JP6639731B2 - Hook assembly to install hook posture detection carrier - Google Patents

Hook assembly to install hook posture detection carrier Download PDF

Info

Publication number
JP6639731B2
JP6639731B2 JP2019504962A JP2019504962A JP6639731B2 JP 6639731 B2 JP6639731 B2 JP 6639731B2 JP 2019504962 A JP2019504962 A JP 2019504962A JP 2019504962 A JP2019504962 A JP 2019504962A JP 6639731 B2 JP6639731 B2 JP 6639731B2
Authority
JP
Japan
Prior art keywords
hook
pulley
component
angle
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019504962A
Other languages
Japanese (ja)
Other versions
JP2019521934A (en
Inventor
漢丁 林
漢丁 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2019521934A publication Critical patent/JP2019521934A/en
Application granted granted Critical
Publication of JP6639731B2 publication Critical patent/JP6639731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/22Rigid members, e.g. L-shaped members, with parts engaging the under surface of the loads; Crane hooks
    • B66C1/34Crane hooks
    • B66C1/40Crane hooks formed or fitted with load measuring or indicating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/04Pulley blocks or like devices in which force is applied to a rope, cable, or chain which passes over one or more pulleys, e.g. to obtain mechanical advantage
    • B66D3/06Pulley blocks or like devices in which force is applied to a rope, cable, or chain which passes over one or more pulleys, e.g. to obtain mechanical advantage with more than one pulley
    • B66D3/08Arrangements of sheaves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)

Description

フック姿態検出キャリアを設置するフックアセンブリ及びクレーンは、クレーン技術分野に属し、具体的にフック姿態検出キャリアのフックアセンブリを装着する移動式クレーンである。   The hook assembly and the crane for installing the hook posture detection carrier belong to the crane technical field, and are specifically a mobile crane to which the hook assembly of the hook posture detection carrier is mounted.

無人航空機が空を飛んでおり、自動運転車の路上テストも実施しているが、移動式クレーンの運転者が玉掛け作業中において巻上滑車装置が垂直状態にあるかどうかを判断できず、玉掛け指揮者が、吊り荷を監視する垂直玉掛け作業者によって提供される情報を用いて運転者の操作を指揮することで、不適時と不正確という欠点がある。   Unmanned aerial vehicles are flying in the sky, and self-driving vehicles are also being tested on the road.However, the operator of the mobile crane cannot determine whether the hoisting pulley device is in a vertical state during the rigging operation, and There is a drawback that the conductor directs the operation of the driver using information provided by the vertical sling operator monitoring the suspended load, which is inappropriate and inaccurate.

大型設備玉掛け作業施工プロセス標準第9.1.4条のクレーン玉掛けプロセスが「玉掛け作業中において、フック角度が3°以下である」の規定と一致し、石油化学プロジェクトの吊り上げ施工仕様第12.2.13条の規定により、「移動式クレーンでワークを吊り上げる際、フック角度が3°を超えてはならない」。フック角度を正確的に検出できない原因として、検出する計器がないわけではなく、クレーンが巻上滑車装置を通じて玉掛け作業を行うことである。したがって、いかに前記巻上滑車装置にてフック角度の正確的な検出を実現するかが肝心な問題である。   Large equipment slinging work process standard The crane slinging process of Article 9.1.4 conforms to the rule of “the hook angle is 3 ° or less during slinging operation” and the petrochemical project lifting work specification No. 12. According to the provisions of Article 2.13, "When lifting a work with a mobile crane, the hook angle must not exceed 3 °." The reason that the hook angle cannot be accurately detected is not that there is no instrument for detecting the hook angle, but that the crane performs the slinging operation through the hoisting pulley device. Therefore, how to realize accurate detection of the hook angle in the hoisting pulley device is an important problem.

本発明の目的は、荷重を受けてフック姿態検出キャリアを設置するフックアセンブリを提供することであり、もう1つの目的は、フック姿態検出キャリアを設置するフックアセンブリを装着する移動式クレーンを提供することである。また、上記フックアセンブリはフック角度の正確的な測定などの要求を有する他のクレーンにも適している。   It is an object of the present invention to provide a hook assembly for installing a hook state detection carrier under load, and another object is to provide a mobile crane to which the hook assembly for installing the hook state detection carrier is mounted. That is. The hook assembly is also suitable for other cranes that have requirements such as accurate measurement of the hook angle.

クレーンフック角度の測定は、常に吊り上げロープ(フックのワイヤーロープ、以下同様とする)から吊り上げロープの角度を測定して得られることで、又はマシンビジョン技術を用いてフックの垂直姿態を検出することである。マシンビジョン技術は同時視、光線、周囲環境などの様々な条件の制限を受けるため、前記移動式クレーンフック角度の測定に一般的に使用されることは困難である。ただし、吊り上げロープからフック角度を測定する解決手段としては、滑車装置の複数の吊り上げロープのうちから1本の吊り上げロープを測定対象として選択し、玉掛け作業中において滑車装置のワイヤーロープがスムーズに貫通しているが、ワイヤーロープや吊り上げロープ同士が平行でなく、同軸の定滑車と動滑車の軸線の間にも相対的な回転が存在することを観察することができる。原因としては、定滑車の軸線がジブに固定されるが動滑車の軸線方向がフック移動方向や吊り荷の力の作用と制約によって変化することである。   The crane hook angle measurement is always obtained by measuring the angle of the lifting rope from the lifting rope (hook wire rope, the same applies hereinafter), or detecting the vertical posture of the hook using machine vision technology It is. Machine vision technology is limited in various conditions, such as simultaneous vision, light rays, and surrounding environment, and thus is difficult to be generally used for measuring the angle of the mobile crane hook. However, as a solution for measuring the hook angle from the lifting rope, one lifting rope is selected from a plurality of lifting ropes of the pulley device as a measurement target, and the wire rope of the pulley device penetrates smoothly during sling work. However, it can be observed that the wire rope and the lifting rope are not parallel to each other, and that there is a relative rotation between the axes of the coaxial constant pulley and the moving pulley. The cause is that the axis of the constant pulley is fixed to the jib, but the axial direction of the moving pulley changes due to the direction of movement of the hook and the action and restriction of the force of the suspended load.

滑車装置の定滑車と動滑車の軸線間には滑車装置の巻上力の作用線を中心に相対的に旋回することによって、前記滑車装置の吊り上げロープが回転中心軸としての前記巻上力の作用線と偏りが生じ、フック角度は前記滑車装置の巻上力作用線と鉛直線のなす角である。したがって、前記巻上力作用線と吊り上げロープのなす角を、前記滑車装置の巻上力作用線と鉛直線のなす角であるフック角度として測定する。それは、フック角度が3°以内でしか運転できない移動式クレーンにとって、その偏差は測定の意味を失うような程度に達する可能性があり、これも間違えなく、フック角度の測定がとっくに重視されており、吊り上げロープからの角度測定に関する様々な巧妙な解決策を提供する文献がよく見られているが、今までクレーンに適用されていない原因であろう。   By relatively turning around the line of action of the hoisting force of the pulley device between the constant pulley of the pulley device and the axis of the moving pulley, the hoisting rope of the pulley device makes the lifting force of the hoisting force as a rotation center axis. The hook line is deviated from the line of action, and the hook angle is the angle between the line of action of the hoisting force of the pulley device and the vertical line. Therefore, the angle between the hoisting force acting line and the hoisting rope is measured as a hook angle which is the angle between the hoisting force acting line of the pulley device and the vertical line. That is, for a mobile crane that can only operate with a hook angle of less than 3 °, the deviation can reach a point where it loses the meaning of the measurement, and this is no mistake, and the measurement of the hook angle is of particular importance. The literature, which offers a variety of clever solutions for angle measurement from lifting ropes, is often seen, but may be the reason not previously applied to cranes.

