記磁化方向可変層を囲繞する側壁絶縁体と該側壁絶縁体に接する第3電極を設け、前記原子が層状に配列している層状物質からなる層を、前記磁化方向可変層と前記絶縁層の間の前記挿入に代えて、該磁化方向可変層と該側壁絶縁体の間に挿入して、前記磁化方向可変層と該側壁絶縁体との界面における電子軌道の混成を抑制して第2電極と第3電極の間の電界印加時に該界面における電位降下を抑制したことを特徴とする第1項に記載の磁気メモリー素子。
3.前記原子が層状に配列している層状物質からなる層は、原子数層分の厚さを持つ2次元的な構造を持つことを特徴とする第1項または第2項のいずれか1項に記載の磁気メモリー素子。
4.前記層状物質は、グラフェン、六方窒化ホウ素、二硫化金属化合物のいずれかであることを特徴とする第3項に記載の磁気メモリー素子。
5.第3項乃至第4項のいずれか1項に記載の磁気メモリー素子のメモリー読み出し方法であり、該メモリー読み出し方法は前記絶縁部と前記原子数層分の厚さを持つ2次元的構造の物質をトンネルする電流の抵抗値の読み出しであることを特徴とする磁気メモリー素子のメモリー読み出し方法。
6.第1項から第4項のいずれか1項に記載の磁気メモリー素子のメモリー書き込み方法であり、該メモリー書き込み方法は、前記磁化方向可変層にスピンをもった電流を注入する、または第1電極と第2電極との間、または、第2電極と第3電極の間におけるパルス状の電圧印加と該パルス印加電圧の調整によるスピン方向の制御であることを特徴とする磁気メモリー素子のメモリー書き込み方法。
7.前記磁化方向可変層は鉄であり、前記絶縁層は酸化マグネシウムであり、前記層状物質としてグラフェン一層を設けることにより、前記磁化方向可変層の磁気異方性エネルギーを、該グラフェン一層を設けない場合より約10分の1に低減して前記パルス印加電圧幅を約一桁低減し得ることを特徴とする第5項または第6項のいずれか1項に記載する磁気メモリー素子のメモリー書き込み方法。
8.第4項に記載する磁気メモリー素子からなることを特徴とするメモリーセル。
By inserting such a thin material, hybridization of electron orbits between the ferromagnetic material and the insulating material is suppressed, and a potential drop at the interface when an electric field is applied to the element is suppressed.
Hereinafter, specific features will be described.
1. A magnetic memory element in which a first electrode, a magnetization direction variable layer, an insulating layer, a magnetization direction stationary phase, and a second electrode are sequentially stacked, wherein atoms are further provided between the magnetization direction variable layer and the insulating layer. A layer made of a layered material arranged in a layered manner is inserted to suppress hybridization of electron orbits at an interface between the magnetization direction variable layer and the insulating layer, and when an electric field is applied between the first electrode and the second electrode, A magnetic memory element wherein a potential drop at the interface is suppressed.
2. Further, a side wall insulator surrounding the magnetization direction variable layer and a third electrode in contact with the side wall insulator are provided, and a layer made of a layered material in which the atoms are arranged in a layered manner is referred to as Instead of the insertion between the insulating layers, it is inserted between the magnetization direction variable layer and the sidewall insulator to suppress the mixing of electron orbits at the interface between the magnetization direction variable layer and the sidewall insulator. 2. The magnetic memory element according to claim 1, wherein a potential drop at the interface is suppressed when an electric field is applied between the second electrode and the third electrode.
3. The layer made of a layered material in which the atoms are arranged in a layered manner has a two-dimensional structure having a thickness of several layers of atoms. The magnetic memory element as described in the above.
4. 4. The magnetic memory device according to claim 3, wherein the layered material is one of graphene, hexagonal boron nitride, and a metal disulfide compound.
5. 5. A method for reading a memory of a magnetic memory element according to any one of the items 3 to 4, wherein the memory reading method has a two-dimensional structure having a thickness corresponding to the insulating portion and the atomic number layer. Reading a resistance value of a current that tunnels through the memory.
6. 5. A memory writing method for a magnetic memory element according to any one of items 1 to 4, wherein the memory writing method comprises: injecting a spin current into the magnetization direction variable layer; Characterized in that a pulse-like voltage is applied between the first electrode and the second electrode or between the second electrode and the third electrode, and the spin direction is controlled by adjusting the pulse application voltage. Method.
7. When the magnetization direction variable layer is iron, the insulating layer is magnesium oxide, and by providing one layer of graphene as the layered material, the magnetic anisotropy energy of the magnetization direction variable layer can be reduced. 7. The memory writing method for a magnetic memory element according to claim 5, wherein the pulse application voltage width can be reduced by about one digit by reducing the pulse application voltage width by about one tenth.
8. A memory cell comprising the magnetic memory element according to claim 4.

