JP6638949B2 - Method for producing Bi-based oxide superconducting thin film and Bi-based oxide superconducting thin film structure - Google Patents

Method for producing Bi-based oxide superconducting thin film and Bi-based oxide superconducting thin film structure Download PDF

Info

Publication number
JP6638949B2
JP6638949B2 JP2015107188A JP2015107188A JP6638949B2 JP 6638949 B2 JP6638949 B2 JP 6638949B2 JP 2015107188 A JP2015107188 A JP 2015107188A JP 2015107188 A JP2015107188 A JP 2015107188A JP 6638949 B2 JP6638949 B2 JP 6638949B2
Authority
JP
Japan
Prior art keywords
based oxide
plane
thin film
laalo
srtio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015107188A
Other languages
Japanese (ja)
Other versions
JP2016222467A (en
Inventor
和弘 遠藤
和弘 遠藤
有沢 俊一
俊一 有沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Kanazawa Institute of Technology (KIT)
Original Assignee
National Institute for Materials Science
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Kanazawa Institute of Technology (KIT) filed Critical National Institute for Materials Science
Priority to JP2015107188A priority Critical patent/JP6638949B2/en
Publication of JP2016222467A publication Critical patent/JP2016222467A/en
Application granted granted Critical
Publication of JP6638949B2 publication Critical patent/JP6638949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非c軸配向のBi系酸化物超伝導薄膜の製造方法とBi系酸化物超伝導薄膜構造体に関する。   The present invention relates to a method for producing a non-c-axis oriented Bi-based oxide superconducting thin film and a Bi-based oxide superconducting thin film structure.

酸化物超伝導体は、その単位結晶内に超伝導層と絶縁層とが交互に積層した構造を有しており、この積層構造により固有ジョセフソン効果が発現することが知られている。中でも、Bi系酸化物超伝導体はこの効果が強く表れる物質群である。Bi系酸化物超伝導体の固有ジョセフソン効果を利用してジョセフソン素子を作製する場合、従来はBi系酸化物超伝導体のc軸配向体(バルク単結晶や単結晶薄膜)が一般的に用いられてきた。Bi系酸化物超伝導体のc軸配向体をジョセフソン素子に応用するためには、メサ構造の作製が必要である。しかしながら、メサ構造ではc軸方向の長さがc軸配向体の厚さにより制限されるため、超伝導層/絶縁層の積層数を十分に増やすことができず、またメサ構造自体の作製に複雑な加工を必要とする等の難点がある。   An oxide superconductor has a structure in which superconducting layers and insulating layers are alternately laminated in a unit crystal thereof, and it is known that the intrinsic Josephson effect is exhibited by this laminated structure. Above all, Bi-based oxide superconductors are a group of substances that exhibit this effect strongly. In the case of manufacturing a Josephson device using the intrinsic Josephson effect of a Bi-based oxide superconductor, conventionally, a c-axis oriented body of a Bi-based oxide superconductor (bulk single crystal or single crystal thin film) is generally used. Has been used for In order to apply a c-axis oriented Bi-based oxide superconductor to a Josephson device, it is necessary to form a mesa structure. However, in the mesa structure, the length in the c-axis direction is limited by the thickness of the c-axis oriented body, so that the number of superconducting layers / insulating layers cannot be sufficiently increased, and the mesa structure itself is not manufactured. There are difficulties such as the need for complicated processing.

このような点から、Bi系酸化物超伝導体の非c軸配向膜の研究が進められている。例えば、特許文献1〜3にはLaSrAlOやLaSrGaO等の単結晶基板上に、Bi系酸化物超伝導体結晶のc軸が基板面に対して平行で、a軸またはb軸が基板面に対して垂直に配向したBi系酸化物超伝導薄膜を形成することが記載されている。a軸またはb軸を基板面に対して垂直に配向させたBi系酸化物超伝導薄膜によれば、作製が容易なプラナー構造を適用できることに加えて、c軸方向の長さが薄膜の面方向となるため、超伝導層/絶縁層の積層数を十分に増やすことができる。ただし、c軸が基板面に対して平行であるため、ジョセフソン素子を構成する電極の設置が困難になる。 From such a point, research on a non-c-axis oriented film of a Bi-based oxide superconductor has been advanced. For example, Patent Documents 1 to 3 disclose that, on a single crystal substrate such as LaSrAlO 4 or LaSrGaO 4 , the c-axis of a Bi-based oxide superconductor crystal is parallel to the substrate surface, and the a-axis or b-axis is the substrate surface. It is described that a Bi-based oxide superconducting thin film oriented perpendicularly to a thin film is formed. According to the Bi-based oxide superconducting thin film in which the a-axis or the b-axis is oriented perpendicular to the substrate surface, a planar structure that is easy to manufacture can be applied, and the length of the c-axis direction is the surface of the thin film. The number of superconducting layers / insulating layers can be sufficiently increased. However, since the c-axis is parallel to the substrate surface, it is difficult to install electrodes constituting the Josephson element.

Bi系酸化物超伝導体結晶のc軸を基板面に対して斜め方向に成長させたBi系酸化物超伝導薄膜によれば、c軸を基板面に対して平行に成長させたBi系酸化物超伝導薄膜と同様にプラナー構造が適用でき、さらに超伝導層/絶縁層の積層数の増大と電極の設置性とを両立させることができる。しかしながら、従来のBi系酸化物超伝導薄膜の製造方法では、実用性に優れた斜め配向のBi系酸化物超伝導薄膜が得られていない。例えば、Bi系酸化物超伝導体結晶を成長させる単結晶基板の結晶面を選択すること等によって、c軸を単結晶基板の基板面に対して斜めに配向させることができるものの、c軸の成長方向を1方向に限定することができない。これではジョセフソン効果が発現せず、ジョセフソン素子を実現することができない。   According to the Bi-based oxide superconducting thin film in which the c-axis of the Bi-based oxide superconductor crystal is grown in a direction oblique to the substrate surface, the Bi-based oxide in which the c-axis is grown in parallel to the substrate surface is provided. As in the case of the superconducting thin film, a planar structure can be applied, and the increase in the number of superconducting layers / insulating layers and the ease of installation of the electrodes can both be achieved. However, in the conventional method for producing a Bi-based oxide superconducting thin film, an obliquely oriented Bi-based oxide superconducting thin film having excellent practicality has not been obtained. For example, by selecting the crystal plane of a single crystal substrate on which a Bi-based oxide superconductor crystal is grown, the c-axis can be oriented obliquely with respect to the substrate surface of the single crystal substrate. The growth direction cannot be limited to one direction. In this case, the Josephson effect does not appear, and a Josephson element cannot be realized.

特許第4448934号公報Japanese Patent No. 4448934 特許第4452805号公報Japanese Patent No. 4452805 特許第4572386号公報Japanese Patent No. 4572386

本発明が解決しようとする課題は、実用性に優れる、c軸を斜め配向させたBi系酸化物超伝導薄膜を再現性よく得ることを可能にしたBi系酸化物超伝導薄膜の製造方法とBi系酸化物超伝導薄膜構造体を提供することにある。   The problem to be solved by the present invention is to provide a Bi-based oxide superconducting thin film having excellent reproducibility, which is capable of obtaining a Bi-based oxide superconducting thin film having excellent practicability and having a c-axis obliquely oriented. An object of the present invention is to provide a Bi-based oxide superconducting thin film structure.

本発明のBi系酸化物超伝導薄膜の製造方法は、ペロブスカイト型結晶、疑似ペロブスカイト型結晶、または岩塩型結晶の2回対称の結晶面から3°以上25°以下の角度で傾斜した表面を有するペロブスカイト型、疑似ペロブスカイト型、または岩塩型の酸化物単結晶基板を用意する工程と、前記酸化物単結晶基板の前記表面にBi系酸化物超伝導体結晶を成長させて、Bi系酸化物超伝導薄膜を成膜する工程を具備し、前記Bi系酸化物超伝導体結晶のc軸を、前記結晶面から所定の角度で斜め方向に、かつ前記表面の前記結晶面からの傾斜角に基づいて1方向のみに成長させて、前記Bi系酸化物超伝導薄膜を成膜することを特徴としている。   The method for producing a Bi-based oxide superconducting thin film of the present invention has a surface inclined at an angle of 3 ° or more and 25 ° or less from a two-fold symmetric crystal plane of a perovskite crystal, a pseudo perovskite crystal, or a rock salt crystal. Preparing a perovskite-type, pseudo-perovskite-type, or rock salt-type oxide single-crystal substrate; and growing a Bi-based oxide superconductor crystal on the surface of the oxide single-crystal substrate to form a Bi-based oxide superconductor. A step of forming a conductive thin film, wherein the c-axis of the Bi-based oxide superconductor crystal is inclined at a predetermined angle from the crystal plane, and based on an inclination angle of the surface from the crystal plane. The Bi-based oxide superconducting thin film is grown by growing the Bi-based oxide superconducting thin film only in one direction.

