JP6638868B1 - Resin composition for solid molding material, method for producing the same, and solid molded body - Google Patents

Resin composition for solid molding material, method for producing the same, and solid molded body Download PDF

Info

Publication number
JP6638868B1
JP6638868B1 JP2019540124A JP2019540124A JP6638868B1 JP 6638868 B1 JP6638868 B1 JP 6638868B1 JP 2019540124 A JP2019540124 A JP 2019540124A JP 2019540124 A JP2019540124 A JP 2019540124A JP 6638868 B1 JP6638868 B1 JP 6638868B1
Authority
JP
Japan
Prior art keywords
modified cellulose
cellulose fiber
molding material
group
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019540124A
Other languages
Japanese (ja)
Other versions
JPWO2019194032A1 (en
Inventor
脩一 大平
脩一 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko PMC Corp
Original Assignee
Seiko PMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko PMC Corp filed Critical Seiko PMC Corp
Application granted granted Critical
Publication of JP6638868B1 publication Critical patent/JP6638868B1/en
Publication of JPWO2019194032A1 publication Critical patent/JPWO2019194032A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、セルロース繊維のナノ解繊物と熱可塑性樹脂(B)とを含有するソリッド成形材料用樹脂組成物であって、セルロース繊維のナノ解繊物が、少なくとも分子内に下記構造を有する(メタ)アクリル基含有変性セルロース繊維(A)であることを特徴とするソリッド成形材料用樹脂組成物である。The present invention is a resin composition for a solid molding material, comprising a nanofibrillated cellulose fiber and a thermoplastic resin (B), wherein the nanofibrillated cellulose fiber has the following structure in at least the molecule: A resin composition for a solid molding material, which is a (meth) acrylic group-containing modified cellulose fiber (A).

Description

本発明は、ソリッド成形材料用途に好適な熱可塑性樹脂と変性セルロース繊維の複合体であるソリッド成形材料用樹脂組成物、及びその製造方法、並びにソリッド成形体に関する。   The present invention relates to a resin composition for a solid molding material, which is a composite of a thermoplastic resin and a modified cellulose fiber suitable for use in a solid molding material, a method for producing the same, and a solid molding.

従来、樹脂に用いられる補強材料として、炭素繊維やガラス繊維等が広く一般的に使用されている。しかしながら、炭素繊維は燃え難いため、サーマルリサイクルに不向きで、かつ価格が高い。また、ガラス繊維は、比較的安価であるが、サーマルリサイクルにおいては廃棄に問題がある。   Conventionally, carbon fibers, glass fibers, and the like have been widely and generally used as reinforcing materials used for resins. However, carbon fibers are difficult to burn, so they are not suitable for thermal recycling and are expensive. Glass fibers are relatively inexpensive, but have a problem in disposal in thermal recycling.

一方、植物繊維から得られるミクロフィブリル化セルロースは比較的安価であり、かつサーマルリサイクルに優れている。また、鋼鉄の5分の1の軽さで同等の強度を有することから、繊維補強樹脂用の充填剤として注目されている。   On the other hand, microfibrillated cellulose obtained from plant fibers is relatively inexpensive and excellent in thermal recycling. In addition, since it has the same strength at one-fifth the weight of steel, it has attracted attention as a filler for fiber reinforced resin.

しかしながら、ミクロフィブリル化セルロースは、樹脂や硬化剤との反応性や樹脂中での分散性が低いため、樹脂にミクロフィブリル化セルロースを加えると、ミクロフィブリル化セルロースと樹脂との間の界面で、接着強度が落ちるという問題がある。それにより、ミクロフィブリル化セルロースの補強効果が発現せず、逆に曲げ強度等の機械的強度が低下する原因となる。   However, since microfibrillated cellulose has low reactivity with a resin or a curing agent or dispersibility in a resin, when microfibrillated cellulose is added to a resin, at the interface between the microfibrillated cellulose and the resin, There is a problem that the adhesive strength is reduced. As a result, the reinforcing effect of the microfibrillated cellulose is not exhibited, and on the contrary, the mechanical strength such as the bending strength is reduced.

このような課題に対して、ミクロフィブリル化セルロースの樹脂中での分散性を改善させる目的で、相溶化剤を用いたり、あるいは、ミクロフィブリル化工程の前後においてセルロース繊維を変性剤等によって変性処理し、セルロース繊維にカルボキシ基等の置換基を導入したりする試みがなされている。   In order to improve the dispersibility of the microfibrillated cellulose in the resin, a compatibilizer is used, or the cellulose fibers are modified with a modifier before and after the microfibrillation step. Attempts have been made to introduce a substituent such as a carboxy group into cellulose fibers.

例えば、特許文献1等に記載されているように、セルロース系のミクロフィブリル化植物繊維とポリプロピレン等のポリオレフィンからなる複合材料において、マレイン酸変性ポリプロピレンを相溶化剤、又は界面補強剤として使用することが広く知られている。   For example, as described in Patent Document 1, in a composite material composed of cellulose-based microfibrillated plant fibers and a polyolefin such as polypropylene, use of maleic acid-modified polypropylene as a compatibilizer or an interface reinforcing agent Is widely known.

また、特許文献2では、変性セルロース繊維として、セルロースの水酸基の一部に多塩基酸無水物を半エステル化してカルボキシ基を導入し、得られたセルロース繊維をミクロフィブリル化させたものを樹脂の補強材料として用いることが記載されている。   Further, in Patent Document 2, as a modified cellulose fiber, a polybasic acid anhydride is partially esterified to a part of the hydroxyl group of cellulose to introduce a carboxy group, and the obtained cellulose fiber is microfibrillated to obtain a resin. It is described to be used as a reinforcing material.

上記いずれの方法を用いても、ミクロフィブリル化セルロースの補強効果が発現し成形体の機械的強度は向上するが、一方で、これらの方法においては、熱可塑性樹脂と共に高温で溶融混練した際の樹脂の着色、あるいは樹脂にポリオキシメチレンを用いた場合の分解物に起因する臭気が課題となっていた。   With any of the above methods, the reinforcing effect of the microfibrillated cellulose is developed and the mechanical strength of the molded body is improved.On the other hand, in these methods, the melt kneading at a high temperature together with the thermoplastic resin is performed. The coloring of the resin or the odor caused by the decomposition product when polyoxymethylene is used as the resin has been a problem.

このように、単に相溶化剤としての酸変性ポリオレフィンを樹脂に混合したり、セルロース繊維にカルボキシ基を導入したりして樹脂に対するミクロフィブリル化セルロースの分散性を改善するのみでは、得られた補強用樹脂を成形材料に用いた場合において、成形体として十分な機械的強度を得ることは非常に困難であった。   As described above, merely adding an acid-modified polyolefin as a compatibilizer to a resin, or introducing a carboxy group into a cellulose fiber to improve the dispersibility of the microfibrillated cellulose in the resin is not sufficient. When a resin for molding is used as a molding material, it has been very difficult to obtain sufficient mechanical strength as a molded article.

米国特許出願公開第2008/0146701号U.S. Patent Application Publication No. 2008/0146701 特開2009−293167号公報JP 2009-293167 A

本発明は、高温で溶融混練しても着色や強度の低下を招かない、耐熱性能及び機械強度に優れた変性セルロースを用いたソリッド成形材料用樹脂組成物及びその製造方法、並びにソリッド成形体を提供することを目的とする。本発明におけるソリッド成形体とは、未発泡の成形体である。   The present invention provides a resin composition for a solid molding material using a modified cellulose having excellent heat resistance and mechanical strength, which does not cause a decrease in coloring or strength even when melt-kneaded at a high temperature, a method for producing the same, and a solid molded body. The purpose is to provide. The solid compact in the present invention is an unfoamed compact.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、セルロース繊維に多価塩基酸無水物と(メタ)アクリル基及びグリシジル基を有する化合物とを反応させた変性セルロース繊維とすることで、変性セルロース繊維の性能が向上することを見出した。これにより、高温での溶融混練時においても分解物の発生が少なく着色が抑制されたソリッド成形材料用樹脂組成物を得ることができる。また、本発明のソリッド成形材料用樹脂組成物をソリッド成形材料の補強材として用いた場合に着色の程度が低く、高強度、高弾性、臭気の少ないソリッド成形体が得られることを見出し、本発明を完成させた。   The present inventors have conducted intensive studies to solve the above problems, and as a result, a modified cellulose fiber obtained by reacting a polybasic acid anhydride with a compound having a (meth) acryl group and a glycidyl group on a cellulose fiber. By doing so, it has been found that the performance of the modified cellulose fiber is improved. This makes it possible to obtain a resin composition for a solid molding material in which generation of decomposed products is small even at the time of melt-kneading at a high temperature and coloring is suppressed. Further, the present inventors have found that when the resin composition for a solid molding material of the present invention is used as a reinforcing material for a solid molding material, a solid molded body having a low degree of coloring, high strength, high elasticity, and a low odor can be obtained. Completed the invention.