前記滑車装置の動滑車部品とフック部品が連結し、前記滑車装置の昇降運転が同軸の動滑車軸線に作用する前記滑車装置の巻上力の作用点に偏りが生じるため、角度測定装置を前記滑車装置のフックアセンブリに装着して前記フック角度を測定する時に偏差が発生する。前記滑車装置の巻上力の作用線は、滑車装置の各滑車の巻上力の合力の作用線である。前記滑車装置の巻上力の作用点は、滑車装置の各滑車の巻上力の合力の作用点である。   The pulley device and the hook component of the pulley device are connected to each other, and the hoisting operation of the pulley device is biased at the application point of the hoisting force of the pulley device acting on the coaxial dynamic pulley axis. A deviation occurs when the hook angle is measured by being attached to the hook assembly of the pulley device. The line of action of the hoisting force of the pulley device is the line of action of the resultant force of the hoisting forces of the respective pulleys of the pulley device. The point of application of the hoisting force of the pulley device is the point of application of the resultant force of the hoisting forces of the respective pulleys of the pulley device.

前記滑車装置の昇降運転が同軸の動滑車の軸線に作用する前記滑車装置の巻上力の作用点に偏りが生じ、滑車装置の滑車軸受摩擦係数、前記滑車装置の滑車数とは直接的に関連する。前記滑車装置の滑車数が倍になる時、前記滑車装置の昇降運転が同軸の動滑車の軸線に作用する前記滑車装置の巻上力の作用点に生じる偏りによって、フックアセンブリの前記フック角度に対する測定の偏差が大き過ぎる。   The hoisting operation of the pulley device acts on the axis of the coaxial moving pulley, causing a bias in the point of application of the hoisting force of the pulley device, and the pulley bearing friction coefficient of the pulley device and the number of pulleys of the pulley device are directly Related. When the number of pulleys of the pulley device is doubled, the hoisting operation of the pulley device is caused by a bias generated at the point of application of the hoisting force of the pulley device acting on the axis of the coaxial moving pulley, so that the hook assembly has an angle with respect to the hook angle. Measurement deviation is too large.

その原因を究めると、滑車装置の滑車数が倍になる前記滑車装置の昇降運転が同軸の動滑車の軸線に作用する前記滑車装置の巻上力の作用点に生じる偏りによって、動滑車部品が動滑車の軸線方向から傾斜角に沿って異動する。また、動滑車部品とフック部品が保護板やプレートに直接的に連結するため、動滑車の軸線方向から傾斜角に沿った異動によってフック部品を異動させることで、前記フックアセンブリに装着される角度測定装置の、非滑車装置の揺れによる異動に対する反応が間違っている。なお、前記移動式クレーンのフック角度を3°以内にのみ測定するため、あまりにも大きな偏差について、測定する意味がない。   When the cause is determined, the number of pulleys of the pulley device is doubled, and the lifting operation of the pulley device is applied to the axis of the coaxial moving pulley. It moves along the inclination angle from the axial direction of the moving pulley. Also, since the moving pulley component and the hook component are directly connected to the protective plate or plate, the hook component is moved by moving along the inclination angle from the axial direction of the moving pulley, so that the angle attached to the hook assembly is changed. The measuring device reacts incorrectly to changes due to the swinging of the non-pulley device. In addition, since the hook angle of the mobile crane is measured only within 3 °, there is no point in measuring an excessively large deviation.

前記フックに作用する吊り上げ荷重の合力の作用点に偏りが生じるため、角度測定装置を前記滑車装置のフックアセンブリに装着して前記フック角度を測定する時に偏差が発生する。   Since the applied point of the resultant force of the lifting load acting on the hook is biased, a deviation occurs when the angle measuring device is mounted on the hook assembly of the pulley device and the hook angle is measured.

吊り上げ荷重がワイヤーロープを介してフックにかけられ、さらに複数のロープがあるため、前記フックに作用する吊り上げ荷重の合力がかならずフックシャンクの軸心線にあるわけではなく、且つフックが垂直軸線を中心に旋回できるので、前記フックに作用する吊り上げ荷重の合力の作用点の偏りが各方向に発生する可能性があり、同様に、動滑車部品とフック部品が保護板やプレートを介して直接的に連結されるため、前記フックに作用する吊り上げ荷重の合力作用点の偏りによるフック部品の異動も、前記動滑車部品の異動を引き起こす。したがって、前記フックに作用する吊り上げ荷重の合力の作用点が偏り、前記フックアセンブリに装着される角度測定装置の、非滑車装置の偏向による異動に対する反応は間違っている。   The lifting load is applied to the hook via the wire rope, and since there are a plurality of ropes, the resultant force of the lifting load acting on the hook is not always on the axis of the hook shank, and the hook is centered on the vertical axis. Because of this, the point of action of the resultant force of the lifting load acting on the hook may be deviated in each direction. Similarly, the moving pulley component and the hook component are directly connected to each other via the protection plate or the plate. Due to the connection, the movement of the hook component due to the deviation of the resultant point of application of the lifting load acting on the hook also causes the movement of the moving pulley component. Therefore, the point of application of the resultant force of the lifting load acting on the hook is deviated, and the reaction of the angle measuring device mounted on the hook assembly to the change due to the deflection of the non-pulley device is wrong.

3段フックアセンブリであって、その特徴は、動滑車部品とフック部品の間に1段の連結部品を直列に接続するように構成され、前記連結部品の両端には、それぞれ蝶番軸を前記動滑車部品及びフック部品に連結し、且つ前記動滑車部品が前記連結部品に連結されている蝶番軸を、前記同軸の動滑車の軸線に垂直の方向に設けると同時に、前記フック部品が前記連結部品に連結されている蝶番軸を、フックビームの蝶番軸に垂直の方向に設けることである。   The three-stage hook assembly is characterized in that a one-stage connecting part is connected in series between a moving pulley part and a hook part, and a hinge shaft is provided at each end of the connecting part. A hinge shaft connected to the pulley part and the hook part, and the moving pulley part being connected to the connection part, is provided in a direction perpendicular to the axis of the coaxial moving pulley, and the hook part is connected to the connecting part. Is provided in a direction perpendicular to the hinge axis of the hook beam.