本発明のBi系酸化物超伝導薄膜構造体は、ペロブスカイト型結晶、疑似ペロブスカイト型結晶、または岩塩型結晶の2回対称の結晶面から3°以上25°以下の角度で傾斜した表面を有するペロブスカイト型、疑似ペロブスカイト型、または岩塩型の酸化物単結晶基板と、前記酸化物単結晶基板の前記表面に成膜されたBi系酸化物超伝導薄膜であって、Bi系酸化物超伝導体結晶のc軸が、前記結晶面から所定の角度で斜め方向に、かつ1方向のみに成長したBi系酸化物超伝導薄膜とを具備することを特徴としている。   The Bi-based oxide superconducting thin film structure of the present invention has a perovskite surface having a surface inclined at an angle of 3 ° or more and 25 ° or less from a two-fold symmetric crystal plane of a perovskite crystal, a pseudo perovskite crystal, or a rock salt crystal. And a pseudo perovskite-type or rock-salt-type oxide single-crystal substrate, and a Bi-based oxide superconducting thin film formed on the surface of the oxide single-crystal substrate, wherein the Bi-based oxide superconductor crystal Is characterized by having a Bi-based oxide superconducting thin film grown obliquely at a predetermined angle from the crystal plane and in only one direction.

本願発明の製造方法によれば、Bi系酸化物超伝導体結晶のc軸を基板面に対して斜め方向に、かつ1方向のみに成長させたBi系酸化物超伝導薄膜を再現性よく得ることができる。従って、実用性に優れたBi系酸化物超伝導薄膜およびそれを用いた構造体を提供することができる。   According to the manufacturing method of the present invention, a Bi-based oxide superconducting thin film in which the c-axis of the Bi-based oxide superconductor crystal is grown obliquely to the substrate surface and in only one direction can be obtained with good reproducibility. be able to. Accordingly, it is possible to provide a Bi-based oxide superconducting thin film having excellent practicality and a structure using the same.

実施形態のBi系酸化物超伝導薄膜の製造工程を示す図である。It is a figure showing a manufacturing process of a Bi system oxide superconducting thin film of an embodiment. SrTiO単結晶基板の(110)面上におけるBiSrCu6+δ(Bi−2201)の(115)配向膜の成長状態を模式的に示す図である。SrTiO 3 is a diagram schematically showing a growth state of a (115) oriented film of the single crystal substrate (110) Bi 2 Sr 2 Cu 1 O 6 + δ on the plane (Bi-2201). 表面がSrTiOの(110)面に対して平行な単結晶基板上におけるBi系酸化物超伝導体結晶の成長初期状態を模式的に示す図である。FIG. 3 is a diagram schematically showing an initial growth state of a Bi-based oxide superconductor crystal on a single crystal substrate having a surface parallel to a (110) plane of SrTiO 3 . 図3に示すBi系酸化物超伝導体結晶に基づくBi系酸化物超伝導薄膜を模式的に示す図である。FIG. 4 is a diagram schematically illustrating a Bi-based oxide superconducting thin film based on the Bi-based oxide superconductor crystal illustrated in FIG. 3. 表面がSrTiOの(110)面に対して傾斜した単結晶基板上におけるBi系酸化物超伝導体結晶の成長初期状態を模式的に示す図である。FIG. 3 is a diagram schematically illustrating an initial growth state of a Bi-based oxide superconductor crystal on a single crystal substrate whose surface is inclined with respect to the (110) plane of SrTiO 3 . 図5に示すBi系酸化物超伝導体結晶に基づくBi系酸化物超伝導薄膜を模式的に示す図である。FIG. 6 is a diagram schematically illustrating a Bi-based oxide superconducting thin film based on the Bi-based oxide superconductor crystal illustrated in FIG. 5. 比較例1のBi−2212超伝導薄膜のφ−ψ2軸スキャン法によるX線回折結果を示す図である。FIG. 7 is a diagram showing an X-ray diffraction result of a Bi-2212 superconducting thin film of Comparative Example 1 by a φ-ψ biaxial scanning method. 実施例1のBi−2212超伝導薄膜のφ−ψ2軸スキャン法によるX線回折結果を示す図である。FIG. 3 is a diagram showing an X-ray diffraction result of a Bi-2212 superconducting thin film of Example 1 by a φ-ψ biaxial scanning method. 実施例2のBi−2212超伝導薄膜のφ−ψ2軸スキャン法によるX線回折結果を示す図である。FIG. 8 is a diagram showing an X-ray diffraction result of a Bi-2212 superconducting thin film of Example 2 by a φ-ψ biaxial scanning method. 実施例3のBi−2212超伝導薄膜のφ−ψ2軸スキャン法によるX線回折結果を示す図である。FIG. 9 is a view showing an X-ray diffraction result of a Bi-2212 superconducting thin film of Example 3 by a φ-ψ biaxial scanning method. 表面がSrTiO(110)面に対して平行な単結晶基板上に成膜したBi系酸化物超伝導薄膜のφ−ψ2軸スキャン法によるX線回折の測定状態を模式的に示す図である。Is a diagram showing a measurement state of the X-ray diffraction schematically by SrTiO 3 (110) Bi system were then deposited onto the parallel single-crystal substrate with respect to surface oxide superconducting thin film phi-.psi.2 axial scanning method surface . 表面がSrTiO(110)面に対して傾斜した単結晶基板上に成膜したBi系酸化物超伝導薄膜のφ−ψ2軸スキャン法によるX線回折の測定状態を模式的に示す図である。Is a diagram showing a measurement state of the X-ray diffraction schematically by SrTiO 3 (110) Bi-based film was formed on a single crystal substrate which is inclined with respect to surface oxide ultrafine conductive thin phi-.psi.2 axial scanning method surface .

以下、実施形態のBi系酸化物超伝導薄膜の製造方法、およびBi系酸化物超伝導薄膜構造体について、図面を参照して説明する。   Hereinafter, a method for manufacturing a Bi-based oxide superconducting thin film and a Bi-based oxide superconducting thin film structure according to an embodiment will be described with reference to the drawings.

図1は実施形態のBi系酸化物超伝導薄膜の製造工程を示す図である。まず、図1(a)に示すように、ペロブスカイト型酸化物、疑似ペロブスカイト型酸化物、または岩塩型酸化物からなる単結晶基板1を用意する。Bi系酸化物超伝導薄膜を成長させる単結晶基板1には、SrTiO(STO)、LaAlO(LAO)、NdGaO(NGO)、NdAlO、(LaAlO0.3−(SrAl0.5Ta0.50.7(LSAT)等の一般式ABO(AはCa、Sr、La等の半径の大きい陽イオン、BはTi、Al等のAより小さい陽イオン)で表される組成を有し、ペロブスカイト型結晶構造を有する酸化物単結晶、LaSrAlO、LaSrGaO等の疑似ペロブスカイト型結晶構造を有する酸化物単結晶、またはMgO等の岩塩型結晶構造を有する酸化物単結晶を用いることが好ましい。 FIG. 1 is a view showing a manufacturing process of a Bi-based oxide superconducting thin film of an embodiment. First, as shown in FIG. 1A, a single crystal substrate 1 made of a perovskite oxide, a pseudo perovskite oxide, or a rock salt oxide is prepared. The single crystal substrate 1 for growing a Bi-based oxide superconducting thin film, SrTiO 3 (STO), LaAlO 3 (LAO), NdGaO 3 (NGO), NdAlO 3, (LaAlO 3) 0.3 - (SrAl 0. General formula ABO 3 such as 5 Ta 0.5 O 3 ) 0.7 (LSAT) (A is a cation having a large radius such as Ca, Sr or La, and B is a cation smaller than A such as Ti or Al). has a composition represented by, oxides having a perovskite crystal structure single crystal, LaSrAlO 4, oxide single crystal, or an oxide having a rock-salt crystal structure such as MgO having a pseudo-perovskite type crystal structure of LaSrGaO 4 such It is preferable to use a single crystal.