本発明の構成による磁気メモリー素子では、強磁性体材料と絶縁材料の間の電子軌道の混成が抑制され、電界印加時に界面における電位降下が抑制されるため、リーク電流による消費電力(ジュール熱)増大を防ぎ、素子の安定性が向上する。
よって本発明の磁気メモリー素子をメモリーセルに構成した場合、熱設計を容易にし、セルに動作安定性をもたらす。
In the magnetic memory element according to the configuration of the present invention, the mixing of electron orbitals between the ferromagnetic material and the insulating material is suppressed, and the potential drop at the interface when an electric field is applied is suppressed, so that power consumption due to leakage current (Joule heat) The increase is prevented, and the stability of the element is improved.
Therefore, when the magnetic memory element of the present invention is configured as a memory cell, thermal design is facilitated and operation stability is brought to the cell.

図1(a)はMRAM素子の構造図。スピン注入による書き込みと、絶縁層を挟んだ強磁性体間の抵抗の大小で“1”と“0”を決める。この素子では、読み出しと書き込みの回路は共通である。図1(b)はMRAM3端子素子の構造図。電圧印加による磁性体中の磁化方向変化をおこすのは絶縁層に囲まれた磁化方向可変層である。図1(a)と同様に、磁化方向可変層と固定相を隔てる絶縁層を挟んだトンネル抵抗の大小で“1”と“0”を決める。FIG. 1A is a structural diagram of an MRAM element. "1" and "0" are determined by the writing by spin injection and the magnitude of the resistance between the ferromagnetic materials sandwiching the insulating layer. In this element, the read and write circuits are common. FIG. 1B is a structural diagram of an MRAM three-terminal element. It is the magnetization direction variable layer surrounded by the insulating layer that changes the magnetization direction in the magnetic body by applying a voltage. As in FIG. 1A, “1” and “0” are determined by the magnitude of the tunnel resistance sandwiching the insulating layer separating the variable magnetization direction layer and the stationary phase. 図2(a)は本発明を示す、図1(a)のMRAM素子の絶縁層と磁化方向可変層の界面にグラフェン層を挿入したMRAM図である。図2(b)は本発明を示す、図1(b)のMRAM3端子素子の絶縁層と磁化方向可変層の界面にグラフェン層を挿入したMRAM3端子素子図である。電圧印加による磁性体中の磁化方向変化をおこすのは側壁絶縁層に囲まれた磁化方向可変層でグラフェンはその側壁絶縁層と磁化方向可変層の界面に挿入されている。FIG. 2A is an MRAM diagram showing the present invention, in which a graphene layer is inserted at the interface between the insulating layer and the magnetization direction variable layer of the MRAM element of FIG. 1A. FIG. 2B is a diagram showing the present invention, in which the graphene layer is inserted at the interface between the insulating layer and the magnetization direction variable layer of the MRAM three-terminal element of FIG. 1B. The change in the magnetization direction in the magnetic material due to the application of a voltage is caused by the magnetization direction variable layer surrounded by the sidewall insulating layer, and the graphene is inserted at the interface between the sidewall insulating layer and the magnetization direction variable layer. 楕円が電子軌道、楕円の中心の白丸が結晶中の原子位置を示す。左のパネルで黒と灰色の矢印は、電子のスピンが二者択一の任意の方向を向くことができることを示し、右のパネルでは、外部磁場印加で容易に右向きにスピンが方向を変えることができることを示している。The ellipse indicates the electron orbit, and the white circle at the center of the ellipse indicates the atomic position in the crystal. In the left panel, the black and gray arrows indicate that the electron spin can be directed in any of the alternative directions, and in the right panel, the spin can easily be turned to the right by applying an external magnetic field. Indicates that it can be done. スピン軌道相互作用が大きい時、左のパネルでは、楕円の電子軌道は結晶構造を反映して向きが決まっており、スピン軌道相互作用を経由して電子スピンの向きも結晶構造を反映して決まる。右のパネルのように外磁場をかけても、容易にスピンの向きを変更できない。When the spin-orbit interaction is large, in the left panel, the elliptical electron orbit is oriented to reflect the crystal structure, and the direction of the electron spin is also determined to reflect the crystal structure via the spin-orbit interaction . Even if an external magnetic field is applied as in the right panel, the spin direction cannot be easily changed. 今回の第一原理シミュレーションで考慮したFe/MgO界面における原子配置。Atomic arrangement at the Fe / MgO interface considered in this first-principles simulation. 今回の第一原理シミュレーションで考慮したFe/MgO界面にグラフェン一層を挿入した原子配置。Atomic arrangement with one layer of graphene inserted at the Fe / MgO interface considered in this first-principles simulation. Fe/MgOとFe/MgOにグラフェン一層を挿入した構造それぞれにおいて電界(1V/Å)を印加した場合の磁気異方性エネルギーの変化を表した図である。It is a figure showing change of magnetic anisotropy energy when an electric field (1 V / () is applied to each of Fe / MgO and a structure in which one graphene layer is inserted into Fe / MgO. MRAM素子のメモリーセル成長工程の説明図である。FIG. 4 is an explanatory diagram of a memory cell growth step of the MRAM element.