好ましくは、前記3段フックアセンブリの動滑車部品c1をフック部品c7に両側連結板c3を介して連結し、前記動滑車部品c1と両側連結板c3との蝶番軸c2、及び両側連結板c3とフック部品c7との蝶番軸c4を、前記同軸の動滑車の軸線に垂直の方向に設けることによって、前記巻上滑車装置の昇降運転において、非フックの揺れによる動滑車の軸線方向に沿ったフック角度の変動が生じる場合、前記巻上滑車装置の吊り上げ荷重の張力の作用下で、前記動滑車部品が前記蝶番軸に沿って自ら調整が行われる時、動滑車の軸線が少々傾斜し、動滑車部品が引張力のみを受ける。その同時にフックビームの蝶番軸c6を同軸の動滑車の軸線に平行の方向に設けるため、前記フックの吊り上げ荷重の合力の作用点の偏りは、前記フックビームの蝶番軸c6の回転、及び前記フック部品が同軸の動滑車の軸線に垂直の蝶番軸c4を中心にした旋回によって自ら調整が行われる時、フック軸線が少々傾斜し、フック部品c7が引張力のみを受ける。   Preferably, the moving pulley component c1 of the three-stage hook assembly is connected to the hook component c7 via the both-side connecting plate c3, and the hinge shaft c2 of the moving pulley component c1 and the both-side connecting plate c3, and the both-side connecting plate c3 are connected to each other. By providing the hinge axis c4 with the hook component c7 in a direction perpendicular to the axis of the coaxial moving pulley, the hook along the axis of the moving pulley due to non-hook swing during the hoisting operation of the hoisting pulley device. In the event of a change in the angle, when the moving pulley component adjusts itself along the hinge axis under the action of the lifting load tension of the hoisting pulley device, the axis of the moving pulley will tilt slightly, The pulley component receives only the pulling force. At the same time, since the hinge axis c6 of the hook beam is provided in a direction parallel to the axis of the coaxial moving pulley, the bias of the point of application of the resultant force of the lifting load of the hook depends on the rotation of the hinge axis c6 of the hook beam and the hook. When the part is self-adjusted by pivoting about a hinge axis c4 perpendicular to the axis of the coaxial running pulley, the hook axis is slightly tilted and the hook part c7 receives only tensile force.

前記連結部品の一端と前記動滑車部品が引張力だけを受けて直列に連結されると同時に、前記連結部品の他端と前記フック部品も引張力だけを受けて直列に連結される結果は、次の通りである。   At the same time, one end of the connection component and the moving pulley component are connected in series only by receiving the pulling force, and at the same time, the other end of the connection component and the hook component are connected in series only by receiving the pulling force. It is as follows.

第1に、前記巻上滑車装置の巻上力の作用線は、前記連結部品を通さなければならない。前記連結部品には前記巻上滑車装置の巻上力の作用線が平台面に垂直の平台を固設した場合、吊り上げる時に前記巻上滑車装置の巻上力の作用線と前記平台面が常に垂直である。前記連結部品の前記平台面に角度測定装置を固設した場合、測定される、巻上滑車装置の巻上力の作用線に垂直の平台面と水平面のなす角は、リアルタイムなフック角度と数値的に等しい。   First, the line of action of the hoisting force of the hoisting pulley device must pass through the connecting part. In the case where a flat platform whose action line of the hoisting force of the hoisting pulley device is perpendicular to the flat platform surface is fixed to the connection component, the line of action of the hoisting force of the hoisting pulley device and the flat platform surface are always set when the hoist is pulled up. It is vertical. When an angle measuring device is fixed to the flat base surface of the connecting part, the angle between the flat base surface and the horizontal plane perpendicular to the line of action of the hoisting force of the hoisting pulley device to be measured is a real-time hook angle and a numerical value. Equal.

第2に、前記連結部品の前記平台面に測定される、リアルタイムなフック角度は、前記巻上滑車装置の昇降運転による動滑車の軸線方向からの傾斜角の変動とは関係なく、前記フックに作用する吊り上げ荷重の合力の作用点が生じる偏りにも関係なく、巻上滑車装置の巻上力の作用線と鉛直線とのリアルタイムになす角によって決定される。   Secondly, the real-time hook angle measured on the flat platform surface of the connecting component is independent of the change in the inclination angle of the moving pulley from the axial direction due to the lifting / lowering operation of the hoisting pulley device. It is determined by the angle formed in real time between the line of action of the hoisting force of the hoisting pulley device and the vertical line, regardless of the bias at which the point of action of the resultant hoisting load acting acts.

したがって、3段フックアセンブリは、フックの揺れ姿態などの正確的な検出のために条件を作り出す。
(1)フックの揺れ姿態などの検出のために、前記巻上滑車装置の巻上力の作用線に垂直の平台面を提供する。
前記フックアセンブリの連結部品に、フック角度が0°で前記平台面が水平面の平台を固設した場合、前記巻上滑車装置の巻上力の作用線が前記平台面の平面に垂直であるため、前記平台面によってフックの揺れ姿態などを正確的に検出できる。前記平台面に双軸傾斜計を装着し、測定するリアルタイムなフック角度のX、Y軸方向の成分を合成した後、リアルタイムなフック角度が得られる。
(2)フックの揺れ姿態などの検出のために、巻上滑車装置の巻上力の作用線との平行直線を提供する。
前記フックアセンブリの連結部品に、フック角度が0°で前記平台面が水平面の平台を固設した場合、前記平台面に、前記平台面に垂直の直線を固定すると、前記直線は前記巻上滑車装置の巻上力の作用線の平行線である。したがって、前記平台面に垂直の直線に検出装置を装着して、フックの揺れ姿態などを正確的に検出することができる。
Thus, a three-stage hook assembly creates conditions for accurate detection of hook swaying postures and the like.
(1) Provide a flat platform perpendicular to the line of action of the hoisting force of the hoisting pulley for detecting the swinging state of the hook.
When the hook component has a hook angle of 0 ° and a flat base having a horizontal surface fixed to the connecting part of the hook assembly, the action line of the hoisting force of the hoisting pulley device is perpendicular to the plane of the flat base surface. The swinging state of the hook can be accurately detected by the flat base surface. After mounting a biaxial inclinometer on the flat base surface and synthesizing the components of the real-time hook angles in the X and Y-axis directions to be measured, a real-time hook angle is obtained.
(2) Provide a straight line parallel to the line of action of the hoisting force of the hoisting pulley device for detecting the swinging state of the hook.
When a flat base having a hook angle of 0 ° and a flat base surface is fixed to the connecting part of the hook assembly, and a straight line perpendicular to the flat base surface is fixed to the flat base surface, the straight line is fixed to the hoisting pulley. It is a parallel line of the line of action of the hoisting force of the device. Therefore, by mounting the detecting device on a straight line perpendicular to the flat base surface, the swinging state of the hook and the like can be accurately detected.

前記滑車装置の昇降運転が同軸の動滑車の軸線に作用する前記滑車装置の巻上力の作用点に偏りが生じ、前記滑車装置の滑車数とは直接的に関連する。前記滑車装置の滑車数が少ない場合、前記滑車装置の昇降運転が同軸の動滑車の軸線に作用する前記滑車装置の巻上力の作用点に生じる偏りによって、フックアセンブリの前記フック角度に対する測定の偏差が正常な偏差である。したがって、2段フックアセンブリであって、その特徴は、動滑車部品d1とフック部品d5が蝶番軸d2によって連結され、前記蝶番軸d2を、同軸の動滑車の軸線に垂直の方向に設けると同時に、フックビームの蝶番軸d4が前記同軸の動滑車の軸線と平行であることを満たす。   The point of application of the hoisting force of the pulley device, which acts on the axis of the coaxial moving pulley when the hoisting operation of the pulley device is performed, is biased, and is directly related to the number of pulleys of the pulley device. When the number of pulleys of the pulley device is small, the hoisting operation of the pulley device due to the bias generated at the point of application of the hoisting force of the pulley device acting on the axis of the coaxial moving pulley makes it possible to measure the hook angle of the hook assembly with respect to the hook angle. The deviation is a normal deviation. Accordingly, a two-stage hook assembly is characterized in that the moving pulley part d1 and the hook part d5 are connected by a hinge axis d2, and the hinge axis d2 is provided in a direction perpendicular to the axis of the coaxial moving pulley. , The hinge axis d4 of the hook beam is parallel to the axis of the coaxial moving pulley.