単結晶基板1は、ペロブスカイト型酸化物結晶の場合、2回対称の結晶面CFに対して3°以上25°以下の角度(β)で傾斜した物理的な表面(基板面)SSを有する。2回対称の結晶面とは、180°回転させたときに元の形に重なる形状を有する結晶面である。例えば図2に示すように、SrTiOの(110)面においては、[11(バー)0]方向の単位格子の軸長が5.523Åで、[001]方向の軸長が3.095Åであり、2回対称の結晶面であることが分かる。ここではSrTiOの(110)面について述べたが、LaAlOの(110)面も同様である。このようなペロブスカイト型酸化物結晶の特定の結晶面CFから表面(以下、傾斜表面とも記す)SSが3〜25°の角度βで傾斜するように、単結晶体の表面を加工して単結晶基板1を作製する。SrTiOやLaAlO以外のペロブスカイト型酸化物、あるいは疑似ペロブスカイト型酸化物や岩塩型酸化物からなる単結晶基板1を用いる場合も同様である。 In the case of a perovskite oxide crystal, the single crystal substrate 1 has a physical surface (substrate surface) SS inclined at an angle (β) of 3 ° or more and 25 ° or less with respect to a two-fold symmetric crystal plane CF. A two-fold symmetric crystal plane is a crystal plane having a shape overlapping the original shape when rotated by 180 °. For example, as shown in FIG. 2, on the (110) plane of SrTiO 3 , the axis length of the unit cell in the [11 (bar) 0] direction is 5.523 °, and the axis length in the [001] direction is 3.095 °. It can be seen that it is a two-fold symmetric crystal plane. Here, the (110) plane of SrTiO 3 has been described, but the same applies to the (110) plane of LaAlO 3 . The surface of the single crystal body is processed so that the surface (hereinafter also referred to as an inclined surface) SS is inclined at an angle β of 3 to 25 ° from a specific crystal plane CF of such a perovskite oxide crystal. The substrate 1 is manufactured. The same applies to the case where a single crystal substrate 1 made of a perovskite oxide other than SrTiO 3 or LaAlO 3 or a pseudo perovskite oxide or a rock salt oxide is used.

次に、図1(b)に示すように、特定の傾斜表面SSを有する単結晶基板1上にBi系酸化物超伝導体結晶を成長させてBi系酸化物超伝導薄膜2を成膜する。Bi系酸化物超伝導薄膜2としては、以下に示す(1)式、(2)式、または(3)式で表される組成を有するBi系酸化物超伝導体が用いられる。
(Bi1−a(Sr1−bCu6+δ …(1)
(式中、AおよびBは陽イオンであり、aは0≦a<1を満足する数、bは0≦b<1を満足する数、δは0≦δ<1を満足する数である。)
(Bi1−a(Sr1−bCaCu8+δ …(2)
(式中、AおよびBは陽イオンであり、aは0≦a<1を満足する数、bは0≦b<1を満足する数、δは0≦δ<1を満足する数である。)
(Bi1−a(Sr1−bCaCu10+δ …(3)
(式中、AおよびBは陽イオンであり、aは0≦a<1を満足する数、bは0≦b<1を満足する数、δは0≦δ<1を満足する数である。)
上記した(1)〜(3)式において、A元素としてはPbに代表されるが、これ以外にもHg、Al等が例示され、B元素としてはBa、ランタノイド等が例示される。
Next, as shown in FIG. 1B, a Bi-based oxide superconductor crystal is grown on a single-crystal substrate 1 having a specific inclined surface SS to form a Bi-based oxide superconducting thin film 2. . As the Bi-based oxide superconducting thin film 2, a Bi-based oxide superconductor having a composition represented by the following formula (1), (2), or (3) is used.
(Bi 1-a A a ) 2 (Sr 1-b B b ) 2 Cu 1 O 6 + δ (1)
(Where A and B are cations, a is a number satisfying 0 ≦ a <1, b is a number satisfying 0 ≦ b <1, and δ is a number satisfying 0 ≦ δ <1. .)
(Bi 1-a A a ) 2 (Sr 1-b B b ) 2 Ca 1 Cu 2 O 8 + δ (2)
(Where A and B are cations, a is a number satisfying 0 ≦ a <1, b is a number satisfying 0 ≦ b <1, and δ is a number satisfying 0 ≦ δ <1. .)
(Bi 1-a A a ) 2 (Sr 1-b B b ) 2 Ca 2 Cu 3 O 10 + δ (3)
(Where A and B are cations, a is a number satisfying 0 ≦ a <1, b is a number satisfying 0 ≦ b <1, and δ is a number satisfying 0 ≦ δ <1. .)
In the above formulas (1) to (3), the element A is represented by Pb, but Hg, Al and the like are also exemplified, and the element B is exemplified by Ba and lanthanoid.

例えば、(1)式で表される組成を有するBi系酸化物超伝導体(Bi−2201)の薄膜を、SrTiO単結晶基板の(110)面上に成膜した場合、Bi−2201超伝導体結晶とSrTiOの(110)面との格子マッチング等に基づいて、図2に示すようにSrTiOの(110)面上にBi−2201超伝導体結晶の(115)面が成長する。その結果、Bi−2201超伝導体結晶は、c軸([001]f)がSrTiOの(110)面に対して38.5°の角度(α1)となるように成長する。角度α1は、Bi−2201超伝導体結晶のc軸のSrTiOの(110)面からの角度である。角度α2は、SrTiOの(110)面の法線方向に対するBi−2201超伝導体結晶のc軸の傾き角であり、この場合は51.5°である。 For example, when a thin film of a Bi-based oxide superconductor (Bi-2201) having a composition represented by the formula (1) is formed on a (110) plane of a SrTiO 3 single crystal substrate, the Bi-2201 based on the lattice matching or the like of the (110) plane of the conductor crystals and SrTiO 3, (115) plane of the Bi-2201 superconductor crystal is grown on the (110) plane of SrTiO 3 as shown in FIG. 2 . As a result, the Bi-2201 superconductor crystal grows such that the c-axis ([001] f) forms an angle (α1) of 38.5 ° with respect to the (110) plane of SrTiO 3 . The angle α1 is the angle of the c-axis of the Bi-2201 superconductor crystal from the (110) plane of SrTiO 3 . Angle α2 is the inclination angle of the c-axis of the Bi-2201 superconductor crystal with respect to the normal direction of the (110) plane of SrTiO 3 , and in this case, is 51.5 °.

(2)式で表される組成を有するBi系酸化物超伝導体(Bi−2212)の薄膜、あるいは(3)式で表される組成を有するBi系酸化物超伝導体(Bi−2223)の薄膜を、SrTiO単結晶基板の(110)面上に成膜した場合においても、具体的な角度(α1、α2)等は異なるものの、Bi−2201超伝導体結晶と同様に、Bi−2212超伝導体結晶やBi−2223超伝導体結晶はそれらのc軸がSrTiOの(110)面から斜め方向に配向するように成長する。SrTiOの(110)面に代えて、LaAlOの(110)面を用いた場合、さらに他のペロブスカイト型酸化物結晶、疑似ペロブスカイト型酸化物結晶、岩塩型酸化物結晶の(110)面を用いた場合も同様に、c軸が斜め方向に配向するようにBi系酸化物超伝導体結晶の薄膜が成長する。 A thin film of a Bi-based oxide superconductor (Bi-2212) having a composition represented by the formula (2) or a Bi-based oxide superconductor (Bi-2223) having a composition represented by the formula (3) In the case where the thin film is formed on the (110) plane of the SrTiO 3 single crystal substrate, although the specific angles (α1, α2) and the like are different, as in the case of the Bi-2201 superconductor crystal, Bi- The 2212 superconductor crystal and Bi-2223 superconductor crystal grow so that their c-axis is oriented obliquely from the (110) plane of SrTiO 3 . When the (110) plane of LaAlO 3 is used instead of the (110) plane of SrTiO 3, the (110) plane of another perovskite-type oxide crystal, pseudo perovskite-type oxide crystal, and rock salt-type oxide crystal is further changed. Similarly, when used, a thin film of a Bi-based oxide superconductor crystal grows such that the c-axis is oriented in an oblique direction.

Bi−2212超伝導体結晶は、SrTiOの(110)面上に(117)面が成長する。その結果、Bi−2212超伝導体結晶は、SrTiOの(110)面に対するc軸の角度(α1)が41.6°となるように成長する。この場合、角度α2は48.4°である。Bi−2223超伝導体結晶は、SrTiOの(110)面上に(119)面が成長する。その結果、Bi−2223超伝導体結晶は、SrTiOの(110)面に対するc軸の角度(α1)が47.3°となるように成長する。この場合、角度α2は42.7°である。 In the Bi-2212 superconductor crystal, the (117) plane grows on the (110) plane of SrTiO 3 . As a result, the Bi-2212 superconductor crystal grows so that the angle (α1) of the c-axis with respect to the (110) plane of SrTiO 3 is 41.6 °. In this case, the angle α2 is 48.4 °. In the Bi-2223 superconductor crystal, the (119) plane grows on the (110) plane of SrTiO 3 . As a result, the Bi-2223 superconductor crystal grows such that the angle (α1) of the c-axis with respect to the (110) plane of SrTiO 3 is 47.3 °. In this case, the angle α2 is 42.7 °.