すなわち、本発明は、以下に示すものである。
(1)セルロース繊維のナノ解繊物と熱可塑性樹脂(B)とを含有するソリッド成形材料用樹脂組成物であって、セルロース繊維のナノ解繊物が、少なくとも分子内に下記構造を有する(メタ)アクリル基含有変性セルロース繊維(A)であることを特徴とするソリッド成形材料用樹脂組成物。
(2)熱可塑性樹脂(B)の軟化点または融点のいずれかが190℃以下であり、少なくともポリオレフィン系樹脂、ポリエステル系樹脂、スチレン系樹脂、ウレタン樹脂、ポリオキシメチレン樹脂のいずれか1つを含むことを特徴とする前記(1)に記載のソリッド成形材料用樹脂組成物。
(3)(メタ)アクリル基含有変性セルロース繊維(A)が、カルボキシ基含有変性セルロース(C)と(メタ)アクリル基及びグリシジル基を有する化合物(D)との反応物であることを特徴とする前記(1)に記載のソリッド成形材料用樹脂組成物。
(4)カルボキシ基含有変性セルロース(C)が、セルロースと炭素数8以上の多価塩基酸無水物(E)との反応物であることを特徴とする前記(3)に記載のソリッド成形材料用樹脂組成物。
(5)(メタ)アクリル基含有変性セルロース繊維(A)と熱可塑性樹脂(B)の質量比が、(メタ)アクリル基含有変性セルロース繊維(A)/熱可塑性樹脂(B)=1〜55/45〜99であることを特徴とする前記(1)に記載のソリッド成形材料用樹脂組成物。
(6)(メタ)アクリル基含有変性セルロース繊維(A)の酸価が30mgKOH/g未満である前記(1)に記載のソリッド成形材料用樹脂組成物。
(7)前記(1)〜(6)のいずれか1項に記載のソリッド成形材料用樹脂組成物を含有するソリッド成形体。
(8)セルロース繊維のナノ解繊物と熱可塑性樹脂(B)とを含有するソリッド成形材料用樹脂組成物の製造方法であって、セルロース繊維のナノ解繊物が、少なくとも分子内に下記構造を有する(メタ)アクリル基含有変性セルロース繊維(A)であり、カルボキシ基含有変性セルロース(C)と(メタ)アクリル基及びグリシジル基を有する化合物(D)とを反応させて得られ、かつ(メタ)アクリル基含有変性セルロース繊維(A)と熱可塑性樹脂(B)の混合方法が溶融混練であることを特徴とするソリッド成形材料用樹脂組成物の製造方法。
(9)(メタ)アクリル基含有変性セルロース繊維(A)が、セルロースと炭素数8以上の多価塩基酸無水物(E)とを反応させてカルボキシ基含有変性セルロース(C)とした後に、さらに(メタ)アクリル基及びグリシジル基を有する化合物(D)を反応させて得られる変性セルロース繊維であることを特徴とする前記(8)に記載のソリッド成形材料用樹脂組成物の製造方法。
That is, the present invention is as follows.
(1) A resin composition for a solid molding material containing a nanofibrillated cellulose fiber and a thermoplastic resin (B), wherein the nanofibrillated cellulose fiber has the following structure in at least the molecule ( A resin composition for a solid molding material, which is a (meth) acrylic group-containing modified cellulose fiber (A).
(2) either the softening point or the melting point of the thermoplastic resin (B) is 190 ° C. or lower, and at least one of a polyolefin resin, a polyester resin, a styrene resin, a urethane resin, and a polyoxymethylene resin is used. The resin composition for a solid molding material according to the above (1), comprising:
(3) The (meth) acrylic group-containing modified cellulose fiber (A) is a reaction product of a carboxy group-containing modified cellulose (C) and a compound (D) having a (meth) acrylic group and a glycidyl group. The resin composition for a solid molding material according to the above (1).
(4) The solid molding material according to (3), wherein the modified carboxy group-containing cellulose (C) is a reaction product of cellulose and a polybasic acid anhydride (E) having 8 or more carbon atoms. Resin composition.
(5) The mass ratio of the (meth) acrylic group-containing modified cellulose fiber (A) and the thermoplastic resin (B) is such that (meth) acrylic group-containing modified cellulose fiber (A) / thermoplastic resin (B) = 1 to 55 / 45 to 99, wherein the resin composition for a solid molding material according to the above (1),
(6) The resin composition for a solid molding material according to the above (1), wherein the (meth) acrylic group-containing modified cellulose fiber (A) has an acid value of less than 30 mgKOH / g.
(7) A solid molded article containing the resin composition for a solid molding material according to any one of (1) to (6).
(8) A method for producing a resin composition for a solid molding material comprising a nanofibrillated cellulose fiber and a thermoplastic resin (B), wherein the nanofibrillated cellulose fiber has at least the following structure in the molecule: (A) is a (meth) acrylic group-containing modified cellulose fiber (A), which is obtained by reacting a carboxy group-containing modified cellulose (C) with a compound (D) having a (meth) acrylic group and a glycidyl group, and A method for producing a resin composition for a solid molding material, wherein the mixing method of the (meth) acrylic group-containing modified cellulose fiber (A) and the thermoplastic resin (B) is melt kneading.
(9) After the (meth) acrylic group-containing modified cellulose fiber (A) is reacted with cellulose and a polybasic acid anhydride (E) having 8 or more carbon atoms to form a carboxy group-containing modified cellulose (C), The method for producing a resin composition for a solid molding material according to the above (8), which is a modified cellulose fiber obtained by reacting a compound (D) having a (meth) acryl group and a glycidyl group.

本発明に記載の(メタ)アクリル基含有変性セルロース繊維を用いたソリッド成形材料用樹脂組成物の製造方法によれば、変性セルロース繊維または用いる樹脂の分解による臭気の発生や着色を抑制することができ、また得られたソリッド成形材料用樹脂組成物をソリッド成形材料の補強材料として用いた場合、着色及び臭気が抑制された高強度、高弾性率のソリッド成形体を得ることができる。   According to the method for producing a resin composition for a solid molding material using the (meth) acrylic group-containing modified cellulose fiber according to the present invention, generation of odor and coloring due to decomposition of the modified cellulose fiber or the resin used can be suppressed. When the obtained resin composition for a solid molding material is used as a reinforcing material for a solid molding material, a solid molded body having high strength and a high elastic modulus in which coloring and odor are suppressed can be obtained.

カルボキシ基含有セルロース繊維(C−1)と(メタ)アクリル基含有セルロース繊維(A−1)のFT−IRスペクトルを表す図。The figure showing the FT-IR spectrum of carboxy group-containing cellulose fiber (C-1) and (meth) acrylic group-containing cellulose fiber (A-1).

以下、ソリッド成形材料用樹脂組成物及びそれらの製造方法について詳述する。   Hereinafter, the resin compositions for solid molding materials and methods for producing them will be described in detail.

<変性セルロース繊維(A)>
本発明に用いる変性セルロース繊維(A)は、少なくとも分子内に下記構造を有する変性セルロース繊維であればよく、カルボキシ基含有セルロース繊維と(メタ)アクリル基及びグリシジル基を有する化合物とを反応させることで得ることができる。耐熱性及び樹脂との相溶性の観点から、適度にカルボキシ基とグリシジル基が反応していることが好ましい。また、下記構造に示すXは、アルキル、アルケニル、アリール、環状アルキル、環状アルケニルであればよく、疎水性である熱可塑性樹脂との相溶性の観点から、炭素数4以上のアルキル、アルケニル、アリール、環状アルキル、環状アルケニルであることが好ましい。下記構造に示すYは、(CHであり、nは1以上の整数であればよい。下記構造に示すZはH又はCHである。
<Modified cellulose fiber (A)>
The modified cellulose fiber (A) used in the present invention may be any modified cellulose fiber having at least the following structure in the molecule, and is obtained by reacting a carboxy group-containing cellulose fiber with a compound having a (meth) acryl group and a glycidyl group. Can be obtained at From the viewpoint of heat resistance and compatibility with the resin, it is preferable that the carboxy group and the glycidyl group are appropriately reacted. X shown in the following structure may be an alkyl, alkenyl, aryl, cyclic alkyl, or cyclic alkenyl, and from the viewpoint of compatibility with a hydrophobic thermoplastic resin, alkyl, alkenyl, or aryl having 4 or more carbon atoms. , Cyclic alkyl and cyclic alkenyl. Y shown in the following structure is (CH 2 ) n , and n may be an integer of 1 or more. Z shown in the following structure is H or CH 3 .

カルボキシ基含有セルロース繊維と(メタ)アクリル基及びグリシジル基を有する化合物との反応は、反応前後でのセルロース繊維上のカルボキシ基の量について、酸価測定を行うことにより確認することができる。また、変性セルロース繊維(A)の酸価は好ましくは0.1〜100、より好ましくは0.1〜50、更に好ましくは0.1〜30である。セルロース繊維の酸価が高いと、高温高圧での溶融混練時に、変性セルロース繊維に含まれるアセタール結合やエステル結合の分解の恐れがあるため、酸価は低い方が好ましい。   The reaction between the carboxy group-containing cellulose fiber and the compound having a (meth) acrylic group and a glycidyl group can be confirmed by measuring the acid value of the amount of the carboxy group on the cellulose fiber before and after the reaction. The acid value of the modified cellulose fiber (A) is preferably from 0.1 to 100, more preferably from 0.1 to 50, even more preferably from 0.1 to 30. If the acid value of the cellulose fiber is high, the acetal bond or the ester bond contained in the modified cellulose fiber may be decomposed at the time of melt-kneading at a high temperature and a high pressure. Therefore, the acid value is preferably low.

本発明に用いる変性セルロース繊維(A)の酸価は、次の手順で求めた値をいう。
(1)酸価の測定には、原料として用いた変性剤やその加水分解物等の副生成物を洗浄することで除去した変性セルロース繊維を用いる。洗浄に用いる溶媒は、変性セルロース繊維(A)を溶解又は分解せず、かつ原料として用いた変性剤やその加水分解物等の副生成物を溶解させることのできる物を用いる必要がある。例えば、エタノールやイソプロピルアルコールを好適に用いることができる。
(2)変性セルロース繊維(固形で1g)をトルエン/エタノール=1/1混合溶媒50mLに膨潤させ、呈色試薬として0.5%エタノール性フェノールフタレイン指示薬を0.5mL加えて撹拌する。
(3)変性セルロース繊維膨潤液に0.1N水酸化カリウム−エタノール溶液を滴下する。変性セルロース繊維膨潤液が赤色に着色してから30秒間消失しなかった時点を終点とし、以下の式により算出する。
酸価=0.1×56.1×a
a:中和に要した0.1N水酸化カリウムの体積(mL)
The acid value of the modified cellulose fiber (A) used in the present invention refers to a value determined by the following procedure.
(1) For the measurement of the acid value, a modified cellulose fiber obtained by washing a modifier used as a raw material or a by-product such as a hydrolyzate thereof by washing is used. As the solvent used for washing, it is necessary to use a solvent that does not dissolve or decompose the modified cellulose fiber (A) and that can dissolve the by-product such as the modifier used as a raw material and its hydrolyzate. For example, ethanol or isopropyl alcohol can be suitably used.
(2) The modified cellulose fiber (1 g in solid form) is swollen in 50 mL of a mixed solvent of toluene / ethanol = 1/1, and 0.5 mL of a 0.5% ethanolic phenolphthalein indicator is added as a color reagent and stirred.
(3) A 0.1 N potassium hydroxide-ethanol solution is dropped into the modified cellulose fiber swelling solution. The time when the denatured cellulose fiber swelling liquid does not disappear for 30 seconds after the liquid swells in red is calculated as the end point.
Acid value = 0.1 × 56.1 × a
a: Volume of 0.1 N potassium hydroxide required for neutralization (mL)

なお、変性セルロース繊維(A)の酸価を後述するソリッド成形材料用樹脂組成物から算出する場合は、次の手順で求める。
(1)ソリッド成形体を325meshステンレスメッシュで包み、キシレン還流下、140℃で5時間処理を行うことで樹脂を溶解除去し、ソリッド成形体からミクロフィブリル化変性セルロース繊維を抽出する。
(2)得られたミクロフィブリル化変性セルロース繊維(乾燥質量1g)にトルエン/エタノール混合溶媒を加え、分散させる。この際、分散方法は特に限定されないが、高圧ホモジナイザーや超音波装置等を用いることが好ましい。
(3)得られたミクロフィブリル化変性セルロース繊維分散液に呈色試薬としてフェノールフタレインを加えて撹拌し、これに0.1N水酸化カリウム−エタノール溶液を滴下することで酸価を算出した。
In addition, when calculating the acid value of the modified cellulose fiber (A) from the resin composition for a solid molding material described later, the acid value is determined by the following procedure.
(1) The solid molded body is wrapped with a 325 mesh stainless steel mesh, and treated at 140 ° C. for 5 hours under xylene reflux to dissolve and remove the resin, and extract microfibrillated modified cellulose fibers from the solid molded body.
(2) A mixed solvent of toluene / ethanol is added to the obtained microfibrillated modified cellulose fibers (dry mass: 1 g) and dispersed. At this time, the dispersion method is not particularly limited, but it is preferable to use a high-pressure homogenizer, an ultrasonic device, or the like.
(3) Phenolphthalein was added as a color reagent to the obtained microfibrillated modified cellulose fiber dispersion and stirred, and a 0.1N potassium hydroxide-ethanol solution was added dropwise to calculate an acid value.