前記フックに作用する吊り上げ荷重の合力の作用点の偏りは、前記フックビームの蝶番軸d4の回転、及び前記フック部品d5が同軸の動滑車の軸線に垂直の蝶番軸d4を中心にした旋回によって自ら調整が行われる時、フック軸線が少々傾斜し、フック部品d5は引張力のみを受ける。   The deviation of the point of application of the resultant force of the lifting load acting on the hook is caused by the rotation of the hinge axis d4 of the hook beam and the rotation of the hook part d5 about the hinge axis d4 perpendicular to the axis of the coaxial moving pulley. When the self-adjustment is performed, the hook axis is slightly inclined and the hook part d5 receives only the pulling force.

前記2段フックアセンブリの動滑車部品はフック部品と同様に引張力のみによって直列に連結されるため、前記動滑車の滑車部品(例えば、保護板)に、リアルタイムなフック角度を測定する角度測定装置を装着することができる。そのため、前記フックに作用する吊り上げ荷重の合力の作用点に生じる偏りとは関係なく、且つ前記滑車装置の滑車数が少ないため、動滑車の軸線方向の異動が無視してよいわずかの量として扱われる。   Since the moving pulley parts of the two-stage hook assembly are connected in series only by the pulling force, similarly to the hook parts, an angle measuring device for measuring the hook angle in real time on the pulley parts (for example, a protection plate) of the moving pulley. Can be attached. Therefore, irrespective of the bias generated at the point of application of the resultant force of the lifting load acting on the hook, and because the number of pulleys of the pulley device is small, the axial displacement of the moving pulley is treated as a negligible amount. Will be

前記3段フックアセンブリ又は2段フックアセンブリは、移動式クレーンに吊り上げ荷重を受けて前記連結部品や保護板によってフックの揺れ姿態を検出することに使用される。   The three-stage hook assembly or the two-stage hook assembly is used to detect a swinging state of the hook by the connecting part or the protection plate under a lifting load on a mobile crane.

前記3段フックアセンブリ又は2段フックアセンブリは、正確的にフック角度を測定するという要求を有する他のクレーンにも適用する。   The three-stage hook assembly or the two-stage hook assembly also applies to other cranes that have a requirement to accurately measure the hook angle.

前記フック姿態検出キャリアを設置するフックアセンブリ及びクレーンの好適な効果は、第1に、フック姿態検出キャリアを設置するフックアセンブリによって、前記滑車装置の巻上力の作用点の偏りと前記フックに作用する吊り上げ荷重の合力の作用点の偏りからフック角度の測定に対する制約を解決し、フックの揺れ姿態への正確的な検出を実現すること、第2に、前記フック姿態検出キャリアを設置するフックアセンブリが吊り上げ荷重を受けてフック角度測定装置を装着するような一体化した機構になり、前記両側連結板の内側にフック角度測定装置を装着する広いスペースが構成されることで、前記装置に大容量充電バッテリーの取付や防護の両方が容易であること、第3に、前記移動式クレーンに前記フック姿態検出キャリアを設置するフックアセンブリを装着してフック角度を正確的に測定することによって、吊り荷を監視する垂直玉掛け作業者からの情報を玉掛け指揮者が用いて運転者の操作を指揮する時の不適時と不正確という欠点を解決し、前記移動式クレーンの更なる開発に不可欠な条件を提供する。   The advantageous effects of the hook assembly and the crane for installing the hook attitude detection carrier are as follows. First, the hook assembly for installing the hook attitude detection carrier causes the bias of the hoisting force of the pulley device to act on the hook. Solving the restriction on the measurement of the hook angle from the deviation of the point of action of the resultant force of the lifting load, and realizing accurate detection of the swinging state of the hook. Second, a hook assembly for installing the hook state detection carrier Becomes a unified mechanism for mounting the hook angle measuring device under the lifting load, and a large space for mounting the hook angle measuring device is formed inside the both side connecting plates, so that the device has a large capacity. Third, it is easy to install and protect the rechargeable battery. By installing the hook assembly to be placed and accurately measuring the hook angle, the information from the vertical sling operator who monitors the suspended load is used by the sling conductor and the improper time when commanding the operation of the driver. It solves the disadvantage of inaccuracy and provides the essential conditions for the further development of said mobile crane.

巻上滑車装置構造図。記号は、B1定滑車、B2動滑車、B3ワイヤーロープ、B4保護板、B5フック、B6ジブである。FIG. The symbols are B1 fixed pulley, B2 moving pulley, B3 wire rope, B4 protection plate, B5 hook, and B6 jib. フックアセンブリ構造図。記号は、A1動滑車、A2滑車軸、A3軸受、A4保護板、A5ナット、A6軸受、A7ビーム軸、A8プレート、A9フックである。Hook assembly structural drawing. The symbols are A1 moving pulley, A2 pulley shaft, A3 bearing, A4 protection plate, A5 nut, A6 bearing, A7 beam shaft, A8 plate, and A9 hook. 3段フックアセンブリ構造図であり、図の右側部分は左側部分の右面図It is a three-stage hook assembly structural diagram, the right part of the figure is the right side view of the left part 2段フックアセンブリ構造図であり、図の右側部分は左側部分の右面図It is a two-stage hook assembly structural diagram, the right part of the figure is the right view of the left part 巻上力の作用線からフック角度を測定する説明図Explanatory diagram for measuring the hook angle from the line of action of the hoisting force

実施態様1において3段フックアセンブリを提供する。
図3に示すように、前記3段フックアセンブリの動滑車部品c1をフック部品c7に両側連結板c3を介して連結し、前記動滑車部品と両側連結板との蝶番軸c2、及び両側連結板とフック部品との蝶番軸c4を、前記同軸の動滑車の軸線に垂直の方向に設け、フック用締付けナットc5でスラスト軸受を押し付けることで、蝶番軸(ビーム軸とも呼ばれる)c6に支持し、フックシャンクの垂直軸線(フック軸線とも呼ばれる)に沿って旋回することができるため、動滑車の軸線はフックに対してフックシャンクの垂直軸線を沿って旋回することができる。前記巻上滑車装置の昇降運転において非フックの揺れによるフック角度の変動が発生した場合、前記同軸の動滑車の軸線に垂直の蝶番軸c2によって自ら調整が行われる時、動滑車の軸線が少々傾斜する一方、動滑車部品c1が引張力のみを受け、前記フックに作用する吊り上げ荷重の合力の作用点の偏りは、前記同軸の動滑車軸線に平行の蝶番軸c6の回転、及び前記フック部品が前記同軸の動滑車の軸線に垂直の蝶番軸c4を中心にした旋回によって自ら調整が行われる時、フック軸線が少々傾斜し、フック部品c7が引張力のみを受ける。
Embodiment 1 provides a three-stage hook assembly.
As shown in FIG. 3, the moving pulley component c1 of the three-stage hook assembly is connected to the hook component c7 via both side connecting plates c3, and a hinge shaft c2 between the moving pulley component and both side connecting plates, and both side connecting plates. A hinge shaft c4 of the hook component and the hook component is provided in a direction perpendicular to the axis of the coaxial moving pulley, and a thrust bearing is pressed by a hook tightening nut c5 to support the hinge shaft c6 (also referred to as a beam shaft). Because it can pivot along the vertical axis of the hook shank (also referred to as the hook axis), the axis of the moving pulley can pivot with respect to the hook along the vertical axis of the hook shank. When the hook angle fluctuates due to the swing of the non-hook during the hoisting and pulling operation of the hoisting pulley device, when the self-adjustment is performed by the hinge axis c2 perpendicular to the axis of the coaxial moving pulley, the axis of the moving pulley is slightly On the other hand, the moving pulley component c1 receives only the pulling force, and the deviation of the applied point of the resultant force of the lifting load acting on the hook is caused by the rotation of the hinge shaft c6 parallel to the coaxial moving pulley axis and the hook component. Is self-adjusted by pivoting about a hinge axis c4, which is perpendicular to the axis of the coaxial moving pulley, the hook axis is slightly tilted and the hook part c7 receives only tensile force.