上述したように、Bi系酸化物超伝導体結晶とSrTiOやLaAlO等の酸化物結晶の特定の結晶面CFとの格子マッチング等を利用することで、Bi系酸化物超伝導体結晶のc軸を酸化物結晶の特定の結晶面CFに対して所定の角度α1で斜め方向に成長させることができる。ペロブスカイト型酸化物としてSrTiOやLaAlOを用いた場合、Bi系酸化物超伝導体結晶のc軸とペロブスカイト型酸化物結晶の結晶面CFとの角度α1は、上述したように約38〜48°となる。ここでは、Bi系酸化物超伝導体結晶とSrTiOやLaAlOの特定の結晶面CFとの関係について述べたが、これに限定されない。SrTiOやLaAlO以外のペロブスカイト型酸化物結晶、疑似ペロブスカイト型酸化物結晶、岩塩型酸化物結晶を用いた場合のBi系酸化物超伝導体結晶薄膜のc軸の斜め配向、さらにはBi系以外の酸化物超伝導体結晶薄膜のc軸の斜め配向についても、当該酸化物超伝導体結晶と酸化物結晶との格子マッチングを利用することができる。具体的な角度は、酸化物超伝導体の種類と配向面により変化する。 As described above, by utilizing lattice matching between the Bi-based oxide superconductor crystal and a specific crystal plane CF of an oxide crystal such as SrTiO 3 or LaAlO 3 , the Bi-based oxide superconductor crystal can be used. The c-axis can be grown obliquely at a predetermined angle α1 with respect to a specific crystal plane CF of the oxide crystal. When SrTiO 3 or LaAlO 3 is used as the perovskite oxide, the angle α1 between the c-axis of the Bi-based oxide superconductor crystal and the crystal plane CF of the perovskite oxide crystal is about 38 to 48 as described above. °. Here, the relationship between the Bi-based oxide superconductor crystal and the specific crystal plane CF of SrTiO 3 or LaAlO 3 has been described, but the present invention is not limited to this. Oblique orientation of c-axis of Bi-based oxide superconductor crystal thin film using perovskite-type oxide crystal other than SrTiO 3 or LaAlO 3 , pseudo-perovskite-type oxide crystal, rock salt-type oxide crystal, and Bi-type For the oblique orientation of the c-axis of the oxide superconductor crystal thin film other than the above, lattice matching between the oxide superconductor crystal and the oxide crystal can be used. The specific angle varies depending on the type and orientation plane of the oxide superconductor.

Bi系酸化物超伝導体結晶をペロブスカイト型酸化物等の単結晶基板上に成長させる場合に、図3に示すように物理的な表面SSを結晶面CFに略一致させた単結晶基板1Xを用いると、結晶面CFが2回対称面であることに由来して、Bi系酸化物超伝導体結晶2Aは2方向に成長することになる。図4は、Bi系酸化物超伝導体結晶のc軸が酸化物結晶の特定の結晶面CFに対して所定の角度α1で斜め配向しているものの、c軸の配向方向が2方向であるBi系酸化物超伝導薄膜2Xを示している。このようなBi系酸化物超伝導薄膜2Xの表面に電極を付けて、プラナー型の固有ジョセフソン素子を作製したとき、電極間が薄膜結晶のc面で繋がるため、超伝導層/絶縁層の積層方向に電圧を印加できず、固有ジョセフソン効果は発現しない。   When a Bi-based oxide superconductor crystal is grown on a single-crystal substrate such as a perovskite-type oxide, a single-crystal substrate 1X whose physical surface SS substantially matches the crystal plane CF as shown in FIG. When used, the Bi-based oxide superconductor crystal 2A grows in two directions because the crystal plane CF is a two-fold symmetry plane. FIG. 4 shows that the c-axis of the Bi-based oxide superconductor crystal is obliquely oriented at a predetermined angle α1 with respect to a specific crystal plane CF of the oxide crystal, but the c-axis is oriented in two directions. This shows a Bi-based oxide superconducting thin film 2X. When an electrode is attached to the surface of such a Bi-based oxide superconducting thin film 2X to produce a planar intrinsic Josephson device, the electrodes are connected by the c-plane of the thin film crystal. No voltage can be applied in the stacking direction, and the intrinsic Josephson effect does not appear.

そこで、実施形態の製造方法においては、特定の結晶面CFから3〜25°の角度βで傾斜した表面SSを有するペロブスカイト型酸化物等の単結晶基板1を用いている。傾斜表面SSを有する単結晶基板1において、原子層レベルでは図5に示すように、表面SSにステップ1Sが形成される。このようなステップ1Sを有する表面SSにBi系酸化物超伝導薄膜を成膜した場合、成膜初期の超伝導体結晶2Bはステップ1Sの段差面1Rの下部から成長する。超伝導体結晶2Bは、段差面1Rが向いている1方向のみに成長し、もう一方の方向への成長は段差面1Rで遮られる。従って、図6に示すように、Bi系酸化物超伝導体結晶のc軸が結晶面CFから所定の角度α1で斜め方向に、かつ1方向のみに成長したBi系酸化物超伝導薄膜2を得ることができる。   Therefore, in the manufacturing method of the embodiment, a single crystal substrate 1 such as a perovskite oxide having a surface SS inclined at an angle β of 3 to 25 ° from a specific crystal plane CF is used. In the single crystal substrate 1 having the inclined surface SS, steps 1S are formed on the surface SS at the atomic layer level, as shown in FIG. When a Bi-based oxide superconducting thin film is formed on the surface SS having the step 1S, the superconductor crystal 2B in the initial stage of film formation grows from the lower part of the step surface 1R in the step 1S. Superconductor crystal 2B grows only in one direction in which step surface 1R faces, and growth in the other direction is blocked by step surface 1R. Accordingly, as shown in FIG. 6, the Bi-based oxide superconducting thin film 2 in which the c-axis of the Bi-based oxide superconductor crystal is grown obliquely at a predetermined angle α1 from the crystal plane CF and in only one direction is obtained. Obtainable.

例えば、SrTiOの(110)面からの傾斜角βが10°の表面SSを有するSrTiO単結晶基板1を用いて、Bi−2201超伝導体結晶を成長させた場合、Bi−2201超伝導体結晶のc軸をSrTiOの(110)面に対して38.5°の角度α1で、かつ単結晶基板1の表面SSに対して48.5°の角度(α1+β)で斜め方向に配向させ、さらにBi−2201超伝導体結晶のc軸の配向方向を1方向のみに限定したBi系酸化物超伝導薄膜2が得られる。LaAlO単結晶基板1を用いた場合にも、同様なBi系酸化物超伝導薄膜2を得ることができる。Bi−2212超伝導体結晶やBi−2223超伝導体結晶を用いた場合においても、c軸の配向角度が若干異なるものの、同様なBi系酸化物超伝導薄膜2を得ることができる。 For example, using a SrTiO 3 single crystal substrate 1, β the angle of inclination of the (110) plane of SrTiO 3 having a surface SS of 10 °, when growing the Bi-2201 superconductor crystals, Bi-2201 superconducting The c-axis of the body crystal is obliquely oriented at an angle α1 of 38.5 ° with respect to the (110) plane of SrTiO 3 and at an angle (α1 + β) of 48.5 ° with respect to the surface SS of the single crystal substrate 1. As a result, a Bi-based oxide superconducting thin film 2 in which the orientation of the c-axis of the Bi-2201 superconductor crystal is limited to only one direction is obtained. Even when the LaAlO 3 single crystal substrate 1 is used, a similar Bi-based oxide superconducting thin film 2 can be obtained. Even when a Bi-2212 superconductor crystal or Bi-2223 superconductor crystal is used, a similar Bi-based oxide superconducting thin film 2 can be obtained although the c-axis orientation angle is slightly different.

Bi系酸化物超伝導薄膜2の成膜方法は、特に限定されるものではなく、原料として有機金属やそのガスを用いた有機金属化学気相成長法(MOCVD法)、スパッタ法、パルスレーザ蒸着法(PLD法)、反応性蒸着法等の一般的な成膜法を適用することができる。これらの中でも、熱力学的平衡条件に近く、成膜速度が遅いため、高品質のBi系酸化物超伝導薄膜2が得られるMOCVD法を適用することが好ましい。MOCVD法を適用してBi系酸化物超伝導薄膜2を成膜する場合、成膜条件は特に限定されるものではないが、典型的な作製条件としては基板温度600℃程度、全圧6kPa程度、酸素分圧3kPa程度、成膜速度は毎時10Å程度とすることが好ましい。   The method for forming the Bi-based oxide superconducting thin film 2 is not particularly limited, but is a metal organic chemical vapor deposition (MOCVD) method using an organic metal or a gas thereof as a raw material, a sputtering method, or a pulse laser deposition. A general film formation method such as a method (PLD method) and a reactive evaporation method can be applied. Among these, it is preferable to apply the MOCVD method that can obtain a high-quality Bi-based oxide superconducting thin film 2 because the film forming rate is close to the thermodynamic equilibrium condition and the film forming rate is low. When forming the Bi-based oxide superconducting thin film 2 by applying the MOCVD method, the film forming conditions are not particularly limited, but typical manufacturing conditions include a substrate temperature of about 600 ° C. and a total pressure of about 6 kPa. Preferably, the oxygen partial pressure is about 3 kPa, and the film forming rate is about 10 ° per hour.