また、本発明に用いる変性セルロース繊維(A)は、ナノ解繊物(ミクロフィブリル化セルロース)である必要がある。ただし、混合前に必ずしもミクロフィブリル化されたものである必要はなく、混合後の成形材料中で十分にミクロフィブリル化されていれば良い。ミクロフィブリル化セルロースの繊維径は、平均値が通常4〜800nm、好ましくは10〜550nm、特に好ましくは20〜400nmである。   Further, the modified cellulose fiber (A) used in the present invention needs to be a nano-defibrated material (microfibrillated cellulose). However, it is not always necessary to be microfibrillated before mixing, and it is sufficient that the microfibrillated in the molding material after mixing. The average fiber diameter of the microfibrillated cellulose is usually 4 to 800 nm, preferably 10 to 550 nm, and particularly preferably 20 to 400 nm.

変性セルロース繊維(A)を得るのに使用するセルロース繊維の原料としては、セルロース繊維を含んでいる材料であればよく、木材、竹、麻、ジュート、ケナフ、綿、ビートなどに含まれる植物由来の繊維(以下、植物繊維と略することがある)やナタデココ等の微生物セルロースが挙げられる。好ましい植物繊維としては木材が挙げられ、例えば、マツ、スギ、ヒノキ、ユーカリ、アカシアなどが挙げられ、また、これらを原料として得られる紙、あるいは古紙なども用いることができる。セルロース繊維は、1種単独でも用いてもよく、これらから選ばれた2種以上を用いてもよい。セルロース繊維は、上記植物繊維含有材料から得られるパルプや、マーセル化を施したセルロース繊維が挙げられるが、レーヨンやセロファン、リヨセル等の再生セルロース繊維などを含むものであっても良い。   The raw material of the cellulose fiber used to obtain the modified cellulose fiber (A) may be any material containing cellulose fiber, and is derived from plants contained in wood, bamboo, hemp, jute, kenaf, cotton, beet, etc. (Hereinafter sometimes abbreviated as plant fiber) and microbial cellulose such as nata de coco. Preferable plant fibers include wood, for example, pine, cedar, hinoki, eucalyptus, acacia, and the like. Further, paper obtained from these materials or waste paper can also be used. Cellulose fibers may be used alone or in combination of two or more. Examples of the cellulose fiber include pulp obtained from the above-mentioned plant fiber-containing material and mercerized cellulose fiber, and may include regenerated cellulose fiber such as rayon, cellophane, and lyocell.

上記セルロース繊維としては、植物繊維を化学的及び/又は機械的にパルプ化することで得られるケミカルパルプ(未晒クラフトパルプ(UKP)、漂白クラフトパルプ(BKP)、亜硫酸パルプ(SP)、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)、砕木パルプ(GP)、リファイナーメニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等が挙げられる。これらのパルプの中でも、繊維強度が強い針葉樹由来の各種クラフトパルプが特に好ましい。   As the above-mentioned cellulose fiber, chemical pulp (unbleached kraft pulp (UKP), bleached kraft pulp (BKP), sulfite pulp (SP), semi-chemical) obtained by chemically and / or mechanically pulping plant fiber Examples include pulp (SCP), chemical ground pulp (CGP), chemimechanical pulp (CMP), groundwood pulp (GP), refiner mechanical pulp (RMP), thermomechanical pulp (TMP), and chemithermomechanical pulp (CTMP). Among these pulps, various kinds of kraft pulp derived from softwood having a high fiber strength are particularly preferable.

変性セルロース繊維(A)は、カルボキシ基含有変性セルロース(C)と(メタ)アクリル基及びグリシジル基を有する化合物(D)の反応物であることが好ましい。   The modified cellulose fiber (A) is preferably a reaction product of a modified carboxy group-containing cellulose (C) and a compound (D) having a (meth) acryl group and a glycidyl group.

カルボキシ基含有変性セルロース(C)としては、例えば、カルボキシメチルセルロース、カルボキシエチルセルロース、TEMPO(2,2,6,6−tetramethylpiperidine−1−oxyl radical)触媒酸化セルロース等が挙げられる。本発明においては特にその製造方法を限定しないが、熱可塑性樹脂との親和性を担保し、かつ、後の反応で導入される不飽和結合の導入量を比較的調整しやすく、また製造が容易であることから、セルロース繊維の水酸基に炭素数8以上の多価塩基酸無水物(E)を反応して得られたカルボキシ基含有変性セルロース(C)が好ましい。   Examples of the carboxy group-containing modified cellulose (C) include carboxymethyl cellulose, carboxyethyl cellulose, TEMPO (2,2,6,6-tetramethylpiperidine- 1-oxyl radical) -catalyzed oxidized cellulose, and the like. In the present invention, the production method is not particularly limited, but the affinity with the thermoplastic resin is ensured, and the amount of unsaturated bond introduced in the subsequent reaction is relatively easily adjusted, and the production is easy. Therefore, a carboxy group-containing modified cellulose (C) obtained by reacting a polybasic acid anhydride (E) having 8 or more carbon atoms with a hydroxyl group of a cellulose fiber is preferred.

本発明の効果を阻害しない限りにおいて、変性セルロース繊維(A)の製造に際して、セルロース繊維に対する炭素数8以上の多価塩基酸無水物(E)と(メタ)アクリル基及びグリシジル基を有する化合物(D)の添加順は特に限定されない。例えば、セルロース繊維に炭素数8以上の多価塩基酸無水物(E)を反応させた後に(メタ)アクリル基及びグリシジル基を有する化合物(D)を反応させても良いし、同時に添加し反応させても良い。   As long as the effects of the present invention are not impaired, when producing the modified cellulose fiber (A), a compound having a polybasic acid anhydride (E) having 8 or more carbon atoms and a (meth) acryl group and a glycidyl group based on the cellulose fiber ( The order of addition of D) is not particularly limited. For example, a compound (D) having a (meth) acrylic group and a glycidyl group may be reacted after reacting a polybasic acid anhydride (E) having 8 or more carbon atoms with a cellulose fiber, or may be added simultaneously to react. You may let it.

炭素数8以上の多価塩基酸無水物(E)としては、特に限定されないが、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、アルキル若しくはアルケニルコハク酸無水物などが挙げられる。好ましくは、オクテニルコハク酸無水物、ドデセニルコハク酸無水物、ヘキサデセニルコハク酸無水物、オクタデセニルコハク酸無水物である。また、無水マレイン酸変性ポリエチレン樹脂や無水マレイン酸変性ポリプロピレン樹脂、無水マレイン酸変性ポリブタジエン(MPB)、無水マレイン酸変性ポリイソプレン(MPI)、α−オレフィンと無水マレイン酸の共重合体の様な、高分子骨格に対し多価塩基酸が複数個導入された様な化合物も好適に用いることができる。   Examples of the polybasic acid anhydride having 8 or more carbon atoms (E) include, but are not particularly limited to, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and alkyl or alkenyl succinic anhydrides. Preferred are octenyl succinic anhydride, dodecenyl succinic anhydride, hexadecenyl succinic anhydride and octadecenyl succinic anhydride. Also, such as maleic anhydride-modified polyethylene resin and maleic anhydride-modified polypropylene resin, maleic anhydride-modified polybutadiene (MPB), maleic anhydride-modified polyisoprene (MPI), and copolymers of α-olefin and maleic anhydride, Compounds in which a plurality of polybasic acids are introduced into the polymer skeleton can also be suitably used.

炭素数8以上の多価塩基酸無水物(E)を反応させたセルロース繊維の置換度(セルロースのグルコース単位あたり1つの水酸基が置換された場合、置換度1と表す。以下、DSと略することがある。)は、0.01〜2.0が好ましく、0.02〜1.0がより好ましく、0.03〜0.8がさらに好ましい。DSを0.01〜2.0に設定することによって、さらに(メタ)アクリル基及びグリシジル基を有する化合物(D)を反応させる際の反応性を損なわず、効率的に変性セルロース繊維の耐熱性を向上させ、成形体の着色及び臭気を抑え、機械強度を向上させることができる。   Degree of substitution of cellulose fibers reacted with a polybasic acid anhydride (E) having 8 or more carbon atoms (in the case where one hydroxyl group is substituted per glucose unit of cellulose, the degree of substitution is represented by 1; hereinafter, abbreviated as DS). ) Is preferably 0.01 to 2.0, more preferably 0.02 to 1.0, and still more preferably 0.03 to 0.8. By setting DS to 0.01 to 2.0, the heat resistance of the modified cellulose fiber can be efficiently reduced without impairing the reactivity when the compound (D) having a (meth) acryl group and a glycidyl group is further reacted. , The coloring and odor of the molded article can be suppressed, and the mechanical strength can be improved.

なお、本発明におけるDSは、原料として用いた炭素数8以上の多価塩基酸無水物(E)やそれらの加水分解物等の副生成物を洗浄により除去した後、質量増加率から換算して求めたものである。   In the present invention, DS is converted from the mass increase rate after removing by-products such as polybasic acid anhydrides (E) having 8 or more carbon atoms used as a raw material and their hydrolysates by washing. It is what I asked for.

(メタ)アクリル基及びグリシジル基を有する化合物(D)としては、グリシジル(メタ)アクリレート、イタコン酸ジグリシジル、メタクリル酸2−メチルグリシジル等が挙げられる。カルボキシ基含有セルロース(C)のカルボン酸とグリシジル基の反応においては、必ずしも(メタ)アクリル基を有する必要は無いが、耐熱性や物性の向上を目的としソリッド成形体を電子線や過酸化物を用いて架橋させる際、変性セルロース繊維(A)上に(メタ)アクリル基が導入されていることにより、樹脂成分との共架橋が期待できる。   Examples of the compound (D) having a (meth) acryl group and a glycidyl group include glycidyl (meth) acrylate, diglycidyl itaconate, 2-methylglycidyl methacrylate, and the like. In the reaction between the carboxylic acid of the carboxy group-containing cellulose (C) and the glycidyl group, it is not always necessary to have a (meth) acrylic group, but the solid molded body is formed by electron beam or peroxide for the purpose of improving heat resistance and physical properties. When cross-linking is carried out by using (A), co-crosslinking with the resin component can be expected because the (meth) acryl group is introduced on the modified cellulose fiber (A).

本発明の効果を阻害しない限りにおいて、上記(メタ)アクリル基及びグリシジル基を有する化合物(D)のほかに、(メタ)アクリル基を持たないがグリシジル基は有する化合物(D’)を併用してもよい。その量としては、化合物(D)を導入して残るカルボキシ基を全て消費する程度までであれば用いることができる。化合物(D’)としては、オクチレンオキサイド、メチルグリシジルエーテル、ブチルグリシジルエーテル等が挙げられる。   As long as the effects of the present invention are not impaired, in addition to the compound (D) having a (meth) acryl group and a glycidyl group, a compound (D ') having no (meth) acryl group but having a glycidyl group is used in combination. You may. The amount can be used to the extent that all the carboxy groups remaining after the introduction of the compound (D) are consumed. Examples of the compound (D ') include octylene oxide, methyl glycidyl ether, butyl glycidyl ether and the like.

化合物(D)や化合物(D’)とカルボキシ基を反応させることで変性セルロース繊維のカルボキシル残基の量を低減すると、成形体を製造する際の熱安定性が向上するため、できる限り変性セルロース繊維のカルボキシル残基は少ない方が好ましい。   When the amount of the carboxyl residue of the modified cellulose fiber is reduced by reacting the compound (D) or the compound (D ′) with the carboxy group, the heat stability at the time of producing a molded article is improved. It is preferable that the number of carboxyl residues in the fiber is small.