本発明では、図2(a)に示すように、図1(a)のMRAM素子の絶縁層と磁化方向可変層の界面に上述の薄い材料としてグラフェン層を挿入してメモリー特性を改善する。
同様に、本発明では、図2(b)に示すように、図1(b)のMRAM3端子素子の側壁絶縁層7と磁化方向可変層4の界面に上述の薄い材料としてグラフェン層を挿入してメモリー特性を改善する。
以下に絶縁層として酸化マグネシウム(MgO)と磁化方向可変層として鉄(Fe)結晶の界面にグラフェン一層を挿入した場合における本発明の効果について詳細に説明する。
In the present invention, as shown in FIG. 2A, the graphene layer is inserted as a thin material at the interface between the insulating layer and the magnetization direction variable layer of the MRAM element of FIG. 1A to improve the memory characteristics.
Similarly, in the present invention, as shown in FIG. 2B, a graphene layer is inserted as an above-described thin material at the interface between the sidewall insulating layer 7 and the magnetization direction variable layer 4 of the MRAM three-terminal element of FIG. To improve memory characteristics.
Hereinafter, the effect of the present invention in the case where one graphene layer is inserted at the interface between magnesium oxide (MgO) as an insulating layer and iron (Fe) crystal as a magnetization direction variable layer will be described in detail.

電子の軌道を厳密に記述する第一原理計算の手法を用いて、強磁性体材料の例として鉄(Fe)結晶と絶縁体の例として酸化マグネシウム(MgO)からなる界面におけるFeの磁気異方性エネルギーの印加電界のある時と無い時の計算結果を示す。
また、原子層低次元材料の例としてグラフェン一層をFe/MgOに挿入し同様の計算も行った。
Using a first-principles calculation method that strictly describes the electron orbit, the magnetic anisotropy of Fe at the interface consisting of iron (Fe) crystal as an example of a ferromagnetic material and magnesium oxide (MgO) as an example of an insulator The calculation results are shown with and without the application of an electric field for the application of neutral energy.
Further, as an example of an atomic layer low-dimensional material, a single graphene layer was inserted into Fe / MgO, and the same calculation was performed.

第一原理計算の手法とは、物質内の電子の振る舞いを量子力学に立脚した電子の多体問題を扱うシュレディンガー方程式を高精度に近似したコーン・シャム方程式(非特許文献4と非特許文献5)の数値解を計算機にて計算する手法である。
この計算を行うことにより、材料を構成する原子の種類と配置を決定したのち、異なる磁化構造における全エネルギーの比較を精度よく行うことができる。
第一原理計算によるシミュレーションを行うことで、実際の材料を計算機の中でシミュレーションすることができることは現在では広く知られており、材料の仮想実験を計算機の中で行っているようなものである。
The first-principles calculation method is based on the Korn-Sham equation (Non-patent Document 4 and Non-Patent Document 5) that approximates the Schrodinger equation, which deals with the many-body problem of electrons based on quantum mechanics, based on the behavior of electrons in matter. ) Is a method of calculating the numerical solution of the above by a computer.
By performing this calculation, it is possible to accurately compare the total energies of different magnetized structures after determining the type and arrangement of the atoms constituting the material.
It is now widely known that simulations using real-world principles can be used to simulate actual materials in a computer, which is like conducting a virtual experiment on a material in a computer. .