上述したように、実施形態の製造方法によれは、Bi系酸化物超伝導体結晶のc軸が特定の結晶面CFから所定の角度α1で斜め方向に、かつ1方向のみに成長したBi系酸化物超伝導薄膜2を再現性よく得ることができる。実施形態のBi系酸化物超伝導薄膜2によれば、例えばジョセフソン素子を作製する際に、一般的なリフトオフ法等の2次元リソグラフィ−技術で形成することが可能なプラナー構造を適用できる。c軸方向の長さが薄膜の面方向となるため、超伝導層/絶縁層の積層数を十分に増やすことができる。さらに、c軸方向が基板面に対して斜め方向であるため、電極の設置が容易になる。従って、実用性に優れるBi系酸化物超伝導薄膜構造体を提供することが可能になる。   As described above, according to the manufacturing method of the embodiment, the Bi-based oxide superconductor crystal has the c-axis grown from the specific crystal plane CF obliquely at a predetermined angle α1 and in only one direction. The oxide superconducting thin film 2 can be obtained with good reproducibility. According to the Bi-based oxide superconducting thin film 2 of the embodiment, for example, when manufacturing a Josephson element, a planar structure that can be formed by a two-dimensional lithography technique such as a general lift-off method can be applied. Since the length in the c-axis direction is in the plane direction of the thin film, the number of stacked superconducting layers / insulating layers can be sufficiently increased. Further, since the c-axis direction is oblique to the substrate surface, the installation of the electrodes is facilitated. Therefore, it becomes possible to provide a Bi-based oxide superconducting thin film structure having excellent practicality.

次に、実施例およびその評価結果について述べる。   Next, examples and evaluation results thereof will be described.

(比較例1)
LaAlO単結晶基板を用意した。LaAlO単結晶基板は(110)面に平行な表面(β=0°)を有している。このようなLaAlO単結晶基板の表面((110)面)に、MOCVD法によりBi−2212超伝導体結晶を成長させた。成膜条件は、基板温度600℃、全圧6kPa、酸素分圧3kPa、成膜速度は毎時10Åとした。
(Comparative Example 1)
A LaAlO 3 single crystal substrate was prepared. The LaAlO 3 single crystal substrate has a surface (β = 0 °) parallel to the (110) plane. Bi-2212 superconductor crystals were grown on the surface ((110) plane) of such a LaAlO 3 single crystal substrate by MOCVD. The deposition conditions were a substrate temperature of 600 ° C., a total pressure of 6 kPa, an oxygen partial pressure of 3 kPa, and a deposition rate of 10 ° per hour.

このようにして得たBi−2212超伝導薄膜のφ−ψ2軸スキャン法によるX線回折測定を行った。その測定結果を図7に示す。図7は、超伝導薄膜の表面をφ軸方向とψ軸方向の2方向にスキャンしてX線回折ピークを測定した結果を、φ軸の角度とψ軸の角度に基づいて平面化して示したものである。図7では4つのピーク(丸を付した部分)が表れている。これは、対称性に基づいて1つの面(c面)から2つのピークが現われるためである。図7において、右上と左下のピークと右下と左上のピークは、それぞれ同じc軸を反対側から見たものである。4つのピークが存在するということは、2つの方向にc軸が存在していることを意味し、c軸が2方向に成長していることが分かる。なお、φ−ψ2軸スキャン法によるX線回折測定については、後に詳述する。   The thus obtained Bi-2212 superconducting thin film was subjected to X-ray diffraction measurement by a φ-ψ biaxial scanning method. FIG. 7 shows the measurement results. FIG. 7 shows the results of measuring the X-ray diffraction peak by scanning the surface of the superconducting thin film in two directions, the φ-axis direction and the ψ-axis direction, by flattening the results based on the φ-axis angle and the ψ-axis angle. It is something. FIG. 7 shows four peaks (circled portions). This is because two peaks appear from one plane (c-plane) based on symmetry. In FIG. 7, the upper right and lower left peaks and the lower right and upper left peaks are respectively the same c-axis viewed from the opposite side. The presence of four peaks means that the c-axis exists in two directions, and it can be seen that the c-axis grows in two directions. The X-ray diffraction measurement by the φ-ψ two-axis scanning method will be described later in detail.

(実施例1)
LaAlO単結晶基板を用意した。LaAlO単結晶基板は、(110)面に対して10度傾いた表面(β=10°)を有している。このようなLaAlO単結晶基板の表面に、MOCVD法によりBi−2212超伝導体結晶を成長させた。成膜条件は比較例1と同一とした。このようにして得たBi−2212超伝導薄膜のφ−ψ2軸スキャン法によるX線回折測定を行った。その測定結果を図8に示す。
(Example 1)
A LaAlO 3 single crystal substrate was prepared. The LaAlO 3 single crystal substrate has a surface (β = 10 °) inclined by 10 degrees with respect to the (110) plane. Bi-2212 superconductor crystals were grown on the surface of such a LaAlO 3 single crystal substrate by MOCVD. The film forming conditions were the same as in Comparative Example 1. The thus obtained Bi-2212 superconducting thin film was subjected to X-ray diffraction measurement by a φ-ψ biaxial scanning method. FIG. 8 shows the measurement results.

図8は図7と同様なX線回折ピークの測定結果である。図8では2つのピーク(丸を付した部分)、すなわち右下と左上のピークのみが現われており、右上と左下のピークは消滅している。2つのピークしか存在しないということは、1つの方向のみにc軸が存在していることを意味し、c軸が1方向に成長していることが分かる。   FIG. 8 shows a measurement result of the X-ray diffraction peak similar to FIG. In FIG. 8, only two peaks (circled portions), that is, the lower right and upper left peaks appear, and the upper right and lower left peaks have disappeared. The presence of only two peaks means that the c-axis exists only in one direction, and it can be seen that the c-axis grows in one direction.

(実施例2)
LaAlO単結晶基板を用意した。LaAlO単結晶基板は、(110)面に対して20度傾いた表面(β=20°)を有している。このようなLaAlO単結晶基板の表面に、MOCVD法によりBi−2212超伝導体結晶を成長させた。成膜条件は比較例1と同一とした。このようにして得たBi−2212超伝導薄膜のφ−ψ2軸スキャン法によるX線回折測定を行った。その測定結果を図9に示す。
(Example 2)
A LaAlO 3 single crystal substrate was prepared. The LaAlO 3 single crystal substrate has a surface (β = 20 °) inclined by 20 degrees with respect to the (110) plane. Bi-2212 superconductor crystals were grown on the surface of such a LaAlO 3 single crystal substrate by MOCVD. The film forming conditions were the same as in Comparative Example 1. The thus obtained Bi-2212 superconducting thin film was subjected to X-ray diffraction measurement by a φ-ψ biaxial scanning method. FIG. 9 shows the measurement results.

図9は図7と同様なX線回折ピークの測定結果である。図9では2つのピーク(丸を付した部分)、すなわち右下と左上のピークのみが現われており、右上と左下のピークは消滅している。2つのピークしか存在しないということは、1つの方向のみにc軸が存在していることを意味し、c軸が1方向に成長していることが分かる。   FIG. 9 shows the measurement result of the X-ray diffraction peak similar to FIG. In FIG. 9, only two peaks (circled portions), that is, the lower right and upper left peaks appear, and the upper right and lower left peaks have disappeared. The presence of only two peaks means that the c-axis exists only in one direction, and it can be seen that the c-axis grows in one direction.

(実施例3)
SrTiO単結晶基板を用意した。SrTiO単結晶基板は、(110)面に対して10度傾いた表面(β=10°)を有している。このようなSrTiO単結晶基板の表面に、MOCVD法によりBi−2212超伝導体結晶を成長させた。成膜条件は比較例1と同一とした。このようにして得たBi−2212超伝導薄膜のφ−ψ2軸スキャン法によるX線回折測定を行った。その測定結果を図10に示す。
(Example 3)
An SrTiO 3 single crystal substrate was prepared. The SrTiO 3 single crystal substrate has a surface (β = 10 °) inclined by 10 degrees with respect to the (110) plane. Bi-2212 superconductor crystal was grown on the surface of such a SrTiO 3 single crystal substrate by MOCVD. The film forming conditions were the same as in Comparative Example 1. The thus obtained Bi-2212 superconducting thin film was subjected to X-ray diffraction measurement by a φ-ψ biaxial scanning method. FIG. 10 shows the measurement results.