<熱可塑性樹脂(B)>
本発明の発泡成形体用組成物に用いられる熱可塑性樹脂(B)は、成形材料用樹脂として通常用いられているものであれば特に限定されない。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−αオレフィン共重合体、エチレン酢酸ビニル共重合体またはその加水分解物などのポリオレフィン系樹脂;ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル系樹脂;ポリスチレン、(メタ)アクリル酸エステル−スチレン共重合体、スチレン−ブタジエン共重合体などのスチレン系樹脂;熱可塑性ポリウレタンなどのウレタン樹脂;ポリオキシメチレンなどのポリオキシメチレン樹脂;アイオノマー樹脂、セルロース樹脂等の熱可塑性樹脂、ならびにオレフィン系エラストマー、塩化ビニル系エラストマー、スチレン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマー樹脂及びこれらの二種以上の混合物が挙げられる。好ましくは、ポリオレフィン系樹脂、ポリエステル系樹脂、スチレン系樹脂、ウレタン樹脂、ポリオキシメチレン樹脂である。熱可塑性樹脂(B)の軟化点または融点のいずれかは、190℃以下が好ましく、180℃以下がより好ましく、170℃以下がさらに好ましい。また、0℃以上であることが好ましい。
<Thermoplastic resin (B)>
The thermoplastic resin (B) used in the composition for a foamed molded article of the present invention is not particularly limited as long as it is generally used as a resin for a molding material. Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-α-olefin copolymer, ethylene-vinyl acetate copolymer or a hydrolyzate thereof; and polyethylene terephthalate and polybutylene terephthalate. Polyester resin; Styrene resin such as polystyrene, (meth) acrylate-styrene copolymer, styrene-butadiene copolymer; urethane resin such as thermoplastic polyurethane; polyoxymethylene resin such as polyoxymethylene; ionomer resin And thermoplastic resins such as cellulose resins, olefin-based elastomers, vinyl chloride-based elastomers, styrene-based elastomers, urethane-based elastomers, polyester-based elastomers, and polyamide-based elastomers. Thermoplastic elastomer resin and mixtures of two or more of these such as Sutoma like. Preferred are polyolefin-based resins, polyester-based resins, styrene-based resins, urethane resins, and polyoxymethylene resins. Either the softening point or the melting point of the thermoplastic resin (B) is preferably at most 190 ° C, more preferably at most 180 ° C, even more preferably at most 170 ° C. Further, the temperature is preferably 0 ° C. or higher.

また、本発明の効果を阻害しない範囲内であれば、変性セルロース(A)、熱可塑性樹脂(B)以外に、他の添加剤を添加してもよい。その他の添加剤としては、例えば、相溶化剤、無機充填剤、顔料、酸化防止剤、難燃剤、熱安定剤などを挙げることができる。   Further, other additives may be added in addition to the modified cellulose (A) and the thermoplastic resin (B) as long as the effects of the present invention are not impaired. Other additives include, for example, compatibilizers, inorganic fillers, pigments, antioxidants, flame retardants, heat stabilizers, and the like.

相溶化剤としては、例えば、無水マレイン酸、無水マレイン酸変性ポリエチレン樹脂、酸化ポリエチレン樹脂、無水マレイン酸変性ポリプロピレン樹脂やエポキシ基含有樹脂(グリシジルメタクリレート及びエチレンの共重合体等)を挙げることができ、市販の各種相溶化剤を使用してもよい。   Examples of the compatibilizing agent include maleic anhydride, a maleic anhydride-modified polyethylene resin, a polyethylene oxide resin, a maleic anhydride-modified polypropylene resin, and an epoxy group-containing resin (eg, a copolymer of glycidyl methacrylate and ethylene). Various commercially available compatibilizers may be used.

本発明のソリッド成形材料用樹脂組成物は、(メタ)アクリル基含有変性セルロース繊維(A)/熱可塑性樹脂(B)=1〜55/45〜99の質量比であることが好ましい。より好ましくは(A)/(B)=20〜50/50〜80であり、(A)/(B)=30〜50/50〜70がさらに好ましい。本発明のソリッド成形材料用樹脂組成物の質量比は(メタ)アクリル基含有変性セルロース繊維(A)及び熱可塑性樹脂(B)を最初にほぼ均一に分散した状態とした段階のものをいう。変性セルロース繊維(A)及び熱可塑性樹脂(B)以外の他の添加剤は、変性セルロース繊維(A)及び熱可塑性樹脂(B)の合計を100質量%としたときに20質量%以下となることが好ましい。   The resin composition for a solid molding material of the present invention preferably has a (meth) acrylic group-containing modified cellulose fiber (A) / thermoplastic resin (B) mass ratio of 1 to 55/45 to 99. More preferably, (A) / (B) = 20 to 50/50 to 80, and (A) / (B) = 30 to 50/50 to 70 is still more preferable. The mass ratio of the resin composition for a solid molding material according to the present invention refers to that at the stage where the (meth) acrylic group-containing modified cellulose fiber (A) and the thermoplastic resin (B) are initially almost uniformly dispersed. The additive other than the modified cellulose fiber (A) and the thermoplastic resin (B) is 20% by mass or less when the total of the modified cellulose fiber (A) and the thermoplastic resin (B) is 100% by mass. Is preferred.

<ソリッド成形材料用樹脂組成物の製造方法>
本発明のソリッド成形材料用樹脂組成物は、一軸又は多軸混練機、ニーダー等を用いて、変性セルロース繊維(A)と熱可塑性樹脂(B)とを混合し、樹脂成分中に繊維成分を均一に微細分散することで得られる。混合前の変性セルロース繊維(A)が、予め解繊されていないものを用いる場合でも、この混合工程において繊維成分がナノ解繊されていればよい。また、変性セルロース繊維(A)と熱可塑性樹脂(B)とを混合する前に、変性セルロース繊維(A)と粉末化した熱可塑性樹脂(B)とをあらかじめ混合しておいてもよい。あらかじめ混合しておくことで、混合時に変性セルロース繊維(A)をより容易に熱可塑性樹脂(B)に分散させやすくなる。変性セルロース繊維(A)と粉末化した熱可塑性樹脂(B)とをあらかじめ混合する際には、乾燥した変性セルロース繊維(A)と、乾燥し粉末化した熱可塑性樹脂(B)とをミキサー等で混合してもよいし、変性セルロース繊維(A)と熱可塑性樹脂(B)のいずれとも反応しない溶剤中に粉末化した変性セルロース繊維(A)と熱可塑性樹脂(B)を分散させ、この分散液を濾過、乾燥してもよい。そして、本発明の製造方法においては、一軸又は多軸混練機、ニーダー等を用いて混合を行うが、混合における原料の配合順や混合温度、溶融のタイミングは特に限定されない。例えば、変性セルロース繊維(A)と熱可塑性樹脂(B)とを溶融して混練しても良いし、又は、予め熱可塑性樹脂(B)を溶融しておき、混練時に変性セルロース繊維(A)を混合しても良い。溶融混練における混練温度としては、加工性や変性セルロース繊維(A)と熱可塑性樹脂(B)の分散や劣化を考慮すると、温度が70〜240℃であることが好ましい。また、一軸又は多軸混練機のスクリュー回転速度は全工程とも25〜400rpmの範囲であることが好ましい。
<Method for producing resin composition for solid molding material>
The resin composition for a solid molding material of the present invention is obtained by mixing the modified cellulose fiber (A) and the thermoplastic resin (B) using a uniaxial or multiaxial kneader, a kneader, or the like, and adding the fiber component to the resin component. It is obtained by fine and uniform dispersion. Even when the modified cellulose fiber (A) before mixing uses a fiber that has not been defibrated in advance, it is only necessary that the fiber component is nano-defibrated in the mixing step. Before the modified cellulose fiber (A) and the thermoplastic resin (B) are mixed, the modified cellulose fiber (A) and the powdered thermoplastic resin (B) may be mixed in advance. By preliminarily mixing, the modified cellulose fiber (A) can be more easily dispersed in the thermoplastic resin (B) at the time of mixing. When the modified cellulose fiber (A) and the powdered thermoplastic resin (B) are previously mixed, the dried modified cellulose fiber (A) and the dried and powdered thermoplastic resin (B) are mixed with a mixer or the like. Or the powdered modified cellulose fiber (A) and the thermoplastic resin (B) are dispersed in a solvent that does not react with any of the modified cellulose fiber (A) and the thermoplastic resin (B). The dispersion may be filtered and dried. In the production method of the present invention, mixing is performed using a single-screw or multi-screw kneader, a kneader, or the like, but the mixing order, mixing temperature, and melting timing of the raw materials in the mixing are not particularly limited. For example, the modified cellulose fiber (A) and the thermoplastic resin (B) may be melted and kneaded, or the thermoplastic resin (B) may be melted in advance and the modified cellulose fiber (A) may be kneaded. May be mixed. The kneading temperature in the melt kneading is preferably from 70 to 240 ° C. in consideration of processability and dispersion or deterioration of the modified cellulose fiber (A) and the thermoplastic resin (B). Further, it is preferable that the screw rotation speed of the single-screw or multi-screw kneader is in the range of 25 to 400 rpm in all steps.

本発明のソリッド成形材料用樹脂組成物は、変性セルロース繊維(A)と熱可塑性樹脂(B)からなる。ソリッド成形材料用樹脂組成物の加工適性(分散性、混練時間短縮、ペレット化など)やソリッド成形体の機械強度を考慮すれば、変性セルロース繊維(A)/熱可塑性樹脂(B)=1〜55/45〜99からなる質量比にて混合して、ソリッド成形材料用樹脂組成物を製造することが好ましい。本発明の製造方法においては、変性セルロース繊維(A)と熱可塑性樹脂(B)との混合は、溶融混練が好ましい。   The resin composition for a solid molding material of the present invention comprises a modified cellulose fiber (A) and a thermoplastic resin (B). Considering the workability of the resin composition for solid molding materials (dispersibility, shortening of kneading time, pelletization, etc.) and the mechanical strength of the solid molded body, modified cellulose fiber (A) / thermoplastic resin (B) = 1 to 1 It is preferable to mix at a mass ratio of 55/45 to 99 to produce a resin composition for a solid molding material. In the production method of the present invention, the mixing of the modified cellulose fiber (A) and the thermoplastic resin (B) is preferably performed by melt-kneading.

このようにして製造されたソリッド成形材料は、任意の濃度に希釈及び成形することで、弾性と強度に優れたソリッド成形体を得ることができる。例えば、自動車、電車、船舶、飛行機等の内装材及び外装材;照明器具筐体、パソコン及びテレビ等の家電筐体及び筐体の補強材、内部部品等;携帯電話や電子ペーパー端末、パソコン端末、映像再生機器等の電子機器の筐体、構造材、内部部品等;建材部品;文具等の事務機器等;容器やコンテナー;玩具及び雑貨部品;スポーツ及び健康部品や、各種シート、単層フィルム及び多層フィルム;緩衝材料;包装材料等のソリッド成形体として使用することができる。   By diluting and molding the solid molding material thus manufactured to an arbitrary concentration, a solid molded body having excellent elasticity and strength can be obtained. For example, interior and exterior materials of automobiles, trains, ships, airplanes, etc .; lighting equipment housings, reinforcing materials for housings and housings of home appliances such as personal computers and televisions, internal parts, etc .; mobile phones, electronic paper terminals, personal computer terminals Housing, structural materials, internal parts, etc. of electronic equipment such as video playback equipment; building materials parts; office equipment such as stationery; containers and containers; toys and miscellaneous goods parts; sports and health parts; various sheets; And a multilayer film; a cushioning material; a solid molding such as a packaging material.