前記3段フックアセンブリは、両端に蝶番軸が設けられている両側連結板c3、それぞれ同じの引張力を受ける動滑車部品c1、引張力を受けるフック部品c7によって直列に連結され、連結板c3はフックの揺れ姿態の正確的な検出に条件を作り、連結板c3部品に設けるだけで、前記巻上滑車装置の昇降運転による動滑車の軸線方向の傾斜角の変動とは関係なく、前記フックに作用する吊り上げ荷重の合力の作用点に生じる偏りとは関係ないため、フックの揺れ姿態を正確に検出することができる。例えば、前記フックアセンブリの連結部品に、フック角度が0°で平台面が水平面の平台c8を装着し、前記平台面に双軸の動的傾斜計c9を装着し、前記平台面と水平面のなす角に等しいリアルタイムなフック角度に合成する。   The three-stage hook assembly is connected in series by a both-side connecting plate c3 provided with hinge shafts at both ends, a moving pulley part c1 receiving the same tensile force, and a hook part c7 receiving the tensile force, respectively. A condition is set for accurate detection of the swinging state of the hook, and the hook is attached to the hook irrespective of the fluctuation of the inclination angle of the moving pulley in the axial direction due to the ascent / descent operation of the hoisting pulley device only by providing the connecting plate c3. Since it is not related to the bias generated at the point of application of the resultant force of the lifting load acting, the swinging state of the hook can be accurately detected. For example, a flat table c8 having a hook angle of 0 ° and a horizontal flat surface is mounted on the connecting part of the hook assembly, and a biaxial dynamic inclinometer c9 is mounted on the horizontal flat surface to form the horizontal flat surface with the horizontal flat surface. Combines into a real-time hook angle equal to the angle.

また、前記両側連結板の内側にフック角度測定装置を装着する広いスペースが構成されることで、前記装置に大容量充電バッテリーの取付や防護の両方が容易であるため、前記3段フックアセンブリは吊り上げ荷重を受け、フックの揺れ姿態の正確的な検出条件を作り、前記検出装置を装着するような一体化した機構になる。   In addition, since a large space for mounting the hook angle measuring device is formed inside the connecting plates on both sides, it is easy to mount and protect a large-capacity rechargeable battery in the device. Under the lifting load, an accurate detection condition of the swinging state of the hook is created, and an integrated mechanism for mounting the detection device is provided.

実施態様2において2段フックアセンブリを提供する。
図4に示すように、2段フックアセンブリは、動滑車部品d1とフック部品d5が蝶番軸(d2)によって連結され、前記蝶番軸(d2)を、同軸の動滑車の軸線に垂直の方向に設けると同時に、フックビームの蝶番軸(d4)が前記同軸の動滑車の軸線と平行であることを満たす。
Embodiment 2 provides a two-stage hook assembly.
As shown in FIG. 4, the two-stage hook assembly has a moving pulley part d1 and a hook part d5 connected by a hinge shaft (d2), and the hinge shaft (d2) is moved in a direction perpendicular to the axis of the coaxial moving pulley. At the same time, it satisfies that the hinge axis (d4) of the hook beam is parallel to the axis of the coaxial moving pulley.

前記フックの吊り上げ荷重の合力の作用点の偏りは、前記フックビームの蝶番軸d4の回転、及び前記フック部品が同軸の動滑車の軸線に垂直の蝶番軸d2を中心にした旋回によって自ら調整が行われる時、フック軸線が少々傾斜し、フック部品d5は引張力のみを受ける。   The deviation of the point of application of the resultant force of the lifting load of the hook is adjusted by the rotation of the hinge axis d4 of the hook beam and the rotation of the hook component about the hinge axis d2 perpendicular to the axis of the coaxial moving pulley. When performed, the hook axis is slightly inclined and the hook part d5 receives only the pulling force.

前記2段フックアセンブリの動滑車部品はフック部品と同様に引張力のみによって直列に連結されるため、前記動滑車の滑車部品(例えば、保護板)にリアルタイムなフック角度を測定することができる。その場合、前記フックに作用する吊り上げ荷重の合力の作用点に生じる偏りとは関係なく、且つ前記滑車装置の滑車数が少ないため、動滑車の軸線方向の異動が無視してよいわずかの量として扱われる。   Since the moving pulley components of the two-stage hook assembly are connected in series only by the pulling force similarly to the hook components, it is possible to measure the hook angle of the pulley components (for example, the protection plate) of the moving pulley in real time. In this case, irrespective of the deviation generated at the point of application of the resultant force of the lifting load acting on the hook, and because the number of pulleys of the pulley device is small, the axial displacement of the moving pulley can be ignored as a small amount. Will be treated.

実施態様3において、3段フックアセンブリの連結板に角度測定装置を用いてフックの揺れ姿態を正確的に検出することができる。
角度測定装置を前記連結部品と前記巻上滑車装置の巻上力に垂直の平台面に装着し、測定される、平台面と水平面のなす角の数値はリアルタイムなフック角度に等しい。
In the third embodiment, the swinging state of the hook can be accurately detected by using an angle measuring device on the connecting plate of the three-stage hook assembly.
The angle measuring device is mounted on a flat platform perpendicular to the hoisting force of the connecting part and the hoisting pulley device, and the measured value of the angle between the flat platform and the horizontal plane is equal to the hook angle in real time.

図5に示すように、仮に、フック点bを通る巻上力の作用線mと、フック点bを通る鉛直線nとの交差角を∠bとし、滑車装置の巻上力の作用線mに垂直の平台面Wと水平面Zのなす角を∠aとすると、 図5に示すように、2平面のなす角の点bから、2平面W、Zに下ろした垂線の足をそれぞれC、Dとし、点Cを通って平面内に、平面Wと平面Zの交線Lに下ろしたCaを作り、垂線の足を点aとし、Daを繋ぐ。   As shown in FIG. 5, suppose that the intersection angle between the line of action m of the hoisting force passing through the hook point b and the vertical line n passing through the hook point b is Δb, and the line of action m of the hoisting force of the pulley device is m. Assuming that the angle between the flat base surface W and the horizontal plane Z is perpendicular to ∠a, as shown in FIG. 5, the legs of the perpendiculars lowered to the two planes W and Z from the point b of the angle between the two planes are denoted by C and C, respectively. D, Ca is created in the plane passing through the point C at the intersection L of the plane W and the plane Z, and the leg of the perpendicular is set to the point a, and Da is connected.