図10は図7と同様なX線回折ピークの測定結果である。図10では2つのピーク(丸を付した部分)、すなわち右下と左上のピークのみが現われており、右上と左下のピークは消滅している。2つのピークしか存在しないということは、1つの方向のみにc軸が存在していることを意味し、c軸が1方向に成長していることが分かる。   FIG. 10 shows a measurement result of the X-ray diffraction peak similar to FIG. In FIG. 10, only two peaks (circled portions), that is, the lower right and upper left peaks appear, and the upper right and lower left peaks have disappeared. The presence of only two peaks means that the c-axis exists only in one direction, and it can be seen that the c-axis grows in one direction.

なお、実施例1〜3と同様に、(110)面に対して10度傾いた表面を有するLaAlO単結晶基板、(110)面に対して20度傾いた表面を有するLaAlO単結晶基板、(110)面に対して10度傾いた表面を有するSrTiO単結晶基板上に、MOCVD法によりBi−2201超伝導体結晶またはBi−2223超伝導体結晶を成長させたところ、実施例1〜3と同様な結果が得られることが確認された。 As in Example 1 to 3, LaAlO 3 single crystal substrate having a 10-degree inclined surface with respect to (110) plane, LaAlO 3 single crystal substrate having a 20-degree inclined surface with respect to (110) plane A Bi-2201 superconductor crystal or a Bi-2223 superconductor crystal was grown by MOCVD on a SrTiO 3 single crystal substrate having a surface inclined by 10 degrees with respect to the (110) plane. It was confirmed that the same results as in Nos. To 3 were obtained.

上述したφ−ψ2軸スキャン法によるX線回折測定について、以下に詳述する。通常のθ−2θ型の粉末用X線回折装置(2軸ディフラクトメーター)を用いた薄膜の評価は、一般的に行われている。通常の2軸ディフラクトメーターで薄膜の配向を評価する場合、基板に垂直方向の回折を観察することになる。一般的なBi系酸化物超伝導薄膜はc軸配向(基板面に対してc軸が垂直)しており、2軸ディフラクトメーターで基板に垂直方向の(002n)の回折を観測することが可能である。ペロブスカイト型酸化物の単結晶基板の(110)面上に形成されるBi系酸化物超伝導薄膜は、非c軸配向(例えば117配向)であり、通常の2軸ディフラクトメーターによる観察では(117)面による回折が観測される。しかし、(117)面が基板の(110)面に平行であるため、(117)ピークの観察では1方向成長と2方向成長の区別をつけることができない。   The X-ray diffraction measurement by the above-described φ-ψ two-axis scanning method will be described in detail below. Evaluation of a thin film using an ordinary θ-2θ type powder X-ray diffractometer (biaxial diffractometer) is generally performed. When the orientation of a thin film is evaluated using a normal biaxial diffractometer, diffraction in a direction perpendicular to the substrate is observed. A general Bi-based oxide superconducting thin film is c-axis oriented (c-axis is perpendicular to the substrate surface), and diffraction (002n) in the direction perpendicular to the substrate can be observed with a biaxial diffractometer. It is possible. The Bi-based oxide superconducting thin film formed on the (110) plane of the perovskite-type oxide single crystal substrate has a non-c-axis orientation (eg, 117 orientation). 117) Diffraction by the plane is observed. However, since the (117) plane is parallel to the (110) plane of the substrate, observation of the (117) peak cannot distinguish between one-way growth and two-way growth.

このような観点から、成長方向の直接的な評価を行うためには、c軸の方向を測定することが望ましい。さらに、基板の機械的表面に対して結晶面が大きく傾いた基板を用いた場合において、c軸を観測するためには、c軸の結晶面の法線に対する傾斜角(α2)と結晶面に対する基板面の傾斜角(β)とを考え合わせ、機械的な基板表面に対して(α2+β)と(α2−β)とを評価する必要がある。このようなc軸が基板面に対して傾いた試料で配向を知るためには、ω軸の角度にオフセット(軸オフセット)を与える必要がある。傾きの小さい試料では、この手法はとても有効である。しかし、基板の傾き(基板オフセット)が大きく、さらに軸オフセットを与える方法では、回折X線が試料自体の陰になってしまい、測定が不可能になる。このため、非c軸配向膜のc軸がどの方向を向いているのかを直接的に観測することはできない。   From such a viewpoint, it is desirable to measure the direction of the c-axis in order to directly evaluate the growth direction. Furthermore, in the case where a substrate whose crystal plane is greatly inclined with respect to the mechanical surface of the substrate is used, in order to observe the c-axis, the inclination angle (α2) of the c-axis with respect to the normal of the crystal plane and the crystal plane with respect to the normal It is necessary to evaluate (α2 + β) and (α2-β) with respect to the mechanical substrate surface in consideration of the inclination angle (β) of the substrate surface. In order to know the orientation of such a sample in which the c-axis is inclined with respect to the substrate surface, it is necessary to give an offset (axis offset) to the angle of the ω-axis. This method is very effective for samples with a small slope. However, in a method in which the tilt of the substrate (substrate offset) is large and the axis offset is further provided, the diffraction X-rays become a shadow of the sample itself, and the measurement becomes impossible. Therefore, it is not possible to directly observe the direction of the c-axis of the non-c-axis alignment film.

多軸のX線回折装置を使用する場合には、極点図法(pole figure法)が良く用いられている。上述した実施例で示したφ−ψ2軸スキャン法は、極点図法とスキャン軸が同じであるが、スキャン範囲をψ軸のプラスマイナス側に広くとり、直交座標に表示している。これらによって、大きな傾斜角を持つ基板上での2軸配向成長様式を直接的に可視化することができる。これは、2軸ディフラクトメーターの使用時のω軸のオフセットに代えて、ψ軸が結晶面の傾きを利用していることになる。また、基板と膜の結晶のそれぞれについて測定することによって、方位関係も直接的に評価することできる。図10は2方向成長の測定状態を模式的に示しており、図11は1方向成長の測定状態を模式的に示している。2方向成長でも1方向成長でも、測定結果は対称性により右下と左上の1組のピークと右上と左下の1組のピークに基づいて判定される。これらのうち、1組のピークしか現れていなければ、c軸が1方向に成長していることが確認される。   When a multi-axis X-ray diffractometer is used, a pole figure method is often used. In the φ-ψ two-axis scanning method shown in the above-described embodiment, the scan axis is the same as the pole projection, but the scanning range is widened on the plus and minus sides of the ψ axis and displayed in orthogonal coordinates. Thus, the biaxially-oriented growth mode on the substrate having a large inclination angle can be directly visualized. This means that the ψ axis uses the inclination of the crystal plane instead of the offset of the ω axis when the two-axis diffractometer is used. Further, by measuring each of the crystal of the substrate and the crystal of the film, the orientation relationship can also be directly evaluated. FIG. 10 schematically shows a measurement state of two-way growth, and FIG. 11 schematically shows a measurement state of one-way growth. In both the two-way growth and the one-way growth, the measurement result is determined based on a set of peaks at the lower right and upper left and a set of peaks at the upper right and lower left due to symmetry. If only one set of peaks appears, it is confirmed that the c-axis is growing in one direction.

1…単結晶基板、1S…基板表面のステップ、1R…ステップの段差面、2…Bi系酸化物超伝導薄膜、2A,2B…成長初期のBi系酸化物超伝導体結晶、CF…ペロブスカイト型酸化物の結晶面、SS…単結晶基板の表面、SF…Bi系酸化物超伝導薄膜の表面、α1…単結晶基板の結晶面に対するBi系酸化物超伝導体結晶のc軸の角度、α2…単結晶基板の結晶面の法線方向に対するBi系酸化物超伝導体結晶のc軸の角度、β…ペロブスカイト型酸化物基板の結晶面に対する基板表面の角度。   DESCRIPTION OF SYMBOLS 1 ... Single crystal substrate, 1S ... Step of substrate surface, 1R ... Step surface of step, 2 ... Bi-based oxide superconducting thin film, 2A, 2B ... Bi-based oxide superconductor crystal in early growth, CF ... Perovskite type Crystal plane of oxide, SS: Surface of single crystal substrate, SF: Surface of Bi-based oxide superconducting thin film, α1: Angle of c-axis of Bi-based oxide superconductor crystal with respect to crystal plane of single crystal substrate, α2 ... The angle of the c-axis of the Bi-based oxide superconductor crystal with respect to the direction of the normal to the crystal plane of the single crystal substrate. Β. The angle of the substrate surface with respect to the crystal plane of the perovskite oxide substrate.