以下、本発明の実施例について説明する。なお、本発明はこれらの実施例に限定されるものではない。また、実施例中「%」は特に断りのない限り「質量%」を意味する。   Hereinafter, examples of the present invention will be described. Note that the present invention is not limited to these examples. In the examples, “%” means “% by mass” unless otherwise specified.

<物性値測定法>
これらの実施例の一部で用いられた物性値測定法は、以下のとおりである。
<Physical property measurement method>
The physical property measurement methods used in some of these examples are as follows.

<1>カルボキシ基含有変性セルロース(C)の水酸基置換度(DS)の算出
カルボキシ基含有変性セルロース(C)の置換度DSの算出は、反応物を洗浄することにより原料として用いた変性剤や、それらの加水分解物等の副生成物を除去した後、反応前後の質量増加率により求めたものであり、以下の式より算出した。
DS=(b/c)/(d/e)
b:(カルボキシ基含有変性セルロース(C)の乾燥質量)−(セルロース繊維の乾燥質量)
c:多価塩基酸無水物(E)の分子量
d:セルロース繊維の乾燥質量
e:セルロースを構成するグルコースユニットの分子量(分子量162)
<1> Calculation of Degree of Hydroxyl Substitution (DS) of Modified Carboxyl Group-Containing Cellulose (C) Calculation of the degree of substitution DS of carboxy group-containing modified cellulose (C) is performed by washing the reactant with a modifying agent used as a raw material. After removing by-products such as hydrolysates thereof, it was determined by the rate of mass increase before and after the reaction, and was calculated by the following equation.
DS = (b / c) / (d / e)
b: (dry mass of carboxy group-containing modified cellulose (C))-(dry mass of cellulose fiber)
c: molecular weight of polybasic acid anhydride (E) d: dry mass of cellulose fiber e: molecular weight of glucose unit constituting cellulose (molecular weight 162)

<2>変性セルロース繊維の酸価の算出
酸価の測定には、原料として用いた変性剤やそれらの加水分解物等の副生成物を洗浄することで除去した変性セルロース繊維を用いた。変性セルロース繊維(乾燥質量1g)をトルエン/エタノール混合溶媒に膨潤させ、呈色試薬としてフェノールフタレインを加えて撹拌して変性セルロース繊維膨潤液とし、これに0.1N水酸化カリウム−エタノール溶液を滴下した。変性セルロース繊維膨潤液が赤色に着色してから30秒間消失しなかった時点を終点とし、以下の式により算出した。
酸価=0.1×56.1×a
a:中和に要した0.1N水酸化カリウムの体積(mL)
<2> Calculation of Acid Value of Modified Cellulose Fiber The acid value was measured by using modified cellulose fibers obtained by washing by-products such as a modifier used as a raw material and a hydrolyzate thereof. The denatured cellulose fiber (dry mass 1 g) is swollen in a mixed solvent of toluene / ethanol, phenolphthalein is added as a color reagent, and the mixture is stirred to obtain a denatured cellulose fiber swelling solution, and a 0.1 N potassium hydroxide-ethanol solution is added thereto. It was dropped. The time when the denatured cellulose fiber swelling liquid did not disappear for 30 seconds after it was colored red was determined as the end point and calculated by the following equation.
Acid value = 0.1 × 56.1 × a
a: Volume of 0.1 N potassium hydroxide required for neutralization (mL)

<3>ソリッド成形材料用樹脂組成物中の変性セルロース繊維の数平均繊維径の算出
ソリッド成形材料用樹脂組成物を325meshステンレスメッシュで包み、キシレン還流下、140℃で5時間処理を行うことで樹脂を溶解除去し、ミクロフィブリル化変性セルロース繊維をソリッド成形材料用樹脂組成物から抽出し、これを電子顕微鏡で観察し、繊維の幅を計測することでミクロフィブリル化変性セルロース繊維の数平均繊維径を算出した。
<3> Calculation of Number Average Fiber Diameter of Modified Cellulose Fiber in Resin Composition for Solid Molding Material The resin composition for solid molding material is wrapped in a 325 mesh stainless steel mesh and treated at 140 ° C. for 5 hours under xylene reflux. The resin is dissolved and removed, and the microfibrillated modified cellulose fibers are extracted from the resin composition for a solid molding material, which is observed with an electron microscope, and the fiber width is measured to obtain the number average fiber of the microfibrillated modified cellulose fibers. The diameter was calculated.

<4>機械強度の測定
上記<ソリッド成形材料用樹脂組成物の製造方法>で得られたソリッド成形材料用樹脂組成物を任意の濃度に希釈及び成形し、オリエンテック(株)製引張試験機「テンシロンRTM−50」を用いてソリッド成形体の強度測定を行った。
<4> Measurement of mechanical strength The resin composition for solid molding material obtained in the above <Method for producing resin composition for solid molding material> is diluted and molded to an arbitrary concentration, and a tensile tester manufactured by Orientec Co., Ltd. The strength of the solid molded body was measured using "Tensilon RTM-50".

<変性セルロース繊維の製造>
[カルボキシ基含有変性セルロース(C−1)の製造例]
容器へ水を含んだ針葉樹晒クラフトパルプ(NBKP)500質量部(固形分100質量部)とN−メチルピロリドン(以下、NMPと略することがある)150質量部を仕込み、減圧脱水により水分を留去し、ヘキサデセニルコハク酸無水物19.9質量部を投入し、80℃で4時間反応した。反応後減圧留去によりNMPを留去し、カルボキシ基含有変性セルロース(C−1)を得た。DSは0.11、酸価は29であった。図1にFT−IR分析によって得られたカルボキシ基含有変性セルロース(C−1)のスペクトルを示す。
<Production of modified cellulose fiber>
[Production Example of Carboxy Group-Containing Modified Cellulose (C-1)]
A container is charged with 500 parts by mass of softwood bleached kraft pulp (NBKP) containing water (100 parts by mass of solid content) and 150 parts by mass of N-methylpyrrolidone (hereinafter sometimes abbreviated as NMP), and water is removed by dehydration under reduced pressure. After distilling off, 19.9 parts by mass of hexadecenyl succinic anhydride was added and reacted at 80 ° C. for 4 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a carboxy group-containing modified cellulose (C-1). DS was 0.11 and acid value was 29. FIG. 1 shows a spectrum of the modified carboxy-containing cellulose (C-1) obtained by FT-IR analysis.

[カルボキシ基含有変性セルロース(C−2)の製造例]
容器へ水を含んだ、NBKP500質量部(固形分100質量部)とNMP150質量部を仕込み、減圧脱水により水分を留去し、ヘキサデセニルコハク酸無水物59.7質量部を投入し、80℃で4時間反応した。反応後減圧留去によりNMPを留去し、カルボキシ基含有変性セルロース(C−2)を得た。DSは0.29、酸価は65であった。
[Production Example of Carboxy Group-Containing Modified Cellulose (C-2)]
A container was charged with 500 parts by mass of NBKP containing water (100 parts by mass of solid content) and 150 parts by mass of NMP, water was distilled off by dehydration under reduced pressure, and 59.7 parts by mass of hexadecenyl succinic anhydride was added. The reaction was performed at 80 ° C for 4 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a carboxy group-containing modified cellulose (C-2). DS was 0.29 and acid value was 65.

[カルボキシ基含有変性セルロース(C−3)の製造例]
容器へ水を含んだ、NBKP500質量部(固形分100質量部)とNMP150質量部を仕込み、減圧脱水により水分を留去し、α-オレフィンと無水マレイン酸の共重合体(ダイヤカルナ(登録商標:三菱ケミカル株式会社)30M)を19.9質量部投入し、80℃で4時間反応した。反応後減圧留去によりNMPを留去し、カルボキシ基含有変性セルロース(C−3)を得た。DSは0.04、酸価は8であった。
[Production Example of Carboxy Group-Containing Modified Cellulose (C-3)]
500 parts by mass of NBKP (100 parts by mass of solid content) and 150 parts by mass of NMP containing water are charged into a container, and water is distilled off by dehydration under reduced pressure to obtain a copolymer of α-olefin and maleic anhydride (Diacarna (registered trademark) : Mitsubishi Chemical Corporation) (30M) was charged at 19.9 parts by mass and reacted at 80 ° C for 4 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a carboxy group-containing modified cellulose (C-3). DS was 0.04 and acid value was 8.

[カルボキシ基含有変性セルロース(C−4)の製造例]
容器へ水を含んだ、NBKP500質量部(固形分100質量部)とNMP150質量部を仕込み、減圧脱水により水分を留去し、コハク酸無水物を6.2質量部投入し、80℃で4時間反応した。反応後減圧留去によりNMPを留去し、カルボキシ基含有変性セルロース(C−4)を得た。DSは0.10、酸価は32であった。
[Production Example of Modified Carboxyl Group-Containing Cellulose (C-4)]
A container was charged with 500 parts by mass of NBKP containing water (100 parts by mass of solid content) and 150 parts by mass of NMP, and water was distilled off by dehydration under reduced pressure, and 6.2 parts by mass of succinic anhydride was added. Reacted for hours. After the reaction, NMP was distilled off under reduced pressure to obtain carboxy group-containing modified cellulose (C-4). DS was 0.10 and acid value was 32.

[変性セルロース繊維(A−1)の製造例]
容器へカルボキシ基含有変性セルロース(C−1)100質量部(固形)とNMP150質量部を仕込み、グリシジルメタクリレート4.4質量部を投入し、130℃で3時間反応した。反応後減圧留去によりNMPを留去し、不飽和結合を有する変性セルロース繊維(A−1)を得た。酸価は11であった。図1にFT−IRによって得られた変性セルロース繊維(A−1)のスペクトルを示す。
[Production Example of Modified Cellulose Fiber (A-1)]
100 parts by mass (solid) of carboxy group-containing modified cellulose (C-1) and 150 parts by mass of NMP were charged into a container, 4.4 parts by mass of glycidyl methacrylate was charged, and the mixture was reacted at 130 ° C. for 3 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a modified cellulose fiber (A-1) having an unsaturated bond. The acid value was 11. FIG. 1 shows the spectrum of the modified cellulose fiber (A-1) obtained by FT-IR.

[変性セルロース繊維(A−2)の製造例]
容器へカルボキシ基含有変性セルロース(C−1)100質量部(固形)とNMP150質量部を仕込み、グリシジルメタクリレート7.3質量部を投入し、130℃で3時間反応した。反応後減圧留去によりNMPを留去し、変性セルロース繊維(A−2)を得た。酸価は2であった。
[Production Example of Modified Cellulose Fiber (A-2)]
100 parts by mass (solid) of carboxy group-containing modified cellulose (C-1) and 150 parts by mass of NMP were charged into a container, 7.3 parts by mass of glycidyl methacrylate was charged, and the mixture was reacted at 130 ° C. for 3 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a modified cellulose fiber (A-2). The acid value was 2.