∵L⊥Ca、L⊥bC、∴ L⊥面bCa、∴ L⊥ba、 又∵L⊥bD、∴L⊥面bDa、∴L⊥Da、
∴∠CaDは2平面のなす角の平面角で、四辺形aCbDは直線m、nと同一の平面にあり、且つ∠C=∠D=90°
故に、∠a(∠CbDと補角をなす)は直線mと直線nの交差する鋭角∠bに等しい。
∵L⊥Ca, L⊥bC, ⊥L⊥ face bCa, ∴L⊥ba, and ∵L⊥bD, ∴L⊥face bDa, ∴L⊥Da,
∴∠CaD is the plane angle of the angle between the two planes, the quadrilateral aCbD is on the same plane as the straight lines m and n, and ∠C = ∠D = 90 °
Therefore, ∠a (complementary with ∠CbD) is equal to the acute angle ∠b at which the straight lines m and n intersect.

上記のことから、前記巻上滑車装置の巻上力の作用線と鉛直線の間のリアルタイムなフック角度は、前記巻上滑車装置の巻上力の作用線に垂直の前記平台面と水平面のなす角に等しく、且つ前記リアルタイムなフック角度は、前記巻上滑車装置の巻上力の作用線に垂直の前記平台面と水平面のなす角の2平面角と同一の平面にあることが分かる。   From the above, the real-time hook angle between the line of action of the hoisting force of the hoisting pulley device and the vertical line is determined by the flat base surface and the horizontal plane perpendicular to the line of action of the hoisting force of the hoisting pulley device. It can be seen that the hook angle equal to the angle formed and the real-time hook angle is on the same plane as the two plane angles formed by the flat platform surface and the horizontal plane perpendicular to the line of action of the hoisting force of the hoisting pulley device.

したがって、前記連結部品に、滑車装置の巻上力の作用線に垂直の平台面、又は滑車装置の巻上力の作用線に平行の直線を設置することで、前記平台面、又は前記滑車装置の巻上力の作用線に平行の直線に、フックの揺れ姿態を検出する角度測定装置を装着することができる。
以上の記載は単なる本発明の実施態様の例示に過ぎなく、当業者にとって、本発明の様々な変形や修飾も本発明の保護範囲内にある。
Therefore, the flat base surface or the pulley device is provided by installing a flat base surface perpendicular to the line of action of the hoisting force of the pulley device or a straight line parallel to the line of action of the hoisting force of the pulley device on the connecting component. An angle measuring device for detecting the swinging state of the hook can be attached to a straight line parallel to the line of action of the hoisting force.
The above description is merely illustrative of the embodiment of the present invention, and various changes and modifications of the present invention are within the protection scope of the present invention for those skilled in the art.

Claims (11)