Claims (7)

SrTiO またはLaAlO の(110)面から3°以上25°以下の角度で傾斜した表面を有するSrTiO 単結晶基板またはLaAlO 単結晶基板を用意する工程と、
前記SrTiO 単結晶基板またはLaAlO 単結晶基板の前記表面に、(Bi 1−a (Sr 1−b Cu 6+δ (AおよびBは陽イオンであり、aは0≦a<1を満足する数、bは0≦b<1を満足する数、δは0≦δ<1を満足する数である。)で表される組成を有するBi系酸化物超伝導体結晶を成長させて、Bi系酸化物超伝導薄膜を成膜する工程を具備し、
前記Bi系酸化物超伝導体結晶の(115)面を、前記SrTiO またはLaAlO の(110)面上に成長させ、前記Bi系酸化物超伝導体結晶のc軸を、前記(110)面に対して38.5°の角度で斜め方向に、かつ1方向のみに成長させて、前記Bi系酸化物超伝導薄膜を成膜することを特徴とするBi系酸化物超伝導薄膜の製造方法。
A step of preparing an SrTiO 3 single crystal substrate or a LaAlO 3 single crystal substrate having a surface inclined at an angle of 3 ° or more and 25 ° or less from a (110) plane of SrTiO 3 or LaAlO 3 ;
On the surface of the SrTiO 3 single crystal substrate or the LaAlO 3 single crystal substrate , (Bi 1−a A a ) 2 (Sr 1−b B b ) 2 Cu 1 O 6 + δ (A and B are cations and a Is a number that satisfies 0 ≦ a <1, b is a number that satisfies 0 ≦ b <1, and δ is a number that satisfies 0 ≦ δ <1.) A step of growing a conductor crystal and forming a Bi-based oxide superconducting thin film,
The (115) plane of the Bi-based oxide superconductor crystal, said SrTiO 3 or LaAlO 3 of (110) is grown on the surface, the c-axis of the Bi-based oxide superconductor crystals, the (110) obliquely at an angle of 38.5 ° to the plane, or one 1 grown only in the direction, of the Bi-based oxide superconducting thin film characterized by depositing the Bi-based oxide superconducting thin film Production method.
SrTiOSrTiO 3 またはLaAlOOr LaAlO 3 の(110)面から3°以上25°以下の角度で傾斜した表面を有するSrTiOHaving a surface inclined at an angle of 3 ° or more and 25 ° or less from the (110) plane of SrTiO 3 3 単結晶基板またはLaAlOSingle crystal substrate or LaAlO 3 単結晶基板を用意する工程と、Preparing a single crystal substrate;
前記SrTiOThe SrTiO 3 単結晶基板またはLaAlOSingle crystal substrate or LaAlO 3 単結晶基板の前記表面に、(BiOn the surface of the single crystal substrate, (Bi 1−a1-a A a ) 2 (Sr(Sr 1−b1-b B b ) 2 CaCa 1 CuCu 2 O 8+δ8 + δ (AおよびBは陽イオンであり、aは0≦a<1を満足する数、bは0≦b<1を満足する数、δは0≦δ<1を満足する数である。)で表される組成を有するBi系酸化物超伝導体結晶を成長させて、Bi系酸化物超伝導薄膜を成膜する工程を具備し、(A and B are cations, a is a number satisfying 0 ≦ a <1, b is a number satisfying 0 ≦ b <1, and δ is a number satisfying 0 ≦ δ <1.) A step of growing a Bi-based oxide superconductor crystal having the composition represented to form a Bi-based oxide superconducting thin film,
前記Bi系酸化物超伝導体結晶の(117)面を、前記SrTiOThe (117) plane of the Bi-based oxide superconductor crystal was 3 またはLaAlOOr LaAlO 3 の(110)面上に成長させ、前記Bi系酸化物超伝導体結晶のc軸を、前記(110)面に対して41.6°の角度で斜め方向に、かつ1方向のみに成長させて、前記Bi系酸化物超伝導薄膜を成膜することを特徴とするBi系酸化物超伝導薄膜の製造方法。And the c-axis of the Bi-based oxide superconductor crystal is grown obliquely at an angle of 41.6 ° with respect to the (110) plane and in only one direction. And forming the Bi-based oxide superconducting thin film.
SrTiOSrTiO 3 またはLaAlOOr LaAlO 3 の(110)面から3°以上25°以下の角度で傾斜した表面を有するSrTiOHaving a surface inclined at an angle of 3 ° or more and 25 ° or less from the (110) plane of SrTiO 3 3 単結晶基板またはLaAlOSingle crystal substrate or LaAlO 3 単結晶基板を用意する工程と、Preparing a single crystal substrate;
前記SrTiOThe SrTiO 3 単結晶基板またはLaAlOSingle crystal substrate or LaAlO 3 単結晶基板の前記表面に、(BiOn the surface of the single crystal substrate, (Bi 1−a1-a A a ) 2 (Sr(Sr 1−b1-b B b ) 2 CaCa 2 CuCu 3 O 10+δ10 + δ (AおよびBは陽イオンであり、aは0≦a<1を満足する数、bは0≦b<1を満足する数、δは0≦δ<1を満足する数である。)で表される組成を有するBi系酸化物超伝導体結晶を成長させて、Bi系酸化物超伝導薄膜を成膜する工程を具備し、(A and B are cations, a is a number satisfying 0 ≦ a <1, b is a number satisfying 0 ≦ b <1, and δ is a number satisfying 0 ≦ δ <1.) A step of growing a Bi-based oxide superconductor crystal having the composition represented to form a Bi-based oxide superconducting thin film,
前記Bi系酸化物超伝導体結晶の(119)面を、前記SrTiOThe (119) plane of the Bi-based oxide superconductor crystal was replaced with the SrTiO 3 またはLaAlOOr LaAlO 3 の(110)面上に成長させ、前記Bi系酸化物超伝導体結晶のc軸を、前記(110)面に対して47.3°の角度で斜め方向に、かつ1方向のみに成長させて、前記Bi系酸化物超伝導薄膜を成膜することを特徴とするBi系酸化物超伝導薄膜の製造方法。And the c-axis of the Bi-based oxide superconductor crystal is grown obliquely at an angle of 47.3 ° with respect to the (110) plane and in only one direction. And forming the Bi-based oxide superconducting thin film.
φ−ψ2軸スキャン法により前記Bi系酸化物超伝導薄膜のX線回折測定を実施し、得られたX線回折結果から前記Bi系酸化物超伝導体結晶のc軸が1方向のみに成長していることを確認する、請求項1ないし請求項のいずれか1項に記載のBi系酸化物超伝導薄膜の製造方法。 X-ray diffraction measurement of the Bi-based oxide superconducting thin film was performed by the φ-ψ biaxial scanning method, and the c-axis of the Bi-based oxide superconductor crystal grew in only one direction from the obtained X-ray diffraction result. The method for producing a Bi-based oxide superconducting thin film according to any one of claims 1 to 3 , wherein the method confirms that the above-mentioned process is performed. SrTiO またはLaAlO の(110)面から3°以上25°以下の角度で傾斜した表面を有するSrTiO 単結晶基板またはLaAlO 単結晶基板と、
前記SrTiO 単結晶基板またはLaAlO 単結晶基板の前記表面に成膜され、(Bi 1−a (Sr 1−b Cu 6+δ (AおよびBは陽イオンであり、aは0≦a<1を満足する数、bは0≦b<1を満足する数、δは0≦δ<1を満足する数である。)で表される組成を有するBi系酸化物超伝導薄膜であって、前記Bi系酸化物超伝導体結晶の(115)面が、前記SrTiO またはLaAlO の(110)面上に成長し、前記Bi系酸化物超伝導体結晶のc軸が、前記SrTiO またはLaAlO の(110)面に対して38.5°の角度で斜め方向に、かつ1方向のみに成長したBi系酸化物超伝導薄膜と
を具備することを特徴とするBi系酸化物超伝導薄膜構造体。
An SrTiO 3 single crystal substrate or a LaAlO 3 single crystal substrate having a surface inclined at an angle of 3 ° or more and 25 ° or less from a (110) plane of SrTiO 3 or LaAlO 3 ;
A film is formed on the surface of the SrTiO 3 single crystal substrate or the LaAlO 3 single crystal substrate , and (Bi 1−a A a ) 2 (Sr 1−b B b ) 2 Cu 1 O 6 + δ (A and B are cations) A is a number satisfying 0 ≦ a <1, b is a number satisfying 0 ≦ b <1, and δ is a number satisfying 0 ≦ δ <1.) An oxide superconducting thin film, wherein the (115) plane of the Bi-based oxide superconductor crystal grows on the (110) plane of the SrTiO 3 or LaAlO 3 , and the Bi-based oxide superconductor crystal And a Bi-based oxide superconducting thin film grown in only one direction at an angle of 38.5 ° with respect to the (110) plane of SrTiO 3 or LaAlO 3. A Bi-based oxide superconducting thin film structure.
SrTiOSrTiO 3 またはLaAlOOr LaAlO 3 の(110)面から3°以上25°以下の角度で傾斜した表面を有するSrTiOHaving a surface inclined at an angle of 3 ° or more and 25 ° or less from the (110) plane of SrTiO 3 3 単結晶基板またはLaAlOSingle crystal substrate or LaAlO 3 単結晶基板と、A single crystal substrate;
前記SrTiOThe SrTiO 3 単結晶基板またはLaAlOSingle crystal substrate or LaAlO 3 単結晶基板の前記表面に成膜され、(BiA film is formed on the surface of the single crystal substrate, and (Bi 1−a1-a A a ) 2 (Sr(Sr 1−b1-b B b ) 2 CaCa 1 CuCu 2 O 8+δ8 + δ (AおよびBは陽イオンであり、aは0≦a<1を満足する数、bは0≦b<1を満足する数、δは0≦δ<1を満足する数である。)で表される組成を有するBi系酸化物超伝導薄膜であって、前記Bi系酸化物超伝導体結晶の(117)面が、前記SrTiO(A and B are cations, a is a number satisfying 0 ≦ a <1, b is a number satisfying 0 ≦ b <1, and δ is a number satisfying 0 ≦ δ <1.) A Bi-based oxide superconducting thin film having the composition shown, wherein the (117) plane of the Bi-based oxide superconductor crystal is the SrTiO 3 またはLaAlOOr LaAlO 3 の(110)面上に成長し、前記Bi系酸化物超伝導体結晶のc軸が、前記SrTiOOf the Bi-based oxide superconductor crystal grown on the (110) plane of 3 またはLaAlOOr LaAlO 3 の(110)面に対して41.6°の角度で斜め方向に、かつ1方向のみに成長したBi系酸化物超伝導薄膜とA Bi-based oxide superconducting thin film grown obliquely at an angle of 41.6 ° with respect to the (110) plane and in only one direction.
を具備することを特徴とするBi系酸化物超伝導薄膜構造体。A Bi-based oxide superconducting thin-film structure comprising:
SrTiOSrTiO 3 またはLaAlOOr LaAlO 3 の(110)面から3°以上25°以下の角度で傾斜した表面を有するSrTiOHaving a surface inclined at an angle of 3 ° or more and 25 ° or less from the (110) plane of SrTiO 3 3 単結晶基板またはLaAlOSingle crystal substrate or LaAlO 3 単結晶基板と、A single crystal substrate;
前記SrTiOThe SrTiO 3 単結晶基板またはLaAlOSingle crystal substrate or LaAlO 3 単結晶基板の前記表面に成膜され、(BiA film is formed on the surface of the single crystal substrate, and (Bi 1−a1-a A a ) 2 (Sr(Sr 1−b1-b B b ) 2 CaCa 2 CuCu 3 O 10+δ10 + δ (AおよびBは陽イオンであり、aは0≦a<1を満足する数、bは0≦b<1を満足する数、δは0≦δ<1を満足する数である。)で表される組成を有するBi系酸化物超伝導薄膜であって、前記Bi系酸化物超伝導体結晶の(119)面が、前記SrTiO(A and B are cations, a is a number satisfying 0 ≦ a <1, b is a number satisfying 0 ≦ b <1, and δ is a number satisfying 0 ≦ δ <1.) A Bi-based oxide superconducting thin film having the composition shown, wherein the (119) plane of the Bi-based oxide superconductor crystal has the SrTiO 2 3 またはLaAlOOr LaAlO 3 の(110)面上に成長し、前記Bi系酸化物超伝導体結晶のc軸が、前記SrTiOOf the Bi-based oxide superconductor crystal grown on the (110) plane of 3 またはLaAlOOr LaAlO 3 の(110)面に対して47.3°の角度で斜め方向に、かつ1方向のみに成長したBi系酸化物超伝導薄膜とA Bi-based oxide superconducting thin film grown obliquely at an angle of 47.3 ° with respect to the (110) plane and in only one direction.
を具備することを特徴とするBi系酸化物超伝導薄膜構造体。A Bi-based oxide superconducting thin-film structure comprising:
JP2015107188A 2015-05-27 2015-05-27 Method for producing Bi-based oxide superconducting thin film and Bi-based oxide superconducting thin film structure Active JP6638949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107188A JP6638949B2 (en) 2015-05-27 2015-05-27 Method for producing Bi-based oxide superconducting thin film and Bi-based oxide superconducting thin film structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107188A JP6638949B2 (en) 2015-05-27 2015-05-27 Method for producing Bi-based oxide superconducting thin film and Bi-based oxide superconducting thin film structure

Publications (2)

Publication Number Publication Date
JP2016222467A JP2016222467A (en) 2016-12-28
JP6638949B2 true JP6638949B2 (en) 2020-02-05

Family

ID=57747150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107188A Active JP6638949B2 (en) 2015-05-27 2015-05-27 Method for producing Bi-based oxide superconducting thin film and Bi-based oxide superconducting thin film structure

Country Status (1)

Country Link
JP (1) JP6638949B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271183A (en) * 1990-05-25 1992-09-28 Sanyo Electric Co Ltd Superconductor
JPH04113368A (en) * 1990-09-04 1992-04-14 Canon Inc Image formation device
JPH04231399A (en) * 1990-12-27 1992-08-20 Furukawa Electric Co Ltd:The Formation of oxide superconducting thin film
JPH04293279A (en) * 1991-03-22 1992-10-16 Mitsubishi Electric Corp Manufacture of oxide superconducting film
JPH04335583A (en) * 1991-05-10 1992-11-24 Furukawa Electric Co Ltd:The Plane-type microbridge josephson junction element
JPH0567815A (en) * 1991-07-05 1993-03-19 Toshiba Corp Superconducting element
JPH06132575A (en) * 1992-10-16 1994-05-13 Sanyo Electric Co Ltd Superconducting device
JPH0769788A (en) * 1993-09-01 1995-03-14 Oki Electric Ind Co Ltd Method for forming oxide superconductor thin film
JP4059963B2 (en) * 1996-10-23 2008-03-12 株式会社フジクラ Manufacturing method of oxide superconductor
JP5939648B2 (en) * 2011-05-31 2016-06-22 古河電気工業株式会社 Oxide superconducting thin film, superconducting fault current limiter, and oxide superconducting thin film manufacturing method

Also Published As

Publication number Publication date
JP2016222467A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
Christen et al. The growth and properties of epitaxial KNbO3 thin films and KNbO3/KTaO3 superlattices
Choi et al. Phase‐transition temperatures of strained single‐crystal SrRuO3 thin films
Ferguson et al. Epitaxial oxygen getter for a brownmillerite phase transformation in manganite films
Bellingeri et al. Tuning of the superconducting properties of FeSe0. 5Te0. 5 thin films through the substrate effect
CN109923245A (en) The monocrystalline perovskite solid solution with indifference point for epitaxial growth monocrystalline
US8993092B2 (en) Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same
Garbarz-Glos et al. Structural, microstructural and impedance spectroscopy study of functional ferroelectric ceramic materials based on barium titanate
El Boutaybi et al. Stabilization of the epitaxial rhombohedral ferroelectric phase in ZrO 2 by surface energy
Li et al. Epitaxial growth of perovskite SrBiO 3 film on SrTiO 3 by oxide molecular beam epitaxy
JP5692365B2 (en) Perovskite-type manganese oxide thin film
JP6638949B2 (en) Method for producing Bi-based oxide superconducting thin film and Bi-based oxide superconducting thin film structure
de Oliveira et al. Evolution of the structural and microstructural characteristics of SrSn1− xTixO3 thin films under the influence of the composition, the substrate and the deposition method
Hesse et al. TEM Cross‐Section Investigations of Epitaxial Ba2Bi4Ti5O18 Thin Films on LaNiO3 Bottom Electrodes on CeO2/YSZ‐Buffered Si (100)
Arya et al. Combining experimental and modelling approaches to understand the expansion of lattice parameter of epitaxial SrTi1-xTaxO3 (x= 0–0.1) films
Kim et al. Atomic structure of defects and interfaces in TiO 2-B and Ca: TiO 2-B (CaTi 5 O 11) films grown on SrTiO 3
JP4148624B2 (en) Dielectric thin film and electronic component thereof
Levoska et al. Epitaxy and B-Site Ordering in Thin Film Hetero-Structures of Relaxor Ferroelectric Perovskites
Hellberg Domain walls in strontium titanate
Dey et al. Highly textured Pb (Zr0. 3Ti0. 7) O3 thin films on GaN/sapphire by metalorganic chemical vapor deposition
Watanabe et al. Epitaxial growth map for Bi4Ti3O12 films: a determining factor for crystal orientation
US9647198B2 (en) Piezoelectric oriented ceramics and method of manufacturing the same
Schlom et al. Searching for superconductivity in epitaxial films of copper-free layered oxides with the K2NiF4 structure
Podpirka et al. Heteroepitaxy and crystallographic orientation transition in La1. 875Sr0. 125NiO4 thin films on single crystal SrTiO3
Yin et al. Growth and characterization of pyrochlore-type (Ca, Ti) 2 (Nb, Ti) 2O7 thin films
Tinnemans DyScO3 thin film substrates: an X-ray diffraction study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6638949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250