[変性セルロース繊維(A−3)の製造例]
容器へカルボキシ基含有変性セルロース(C−2)100質量部(固形)とNMP150質量部を仕込み、グリシジルメタクリレート9.9質量部を投入し、130℃で3時間反応した。反応後減圧留去によりNMPを留去し、不飽和結合を有する変性セルロース繊維(A−3)を得た。酸価は24であった。
[Production Example of Modified Cellulose Fiber (A-3)]
100 parts by mass (solid) of carboxy group-containing modified cellulose (C-2) and 150 parts by mass of NMP were charged into a container, 9.9 parts by mass of glycidyl methacrylate was charged, and the mixture was reacted at 130 ° C. for 3 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a modified cellulose fiber (A-3) having an unsaturated bond. The acid value was 24.

[不飽和結合を有する変性セルロース繊維(A−4)の製造例]
容器へカルボキシ基含有変性セルロース繊維(C−3)100質量部(固形)とNMP150質量部を仕込み、グリシジルメタクリレート1.3質量部を投入し、130℃で3時間反応した。反応後減圧留去によりNMPを留去し、変性セルロース繊維(A−4)を得た。酸価は3であった。
[Production Example of Modified Cellulose Fiber (A-4) Having Unsaturated Bond]
100 parts by mass (solid) of the carboxy group-containing modified cellulose fiber (C-3) and 150 parts by mass of NMP were charged into a container, 1.3 parts by mass of glycidyl methacrylate was charged, and the mixture was reacted at 130 ° C. for 3 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a modified cellulose fiber (A-4). The acid value was 3.

[変性セルロース繊維(A−5)の製造例]
容器へカルボキシ基含有変性セルロース(C−1)100質量部(固形)とNMP150質量部を仕込み、グリシジルメタクリレート4.4質量部とブチルグリシジルエーテル2.7質量部を投入し、130℃で3時間反応した。反応後減圧留去によりNMPを留去し、変性セルロース繊維(A−5)を得た。酸価は1であった。
[Production Example of Modified Cellulose Fiber (A-5)]
A container is charged with 100 parts by mass (solid) of modified carboxy group-containing cellulose (C-1) and 150 parts by mass of NMP, and 4.4 parts by mass of glycidyl methacrylate and 2.7 parts by mass of butyl glycidyl ether are added thereto. Reacted. After the reaction, NMP was distilled off under reduced pressure to obtain a modified cellulose fiber (A-5). The acid value was 1.

[変性セルロース繊維(A−6)の製造例]
容器へカルボキシ基含有変性セルロース(C−4)100質量部(固形)とNMP150質量部を仕込み、とグリシジルメタクリレート3.5質量部を投入し、130℃で3時間反応した。反応後減圧留去によりNMPを留去し、変性セルロース繊維(A−6)を得た。酸価は13であった。
[Production Example of Modified Cellulose Fiber (A-6)]
100 parts by mass (solid) of modified carboxy group-containing cellulose (C-4) and 150 parts by mass of NMP were charged into a container, and 3.5 parts by mass of glycidyl methacrylate were added thereto and reacted at 130 ° C. for 3 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a modified cellulose fiber (A-6). The acid value was 13.

[変性セルロース繊維(A−7)の製造例]
容器へカルボキシ基含有変性セルロース(C−2)100質量部(固形)とNMP150質量部を仕込み、とグリシジルメタクリレート6.6質量部を投入し、130℃で3時間反応した。反応後減圧留去によりNMPを留去し、変性セルロース繊維(A−7)を得た。酸価は36であった。
[Production Example of Modified Cellulose Fiber (A-7)]
100 parts by mass (solid) of carboxy group-containing modified cellulose (C-2) and 150 parts by mass of NMP were charged into a container, and 6.6 parts by mass of glycidyl methacrylate were charged and reacted at 130 ° C. for 3 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a modified cellulose fiber (A-7). The acid value was 36.

[変性セルロース繊維(A−8)の製造例]
容器へ水を含んだ、NBKP500質量部(固形分100質量部)とNMP150質量部を仕込み、減圧脱水により水分を留去し、ヘキサデセニルコハク酸無水物19.9質量部及びグリシジルメタクリレート3.8質量部を投入し、80℃で4時間反応した。反応後減圧留去によりNMPを留去し、変性セルロース繊維(A−8)を得た。酸価は4であった。
[Production Example of Modified Cellulose Fiber (A-8)]
A container was charged with 500 parts by mass of NBKP containing water (100 parts by mass of solid content) and 150 parts by mass of NMP, and water was distilled off by dehydration under reduced pressure. 8.8 parts by mass were added, and the mixture was reacted at 80 ° C. for 4 hours. After the reaction, NMP was distilled off under reduced pressure to obtain a modified cellulose fiber (A-8). The acid value was 4.

[オリゴエステル化セルロース繊維(A−9)の製造例]
密閉式加圧型ニーダー中において、乾燥セルロース繊維50gと無水マレイン酸2.3gを50rpmで撹拌しながら120℃で20分加熱して反応させた後、得られた反応生成物にアリルグリシジルエーテル3.2gを添加し、再度50rpmで撹拌しながら90℃で20分加熱することにより、オリゴエステル化セルロース繊維(A−9)を得た。酸価は5であった。
[Production Example of Oligoesterified Cellulose Fiber (A-9)]
In a closed pressure kneader, 50 g of dried cellulose fiber and 2.3 g of maleic anhydride were reacted by heating at 120 ° C. for 20 minutes while stirring at 50 rpm, and then the allyl glycidyl ether was added to the obtained reaction product. 2 g was added, and the mixture was heated again at 90 ° C. for 20 minutes while stirring at 50 rpm to obtain an oligoesterified cellulose fiber (A-9). The acid value was 5.

<ソリッド成形材料用樹脂組成物の製造1>
[ソリッド成形材料用樹脂組成物(R−1)の製造例]
変性セルロース繊維(C−1)40質量部、軟化点または融点のいずれかが190℃以下の直鎖状低密度ポリエチレン(プライムポリマー社製:ウルトゼックス(登録商標)4020L、軟化点115℃、融点126℃、以下、ウルトゼックス4020Lと略することがある)60質量部の混合物を(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:300rpm、処理速度200g/時)にて140℃で混練し、得られた溶融混練物をペレタイザー(井本製作所製)を用いてペレット化し、含有する変性セルロース繊維がナノ解繊されたソリッド成形材料用樹脂組成物(R−1)を得た。なお、数平均繊維径は220ナノメートルであった。
<Production 1 of resin composition for solid molding material>
[Production Example of Resin Composition (R-1) for Solid Molding Material]
40 parts by mass of a modified cellulose fiber (C-1), linear low-density polyethylene having a softening point or a melting point of 190 ° C. or less (manufactured by Prime Polymer Co., Ltd .: Ultrasex (registered trademark) 4020L, softening point 115 ° C., melting point) A mixture of 60 parts by mass of a mixture of 126 parts by mass (hereinafter sometimes abbreviated as Ultzex 4020L) is a twin screw kneader (KZW, screw diameter: 15 mm, L / D: 45, screw rotation speed: 300 rpm, manufactured by Technovel Co., Ltd.). At a processing speed of 200 g / hour) at 140 ° C., and the resulting melt-kneaded material was pelletized using a pelletizer (manufactured by Imoto Seisakusho), and a resin for solid molding material in which the modified cellulose fibers contained were nano-defibrated. A composition (R-1) was obtained. The number average fiber diameter was 220 nanometers.

[ソリッド成形材料用樹脂組成物(R−2〜10)の製造例]
上記ソリッド成形材料用樹脂組成物(R−1)の製造に供した変性セルロース繊維(C−1)を表3に示すとおりに変更した以外は、(R−1)と同様に製造した。なお、それぞれの樹脂組成物(R−2〜10)の数平均繊維径は下表の通りである。
[Production Example of Resin Composition for Solid Molding Material (R-2-10)]
It was manufactured in the same manner as (R-1), except that the modified cellulose fiber (C-1) used for manufacturing the resin composition for solid molding material (R-1) was changed as shown in Table 3. The number average fiber diameter of each resin composition (R-2 to 10) is as shown in the table below.

<ソリッド成形体の製造及び評価>
上記ソリッド成形材料用樹脂組成物(R−1〜4、6、9、10、11、12)を、射出成形機を用いてJIS規格K7162に記載のダンベル型試験片を成形してソリッド成型体とし、JISK7162に準拠して、引張物性を測定した。この測定値から、樹脂単独での測定値を100とした場合の相対値を算出した結果を表4に示す。
<Manufacture and evaluation of solid molded body>
The resin composition for a solid molding material (R-1 to 4, 6, 9, 10, 11, 12) is molded into a dumbbell-type test piece described in JIS K7162 using an injection molding machine to form a solid molded body. The tensile properties were measured according to JIS K7162. Table 4 shows the result of calculating a relative value when the measured value of the resin alone was set to 100 from the measured value.

<ソリッド成形体の製造及び評価>
上記ソリッド成形材料用樹脂組成物(R−1、4〜11)を、二本ロール(安田精機製)にてウルトゼックス4020Lを用いて変性セルロースは10質量%、熱可塑性樹脂は90質量%となるよう4倍希釈し1mm厚とした後、160℃でプレス成形してソリッド成形体とし、引張物性を測定した。樹脂単独での測定値を100とした場合の相対値を算出した結果を表5に示す。
<Manufacture and evaluation of solid molded body>
The above-mentioned resin composition for solid molding material (R-1, 4 to 11) was converted to 10% by mass of modified cellulose and 90% by mass of a thermoplastic resin using a double roll (manufactured by Yasuda Seiki Co., Ltd.) using Ultrazex 4020L. After diluting to a thickness of 1 mm by diluting 4-fold, a solid molded body was formed by press molding at 160 ° C., and the tensile properties were measured. Table 5 shows the results of calculating relative values when the measured value of the resin alone was taken as 100.

<ソリッド成形材料用樹脂組成物の製造2>
[ソリッド成形材料用樹脂組成物(S−1)の製造例](比較例6)
変性セルロース繊維(C−1)50質量部、軟化点または融点のいずれかが190℃以下のポリプロピレン(プライムポリマー社製:プライムポリプロ(登録商標)J108M(融点170℃))50質量部の混合物を(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:300rpm、処理速度200g/時)にて170℃で混練し、得られた溶融混練物をペレタイザー(井本製作所製)を用いてペレット化し、含有する変性セルロース繊維がナノ解繊されたソリッド成形材料用樹脂組成物(S−1)を得た。なお、数平均繊維径は200ナノメートルであった。また、プレス温度190℃で1mm厚に熱プレスし、放温後、分光測色計(コニカミノルタ社製:CM−700d)を用いてプレスフィルムの明度(L*)を測定した結果、40であった。
<Production of resin composition for solid molding material 2>
[Production Example of Resin Composition for Solid Molding Material (S-1)] (Comparative Example 6)
A mixture of 50 parts by mass of the modified cellulose fiber (C-1) and 50 parts by mass of polypropylene (manufactured by Prime Polymer Co., Ltd .: Prime Polypro (registered trademark) J108M (melting point 170 ° C.)) having a softening point or a melting point of 190 ° C. or less is used. Kneading at 170 ° C. with a twin screw kneader (KZW, screw diameter: 15 mm, L / D: 45, screw rotation speed: 300 rpm, processing speed 200 g / h) manufactured by Technovel Co., Ltd. Was pelletized using a pelletizer (manufactured by Imoto Seisakusho) to obtain a resin composition (S-1) for a solid molding material in which the modified cellulose fibers contained were nanofibrillated. The number average fiber diameter was 200 nanometers. Further, the sheet was hot-pressed to a thickness of 1 mm at a pressing temperature of 190 ° C., and after being heated, the lightness (L *) of the pressed film was measured using a spectrophotometer (manufactured by Konica Minolta: CM-700d). there were.

[ソリッド成形材料用樹脂組成物(S−2)の製造例](実施例14)
上記ソリッド成形材料用樹脂組成物(S−1)の製造に供した変性セルロース繊維(C−1)を変性セルロース繊維(A−1)に変更した以外は、(S−1)と同様に製造した。数平均繊維径は170ナノメートルであった。また、プレスフィルムの明度(L*)は60であった。
[Production Example of Resin Composition for Solid Molding Material (S-2)] (Example 14)
Production was carried out in the same manner as (S-1) except that the modified cellulose fiber (C-1) used for producing the resin composition for solid molding material (S-1) was changed to a modified cellulose fiber (A-1). did. The number average fiber diameter was 170 nanometers. The lightness (L *) of the press film was 60.

<ソリッド成形体の製造及び評価>(参考例3)
上記ソリッド成形材料用樹脂組成物(S1〜2)を、軟化点または融点のいずれかが190℃以下のポリプロピレン(プライムポリマー社製:プライムポリプロ(登録商標)J108M(融点170℃))と質量比50/50で変性セルロースが25質量%、熱可塑性樹脂が75質量%となるよう混合し、射出成形機を用いてJIS規格K7171に記載のバー型試験片を成形してソリッド成型体とし、JISK7171に準拠して、曲げ物性を測定した。樹脂単独での測定値を100とした場合の相対値を算出した結果を表6に示す。
<Manufacture and evaluation of solid molded body> (Reference Example 3)
Either the softening point or the melting point of the above resin composition for solid molding material (S1-2) is polypropylene (manufactured by Prime Polymer Co., Ltd .: Prime Polypro (registered trademark) J108M (melting point 170 ° C)) having a mass ratio of 190 ° C or less. In a 50/50 ratio, the modified cellulose was mixed in an amount of 25% by mass and the thermoplastic resin in an amount of 75% by mass, and a bar-shaped test piece described in JIS K7171 was molded using an injection molding machine to obtain a solid molded body. The bending properties were measured in accordance with. Table 6 shows the results of calculating relative values when the measured value of the resin alone was set to 100.

<ソリッド成形材料用樹脂組成物の製造3>
[ソリッド成形材料用樹脂組成物(T−1)の製造例](比較例7)
変性セルロース繊維(C−1)20質量部、軟化点または融点のいずれかが190℃以下のポリオキシメチレン(三菱エンジニアリングプラスチック社製:ユピタールF30−03、融点165℃)80質量部の混合物を(株)テクノベル製の二軸混練機(KZW、スクリュー径:15mm、L/D:45、スクリュー回転数:300rpm、処理速度200g/時)にて180℃で混練したが、変性セルロース繊維(C−1)の残存カルボキシ基によりポリオキシメチレンが分解し、製造が困難であった。
<Production of resin composition for solid molding material 3>
[Production Example of Resin Composition (T-1) for Solid Molding Material] (Comparative Example 7)
A mixture of 20 parts by mass of the modified cellulose fiber (C-1) and 80 parts by mass of a polyoxymethylene having a softening point or a melting point of 190 ° C. or less (Mitsubishi Engineering Plastics: Iupital F30-03, melting point 165 ° C.) The mixture was kneaded at 180 ° C. with a twin screw kneader (KZW, screw diameter: 15 mm, L / D: 45, screw rotation speed: 300 rpm, processing speed 200 g / h) manufactured by Technovel Co., Ltd. The polyoxymethylene was decomposed by the residual carboxy group of 1), and production was difficult.

[ソリッド成形材料用樹脂組成物(T−2)の製造例](実施例15)
上記ソリッド成形材料用樹脂組成物(T−1)の製造に供した変性セルロース繊維(C−1)を変性セルロース繊維(A−2)に変更した以外は、(T−1)と同様に製造した。なお、変性セルロース繊維(A−2)を使用した場合には、ポリオキシメチレンの分解は生じず、安全に製造可能であった。得られた溶融混練物をペレタイザー(井本製作所製)を用いてペレット化し、含有する変性セルロース繊維がナノ解繊されたソリッド成形材料用樹脂組成物(T−2)を得た。なお、数平均繊維径は150ナノメートルであった。
[Production Example of Resin Composition (T-2) for Solid Molding Material] (Example 15)
Production was carried out in the same manner as (T-1) except that the modified cellulose fiber (C-1) used for producing the resin composition for solid molding material (T-1) was changed to a modified cellulose fiber (A-2). did. In addition, when the modified cellulose fiber (A-2) was used, decomposition of polyoxymethylene did not occur, and the production was safe. The obtained melt-kneaded material was pelletized using a pelletizer (manufactured by Imoto Seisakusho) to obtain a resin composition for solid molding material (T-2) in which the modified cellulose fibers contained were nano-defibrated. The number average fiber diameter was 150 nanometers.

<ソリッド成形体の製造及び評価>(参考例4)
上記ソリッド成形材料用樹脂組成物(T−2)を、ユピタールF30−03と質量比50/50で変性セルロースが10質量%、熱可塑性樹脂が90質量%になるよう混合し、射出成形機を用いてJIS規格K7171に記載のバー型試験片を成形してソリッド成型体とし、JISK7171に準拠して、曲げ物性を測定した。樹脂単独での測定値を100とした場合の相対値を算出した結果を表7に示す。
<Manufacture and evaluation of solid molded body> (Reference Example 4)
The resin composition for solid molding material (T-2) was mixed with Iupital F30-03 so that the mass ratio of modified cellulose was 10% by mass and the thermoplastic resin was 90% by mass at a mass ratio of 50/50, and an injection molding machine was used. A bar-shaped test piece described in JIS K7171 was molded into a solid molded body, and the bending properties were measured in accordance with JISK7171. Table 7 shows the results of calculating relative values when the measured value of the resin alone was taken as 100.

図1より、カルボキシ基含有変性セルロース(C−1)に対しグリシジルメタクリレートを反応させることにより、エステル基由来の吸収(1720cm−1)が増加しており、ヒドロキシ基由来の吸収(3300cm−1)が増加すると共にアルキル基由来の吸収(2900cm−1)が相対的に減少している。また、反応後、酸価も減少していることから、カルボキシ基がエステル基へと変換され、同時にヒドロキシ基が生じたことが分かる。さらには、原料として用いたNBKPに対し、同様の条件下でグリシジルメタクリレートを添加したが、洗浄後のFT−IRスペクトルからはエステル基由来の吸収は観測されなかった。したがって、カルボキシ基含有セルロース(C)と(メタ)アクリル基及びグリシジル基を有する化合物(D)の反応において、カルボキシ基によるグリシジル基の開環反応が起こったことは明らかである。Than 1, by reacting a glycidyl methacrylate to the carboxyl group-containing modified cellulose (C-1), the absorption derived from ester group (1720 cm -1) has increased, absorption attributable to a hydroxy group (3300 cm -1) Increases, and the absorption (2900 cm −1 ) derived from the alkyl group relatively decreases. In addition, since the acid value also decreased after the reaction, it was found that the carboxy group was converted to an ester group and a hydroxy group was generated at the same time. Further, glycidyl methacrylate was added to NBKP used as a raw material under the same conditions, but no absorption derived from an ester group was observed in the FT-IR spectrum after washing. Therefore, it is clear that in the reaction of the carboxy group-containing cellulose (C) with the compound (D) having a (meth) acryl group and a glycidyl group, a carboxy group-opening reaction of the glycidyl group occurred.

表4より、本願発明のソリッド成形体を用いた実施例1〜5は、そうでない比較例1〜4に比べて、得られるソリッド成形体の機械強度が向上することが分かる。表5は表4の変性セルロース量を変更したものであるが表4と同様の結果であることが分かる。また、表5における実施例6〜10と実施例11との比較から、カルボキシ基含有変性セルロース(C)がセルロースと炭素数8以上の多価塩基酸無水物(E)との反応物であることが機械強度の点でより好ましいことが分かる。さらに、実施例2、7と実施例4、12との比較から、(メタ)アクリル基含有変性セルロース繊維(A)の酸価は30mgKOH/g未満であることが機械強度の点でより好ましいことが分かる。加えて、実施例6〜10と実施例13との比較から、(メタ)アクリル基含有変性セルロース繊維(A)の製造においては、セルロースと炭素数8以上の多価塩基酸無水物(E)とを反応させてカルボキシ基含有変性セルロース(C)とした後に(メタ)アクリル基及びグリシジル基を有する化合物(D)を反応させた方が機械強度の点でより好ましいことが分かる。   From Table 4, it can be seen that Examples 1 to 5 using the solid molded body of the present invention have improved mechanical strength of the obtained solid molded body as compared with Comparative Examples 1 to 4, which are not so. Table 5 is obtained by changing the amount of the modified cellulose in Table 4 and shows that the results are the same as those in Table 4. From the comparison between Examples 6 to 10 and Example 11 in Table 5, the carboxy group-containing modified cellulose (C) is a reaction product of cellulose and a polybasic acid anhydride (E) having 8 or more carbon atoms. Is more preferable in terms of mechanical strength. Furthermore, from the comparison between Examples 2 and 7 and Examples 4 and 12, it is more preferable that the acid value of the (meth) acrylic group-containing modified cellulose fiber (A) is less than 30 mgKOH / g in terms of mechanical strength. I understand. In addition, from the comparison between Examples 6 to 10 and Example 13, in the production of the (meth) acrylic group-containing modified cellulose fiber (A), cellulose and a polybasic acid anhydride (E) having 8 or more carbon atoms were used. It is found that it is more preferable to react with the compound (D) having a (meth) acrylic group and a glycidyl group after making the modified carboxy group-containing cellulose (C) by reacting with (C) in terms of mechanical strength.

実施例の表6より、本願発明を満足する変性セルロース繊維(A)を用いた実施例14は、カルボキシ基含有変性セルロースを用いた比較例6と比べて、カルボキシ基が(メタ)アクリル基を有する化合物と反応していることにより、得られるソリッド成形体の機械強度が向上するだけでなく、セルロース繊維自体の耐熱性が向上し、ソリッド成形体の色目も向上していることが分かる。   From Table 6 in the Examples, it is found that Example 14 using the modified cellulose fiber (A) satisfying the present invention has a carboxy group having a (meth) acryl group as compared with Comparative Example 6 using a carboxy group-containing modified cellulose. It can be seen that the reaction with the compound has not only improved mechanical strength of the obtained solid molded body, but also improved heat resistance of the cellulose fiber itself, and improved tint of the solid molded body.

実施例の表7より、本願発明を満足し酸価の低い変性セルロース繊維(A)を用いた実施例15は、カルボキシ基含有変性セルロースを用いた比較例7と比べて、カルボキシ基が(メタ)アクリル基を有する化合物と反応していることにより、混練時の高温高圧下においても樹脂劣化を引き起こさない。これにより、得られるソリッド成形体の機械強度が向上するだけでなく、安全に混練、成形できることが分かる。   From Table 7 in the Examples, it can be seen that Example 15 using the modified cellulose fiber (A) satisfying the present invention and having a low acid value has a carboxy group (meta) as compared with Comparative Example 7 using a carboxy-containing modified cellulose. ) By reacting with the compound having an acryl group, the resin does not deteriorate even under high temperature and high pressure during kneading. It can be seen that this not only improves the mechanical strength of the obtained solid molded body, but also enables safe kneading and molding.

Claims (8)

セルロース繊維のナノ解繊物と熱可塑性樹脂(B)とを含有するソリッド成形材料用樹脂組成物であって、セルロース繊維のナノ解繊物が、少なくとも分子内に下記構造を有する(メタ)アクリル基含有変性セルロース繊維(A)であり、
前記(メタ)アクリル基含有変性セルロース繊維(A)が、カルボキシ基含有変性セルロース(C)と(メタ)アクリル基及びグリシジル基を有する化合物(D)との反応物であることを特徴とするソリッド成形材料用樹脂組成物。
What is claimed is: 1. A resin composition for a solid molding material, comprising a nanofibrillated cellulose fiber and a thermoplastic resin (B), wherein the nanofibrillated cellulose fiber has at least the following structure in the molecule. Ri group-containing modified cellulose fibers (A) der,
The (meth) acrylic group-containing modified cellulose fibers (A), wherein the reactant der Rukoto carboxy group-containing modified cellulose (C) and compound having a (meth) acrylic group and a glycidyl group (D) Resin composition for solid molding materials.
前記熱可塑性樹脂(B)の軟化点または融点のいずれかが190℃以下であり、前記熱可塑性樹脂(B)が、少なくともポリオレフィン系樹脂、ポリエステル系樹脂、スチレン系樹脂、ウレタン樹脂、ポリオキシメチレン樹脂のいずれか1つを含むことを特徴とする請求項1に記載のソリッド成形材料用樹脂組成物。   Either the softening point or the melting point of the thermoplastic resin (B) is 190 ° C. or less, and the thermoplastic resin (B) is at least a polyolefin resin, a polyester resin, a styrene resin, a urethane resin, a polyoxymethylene. The resin composition for a solid molding material according to claim 1, comprising any one of resins. 前記カルボキシ基含有変性セルロース(C)が、セルロースと炭素数8以上の多価塩基酸無水物(E)との反応物であることを特徴とする請求項に記載のソリッド成形材料用樹脂組成物。 The resin composition for a solid molding material according to claim 1 , wherein the modified carboxy group-containing cellulose (C) is a reaction product of cellulose and a polybasic acid anhydride (E) having 8 or more carbon atoms. object. 前記(メタ)アクリル基含有変性セルロース繊維(A)と前記熱可塑性樹脂(B)の質量比が、(メタ)アクリル基含有変性セルロース繊維(A)/熱可塑性樹脂(B)=1〜55/45〜99であることを特徴とする請求項1に記載のソリッド成形材料用樹脂組成物。   The mass ratio of the (meth) acrylic group-containing modified cellulose fiber (A) and the thermoplastic resin (B) is such that (meth) acrylic group-containing modified cellulose fiber (A) / thermoplastic resin (B) = 1 to 55 / The resin composition for a solid molding material according to claim 1, wherein the number is from 45 to 99. 前記(メタ)アクリル基含有変性セルロース繊維(A)の酸価が30mgKOH/g未満である請求項1に記載のソリッド成形材料用樹脂組成物。   The resin composition for a solid molding material according to claim 1, wherein the (meth) acrylic group-containing modified cellulose fiber (A) has an acid value of less than 30 mgKOH / g. 請求項1〜のいずれか1項に記載のソリッド成形材料用樹脂組成物を含有するソリッド成形体。 A solid molded article containing the resin composition for a solid molding material according to any one of claims 1 to 5 . セルロース繊維のナノ解繊物と熱可塑性樹脂(B)とを含有するソリッド成形材料用樹脂組成物の製造方法であって、
前記セルロース繊維のナノ解繊物が、少なくとも分子内に下記構造を有する(メタ)アクリル基含有変性セルロース繊維(A)であり、カルボキシ基含有変性セルロース(C)と(メタ)アクリル基及びグリシジル基を有する化合物(D)とを反応させて得られ、かつ
前記(メタ)アクリル基含有変性セルロース繊維(A)と前記熱可塑性樹脂(B)の混合方法が溶融混練であることを特徴とするソリッド成形材料用樹脂組成物の製造方法。
A method for producing a resin composition for a solid molding material, comprising a nano-defibrated cellulose fiber and a thermoplastic resin (B),
The nano-defibrated cellulose fibers are (meth) acrylic group-containing modified cellulose fibers (A) having at least the following structure in the molecule, and are modified with carboxy group-containing modified cellulose (C), (meth) acrylic group and glycidyl group. Wherein the method for mixing the (meth) acrylic group-containing modified cellulose fiber (A) and the thermoplastic resin (B) is melt-kneading. A method for producing a resin composition for a molding material.
前記(メタ)アクリル基含有変性セルロース繊維(A)が、セルロースと炭素数8以上の多価塩基酸無水物(E)とを反応させて前記カルボキシ基含有変性セルロース(C)とした後に、さらに前記(メタ)アクリル基及びグリシジル基を有する化合物(D)を反応させて得られる変性セルロース繊維であることを特徴とする請求項に記載のソリッド成形材料用樹脂組成物の製造方法。 After the (meth) acrylic group-containing modified cellulose fiber (A) is reacted with cellulose and a polybasic acid anhydride (E) having 8 or more carbon atoms to obtain the carboxy group-containing modified cellulose (C), The method for producing a resin composition for a solid molding material according to claim 7 , which is a modified cellulose fiber obtained by reacting the compound (D) having a (meth) acryl group and a glycidyl group.
JP2019540124A 2018-04-06 2019-03-26 Resin composition for solid molding material, method for producing the same, and solid molded body Active JP6638868B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018073874 2018-04-06
JP2018073874 2018-04-06
PCT/JP2019/012995 WO2019194032A1 (en) 2018-04-06 2019-03-26 Resin composition for solid molding material, method for producing same, and solid molded article

Publications (2)

Publication Number Publication Date
JP6638868B1 true JP6638868B1 (en) 2020-01-29
JPWO2019194032A1 JPWO2019194032A1 (en) 2020-04-30

Family

ID=68100357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019540124A Active JP6638868B1 (en) 2018-04-06 2019-03-26 Resin composition for solid molding material, method for producing the same, and solid molded body

Country Status (2)

Country Link
JP (1) JP6638868B1 (en)
WO (1) WO2019194032A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12053908B2 (en) 2021-02-01 2024-08-06 Regen Fiber, Llc Method and system for recycling wind turbine blades
CN116554834B (en) * 2023-06-03 2024-02-23 深圳市盛康泰有机硅材料有限公司 High-heat-conductivity high-strength organic silicon pouring sealant and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680832A (en) * 1992-09-03 1994-03-22 Nobuo Shiraishi Polyolefin composition and its production
JPH101576A (en) * 1996-06-18 1998-01-06 Mitsui Petrochem Ind Ltd Polyolefin resin composition, composite material, and production
WO2003070824A1 (en) * 2002-02-21 2003-08-28 Asahi Kasei Kabushiki Kaisha Woody synthetic resin compositions
JP2014105407A (en) * 2012-11-28 2014-06-09 Minoru Ueda Method of manufacturing oligoesterified cellulose fiber, oligoesterified cellulose fiber reinforced thermoplastic resin composition and molded body thereof
JP2015189820A (en) * 2014-03-27 2015-11-02 三菱自動車工業株式会社 Method of producing polymer composition and method of producing additive for polymer composition
JP6394934B1 (en) * 2016-12-14 2018-09-26 星光Pmc株式会社 Composition for foam molded article and method for producing the same, foam molded article, method for producing the same, and modified cellulose-containing resin composition for foam molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680832A (en) * 1992-09-03 1994-03-22 Nobuo Shiraishi Polyolefin composition and its production
JPH101576A (en) * 1996-06-18 1998-01-06 Mitsui Petrochem Ind Ltd Polyolefin resin composition, composite material, and production
WO2003070824A1 (en) * 2002-02-21 2003-08-28 Asahi Kasei Kabushiki Kaisha Woody synthetic resin compositions
JP2014105407A (en) * 2012-11-28 2014-06-09 Minoru Ueda Method of manufacturing oligoesterified cellulose fiber, oligoesterified cellulose fiber reinforced thermoplastic resin composition and molded body thereof
JP2015189820A (en) * 2014-03-27 2015-11-02 三菱自動車工業株式会社 Method of producing polymer composition and method of producing additive for polymer composition
JP6394934B1 (en) * 2016-12-14 2018-09-26 星光Pmc株式会社 Composition for foam molded article and method for producing the same, foam molded article, method for producing the same, and modified cellulose-containing resin composition for foam molded article

Also Published As

Publication number Publication date
WO2019194032A1 (en) 2019-10-10
JPWO2019194032A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
Cui et al. Cellulose modified by citric acid reinforced polypropylene resin as fillers
JP5757779B2 (en) Resin composition
JP6012206B2 (en) Modified cellulose nanofiber and resin composition containing modified cellulose nanofiber
JP6894681B2 (en) Modified cellulose fiber
JP6014860B2 (en) Modified cellulose fiber and rubber composition containing modified cellulose fiber
JP2019001876A (en) Fine cellulose fiber, manufacturing method therefor, slurry, and composite
JP6286975B2 (en) Modified cellulose, resin composition for masterbatch containing the modified cellulose, resin molding material, and molded article
JP2009293167A (en) Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding
JP6638868B1 (en) Resin composition for solid molding material, method for producing the same, and solid molded body
JP6394934B1 (en) Composition for foam molded article and method for producing the same, foam molded article, method for producing the same, and modified cellulose-containing resin composition for foam molded article
Lo Re et al. Poly (ε-caprolactone) biocomposites based on acetylated cellulose fibers and wet compounding for improved mechanical performance
JP6209908B2 (en) Method for producing resin composition for molding material and molded article thereof
JP6787533B1 (en) Method for Producing Modified Cellulose Fiber Blended Resin Composition
JP6547414B2 (en) Modified cellulose fiber-containing resin composition, molding material and molding
JP6792265B2 (en) Acetylated pulp composition containing an ethylene glycol derivative, a resin composition containing a microfibrillated acetylated pulp, and a method for producing them.
JP6727085B2 (en) Resin composition
Wang et al. Biodegradable Poly (Butylene Adipate-Co-Terephthalate) Nanocomposites Reinforced with In Situ Fibrillated Nanocelluloses
JP6986655B2 (en) A method for producing a resin composition for a molding material, a molded product, and a resin composition for a molding material.
JP7555096B2 (en) Cellulose fiber composition and method for producing the same, and method for producing a cellulose fiber composite composition
Li Properties of agave fiber reinforced thermoplastic composites
JP6760552B1 (en) Foam and its manufacturing method
WO2020202909A1 (en) Foam and method for producing same
JP7516692B1 (en) Method for producing resin composition
WO2023074691A1 (en) Resin composition, molded body using this, and production method of resin composition
JP6432812B1 (en) Method for producing modified polypropylene resin composition and molded article thereof

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6638868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250