フック姿態検出キャリアを設置するフックアセンブリであって、
フックアセンブリは、動滑車部品とフック部品の間に1段の連結部品を直列に接続するように構成される3段フックアセンブリであり、前記連結部品の両端には、それぞれ蝶番軸を前記動滑車部品及びフック部品に連結し、且つ前記動滑車部品が前記連結部品に連結されている蝶番軸を、前記動滑車部品の動滑車の軸線に垂直の方向に設けると同時に、前記フック部品が前記連結部品に連結されている蝶番軸を、フックビームの蝶番軸に垂直の方向に設け、フックの揺れ姿態を検出するため、前記連結部品に滑車装置の巻上力の作用線に垂直の平台面、又は滑車装置の巻上力の作用線に平行の直線を設置することを含む
ことを特徴とするフック姿態検出キャリアを設置するフックアセンブリ。
A hook assembly for installing a hook posture detection carrier,
The hook assembly is a three-stage hook assembly configured to connect a one-stage connecting component between the moving pulley component and the hook component in series, and a hinge shaft is provided at each end of the connecting component with the moving pulley. A hinge shaft connected to the component and the hook component, and the moving pulley component being connected to the connecting component, is provided in a direction perpendicular to the axis of the moving pulley of the moving pulley component , and the hook component is connected to the hook component. A hinge axis connected to the component is provided in a direction perpendicular to the hinge axis of the hook beam, and a flat platform surface perpendicular to the line of action of the hoisting force of the pulley device is provided on the connection component in order to detect the swinging state of the hook. Alternatively, a hook assembly for installing a hook posture detection carrier, comprising installing a straight line parallel to the line of action of the hoisting force of the pulley device.
前記3段フックアセンブリの動滑車部品(c1)をフック部品(c7)に両側連結板(c3)を介して連結し、前記動滑車部品(c1)と両側連結板(c3)との蝶番軸(c2)、及び両側連結板(c3)と前記フック部品(c7)との蝶番軸(c4)を、前記動滑車部品(c1)の動滑車の軸線に垂直の方向に設けると同時に、フックビームの蝶番軸(c6)を前記動滑車部品(c1)の動滑車の軸線に平行の方向に設ける
請求項1に記載のフック姿態検出キャリアを設置するフックアセンブリ。
Said movable pulley parts of 3-stage hook assembly (c1) are connected via a bilateral coupling plate (c3) the hook component (c7), the movable pulley part (c1) and both side connecting plate (c3) and the hinge axis ( c2) and the hinge axis (c4) of the both-side connecting plate (c3) and the hook component (c7) is provided in a direction perpendicular to the axis of the movable pulley of the movable pulley component (c1) , and The hook assembly according to claim 1, wherein the hinge shaft (c6) is provided in a direction parallel to the axis of the moving pulley of the moving pulley component (c1) .
前記滑車装置の巻上力の作用線に垂直の平台面と水平面のリアルタイムになす角、又は滑車装置の巻上力の作用線に平行の直線と鉛直線とのリアルタイムになす角は、リアルタイムなフック角度と数値的に等しい
請求項1に記載のフック姿態検出キャリアを設置するフックアセンブリ。
The angle between the flat platform surface and the horizontal plane perpendicular to the line of action of the hoisting force of the pulley device, or the angle between the straight line and the vertical line parallel to the line of action of the hoisting force of the pulley device in real time is a real-time angle. A hook assembly for installing the hook posture detection carrier according to claim 1, wherein the hook posture detection carrier is numerically equal to the hook angle.
滑車装置の巻上力の作用線に垂直の平台面と水平面のリアルタイムになす角を測定することによってフックの揺れ姿態を検出し、前記平台面に双軸傾斜計を装着し、測定するリアルタイムなフック角度のX、Y軸方向の成分を合成した後、リアルタイムなフック角度が得られる
請求項3に記載のフック姿態検出キャリアを設置するフックアセンブリ。
The swinging state of the hook is detected by measuring the angle formed in real time between the flat platform and the horizontal plane perpendicular to the line of action of the hoisting force of the pulley device, and a dual-axis inclinometer is mounted on the flat platform to measure. The hook assembly according to claim 3, wherein a real-time hook angle is obtained after combining the components of the hook angle in the X and Y-axis directions.
前記フック角度の方向が滑車装置の巻上力の作用線に垂直の平台面と水平面のリアルタイムな交差線と垂直であり、且つ前記滑車装置の巻上力の作用線に垂直の平台面と水平面のリアルタイムになす角は滑車装置の巻上力の作用線と鉛直線とのフック角度としてのリアルタイムになす角と同一の平面にある
請求項4に記載のフック姿態検出キャリアを設置するフックアセンブリ。
The direction of the hook angle is perpendicular to the real-time intersection line between the flat platform and the horizontal plane perpendicular to the line of action of the hoisting force of the pulley device, and the flat platform and the horizontal plane perpendicular to the line of action of the hoisting force of the pulley device. 5. The hook assembly according to claim 4, wherein the angle formed in real time is on the same plane as the angle formed in real time as the hook angle between the line of action of the hoisting force of the pulley device and the vertical line.
フック姿態検出キャリアを設置するフックアセンブリであって、フックアセンブリは、動滑車部品(d1)とフック部品(d5)が蝶番軸(d2)によって連結されるように構成される2段フックアセンブリであり、前記蝶番軸(d2)を、前記動滑車部品(d1)の動滑車の軸線に垂直の方向に設けると同時に、フックビームの蝶番軸(d4)が前記動滑車部品(d1)の動滑車の軸線と平行であることを満たし、前記動滑車部品(d1)の動滑車保護板にリアルタイムなフック角度を測定する角度測定装置を装着することを含む
ことを特徴とするフック姿態検出キャリアを設置するフックアセンブリ。
A hook assembly for installing a hook state detection carrier, wherein the hook assembly is a two-stage hook assembly configured such that a moving pulley component (d1) and a hook component (d5) are connected by a hinge shaft (d2) . The hinge shaft (d2) is provided in a direction perpendicular to the axis of the moving pulley of the moving pulley component (d1) , and at the same time, the hinge axis (d4) of the hook beam is mounted on the moving pulley of the moving pulley component (d1) . met it is parallel to the axis, installing a hook pose detection carrier, characterized in that it includes mounting the angle measuring device for measuring the real-time hook angles movable pulley protection plate of the movable pulley part (d1) Hook assembly.
移動式クレーンであって、フック姿態検出キャリアを有するフックアセンブリを含み、フックアセンブリは、動滑車部品とフック部品の間に1段の連結部品を直列に接続するように構成される3段フックアセンブリであり、前記連結部品の両端には、それぞれ蝶番軸を前記動滑車部品及びフック部品に連結し、且つ前記動滑車部品が前記連結部品に連結されている蝶番軸を、前記動滑車部品の動滑車の軸線に垂直の方向に設けると同時に、前記フック部品が前記連結部品に連結されている蝶番軸を、フックビームの蝶番軸に垂直の方向に設け、フックの揺れ姿態を検出するため、前記連結部品に、滑車装置の巻上力の作用線に垂直の平台面、又は滑車装置の巻上力の作用線に平行の直線を設置することを含む
ことを特徴とする移動式クレーン。
A mobile crane, comprising a hook assembly having a hook attitude detection carrier, wherein the hook assembly is configured to serially connect a one-stage coupling component between a moving pulley component and a hook component. A hinge shaft connected to the moving pulley component and the hook component at each end of the connecting component, and a hinge shaft connected to the connecting component connected to the moving pulley component . At the same time provided in the direction perpendicular to the axis of the pulley, the hinge axis which the hook part is connected to the connecting part, only set in the direction perpendicular to the hinge axis of the hook beam, for detecting the swinging figure hook, wherein the connecting parts, mobile crane, characterized in that it comprises placing a straight line parallel to the hoisting force line of action of the flatbed surface, or pulley device perpendicular to the hoisting force line of action of the pulley device
前記3段フックアセンブリの動滑車部品(c1)をフック部品(c7)に両側連結板(c3)を介して連結し、前記動滑車部品(c1)と両側連結板(c3)との蝶番軸(c2)、及び両側連結板(c3)と前記フック部品(c7)との蝶番軸(c4)を、前記動滑車部品(c1)の動滑車の軸線に垂直の方向に設けると同時に、フックビームの蝶番軸(c6)を前記動滑車部品(c1)の動滑車の軸線に平行の方向に設ける
請求項7に記載の移動式クレーン。
Said movable pulley parts of 3-stage hook assembly (c1) are connected via a bilateral coupling plate (c3) the hook component (c7), the movable pulley part (c1) and both side connecting plate (c3) and the hinge axis ( c2) and the hinge axis (c4) of the both-side connecting plate (c3) and the hook component (c7) is provided in a direction perpendicular to the axis of the movable pulley of the movable pulley component (c1) , and The mobile crane according to claim 7, wherein the hinge shaft (c6) is provided in a direction parallel to the axis of the moving pulley of the moving pulley component (c1) .
前記滑車装置の巻上力の作用線に垂直の平台面と水平面のリアルタイムになす角は滑車装置の巻上力の作用線と鉛直線とのフック角度としてのリアルタイムになす角に等しく、滑車装置の巻上力の作用線に平行の直線と鉛直線のなす角もリアルタイムなフック角度と数値的に等しい
請求項8に記載の移動式クレーン。
The angle formed in real time between the flat platform surface and the horizontal plane perpendicular to the line of action of the hoisting force of the pulley device is equal to the angle formed in real time as the hook angle between the line of action of the hoisting force of the pulley device and the vertical line, The angle between the straight line parallel to the line of action of the hoisting force and the vertical line is numerically equal to the hook angle in real time
A mobile crane according to claim 8 .
滑車装置の巻上力の作用線に垂直の平台面と水平面のリアルタイムになす角を測定することによってフックの揺れ姿態を検出し、前記平台面に双軸傾斜計を装着し、測定するリアルタイムなフック角度のX、Y軸方向の成分を合成した後、リアルタイムなフック角度が得られる
請求項9に記載の移動式クレーン。
The swinging state of the hook is detected by measuring the angle formed in real time between the flat platform and the horizontal plane perpendicular to the line of action of the hoisting force of the pulley device, and a dual-axis inclinometer is mounted on the flat platform to measure. After combining the X and Y axis components of the hook angle, a real-time hook angle can be obtained.
A mobile crane according to claim 9 .
前記フック角度の方向が滑車装置の巻上力の作用線に垂直の平台面と水平面のリアルタイムな交差線と垂直であり、且つ前記滑車装置の巻上力の作用線に垂直の平台面と水平面のリアルタイムになす角は滑車装置の巻上力の作用線と鉛直線とのフック角度としてのリアルタイムになす角と同一の平面にある
請求項10に記載の移動式クレーン。
The direction of the hook angle is perpendicular to the real-time intersection line between the flat platform and the horizontal plane perpendicular to the line of action of the hoisting force of the pulley device, and the flat platform and the horizontal plane perpendicular to the line of action of the hoisting force of the pulley device. Angle in real time is in the same plane as the angle made in real time as the hook angle between the line of action of the pulling device hoisting force and the vertical line
The mobile crane according to claim 10 .
JP2019504962A 2016-08-27 2016-09-06 Hook assembly to install hook posture detection carrier Expired - Fee Related JP6639731B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610733240.1A CN106276587B (en) 2016-08-27 2016-08-27 Set up the hanging hook assembly and crane of hanging hook attitude detection carrier
CN201610733240.1 2016-08-27
PCT/CN2016/098173 WO2016177352A2 (en) 2016-08-27 2016-09-06 Lifting hook assembly establishing lifting hook posture detection carrier, and crane

Publications (2)

Publication Number Publication Date
JP2019521934A JP2019521934A (en) 2019-08-08
JP6639731B2 true JP6639731B2 (en) 2020-02-05

Family

ID=57218136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019504962A Expired - Fee Related JP6639731B2 (en) 2016-08-27 2016-09-06 Hook assembly to install hook posture detection carrier

Country Status (5)