今回の実施例ではFeとMgO界面(以下、Fe/MgOと記す)における磁気異方性エネルギーの計算値を示す。
図5に示したFe/MgO構造において磁気異方性エネルギーは界面におけるFe原子あたり0.66meVであった。
一方、図6に示すようにFe/MgOにグラフェン一層を挿入した場合には、磁気異方性エネルギーは1.02meVと少し上がる。従って、グラフェン一層を挿入したほうが磁化可変部の保磁力が向上している。
In this example, the calculated value of the magnetic anisotropy energy at the interface between Fe and MgO (hereinafter referred to as Fe / MgO) is shown.
In the Fe / MgO structure shown in FIG. 5, the magnetic anisotropy energy was 0.66 meV per Fe atom at the interface.
On the other hand, when one layer of graphene is inserted into Fe / MgO as shown in FIG. 6, the magnetic anisotropy energy is slightly increased to 1.02 meV. Therefore, the coercive force of the magnetization variable section is improved by inserting one graphene layer.

図5、図6の第一原理計算の結果、Fe/MgOとFe/MgOの界面にグラフェン一層を入れた構造におけるそれぞれの磁化容易化軸は、界面に垂直な方向と平行な方向である。   As a result of the first-principles calculation in FIGS. 5 and 6, the axes of easy magnetization in the structure in which one layer of graphene is inserted at the interface between Fe / MgO and Fe / MgO are parallel to the direction perpendicular to the interface.

更に、Fe/MgOとFe/MgOにグラフェン一層を挿入した構造それぞれにおいて電界(1V/Å)を印加した場合の磁気異方性エネルギーの変化を図7に示した。
Fe/MgO界面における磁気異方性エネルギーは印加電界強度依存性が少ないことが図よりわかる。
Further, FIG. 7 shows a change in magnetic anisotropy energy when an electric field (1 V / Å) is applied to Fe / MgO and a structure in which one graphene layer is inserted into Fe / MgO.
It can be seen from the figure that the magnetic anisotropy energy at the Fe / MgO interface has little dependence on the applied electric field strength.

一方Fe/MgOにグラフェン一層を挿入した構造に同じ強度の電界を印加すると、電界強度を負の方向に(すなわち図6で下向きの方向)振ると符号が反転し−0.12meVとなる。(下がり量はMg原子6個、酸素原子6個、Fe原子3個の単位セルあたり−1.14meVになる。)
また、磁化容易化方向はFe/MgO界面に水平な方向から垂直な方向に変わり、グラフェン一層を挿入していないときと同じ方向になるが、磁気異方性エネルギーの低下により任意の方向に可変されやすくなっている。
すなわち、電場をかけることで磁化方向が自発的に変化することを意味している。
このメカニズムは背景技術に説明したとおりである。
以上の事よりグラフェン一層を挿入した方が、電界の無い時の磁化方向の保持力、電界を印加した時の磁化方向の変更のしやすさにおいて優れていることが示された。
On the other hand, when an electric field of the same intensity is applied to a structure in which one layer of graphene is inserted into Fe / MgO, the sign is inverted to −0.12 meV when the electric field intensity is changed in a negative direction (ie, a downward direction in FIG. 6). (The amount of drop is -1.14 meV per unit cell of 6 Mg atoms, 6 oxygen atoms, and 3 Fe atoms.)
The direction of magnetization easy changes from a direction horizontal to the Fe / MgO interface to a direction perpendicular to the Fe / MgO interface, and becomes the same direction as when no graphene layer is inserted, but can be changed to an arbitrary direction due to a decrease in magnetic anisotropy energy. It is easy to be.
That is, the application of an electric field means that the magnetization direction changes spontaneously.
This mechanism is as described in the background art.
From the above, it was shown that the insertion of a single layer of graphene was superior in terms of the coercive force of the magnetization direction when there was no electric field and the ease of changing the magnetization direction when the electric field was applied.

今回示したシミュレーションでは、グラフェン一層の挿入による効果を示したが、実際には数原子層分のグラフェンの挿入が可能である。
ただし、グラフェンの層の垂直方向への電界遮蔽を誘起しない程度の層数に制限される。
電界遮蔽を誘起しない、という条件はグラフェン以外の原子が層状に配列している層状物質からなる2次元材料でも同様に要求される。
The simulations shown here show the effect of inserting a single layer of graphene, but it is possible to insert graphene for several atomic layers in practice.
However, the number of layers of the graphene layer is limited to a level that does not induce electric field shielding in the vertical direction.
The condition that electric field shielding is not induced is similarly required for a two-dimensional material composed of a layered substance in which atoms other than graphene are arranged in a layered manner.

同じ印加電界で比較すると、磁気異方性エネルギーの低下量はFe/MgOで原子あたり−0.07meV、Fe/MgO界面に一層のグラフェンを挿入した際には−1.14meVであった。
近似的に、磁気異方性エネルギーの低下量は印加電圧に線形に依存すると考えると、Fe/MgO界面にグラフェン一層を挿入した構造で−0.07meVの磁気異方性エネルギーの低下を実現するのに必要な印加電界はグラフェン一層を挿入しないときに比べて一桁少ない印加電圧で済むという概算になる。
書き込みの際に印加する電界が、グラフェン層の無い場合には前に述べた遮蔽の影響で実効的に電界が低くなるがグラフェン層の挿入により遮蔽の効果を低減することで、印加電界強度を著しく低く設定できるわけである。
When compared under the same applied electric field, the decrease in magnetic anisotropy energy was -0.07 meV per atom in Fe / MgO, and -1.14 meV when one layer of graphene was inserted into the Fe / MgO interface.
Approximately, considering that the amount of decrease in magnetic anisotropy depends linearly on the applied voltage, a structure in which a single layer of graphene is inserted at the Fe / MgO interface realizes a decrease in magnetic anisotropy energy of -0.07 meV. The applied electric field required for this is roughly estimated to require an applied voltage one order of magnitude lower than when no graphene layer is inserted.
When the electric field applied at the time of writing does not have a graphene layer, the electric field is effectively reduced due to the effect of the shielding described above, but by reducing the shielding effect by inserting the graphene layer, the applied electric field strength is reduced. It can be set very low.

以上、グラフェン層を挿入することで、書き込みの際の印加電圧を低減することで、通常行われる書き込みを可能とする。具体的には、非特許文献2にあるように、パルス印加電圧を−200Vから200Vまでのふり幅の間で調整することでスピンの向けたい方向を調節する方法などがある。これにより任意に“0”か“1”かの書き換えを可能とする。本発明では前段落に記載の通り、この電圧のふり幅を一桁以下に少なくすることを達成した。   As described above, by inserting the graphene layer, the applied voltage at the time of writing can be reduced, thereby enabling normal writing. Specifically, as described in Non-Patent Document 2, there is a method of adjusting the direction in which the spin is to be directed by adjusting the pulse application voltage between the swing widths of -200 V to 200 V. This enables arbitrary rewriting of "0" or "1". According to the present invention, as described in the preceding paragraph, the swing width of the voltage is reduced to one digit or less.

実施例1で示した界面構造のメモリーセルの製造方法は以下に述べる順序で行われる。(図8を参照)   The method for manufacturing the memory cell having the interface structure shown in the first embodiment is performed in the following order. (See Fig. 8)

メモリーセルの回路パターンニングは、従来のMRAMと同様に一定面積内のビット数を決めたのち、電圧印加、読み取りのための抵抗計測の配線パターンに従って強磁性体材料を基板上に成長させる。成長は結晶性の良い強磁性体材料を得るためにスパッター法よりもCVD成長法が望ましい。
この磁性体は磁化方向を固定する固定相2(図1、図2参照)になる。
In circuit patterning of a memory cell, the number of bits in a certain area is determined in the same manner as in a conventional MRAM, and then a ferromagnetic material is grown on a substrate according to a wiring pattern of resistance measurement for voltage application and reading. For growth, a CVD growth method is preferable to a sputtering method in order to obtain a ferromagnetic material having good crystallinity.
This magnetic material becomes a stationary phase 2 (see FIGS. 1 and 2) for fixing the magnetization direction.

続いて、この強磁性体材料の上に絶縁層を成長させる。トンネル電流の抵抗を下げるために、この絶縁層も結晶性の良い成膜法が望まれ、スパッター法よりもCVD法が望ましい。   Subsequently, an insulating layer is grown on the ferromagnetic material. In order to lower the resistance of the tunnel current, a film forming method with good crystallinity of this insulating layer is also desired, and a CVD method is more preferable than a sputtering method.

さらに続いて、この絶縁層の上に層状物質を成長させる。成長方法はCVDが望ましいが、層状物質が何層も重なったバルク状の親材料より剥離したものを転写する方法でもよい。
転写の方法に関しては、例えばグラフェンの場合の報告例(非特許文献6)がある。
Subsequently, a layered material is grown on the insulating layer. The growth method is preferably CVD, but may be a method of transferring a material separated from a bulk parent material in which a plurality of layered substances are stacked.
Regarding the transfer method, there is a report example in the case of graphene, for example (Non-Patent Document 6).

最後に、層状物質の上に強磁性体材料を再び成長させ、読み取りのための配線を行う。   Finally, a ferromagnetic material is grown again on the layered material, and wiring for reading is performed.

以上の程はビットセルごとにおこなえるよう、マスクパターンを利用する。 As more of Engineering is to be performed for each bit cell, using a mask pattern.

1 第1電極
2 磁化方向固定相
3 絶縁層
4 磁化方向可変層
5 第2電極
6 制御(読み出し:抵抗測定、書き込み:電圧印加、あるいはスピン電流注入)
7 絶縁層
8 第3電極
9 制御(書き込み:電圧印加)
10 グラフェン層を挿入
11 絶縁層7(側部、あるいは側壁)と磁化方向可変層4の界面にグラフェンを挿入

DESCRIPTION OF SYMBOLS 1 1st electrode 2 Magnetization direction fixed phase 3 Insulating layer 4 Magnetization direction variable layer 5 2nd electrode 6 Control (read: resistance measurement, write: voltage application, or spin current injection)
7 Insulating layer 8 Third electrode 9 Control (writing: voltage application)
10 Insert a graphene layer 11 Insert graphene at the interface between the insulating layer 7 (side or side wall) and the magnetization direction variable layer 4

Claims (8)

第1電極と、
磁化方向可変層と、
絶縁層と、
磁化方向固定相と、
第2電極と、
が順次設けられ、
前記磁化方向可変層を囲繞する側壁絶縁体と、
前記側壁絶縁体に接する第3電極と、
前記側壁絶縁体と前記磁化方向可変層との間に設けられ、原子が層状に配列している層状物質からなる層と、
をさらに有する磁気メモリー素子。
A first electrode;
A magnetization direction variable layer,
An insulating layer,
A magnetization direction stationary phase,
A second electrode;
Are provided sequentially,
A sidewall insulator surrounding the magnetization direction variable layer,
A third electrode in contact with the sidewall insulator;
A layer that is provided between the sidewall insulator and the magnetization direction variable layer and is made of a layered material in which atoms are arranged in a layered manner;
A magnetic memory element further comprising:
前記層状物質は、グラフェン、六方窒化ホウ素、二硫化金属化合物のいずれかであることを特徴とする請求項1に記載の磁気メモリー素子。   The magnetic memory device of claim 1, wherein the layered material is one of graphene, hexagonal boron nitride, and a metal disulfide compound. 請求項1又はに記載の磁気メモリー素子のメモリー読み出し方法であって、
前記絶縁層をトンネルする電流に対する抵抗値の読み出しを含むことを特徴とする磁気メモリー素子のメモリー読み出し方法。
It is a memory read method of the magnetic memory element of Claim 1 or 2 , Comprising:
A memory reading method for a magnetic memory device, comprising reading a resistance value with respect to a current that tunnels through the insulating layer.
第1電極と、
磁化方向可変層と、
原子が層状に配列している層状物質であるグラフェン又は二硫化金属化合物からなる層と、
絶縁層と、
磁化方向固定相と、
第2電極と、
が順次設けられた磁気メモリー素子のメモリー読み出し方法であって、
前記絶縁層及び前記グラフェン又は二硫化金属化合物からなる層をトンネルする電流に対する抵抗値の読み出しを含むことを特徴とする磁気メモリー素子のメモリー読み出し方法。
A first electrode;
A magnetization direction variable layer,
A layer made of graphene or a metal disulfide compound, which is a layered substance in which atoms are arranged in a layered manner,
An insulating layer,
A magnetization direction stationary phase,
A second electrode;
Is a memory reading method of a magnetic memory element provided sequentially,
A memory reading method for a magnetic memory device, comprising reading a resistance value against a current that tunnels through the insulating layer and the layer made of graphene or a metal disulfide compound.
請求項1又はに記載の磁気メモリー素子のメモリー書き込み方法であって、
前記磁化方向可変層へのスピンをもった電流の注入、または前記第2電極と前記第3電極との間におけるパルス状の電圧印加と該パルス印加電圧の調整によるスピン方向の制御を含むことを特徴とする磁気メモリー素子のメモリー書き込み方法。
A memory writing method for a magnetic memory element according to claim 1 or 2 ,
Injecting a spin current into the magnetization direction variable layer, or applying a pulsed voltage between the second electrode and the third electrode and controlling the spin direction by adjusting the pulse applied voltage. Characteristic memory writing method for a magnetic memory element.
第1電極と、
磁化方向可変層と、
原子が層状に配列している層状物質であるグラフェン又は二硫化金属化合物からなる層と、
絶縁層と、
磁化方向固定相と、
第2電極と、
が順次設けられた磁気メモリー素子のメモリー書き込み方法であって、
前記磁化方向可変層へのスピンをもった電流の注入、または前記第1電極と前記第2電極との間におけるパルス状の電圧印加と該パルス印加電圧の調整によるスピン方向の制御を含むことを特徴とする磁気メモリー素子のメモリー書き込み方法。
A first electrode;
A magnetization direction variable layer,
A layer made of graphene or a metal disulfide compound, which is a layered substance in which atoms are arranged in a layered manner,
An insulating layer,
A magnetization direction stationary phase,
A second electrode;
Is a memory writing method of a magnetic memory element sequentially provided,
Injecting a spin current into the magnetization direction variable layer, or applying a pulsed voltage between the first electrode and the second electrode and controlling the spin direction by adjusting the pulse applied voltage. Characteristic memory writing method for a magnetic memory element.
請求項1又は2に記載する磁気メモリー素子からなることを特徴とするメモリーセル。 Memory cells, comprising the magnetic memory element according to claim 1 or 2. 第1電極と、
磁化方向可変層と、
原子が層状に配列している層状物質であるグラフェン又は二硫化金属化合物からなる層と、
絶縁層と、
磁化方向固定相と、
第2電極と、
が順次設けられ、
前記磁化方向可変層におけるスピンの向きにて0又は1が設定され、設定された0又は1を前記第1電極と前記第2電極との間の抵抗の大小で読み取る
磁気メモリー素子であって、
前記グラフェン又は二硫化金属化合物からなる層は、前記磁化方向可変層及び前記絶縁層に接してなる
気メモリー素子。
A first electrode;
A magnetization direction variable layer,
A layer made of graphene or a metal disulfide compound, which is a layered substance in which atoms are arranged in a layered manner,
An insulating layer,
A magnetization direction stationary phase,
A second electrode;
Are provided sequentially,
0 or 1 is set in the direction of spin in the magnetization direction variable layer, and the set 0 or 1 is read based on the magnitude of resistance between the first electrode and the second electrode.
A magnetic memory element,
The layer made of the graphene or the metal disulfide compound is in contact with the magnetization direction variable layer and the insulating layer
Magnetic memory element.
JP2015003554A 2015-01-09 2015-01-09 Storage device and manufacturing method thereof Active JP6643609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003554A JP6643609B2 (en) 2015-01-09 2015-01-09 Storage device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003554A JP6643609B2 (en) 2015-01-09 2015-01-09 Storage device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016129206A JP2016129206A (en) 2016-07-14
JP6643609B2 true JP6643609B2 (en) 2020-02-12

Family

ID=56384559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003554A Active JP6643609B2 (en) 2015-01-09 2015-01-09 Storage device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6643609B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275806B1 (en) 2016-12-02 2018-02-07 株式会社東芝 Magnetic storage
US11139341B2 (en) * 2018-06-18 2021-10-05 Taiwan Semiconductor Manufacturing Company, Ltd. Protection of MRAM from external magnetic field using magnetic-field-shielding structure
US11088083B2 (en) 2018-06-29 2021-08-10 Taiwan Semiconductor Manufacturing Company, Ltd. DC and AC magnetic field protection for MRAM device using magnetic-field-shielding structure
CN117202759A (en) * 2022-05-27 2023-12-08 北京理工大学 Magnetic memory device and method of manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619078B2 (en) * 1999-09-21 2005-02-09 株式会社東芝 Spin transport element
JP3795346B2 (en) * 2000-05-24 2006-07-12 松下電器産業株式会社 Magnetoresistive element, magnetic memory element and magnetic head using the same
JP3565268B2 (en) * 2001-06-22 2004-09-15 株式会社東芝 Magnetoresistive element, magnetic head, and magnetic reproducing device
WO2007038971A1 (en) * 2005-09-20 2007-04-12 Freescale Semiconductor, Inc. Spin-dependent tunnelling cell and method of formation thereof
JP2010087088A (en) * 2008-09-30 2010-04-15 Toshiba Corp Dielectric storage device
JP5736836B2 (en) * 2011-02-23 2015-06-17 Tdk株式会社 Spin conduction type magnetic sensor
JP5695451B2 (en) * 2011-03-04 2015-04-08 株式会社東芝 Magnetic memory and magnetic memory device
WO2013008421A1 (en) * 2011-07-11 2013-01-17 パナソニック株式会社 Membrane structure and method for producing same
JP2014053546A (en) * 2012-09-10 2014-03-20 National Institute Of Advanced Industrial & Technology Voltage drive spintronics three-terminal element

Also Published As

Publication number Publication date
JP2016129206A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
Roohi et al. A tunable majority gate-based full adder using current-induced domain wall nanomagnets
Kang et al. Skyrmion-electronics: An overview and outlook
Will et al. Optimization of iron and cobalt nanowires for data storage devices using twinned pinning notches
Zhang et al. Stochastic computing implemented by skyrmionic logic devices
Bhattacharya et al. Voltage controlled core reversal of fixed magnetic skyrmions without a magnetic field
Zhu et al. Skyrmion racetrack memory with random information update/deletion/insertion
Chakraverty et al. First principle simulations of various magnetic tunnel junctions $\kern-2pt $ for $\kern-2pt $ applications in magnetoresistive random access memories
Mankalale et al. CoMET: Composite-input magnetoelectric-based logic technology
JP6643609B2 (en) Storage device and manufacturing method thereof
CN106711322A (en) Magnetic junctions having a magnetoelastic free layer programmable using spin transfer torque
CN103988293B (en) Recording element and recording device
Amin et al. Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature
Nafea et al. An accurate model of domain-wall-based spintronic memristor
Liang et al. Ruderman–Kittel–Kasuya–Yosida-type interlayer Dzyaloshinskii–Moriya interaction in synthetic magnets
Alla et al. Field-free switching of VG-SOT-pMTJ device through the interplay of SOT, exchange bias, and VCMA effects
Gani et al. Realization of a sub 10-nm silicene magnetic tunnel junction and its application for magnetic random access memory and digital logic
Chen et al. Cache memory design with magnetic skyrmions in a long nanotrack
Yang et al. A universal compact model for spin-transfer torque-driven magnetization switching in magnetic tunnel junction
CN113451505B (en) Magnetic random access memory cell, memory and device
US9424903B2 (en) Memory apparatus and memory device
Chu et al. Electrical control of spin hall efficiency and field-free magnetization switching in W/Pt/Co/Pt heterostructures with competing spin currents
Zelent et al. Stabilization and racetrack application of asymmetric Néel skyrmions in hybrid nanostructures
Volvach Micromagnetic modeling and analysis of magnetic tunnel junctions for spintronics applications
Kishi et al. Examination of Magnetization Switching Behavior by Bi-Directional Read of Spin-Orbit-Torque MRAM
Mattela et al. A novel and reliable interlayer exchange coupled nanomagnetic universal logic gate design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191205

R150 Certificate of patent or registration of utility model

Ref document number: 6643609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250