Country Link
US (1) US9856118B1 (en)
EP (1) EP3492421A4 (en)
JP (1) JP6639731B2 (en)
CN (1) CN106276587B (en)
WO (1) WO2016177352A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106185627B (en) * 2016-07-06 2020-09-08 林汉丁 Lifting hook deflection angle monitoring device, vertical hoisting monitoring device and mobile crane
CN108249337A (en) * 2018-03-05 2018-07-06 苏州库力铁重工有限公司 Lifting hook pulley component
WO2019210362A1 (en) * 2018-05-04 2019-11-07 Thomas Bedgood Sensing device for a crane
US11312598B2 (en) * 2019-03-18 2022-04-26 Wenger Corporation Hoist fleet assembly
CN111498689B (en) * 2020-04-03 2023-06-16 江西昌河汽车有限责任公司 Main hook pulley block for line A traveling in stamping workshop and application thereof
CN111348544A (en) * 2020-04-16 2020-06-30 林汉丁 Real-time lifting hook deflection angle monitoring device capable of displaying lifting weight and crane
CN112794202A (en) * 2020-05-20 2021-05-14 林汉丁 Real-time lifting hook deflection angle display anti-oblique lifting monitoring device and crane
ES1255310Y (en) * 2020-07-24 2021-01-19 Hernandez Yoel Orlando Izquierdo Device for verticality control
CN112193995B (en) * 2020-09-25 2022-09-30 中国直升机设计研究所 Quick-release rotary lifting hook of helicopter life-saving winch
EP4323302A1 (en) 2021-04-12 2024-02-21 Structural Services, Inc. Systems and methods for assisting a crane operator
CN114162707A (en) * 2021-11-22 2022-03-11 徐州建机工程机械有限公司 Double-layer four-group eight-pulley lifting hook

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2414092A (en) * 1945-06-08 1947-01-14 Charwinsky John Hoisting indicator
US2772411A (en) * 1954-10-25 1956-11-27 Fishfader S Boom angle indicator for cranes
US3865265A (en) * 1973-08-20 1975-02-11 Brudi Equipment Lift truck safety accessory
SE436436B (en) * 1981-06-18 1984-12-10 Eurotrade Machine Pool Ab DEPTH METER FOR EXCAVATORS
RU2025445C1 (en) * 1990-02-26 1994-12-30 Мариупольский концерн "Азовмаш" Hook assembly
US5596826A (en) * 1995-10-18 1997-01-28 Caterpillar Inc. Level indicating mechanism for a work machine
US6549139B2 (en) * 1997-02-27 2003-04-15 Jack B. Shaw, Jr. Crane safety device and methods
DE10110302C1 (en) * 2001-02-26 2002-07-11 Atecs Mannesmann Ag Bottom hook block for heavy lift crane has four individual roller blocks and detachable sub-blocks with cable rollers and two load hooks each of which is rated at least half maximum load
US7856727B2 (en) * 2008-10-21 2010-12-28 Agatec Independent position sensor and a system to determine the position of a tool on a works machine using position sensors
US8768609B2 (en) * 2010-02-01 2014-07-01 Trimble Navigation Limited Sensor unit system
CN201647810U (en) * 2010-02-02 2010-11-24 三一汽车制造有限公司 Large-tonnage combined lifting hook and hoisting machine provided with same
CN102485632A (en) * 2011-11-11 2012-06-06 林汉丁 Laser dynamic displaying arrangement of crane suspension hook deflection angle
CN102431897B (en) * 2011-11-25 2014-04-30 林汉丁 Crane lifting verticality deviation measuring and displaying device and lifting method
CN103130098B (en) * 2012-08-11 2016-02-24 林汉丁 A kind of suspension hook drift angle Universal level-metre monitoring device and hoisting crane
CN102815614A (en) * 2012-09-05 2012-12-12 林汉丁 Detecting and monitoring device for displaying real-time lifting hook declination angle
JP6121670B2 (en) * 2012-09-05 2017-04-26 株式会社タダノ Work plan confirmation device
CN103213902B (en) * 2013-01-10 2015-10-07 林汉丁 The monitoring of suspension hook drift angle detecting/monitoring, collaborative party, magnetic bearing monitoring device and hoisting crane
CN103318765B (en) * 2013-06-21 2015-01-07 林汉丁 Hoisting tilt angle, hoisting load or hoisting posture monitoring method and device as well as crane
CN204384710U (en) * 2014-11-26 2015-06-10 惠州市联电电线电缆有限公司 A kind of manipulator for lifting electric wire
CN204265235U (en) * 2014-12-01 2015-04-15 河南省矿山起重机有限公司 A kind of lifting hook pulley group
CN204675608U (en) * 2015-04-29 2015-09-30 招商局重工(江苏)有限公司 A kind of crane barge and Multifunctional hanging hook, Multifunctional hanging hook group
CN204751973U (en) * 2015-06-23 2015-11-11 河南华北起重吊钩有限公司 Lifting hook perpendicularity deviation detection device
CN105174035A (en) * 2015-09-29 2015-12-23 河南蒲瑞精密机械有限公司 Lifting tool and crane with same
CN106185627B (en) * 2016-07-06 2020-09-08 林汉丁 Lifting hook deflection angle monitoring device, vertical hoisting monitoring device and mobile crane

Also Published As

Publication number Publication date
US9856118B1 (en) 2018-01-02
WO2016177352A2 (en) 2016-11-10
EP3492421A2 (en) 2019-06-05
JP2019521934A (en) 2019-08-08
WO2016177352A3 (en) 2017-06-22
EP3492421A4 (en) 2020-04-08
CN106276587B (en) 2018-10-23
CN106276587A (en) 2017-01-04

Similar Documents

Publication Publication Date Title
JP6639731B2 (en) Hook assembly to install hook posture detection carrier
US9938118B2 (en) Lifting hook bias angle monitoring apparatus, vertical hoisting monitoring apparatus and mobile crane
US9533861B2 (en) Self-balanced apparatus for hoisting and positioning loads, with six degrees of freedom
US11247331B2 (en) Static compliance performance testing device applied to industrial robot
CN102556831B (en) Horizontal adjusting sling for spacecraft
US11136225B1 (en) Monitoring and measuring apparatuses able to display actual deflection angle of lifting-hook , and crane
CN102923572A (en) Crane load space swing angle detection technology and apparatus thereof
EP3318369A1 (en) Cable-driven parallel manipulator
US20220356049A1 (en) Sterilization and Deodorization Waste Bin with Dual-band Ultraviolet Tube
CN108516113B (en) Gravity unloading method and device for ground debugging of eccentric rotation space load
US10703610B2 (en) Lifting bracket
CA3122443A1 (en) Cable robot
JP4522917B2 (en) Transport control system for large structures
WO2016177351A2 (en) Lifting hook bias angle monitoring device, vertical hoisting monitoring device, and mobile crane
CN114030991A (en) Self-adaptive six-degree-of-freedom lifting appliance with posture adjusting function
JP2013018556A (en) Device for detecting sway angle of suspended load of crane
RU2637721C1 (en) Method for graduating multicomponent force and torque sensors and device for its implementation
CN114441096B (en) Unmanned aerial vehicle gravity center measuring device and method
JP2851787B2 (en) Crane hook rotation prevention mechanism
CN110926842A (en) Wall surface testing device of wall-climbing robot with adjustable angle
CN116495609B (en) Crane sling with swing angle detection device
US11359980B2 (en) Device and method for measuring a load applied by an elongate member
CN114397182A (en) Y-shaped hoisting ring tension test device and test method thereof
KR20220081636A (en) Load measuring device
He et al. Design and Motion Analysis of Dynamic Wire-Controlled Hanging Plate Balancing Mechanism in Well

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190124

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191224

R150 Certificate of patent or registration of utility model

Ref document number: 6639731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees