JP6638244B2 - Control valve type lead-acid battery - Google Patents

Control valve type lead-acid battery Download PDF

Info

Publication number
JP6638244B2
JP6638244B2 JP2015155064A JP2015155064A JP6638244B2 JP 6638244 B2 JP6638244 B2 JP 6638244B2 JP 2015155064 A JP2015155064 A JP 2015155064A JP 2015155064 A JP2015155064 A JP 2015155064A JP 6638244 B2 JP6638244 B2 JP 6638244B2
Authority
JP
Japan
Prior art keywords
lead
electrolyte
separator
imogolite
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015155064A
Other languages
Japanese (ja)
Other versions
JP2017033863A (en
Inventor
有広 櫛部
有広 櫛部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015155064A priority Critical patent/JP6638244B2/en
Publication of JP2017033863A publication Critical patent/JP2017033863A/en
Application granted granted Critical
Publication of JP6638244B2 publication Critical patent/JP6638244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極板及び負極板がセパレータを介して交互に積層された極板群と電解液とが電槽内に収容された制御弁式鉛蓄電池に関する。   The present invention relates to a control valve type lead storage battery in which an electrode plate group in which a positive electrode plate and a negative electrode plate are alternately stacked via a separator and an electrolytic solution are accommodated in a battery case.

制御弁式鉛蓄電池は、相対的に安価で信頼性が高くメンテナンスフリーの特長を持ち、無停電電源装置や電力貯蔵用途等様々な分野に広く使用されている。   Control valve type lead-acid batteries are relatively inexpensive, have high reliability and are maintenance-free, and are widely used in various fields such as uninterruptible power supply devices and power storage applications.

制御弁式鉛蓄電池の電解液は、通常セパレータ中に保液されている。鉛蓄電池は過放電状態になると、電解液の比重が下がり、pHも上昇する傾向にある。この状態が長く続くと、放電により負極板中に生成した硫酸鉛が電解液中に溶解する。この状態から充電すると、負極板側でデンドライト状の鉛結晶が成長することがある。また、充電により電解液の比重が上がるとセパレータ中に硫酸鉛が析出する。更に充電が進むと、負極側ではデンドライト状の鉛結晶は金属鉛(Pb)に還元され、セパレータ中に析出した硫酸鉛結晶は二酸化鉛(PbO2)に酸化され、結晶が成長してセパレータを貫通し、正極板と負極板が導通する浸透短絡が発生する。この浸透短絡を防止するため、例えばセパレータへホウ酸を添加する方法(特許文献1)やゼオライトを添加する方法(特許文献2)が開示されている。 The electrolyte of the control valve type lead-acid battery is usually retained in a separator. When the lead storage battery is in an overdischarged state, the specific gravity of the electrolytic solution tends to decrease and the pH tends to increase. If this state continues for a long time, lead sulfate generated in the negative electrode plate by the discharge dissolves in the electrolytic solution. When charging from this state, a dendrite-like lead crystal may grow on the negative electrode plate side. Further, when the specific gravity of the electrolytic solution increases due to charging, lead sulfate precipitates in the separator. As the charging proceeds further, on the negative electrode side, the dendritic lead crystals are reduced to metallic lead (Pb), and the lead sulfate crystals precipitated in the separator are oxidized to lead dioxide (PbO 2 ), and the crystals grow to form the separator. A penetrating short circuit that penetrates and connects the positive electrode plate and the negative electrode plate occurs. In order to prevent this osmotic short circuit, for example, a method of adding boric acid to a separator (Patent Document 1) and a method of adding zeolite (Patent Document 2) are disclosed.

特許第4250910号公報Japanese Patent No. 4250910 特開2006−59613号公報JP 2006-59613 A

しかしながら、特許文献1及び2に記載されているセパレータは、浸透短絡を防止するために、ホウ酸、メソポーラスシリカ、ゼオライト等の無機物を多量にセパレータ中に含ませる必要がある。セパレータ中に多量の無機物が含まれる場合は、セパレータ全体が固くなり、取り扱い性が悪くなるという問題がある。   However, the separators described in Patent Documents 1 and 2 require a large amount of inorganic substances such as boric acid, mesoporous silica, and zeolite to be contained in the separator in order to prevent osmotic short circuit. When a large amount of an inorganic substance is contained in the separator, there is a problem that the entire separator becomes hard and handling properties are deteriorated.

また、無機物を多量に添加することによりセパレータの開孔が塞がれて電解液の拡散性が低下し、放電特性が悪化することが考えられる。   Further, it is conceivable that the addition of a large amount of an inorganic substance closes the opening of the separator, lowers the diffusivity of the electrolyte, and deteriorates the discharge characteristics.

本発明は上記の課題に鑑みたものであり、浸透短絡を防止できる制御弁式鉛蓄電池を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a control valve type lead-acid battery that can prevent a permeation short circuit.

本発明が改良の対象とする制御弁式鉛蓄電池は、電槽内に正極板及び負極板がセパレータを介して交互に積層された極板群と電解液とが収容されている。   A control valve type lead storage battery to be improved by the present invention contains an electrode group in which a positive electrode plate and a negative electrode plate are alternately stacked via a separator, and an electrolytic solution in a battery case.

本発明では、正極板と負極板との間に、非晶質粘土鉱物の粒子及び準晶質粘土鉱物の粒子の少なくとも一方が散在している。そして、電解液には、マグネシウムイオンが含まれている。   In the present invention, at least one of the particles of the amorphous clay mineral and the particles of the quasicrystalline clay mineral are scattered between the positive electrode plate and the negative electrode plate. And, the electrolyte solution contains magnesium ions.

本発明の制御弁式鉛蓄電池が過放電状態すなわち電解液が中性に近づいたときは(または中性領域では)、非晶質粘土鉱物または準晶質粘土鉱物が鉛イオンを吸着し、充電状態すなわち電解液が酸性に近づくと(または酸性領域では)鉛イオンを放出(または脱離)する。そのため、放電状態において電解液中の鉛イオン濃度が低くなり、硫酸鉛がセパレータ中に析出することを防止することができる。   When the control valve type lead storage battery of the present invention is in an overdischarged state, that is, when the electrolyte approaches neutrality (or in a neutral region), the amorphous clay mineral or quasicrystalline clay mineral adsorbs lead ions and charges the battery. When the state, that is, when the electrolytic solution approaches acidic (or in the acidic region), lead ions are released (or desorbed). Therefore, the lead ion concentration in the electrolytic solution in the discharged state is reduced, and it is possible to prevent lead sulfate from depositing in the separator.

特に、本発明では、電解液にマグネシウムイオンが含まれているため、鉛蓄電池の放電により生成した硫酸鉛が電解液中に溶解することを抑制することができる。具体的には、硫酸電解液にマグネシウムイオンとして硫酸マグネシウムを添加した場合は、下記(2)式によりイオン化が容易に進行する。放電時に、活物質と電解液が反応し電解液中の硫酸イオンの濃度が低下したときは、下記(2)式によりSO42-が存在することで、下記(1)式が成り立ち、硫酸鉛が電解液中に溶解するのを抑制することができる。 In particular, in the present invention, since the electrolyte solution contains magnesium ions, it is possible to suppress the dissolution of lead sulfate generated by discharging the lead storage battery in the electrolyte solution. Specifically, when magnesium sulfate is added as a magnesium ion to the sulfuric acid electrolytic solution, ionization easily proceeds according to the following equation (2). When the active material reacts with the electrolytic solution during discharging to lower the concentration of sulfate ions in the electrolytic solution, the following formula (1) is established due to the existence of SO4 2- according to the following formula (2), and lead sulfate is obtained. Can be suppressed from being dissolved in the electrolytic solution.

Figure 0006638244
すなわち、正極板と負極板との間に散在する粘土鉱物は、近傍のPbイオンを吸着し、散在する粘土鉱物から離れたPbイオンに対しては、硫酸電解液中のマグネシウムイオンが作用して、負極板側でデンドライト状の鉛結晶が成長するのを抑制することができる。したがって、本発明によれば、セパレータの取り扱い性や電解液の拡散性を低下させることなく、セパレータ中に析出した硫酸鉛塩結晶が酸化して二酸化鉛に酸化して、結晶が成長してセパレータを貫通するのを防止することができる。
Figure 0006638244
That is, the clay mineral scattered between the positive electrode plate and the negative electrode plate adsorbs nearby Pb ions, and magnesium ions in the sulfuric acid electrolyte act on the Pb ions separated from the scattered clay minerals. In addition, it is possible to suppress the growth of dendritic lead crystals on the negative electrode plate side. Therefore, according to the present invention, without decreasing the handleability of the separator and the diffusibility of the electrolytic solution, the lead sulfate crystals precipitated in the separator are oxidized and oxidized to lead dioxide, and the crystals grow to form a separator. Can be prevented from penetrating.

好ましくは、電解液に対するマグネシウムイオンの含有量は、0.05〜2.5mol/dm3である。マグネシウムイオンの含有量が0.05mol/dm3に満たない場合、または、マグネシウムイオンの含有量が2.5mol/dm3を超える場合は、硫酸鉛がセパレータ中に析出することを永続的に防止する効果が得られ難い。 Preferably, the content of magnesium ions with respect to the electrolyte is 0.05 to 2.5 mol / dm 3 . When the content of magnesium ion is less than 0.05 mol / dm 3 , or when the content of magnesium ion exceeds 2.5 mol / dm 3 , the precipitation of lead sulfate in the separator is permanently prevented. Effect is difficult to obtain.

非晶質粘土鉱物または準晶質粘土鉱物の粒子が散在している場所は、正極板と負極板の間であればどこでもよい。例えば、電解液中に散在していても、セパレータに固定されて散在していてもよい。また、正極板の正極活物質の表面上に散在していてもよく、負極板の負極活物質の表面上に散在していてもよい。さらにこれらの場所のうち少なくとも2つの場所に粘土鉱物の粒子を散在させてもよい。粘土鉱物を散在させた場所の近傍では、粘土鉱物の粒子がPbイオンを吸着し、粘土鉱物の粒子から離れた場所では、硫酸電解液中のマグネシウムイオンが上述のように作用してPbイオンの生成を抑制する。すなわち、これらの相乗効果により、負極板側でデンドライト状の鉛結晶が成長を抑制することが可能となる。   The place where the particles of the amorphous clay mineral or the quasicrystalline clay mineral are scattered may be anywhere between the positive electrode plate and the negative electrode plate. For example, they may be scattered in the electrolytic solution or may be scattered fixed to the separator. Further, it may be scattered on the surface of the positive electrode active material of the positive electrode plate, or may be scattered on the surface of the negative electrode active material of the negative electrode plate. Further, clay mineral particles may be scattered in at least two of these places. In the vicinity of the place where the clay minerals are scattered, the clay mineral particles adsorb Pb ions, and in the place away from the clay mineral particles, the magnesium ions in the sulfuric acid electrolyte act as described above to generate Pb ions. Suppress generation. That is, due to the synergistic effect of these, it becomes possible to suppress the growth of dendritic lead crystals on the negative electrode plate side.

特に、これらの粘土鉱物の粒子をセパレータに固定する場合は、セパレータとして非晶質粘土鉱物の粒子及び準晶質粘土鉱物の粒子の少なくとも一方が保持されたガラス繊維マットを用いることができる。このようなガラス繊維マットは、非晶質粘土鉱物の粒子及び準晶質粘土鉱物の粒子を保持し易いため、非晶質粘土鉱物の粒子及び準晶質粘土鉱物の粒子の機能を維持することができる。   In particular, when these clay mineral particles are fixed to a separator, a glass fiber mat holding at least one of amorphous clay mineral particles and quasicrystalline clay mineral particles can be used as a separator. Since such a glass fiber mat easily holds the particles of the amorphous clay mineral and the particles of the quasicrystalline clay mineral, it is necessary to maintain the functions of the particles of the amorphous clay mineral and the particles of the quasicrystalline clay mineral. Can be.

正極板と負極板と間に存在するこれらの粘土鉱物は、制御弁式鉛蓄電池が充放電するときに希硫酸電解液のpHが変化する範囲内で、鉛イオンを吸着、放出することができれば良く、さらに鉛イオンの吸着率が変化するものが好ましい。また、比表面積が大きいものが吸着量、放出量が大きくなり好ましく、入手が容易で安価であれば尚好ましい。さらに鉄や銅など水素化電圧が小さく、鉛蓄電池の自己放電反応を加速させる金属を含まないものが好ましい。このような非晶質粘土鉱物の粒子としてはイモゴライトの粒子が好ましく、また準晶質粘土鉱物の粒子としてはアロフェンの粒子が好ましい。   These clay minerals that exist between the positive electrode plate and the negative electrode plate can adsorb and release lead ions within the range where the pH of the dilute sulfuric acid electrolyte changes when the control valve type lead-acid battery is charged and discharged. It is preferable that the adsorption rate of lead ions changes. Further, those having a large specific surface area are preferable because the amount of adsorption and release are large, and it is more preferable that they are easily available and inexpensive. Further, it is preferable to use a material such as iron or copper which has a low hydrogenation voltage and does not contain a metal which accelerates the self-discharge reaction of a lead storage battery. Imogolite particles are preferred as such amorphous clay mineral particles, and allophane particles are preferred as quasicrystalline clay mineral particles.

イモゴライト等の非晶質粘土鉱物、アロフェン等の準晶質粘土鉱物は、表面電荷が溶液のpHに依存し、表面電荷が入れ替わるときのpHは鉱物ごとに異なる。具体的には、イモゴライトやアロフェン等の非晶質または準晶質粘土鉱物は、中性・アルカリ性に近づくときは(または中性・アルカリ性の領域では)負に帯電して金属イオンを吸着し、酸性に近づくときは(または酸性領域では)正に帯電して金属イオンを放出することが知られている。本発明の制御弁式鉛蓄電池が過放電状態即ち電解液が中性に近づいたときに(または中性領域では)、イモゴライト、アロフェン等の粘土鉱物は鉛イオンを吸着し、充電状態即ち電解液が酸性に近づくと(または酸性領域では)鉛イオンを放出する。そのため、放電状態において電解液中の鉛イオン濃度が低くなり、硫酸鉛がセパレータ中に析出することを永続的に防止することができる。   As for amorphous clay minerals such as imogolite and quasicrystalline clay minerals such as allophane, the surface charge depends on the pH of the solution, and the pH at which the surface charge is changed differs for each mineral. Specifically, amorphous or quasi-crystalline clay minerals such as imogolite and allophane are negatively charged when approaching neutral or alkaline (or in the neutral or alkaline region) and adsorb metal ions, It is known that when approaching acidity (or in the acidic region), it becomes positively charged and releases metal ions. When the controlled-valve lead-acid battery of the present invention is in an overdischarged state, that is, when the electrolyte approaches neutral (or in a neutral region), clay minerals such as imogolite and allophane adsorb lead ions, and a charged state, that is, the electrolyte Releases lead ions as they approach acidity (or in the acidic region). Therefore, the lead ion concentration in the electrolytic solution in the discharged state is reduced, and the precipitation of lead sulfate in the separator can be permanently prevented.

なお、これら粘土鉱物の粒子は、アロフェンの粒子が直径3.0〜5.5nmの中空球状、イモゴライトの粒子が内径0.5〜1.20nm、外径1.0〜3.0nmのチューブ状をしており、粘土鉱物の中でも粒子サイズが小さく、比表面積が高い。最適には、粒子サイズが小さく、比表面積の高いイモゴライトを使用すると鉛蓄電池の希硫酸電解液のpHが変化する範囲において吸着・放出量を最大化することができる。また、上記粘土鉱物と比較して比表面積がやや低いものの、カオリン鉱物やアルミ水酸化物等の粘土鉱物を用いることも可能である。   In addition, the particles of these clay minerals are allophane particles having a hollow spherical shape with a diameter of 3.0 to 5.5 nm, and imogolite particles having a tube shape with an inner diameter of 0.5 to 1.20 nm and an outer diameter of 1.0 to 3.0 nm. It has a small particle size and a high specific surface area among clay minerals. Optimally, when imogolite having a small particle size and a high specific surface area is used, the amount of adsorption and release can be maximized in a range where the pH of the dilute sulfuric acid electrolyte of the lead storage battery changes. Further, although the specific surface area is slightly lower than that of the above clay minerals, it is also possible to use clay minerals such as kaolin minerals and aluminum hydroxide.

イモゴライト粒子の存在量は、電解液体積当たり0.064kg/m3以上19.8kg/m3以下の範囲であることが好ましい。イモゴライト粒子の存在量が、電解液体積当たり0.064kg/m3に満たない場合は、Pbイオンの吸着または脱離機能が十分に発揮されず、また19.8kg/m3を超える場合は電解液の拡散性に影響を与えるおそれがある。 Abundance of imogolite particles is preferably in the range of less electrolyte volume per 0.064kg / m 3 or more 19.8 kg / m 3. When the amount of the imogolite particles is less than 0.064 kg / m 3 per electrolyte volume, the function of adsorbing or desorbing Pb ions is not sufficiently exhibited, and when the amount exceeds 19.8 kg / m 3 , It may affect the diffusivity of the liquid.

アロフェン粒子の存在量は、電解液体積当たり0.082kg/m3以上27.6kg/m3以下の範囲であることが好ましい。アロフェン粒子の存在量は、電解液体積当たり0.082kg/m3に満たない場合は、Pbイオンの吸着または脱離機能が十分に発揮されず、また27.6kg/m3を超える場合は電解液の拡散性に影響を与えるおそれがある。 Abundance of allophane particles is preferably in the range of less electrolyte volume per 0.082 kg / m 3 or more 27.6 kg / m 3. Abundance of allophane particles, if less than the electrolyte volume per 0.082 kg / m 3, when the adsorption or desorption function of Pb ions can not be sufficiently exhibited, and in excess of 27.6 kg / m 3 electrolytic It may affect the diffusivity of the liquid.

本発明によれば、過放電時の短絡を永続的に防止して、正負極板間の浸透短絡を防止する鉛蓄電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the short circuit at the time of overdischarge is permanently prevented, and the lead storage battery which prevents the penetration short circuit between positive / negative electrode plates can be provided.

電解液(希硫酸)比重に対する鉛イオン溶出量を示すグラフである。It is a graph which shows the lead ion elution amount with respect to electrolyte solution (dilute sulfuric acid) specific gravity. 本発明の制御弁式鉛蓄電池の一つの実施の形態において使用されるイモゴライトの粒子のpHに対する鉛イオン吸着量を示すグラフである。It is a graph which shows the adsorption amount of lead ion with respect to pH of the particle of imogolite used in one embodiment of the control valve type lead storage battery of the present invention. 本発明の制御弁式鉛蓄電池の他の実施の形態において使用されるアロフェンの粒子のpHに対する鉛イオン吸着量を示すグラフである。It is a graph which shows the lead ion adsorption amount with respect to the pH of the allophane particle used in other embodiment of the control valve type lead storage battery of this invention. 図1の実施の形態におけるイモゴライトの粒子の散在量を示すグラフである。2 is a graph showing the scattered amount of imogolite particles in the embodiment of FIG. 1. 図3の実施の形態におけるアロフェンの粒子を図4と同様にして測定したグラフである。FIG. 5 is a graph in which allophane particles in the embodiment of FIG. 3 are measured in the same manner as FIG.

以下、本発明の制御弁式鉛蓄電池の実施の形態について説明する。   Hereinafter, an embodiment of a control valve type lead storage battery of the present invention will be described.

<イモゴライト及びアロフェンの必要量>
本発明の制御弁式鉛蓄電池は、イモゴライト等の粘土鉱物が正極板と負極板との間に散在すると、粘土鉱物が中性領域において電解液から鉛イオンを優先して吸着し、酸性領域では電解液に鉛イオンを放出(または脱離)するので、セパレータ中に硫酸鉛結晶が析出することを抑制することができる。
<Required amount of imogolite and allophane>
The control valve type lead storage battery of the present invention is such that when clay minerals such as imogolite are scattered between the positive electrode plate and the negative electrode plate, the clay mineral preferentially adsorbs lead ions from the electrolyte in the neutral region, and in the acidic region. Since lead ions are released (or desorbed) into the electrolytic solution, precipitation of lead sulfate crystals in the separator can be suppressed.

本実施の形態における粘土鉱物であるイモゴライトは、ガラス繊維マットのセパレータを抄造する際にガラス繊維とイモゴライトと水とを混合したスラリーを用いることにより、イモゴライト粒子がガラス繊維と分子間力により結合し、セパレータ内部及び表面に散在している。また、他の実施の形態においては、上記方法で抄造しイモゴライトを付着させたセパレータと、ガラス繊維を主成分とした電解液を保持する役目をもつセパレータとの二層構成としてイモゴライトを散在させる。この際、イモゴライトの粒子を付着させたセパレータが極板面と当接するように配置するのが好ましい。また、さらに他の実施の形態では、電解液である希硫酸中にイモゴライトの粒子を溶解させた状態で電槽内に注液することにより、正極と負極間にイモゴライト粒子を散在させる。さらにまた他の実施の形態では、電解液にスノーテックス等の無機コロイド材料を加えて作製したゲル状電解液を用いて、ゲル状電解液中にイモゴライトの粒子を散在させる。   Imogolite, which is a clay mineral in the present embodiment, uses a slurry in which glass fiber, imogolite and water are mixed when forming a glass fiber mat separator, so that imogolite particles are bonded to glass fiber and intermolecular force. Scattered inside and on the surface of the separator. In another embodiment, imogolite is scattered as a two-layer structure including a separator formed by the above method and having imogolite adhered thereto, and a separator having a role of holding an electrolyte containing glass fiber as a main component. At this time, it is preferable to arrange the separator to which the particles of imogolite are attached so as to be in contact with the electrode plate surface. In still another embodiment, imogolite particles are dispersed between a positive electrode and a negative electrode by pouring the imogolite particles into a battery case in a state where the particles are dissolved in dilute sulfuric acid as an electrolytic solution. In still another embodiment, imogolite particles are dispersed in the gel electrolyte using a gel electrolyte prepared by adding an inorganic colloid material such as snowtex to the electrolyte.

本実施の形態における粘土鉱物であるイモゴライトの必要散在量は、電解液の体積に対し0.064kg/m3以上であることが望ましい。これは下記算出結果による。セパレータ中にイモゴライトを0.064kg/m3以上散在させることにより、電解液中に溶解する全てのPbイオンを吸着し、硫酸鉛結晶の析出を抑制し短絡を防止することが可能となる。 The required scattered amount of imogolite as the clay mineral in the present embodiment is preferably at least 0.064 kg / m 3 with respect to the volume of the electrolyte. This is based on the following calculation results. By dispersing imogolite in the separator in an amount of 0.064 kg / m 3 or more, it becomes possible to adsorb all Pb ions dissolved in the electrolytic solution, suppress precipitation of lead sulfate crystals, and prevent short circuits.

最も高いPbSO4溶解度を示す希硫酸の比重1.00のときのPbSO4溶解度は、
2.30mmol/m3・・・(1)(下記、図1より算出)
なお、図1では、1mg/Lの硫酸鉛(Strem Chemicals,Inc.製)を各電解液比重に溶解させた際の鉛イオン溶出量を、Optima4300DV:ICP装置(PerkinElmer社製)により測定した。
The highest PbSO 4 solubility when the PbSO 4 solubility specific gravity of the dilute sulfuric acid showing a 1.00,
2.30 mmol / m 3 ... (1) (calculated from FIG. 1 below)
In FIG. 1, the amount of lead ion eluted when 1 mg / L of lead sulfate (manufactured by Strem Chemicals, Inc.) was dissolved at a specific gravity of each electrolytic solution was measured using an Optima 4300DV: ICP apparatus (manufactured by PerkinElmer).

イモゴライトのPbイオン吸着量は、
0.036mol/kg・・・(2)(下記、図2より算出)
なお、図2では、pH2程度となるよう調製した希硫酸溶液1L中にイモゴライト10g、硫酸鉛(Strem Chemicals,Inc.製)を0.5×10-3mol添加し、水酸化ナトリウムを段階的に加えた際の鉛イオン吸着量をOptima4300DV:ICP装置(PerkinElmer社製)により測定した。
The amount of Pb ion adsorbed by imogolite is
0.036 mol / kg (2) (calculated from FIG. 2 below)
In FIG. 2, 10 g of imogolite and 0.5 × 10 −3 mol of lead sulfate (manufactured by Strem Chemicals, Inc.) are added to 1 L of a diluted sulfuric acid solution prepared to have a pH of about 2, and sodium hydroxide is added stepwise. The amount of lead ions adsorbed to the sample was measured using an Optima 4300DV: ICP device (manufactured by PerkinElmer).

比重1.00の希硫酸に溶解するPbイオンを全て吸着するのに必要なイモゴライト量は、(1)/(2)=0.064kg/m3となる。 The amount of imogolite required to adsorb all Pb ions dissolved in dilute sulfuric acid having a specific gravity of 1.00 is (1) / (2) = 0.064 kg / m 3 .

他の実施の形態において、アロフェンを選択したときは、アロフェンのPbイオン吸着量は、
0.028mol/kg・・・(3)(図3より算出)
なお、図3では、pH2程度となるよう調製した希硫酸溶液1L中にアロフェン10g、硫酸鉛(Strem Chemicals,Inc.製)を0.5mmol添加し、水酸化ナトリウムを段階的に加えた際の鉛イオン吸着量をOptima4300DV:ICP装置(PerkinElmer社製)により測定した。アロフェンには、アロフェンP1(200メッシュ粉末)(品川化成株式会社製)を用いた。
In another embodiment, when allophane is selected, the Pb ion adsorption amount of allophane is
0.028 mol / kg (3) (calculated from FIG. 3)
In FIG. 3, 10 g of allophane and 0.5 mmol of lead sulfate (manufactured by Strem Chemicals, Inc.) were added to 1 L of a diluted sulfuric acid solution prepared to have a pH of about 2, and sodium hydroxide was added stepwise. The lead ion adsorption amount was measured using an Optima 4300DV: ICP device (manufactured by PerkinElmer). Allophane P1 (200 mesh powder) (manufactured by Shinagawa Kasei Co., Ltd.) was used.

比重1.00の希硫酸に溶解するPbイオンを全て吸着するアロフェン量は、(1)/(3)=0.082kg/m3となる。 The amount of allophane that adsorbs all Pb ions dissolved in dilute sulfuric acid having a specific gravity of 1.00 is (1) / (3) = 0.082 kg / m 3 .

各実施の形態におけるイモゴライト及びアロフェンの散在量は電解液体積あたり0.1mol/L(リットル:以下本願明細書ではリットルを表す単位として「L」を使用する)以下であることが好ましい。すなわち、イモゴライト散在量は電解液体積あたり19.8kg/m3以下、アロフェン散在量は電解液体積あたり27.6kg/m3以下であることが好ましい。これは0.05mol/L添加した際に、満充電状態からの10時間率定格容量において,無添加状態と比較して5%以上の放電容量の低下がみられるためである。放電低下については、JISC8704−1:2006に基づき試験回数1回目に定格容量の95%以上となるよう規定した(図4、図5)。ここで、イモゴライトは、化学組成:(OH)3Al23SiOHに基づいて分子量198gとした。アロフェンは、化学組成:2SiO2・Al23・3H2Oに基づいて分子量276gとした。 The scattered amount of imogolite and allophane in each embodiment is preferably 0.1 mol / L or less per liter of electrolyte solution (liter: hereinafter, "L" is used as a unit representing liter in the present specification). That is, imogolite scattered amount 19.8 kg / m 3 or less per electrolyte volume, it is preferable allophane scattered amount is less electrolyte volume per 27.6 kg / m 3. This is because, when 0.05 mol / L is added, the discharge capacity is reduced by 5% or more in the rated capacity for 10 hours from the fully charged state as compared with the non-added state. With respect to the discharge reduction, it was specified that the discharge capacity was 95% or more of the rated capacity at the first test based on JISC8704-1: 2006 (FIGS. 4 and 5). Here, the molecular weight of imogolite was 198 g based on the chemical composition: (OH) 3 Al 2 O 3 SiOH. Allophane, chemical composition: was the molecular weight 276g based on 2SiO 2 · Al 2 O 3 · 3H 2 O.

なお、図4では、イモゴライトを各量添加した際の満充電状態からの10時間率定格容量を測定し、無添加状態との比較を行った。また、図5でも、アロフェンとして、アロフェンP1(200メッシュ粉末)(品川化成株式会社製)を用いた。   In FIG. 4, the rated capacity at a 10-hour rate from the fully charged state when each amount of imogolite was added was measured and compared with the non-added state. In FIG. 5, allophane P1 (200 mesh powder) (manufactured by Shinagawa Kasei Co., Ltd.) was used as the allophane.

<制御弁式鉛蓄電池>
本実施の形態の制御弁式鉛蓄電池は以下のように作製することができる。
<Control valve type lead storage battery>
The control valve type lead-acid battery of the present embodiment can be manufactured as follows.

まず、一酸化鉛を主成分とする鉛粉に対して、硫酸バリウムを0.01〜1.0質量%、炭素材料を0.2〜1.4質量%、補強用短繊維等を0.05〜0.3質量%添加した混合物に、水及びリグニンスルホン酸を加えて混合し、さらに希硫酸を加えて混練して負極活物質ペーストを作製する。   First, barium sulfate is contained in an amount of 0.01 to 1.0% by mass, a carbon material is included in an amount of 0.2 to 1.4% by mass, and reinforcing short fibers and the like are contained in a lead powder containing lead monoxide as a main component. Water and lignin sulfonic acid are added to and mixed with the mixture added in an amount of from 0.05 to 0.3% by mass, and further diluted sulfuric acid is added and kneaded to prepare a negative electrode active material paste.

リグニンスルホン酸の添加量は、鉛粉に対して樹脂固形分で0.01〜2.0質量%が好ましい。補強用短繊維としては、アクリル繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等を添加することができる。炭素材料は、カーボンブラック、黒鉛等が挙げられ、カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ケッチェンブラック等から選択できる。   The addition amount of lignin sulfonic acid is preferably 0.01 to 2.0% by mass as a resin solid content based on lead powder. Acrylic fibers, polypropylene fibers, polyethylene terephthalate fibers, and the like can be added as reinforcing short fibers. Examples of the carbon material include carbon black and graphite, and the carbon black can be selected from furnace black, channel black, acetylene black, thermal black, Ketjen black, and the like.

次に、上記のようにして作製した負極活物質ペーストを集電体格子に充填した後、熟成、乾燥させ、未化成の負極板を作製する。   Next, the negative electrode active material paste prepared as described above is filled in a current collector grid, then aged and dried to prepare an unformed negative electrode plate.

集電体格子は、鉛−カルシウム−錫合金、鉛−カルシウム合金、またはこれらに砒素、セレン、銀、ビスマスを微量添加した鉛−カルシウム−錫系合金、鉛−カルシウム系合金などからなるものを使用することができる。   The current collector grid is made of a lead-calcium-tin alloy, a lead-calcium alloy, or a lead-calcium-tin alloy or a lead-calcium alloy obtained by adding a small amount of arsenic, selenium, silver, or bismuth thereto. Can be used.

熟成条件は、温度35〜85℃、湿度50〜90RH%の雰囲気で40〜60時間とすることが好ましい。乾燥条件は、温度50〜80℃で15〜30時間とすることが好ましい。   The aging conditions are preferably set in an atmosphere at a temperature of 35 to 85 ° C. and a humidity of 50 to 90 RH% for 40 to 60 hours. The drying conditions are preferably set to a temperature of 50 to 80 ° C. for 15 to 30 hours.

正極板は一酸化鉛を主成分とする鉛粉に対して、補強用短繊維を加え、更に水と希硫酸を加えて混練して正極活物質ペーストを作製し、この正極活物質ペーストを集電体格子に充填した後、負極板と同様の条件で熟成、乾燥条件させ、未化成の正極板を作製する。   The positive electrode plate is prepared by adding short reinforcing fibers to lead powder mainly composed of lead monoxide, further adding water and diluted sulfuric acid, and kneading the mixture to form a positive electrode active material paste. After filling in the electric grid, aging and drying conditions are carried out under the same conditions as for the negative electrode plate to produce an unformed positive electrode plate.

作製した負極板と正極板を、本発明の鉛電池用セパレータを介して交互に積層し、同極性の極板同士をストラップで連結させて極板群とする。この極板群を電槽内に配置して未化成の鉛蓄電池を作製する。   The produced negative electrode plate and positive electrode plate are alternately laminated with the lead battery separator of the present invention interposed therebetween, and the electrode plates having the same polarity are connected to each other by a strap to form an electrode plate group. The electrode group is arranged in a battery case to produce an unformed lead-acid battery.

上記未化成電池に電解液として希硫酸を注入し、化成した後に電解液を一度抜き、その後比重1.25〜1.35の希硫酸を注入して、本発明の鉛蓄電池とする。   Dilute sulfuric acid was injected into the unformed battery as an electrolytic solution, and after the formation, the electrolytic solution was once removed, and then dilute sulfuric acid having a specific gravity of 1.25 to 1.35 was injected to obtain a lead storage battery of the present invention.

なお、化成条件や使用する硫酸の比重は、活物質量によって調整するのが好ましい。   The chemical conversion conditions and the specific gravity of the sulfuric acid used are preferably adjusted depending on the amount of the active material.

<マグネシウムイオン>
本実施の形態で用いる電解液は硫酸を精製水で希釈し、比重を1.25〜1.35に調整した後、添加剤として硫酸マグネシウム粉末を加えて溶解したものである。イモゴライトが混抄されたセパレータにおいて、硫酸マグネシウム(マグネシウムイオン)の添加量(含有量)は0.05〜2.5mol/dm3であることが好ましい。また、アロフェンが混抄されたセパレータにおいて硫酸マグネシウム(マグネシウムイオン)の添加量(含有量)は0.1〜2.5mol/dm3であることが好ましい。尚、2.5mol/dm3(20℃)が硫酸マグネシウムの飽和量である。
<Magnesium ion>
The electrolytic solution used in the present embodiment is obtained by diluting sulfuric acid with purified water, adjusting the specific gravity to 1.25 to 1.35, and adding and dissolving magnesium sulfate powder as an additive. In the separator mixed with imogolite, the addition amount (content) of magnesium sulfate (magnesium ion) is preferably 0.05 to 2.5 mol / dm 3 . Further, in the separator mixed with allophane, the addition amount (content) of magnesium sulfate (magnesium ion) is preferably 0.1 to 2.5 mol / dm 3 . Incidentally, 2.5 mol / dm 3 (20 ° C.) is the saturation amount of magnesium sulfate.

硫酸マグネシウム(マグネシウムイオン)の添加量(含有量)が多くなるほど、蓄電池が放電したときに極板に生成する硫酸鉛が電解液中に溶解することを抑制して、硫酸鉛結晶のデンドライトの成長を防止できる。   As the addition amount (content) of magnesium sulfate (magnesium ion) increases, lead sulfate generated on the electrode plate when the storage battery is discharged is suppressed from dissolving in the electrolyte, and dendrite growth of lead sulfate crystals. Can be prevented.

本発明の実施例として、非晶質粘土鉱物にイモゴライトを選択したときの詳細な説明を以下に述べる。   As an example of the present invention, a detailed description when imogolite is selected as the amorphous clay mineral will be described below.

本実施例で用いたイモゴライトの製造方法を示す。濃度:700mmol/Lの塩化アルミニウム水溶液500mLに、濃度:350mmol/Lのオルトケイ酸ナトリウム水溶液500mLを加え、30分間攪拌した。この溶液に、濃度:1mol/Lの水酸化ナトリウム水溶液を330mL加え、pH=6.1に調整した。pH調整した溶液を30分間攪拌後、遠心分離装置としてTOMY社製:Suprema23及びスタンダードロータNA−16を用い、回転速度:3,000回転/分で、5分間の遠心分離を行った。遠心分離後、上澄みを排出し、ゲル状沈殿物を純水に再分散させ、遠心分離前の容積に戻した。このような遠心分離による脱塩処理を3回行った。脱塩処理3回目の上澄み液を排出後に得たゲル状沈殿物を、濃度が60g/Lとなるように純水に分散し、HORIBA社製:F−55及び電気伝導率セル:9382−10Dを用いて、常温(25℃)で、電気伝導率を測定したところ、1.3S/mであった。脱塩処理3回目の上澄み液を排出後に得たゲル状沈殿物に、濃度:1mol/Lの塩酸を135mL加えてpH=3.5に調整し、30分間攪拌した。このときの溶液中のケイ素原子濃度及びアルミニウム原子濃度を、ICP発光分光装置:P−4010(株式会社日立製作所社製)を用いて、常法により測定したところ、ケイ素原子濃度は213mmol/L、アルミニウム原子濃度は426mmol/Lであった。次に、この溶液を乾燥器に入れ、98℃で48時間(2日間)加熱した。加熱後溶液(アルミニウムケイ酸塩濃度47g/L)に、濃度:1mol/Lの水酸化ナトリウム水溶液を188mL添加し、pH=9.1に調整した。pH調整により溶液中のアルミニウムケイ酸塩を凝集させ、上記同様の遠心分離でこの凝集体を沈殿させて、上澄み液を排出した。これに純水を添加して遠心分離前の容積に戻すという脱塩処理を3回行った。脱塩処理3回目の上澄み液を排出後に得たゲル状沈殿物を、濃度が60g/Lとなるように純水に分散し、HORIBA社製:F−55及び電気伝導率セル:9382−10Dを用いて、常温(25℃)で電気伝導率を測定したところ、0.6S/mであった。脱塩処理3回目の上澄み液を排出後に得たゲル状沈殿物を、60℃で16時間乾燥して30gのイモゴライトを得た。   A method for producing imogolite used in this example will be described. 500 mL of an aluminum chloride aqueous solution having a concentration of 700 mmol / L was added with 500 mL of an aqueous sodium orthosilicate solution having a concentration of 350 mmol / L, followed by stirring for 30 minutes. To this solution, 330 mL of a 1 mol / L aqueous solution of sodium hydroxide was added to adjust the pH to 6.1. After the pH-adjusted solution was stirred for 30 minutes, centrifugation was performed for 5 minutes at a rotation speed of 3,000 rpm using a Suprema 23 and a standard rotor NA-16 manufactured by TOMY as a centrifugal separator. After centrifugation, the supernatant was drained, and the gel precipitate was redispersed in pure water to return to the volume before centrifugation. Such desalting treatment by centrifugation was performed three times. The gel precipitate obtained after discharging the supernatant liquid after the third desalting treatment was dispersed in pure water so as to have a concentration of 60 g / L, and manufactured by HORIBA: F-55 and an electric conductivity cell: 9382-10D. Was used to measure the electrical conductivity at room temperature (25 ° C.), and it was 1.3 S / m. To the gel precipitate obtained after the third supernatant was discharged after the desalting treatment, 135 mL of hydrochloric acid having a concentration of 1 mol / L was added to adjust the pH to 3.5, and the mixture was stirred for 30 minutes. The concentration of silicon atoms and the concentration of aluminum atoms in the solution at this time were measured by an ordinary method using an ICP emission spectrometer: P-4010 (manufactured by Hitachi, Ltd.), and the silicon atom concentration was 213 mmol / L. The aluminum atom concentration was 426 mmol / L. Next, the solution was placed in a dryer and heated at 98 ° C. for 48 hours (2 days). After heating, 188 mL of a 1 mol / L aqueous sodium hydroxide solution was added to the solution (aluminum silicate concentration: 47 g / L) to adjust the pH to 9.1. The aluminum silicate in the solution was aggregated by adjusting the pH, and the aggregate was precipitated by centrifugation as described above, and the supernatant was discharged. Desalting treatment was performed three times, in which pure water was added and the volume was returned to the volume before centrifugation. The gel precipitate obtained after discharging the supernatant liquid after the third desalting treatment was dispersed in pure water so as to have a concentration of 60 g / L, and manufactured by HORIBA: F-55 and an electric conductivity cell: 9382-10D. Was used to measure the electrical conductivity at room temperature (25 ° C.) and found to be 0.6 S / m. The gel precipitate obtained after discharging the supernatant liquid after the third desalting treatment was dried at 60 ° C. for 16 hours to obtain 30 g of imogolite.

また、他の実施例として準晶質粘土鉱物のアロフェンを選択したときは、P1(200メッシュ粉末)(品川化成株式会社製)を用いて実施した。   When allophane, a quasi-crystalline clay mineral, was selected as another example, P1 (200 mesh powder) (manufactured by Shinagawa Kasei Co., Ltd.) was used.

スラリー中の各原料成分の含有量が、平均繊維径1.0μmのガラス繊維78.9質量%、イモゴライト10質量%、バインダーであるポリプロピレンエマルジョン樹脂10質量%、界面活性剤であるラッコール1.0質量%、凝集剤であるジアリルジメチルアンモニウムクロライド0.1質量%となるようにスラリーを調製し、抄紙を行い、1.6mm厚、平均細孔径2.0μm、灼熱減量10%、イモゴライト付着量8.6×10-5kgのセパレータを作製した。イモゴライトの付着量は、スラリー中のイモゴライト添加量を加減することにより調整することができる。灼熱減量は以下の方法により測定した。試料を105±5℃で約30分間乾燥し、デシケータに入れ放冷後、重量(W1)を測定する。次に、ルツボにこの試料を入れ、500℃の加熱炉に入れて2時間後に白色化した試料を取り出しデシケータに入れ放冷後、重量(W2)を測定し、次式により灼熱減量を算出した。 The content of each raw material component in the slurry was 78.9% by mass of glass fiber having an average fiber diameter of 1.0 μm, 10% by mass of imogolite, 10% by mass of a polypropylene emulsion resin as a binder, and 1.0% of Laccol as a surfactant. A slurry was prepared so as to be 0.1% by mass, and 0.1% by mass of diallyldimethylammonium chloride as a coagulant, and papermaking was performed. The thickness was 1.6 mm, the average pore diameter was 2.0 μm, the ignition loss was 10%, and the imogolite adhesion amount was 8 A separator of 0.6 × 10 −5 kg was produced. The attached amount of imogolite can be adjusted by adjusting the amount of imogolite added to the slurry. The loss on ignition was measured by the following method. The sample is dried at 105 ± 5 ° C. for about 30 minutes, placed in a desiccator and allowed to cool, and then the weight (W1) is measured. Next, the sample was put in a crucible, put in a heating furnace at 500 ° C., and after 2 hours, a whitened sample was taken out, put in a desiccator, and allowed to cool. The weight (W2) was measured, and the ignition loss was calculated by the following formula. .

灼熱減量(重量%)=(W1−W2)/W1×100
平均細孔径は、水銀ポロシメータ(SHIMADZU製 AutoPore IV 9500 V1.07)によって測定した。イモゴライト付着量はエネルギー分散型X線分析(Energy Dispersive X−ray spectrometry)装置:HITACHI製S−3500N、EPMA(Electron Probe Micro Analyzer)装置:HORIBA製EMIA−920V等を用いて測定した。
Burning weight loss (% by weight) = (W1-W2) / W1 × 100
The average pore diameter was measured by a mercury porosimeter (AutoPore IV 9500 V1.07 manufactured by Shimadzu). The amount of attached imogolite was measured using an energy dispersive X-ray spectrometer (S-3500N manufactured by HITACHI) and an EPMA (Electron Probe Micro Analyzer): EMIA-920V measured by HORIBA manufactured by HORIBA.

スラリー中の各原料成分の含有量が、平均繊維径1.0μmのガラス繊維78.9質量%、アロフェン10質量%、バインダーであるポリプロピレンエマルジョン樹脂10質量%、界面活性剤であるラッコール1.0質量%、凝集剤であるジアリルジメチルアンモニウムクロライド0.1質量%となるようにスラリーを調製し、抄紙を行い、1.6mm厚、平均細孔径2.0μm、灼熱減量10%、アロフェン付着量8.6×10-5kgのセパレータを作製した。また、アロフェンの付着量は、スラリー中のアロフェン添加量を加減することにより調整することができる。灼熱減量、平均細孔径、アロフェン付着量はイモゴライトの際と同様の測定方法を用いて行った。 The content of each raw material component in the slurry was 78.9% by mass of glass fibers having an average fiber diameter of 1.0 μm, 10% by mass of allophane, 10% by mass of a polypropylene emulsion resin as a binder, and 1.0% of Laccol 1.0 as a surfactant. A slurry was prepared so as to be 0.1% by mass, and 0.1% by mass of diallyldimethylammonium chloride as a coagulant, and papermaking was performed. The thickness was 1.6 mm, the average pore diameter was 2.0 μm, the ignition loss was 10%, and the allophane adhesion amount was 8 A separator of 0.6 × 10 −5 kg was produced. The amount of allophane attached can be adjusted by adjusting the amount of allophane added to the slurry. The ignition loss, average pore diameter, and allophane adhesion amount were measured using the same measurement methods as in the case of imogolite.

また、以下の方法によってもイモゴライトを正極板と負極板との間に散在させることが可能である。スラリー中の各原料成分の含有量が、平均繊維径1.0μmのガラス繊維88.9質量%、バインダーであるポリプロピレンエマルジョン樹脂10質量%、界面活性剤であるラッコール1.0質量%、凝集剤であるジアリルジメチルアンモニウムクロライド0.1質量%となるようにスラリーを調製し、抄紙を行い、1.4mm厚、平均細孔径2.0μmのガラス繊維を主として構成されて電解液を保持する役目をもつセパレータを得た。また、スラリー中の各原料成分の含有量が、平均繊維径1.0μmのガラス繊維78.9質量%、イモゴライト10質量%、バインダーであるポリプロピレンエマルジョン樹脂10質量%、界面活性剤であるラッコール1.0質量%、凝集剤であるジアリルジメチルアンモニウムクロライド0.1質量%となるようにスラリーを調製し、抄紙を行い、0.2mm厚、平均細孔径2.0μm、灼熱減量10%、イモゴライトを8.6×10-5kg付着させたセパレータを作製した。これら2種類のセパレータを中央部が電解液を保持するためのセパレータ、両側をイモゴライトが付着したセパレータとなるように3枚重ね合わせて、1.8mm厚のセパレータを作製した。そして、セパレータ密度が250kg/m3となるように、極板群をアクリル製の電槽に加圧して組み込んだ。 Also, imogolite can be dispersed between the positive electrode plate and the negative electrode plate by the following method. The content of each raw material component in the slurry was 88.9% by mass of glass fibers having an average fiber diameter of 1.0 μm, 10% by mass of a polypropylene emulsion resin as a binder, 1.0% by mass of Laccol as a surfactant, and a flocculant. A slurry was prepared so as to have a diallyldimethylammonium chloride content of 0.1% by mass, papermaking was performed, and a glass fiber having a thickness of 1.4 mm and an average pore diameter of 2.0 μm was mainly constituted to hold an electrolyte. Was obtained. The content of each raw material component in the slurry was 78.9% by mass of glass fiber having an average fiber diameter of 1.0 μm, 10% by mass of imogolite, 10% by mass of a polypropylene emulsion resin as a binder, and Laccol 1 as a surfactant. A slurry was prepared so as to have a mass of 0.0% by mass and 0.1% by mass of diallyldimethylammonium chloride as a coagulant, and papermaking was performed. A separator having 8.6 × 10 −5 kg attached was prepared. These two types of separators were stacked so that the center part was a separator for holding the electrolyte and the both sides were a separator to which imogolite was attached, thereby producing a 1.8 mm thick separator. Then, the electrode plate group was press-fitted into an acrylic battery case so that the separator density became 250 kg / m 3 .

さらに、イモゴライトを正極板と負極板との間に散在させる他の方法として以下に説明する。スラリー中の各原料成分の含有量が、繊維径1.0μmのガラス繊維88.9質量%、バインダーであるポリプロピレンエマルジョン樹脂10質量%、界面活性剤であるラッコール1.0質量%、凝集剤であるジアリルジメチルアンモニウムクロライド0.1質量%となるようにスラリーを調製し、抄紙を行い、1.8mm厚、平均細孔径2.0μmのセパレータとした。電解液は比重1.30の硫酸溶液中に添加剤としてイモゴライトを電解液体積当たり0.06kg/m3加えたものを用いた。セパレータ密度が250kg/m3となるように極板群をアクリル製の電槽に加圧して組み込んだ。 Further, another method for dispersing imogolite between the positive electrode plate and the negative electrode plate will be described below. The content of each raw material component in the slurry was 88.9% by mass of glass fiber having a fiber diameter of 1.0 μm, 10% by mass of a polypropylene emulsion resin as a binder, 1.0% by mass of Laccol as a surfactant, and a coagulant. A slurry was prepared so as to have a certain diallyldimethylammonium chloride content of 0.1% by mass, papermaking was performed, and a separator having a thickness of 1.8 mm and an average pore diameter of 2.0 μm was obtained. The electrolyte used was a sulfuric acid solution having a specific gravity of 1.30, to which imogolite was added as an additive at 0.06 kg / m 3 per electrolyte solution volume. The electrode group was assembled under pressure into an acrylic battery case so that the separator density became 250 kg / m 3 .

他の実施例として、電解液にスノーテックス等の無機コロイド材料を加えて作製したゲル状電解液を用いても、Pbイオンの吸着、放出が可能であり同様の効果を得ることができる。   As another example, even if a gel electrolyte prepared by adding an inorganic colloid material such as snowtex to the electrolyte is used, adsorption and release of Pb ions are possible, and the same effect can be obtained.

電解液は比重1.30の硫酸溶液中に添加剤として硫酸マグネシウムをそれぞれ0.05、0.1、0.5、1.0、2.5mol/dm3溶解した。 As an electrolyte, 0.05, 0.1, 0.5, 1.0, and 2.5 mol / dm 3 of magnesium sulfate was dissolved as an additive in a sulfuric acid solution having a specific gravity of 1.30.

<極板の製造>
一酸化鉛を主成分とする鉛粉:100kg、PET繊維(繊度:2.0D(denier)、繊維長:3.0mm):0.2kgを混合し水を加えた後、希硫酸:20kg(比重:1.260、20℃換算)に鉛丹:30kgを加えて攪拌したスラリーを加えて混練し、正極用ペースト状活物質を作製した。作製した正極用ペースト状活物質を、幅が55mm、長さが117mm、厚さが4mmの鉛−カルシウム−錫合金製の集電体に充填した。そして、40℃、湿度95%の大気中で24時間放置して熟成をした後に、50℃で16時間乾燥をして未化成のペースト式正極板を作製した。
<Manufacture of electrode plates>
Lead powder containing lead monoxide as a main component: 100 kg, PET fiber (fineness: 2.0 D (denier), fiber length: 3.0 mm): 0.2 kg, and after adding water, dilute sulfuric acid: 20 kg ( To the mixture was added 30 kg of lead and 30 parts of agitated slurry, followed by kneading to prepare a paste-like active material for a positive electrode. The prepared positive electrode paste active material was filled in a lead-calcium-tin alloy current collector having a width of 55 mm, a length of 117 mm, and a thickness of 4 mm. Then, after aging in the air at 40 ° C. and a humidity of 95% for 24 hours, the paste was dried at 50 ° C. for 16 hours to produce an unformed paste-type positive electrode plate.

一酸化鉛を主成分とする鉛粉:90kg、PET繊維(繊度:2.0D(denier)、繊維長:3.0mm):0.27kg、硫酸バリウム:0.45kg、リグニン:0.18kgを混合し、水を加えた後、希硫酸:10kg(比重:1.260、20℃換算)を加え混練し、負極用のペースト状活物質を作製した。ペースト状活物質の集電格子体への充填性を考慮し、ペースト状活物質が所定の硬さになるように、加える水の量を調整した。   Lead powder containing lead monoxide as a main component: 90 kg, PET fiber (fineness: 2.0 D (denier), fiber length: 3.0 mm): 0.27 kg, barium sulfate: 0.45 kg, lignin: 0.18 kg After mixing and adding water, 10 kg of dilute sulfuric acid (specific gravity: 1.260, converted at 20 ° C.) was added and kneaded to prepare a paste-like active material for a negative electrode. The amount of water to be added was adjusted so that the paste-like active material had a predetermined hardness in consideration of the filling property of the paste-like active material into the current-collecting grid.

作製した負極用ペースト状活物質を、幅が60mm、長さが120mm、厚さが2.0mmの鉛−カルシウム−錫合金製の集電体に充填して未化成のペースト式負極板を作製した。そして、40℃、湿度95%の大気中で24時間放置して熟成をした後に、50℃で16時間乾燥して未化成のペースト式負極板を作製した。   The prepared paste active material for negative electrode was filled into a lead-calcium-tin alloy current collector having a width of 60 mm, a length of 120 mm, and a thickness of 2.0 mm to prepare an unformed paste-type negative electrode plate. did. Then, after aging in the air at 40 ° C. and a humidity of 95% for 24 hours, the paste was dried at 50 ° C. for 16 hours to prepare an unformed paste negative electrode plate.

(実施例1)
作製したペースト式正極板3枚とペースト式負極板4枚を、厚みが1.8mmのガラス繊維を主成分とする不織布からなるセパレータを介して交互に積層し、電極の耳部を溶接して極板群とし、アクリル製の電槽にセパレータ密度が250kg/m3になるように加圧して組み込んだ。本実施例で使用するセパレータは、1.8mm厚、平均細孔径2.0μm、灼熱減量10%、イモゴライト付着量8.6×10-5kgとしたものを使用した。上記電槽に、比重1.30の硫酸溶液中に添加剤として硫酸マグネシウムを0.05モル/dm3加えたものを用いた。比重1.30の希硫酸電解液を0.13×10-33注入し、周囲温度が約25℃、課電量が250%、化成時間が48時間の条件で電槽化成を行い、公称容量が17Ah−2Vの制御弁式鉛蓄電池を作製した。
(Example 1)
The prepared three paste-type positive electrode plates and four paste-type negative electrode plates are alternately laminated via a separator made of a nonwoven fabric mainly composed of glass fiber having a thickness of 1.8 mm, and the ears of the electrodes are welded. The electrode group was assembled into an acrylic battery case under pressure so as to have a separator density of 250 kg / m 3 . The separator used in this example had a thickness of 1.8 mm, an average pore diameter of 2.0 μm, a loss on ignition of 10%, and an attached amount of imogolite of 8.6 × 10 −5 kg. In the above-mentioned battery case, a solution obtained by adding 0.05 mol / dm 3 of magnesium sulfate as an additive to a sulfuric acid solution having a specific gravity of 1.30 was used. 0.13 × 10 −3 m 3 of dilute sulfuric acid electrolyte having a specific gravity of 1.30 was injected, and the battery was formed under the conditions of an ambient temperature of about 25 ° C., a charge amount of 250%, and a formation time of 48 hours. A control valve type lead-acid battery having a capacity of 17 Ah-2V was produced.

(実施例2〜5)
実施例1で使用した電解液中の硫酸マグネシウムの添加量をそれぞれ0.1、0.5、1.0、2.5モル/dm3とした他は実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Examples 2 to 5)
A control valve was used in the same manner as in Example 1 except that the addition amounts of magnesium sulfate in the electrolytic solution used in Example 1 were 0.1, 0.5, 1.0, and 2.5 mol / dm 3 , respectively. A lead storage battery was manufactured.

(比較例1)
作製したペースト式正極板3枚とペースト式負極板4枚を、厚みが1.8mmのガラス繊維を主成分とする不織布からなるセパレータを介して交互に積層し、電極の耳部を溶接して極板群とし、アクリル製の電槽にセパレータ密度が250kg/m3になるように加圧して組み込んだ。本比較例で使用するセパレータは、1.8mm厚、平均細孔径2.0μm、灼熱減量10%としたものを使用した。セパレータにイモゴライトを混抄させず、かつ比重1.30の硫酸電解液中に添加剤として硫酸マグネシウムを加えなかった以外は、実施例1と同様とした。
(Comparative Example 1)
The prepared three paste-type positive electrode plates and four paste-type negative electrode plates are alternately laminated via a separator made of a nonwoven fabric mainly composed of glass fiber having a thickness of 1.8 mm, and the ears of the electrodes are welded. The electrode group was assembled into an acrylic battery case under pressure so as to have a separator density of 250 kg / m 3 . The separator used in this comparative example had a thickness of 1.8 mm, an average pore diameter of 2.0 μm, and a loss on ignition of 10%. Example 1 was repeated except that imogolite was not mixed in the separator and magnesium sulfate was not added as an additive to the sulfuric acid electrolyte having a specific gravity of 1.30.

(比較例2)
作製したペースト式正極板3枚とペースト式負極板4枚を、厚みが1.8mmのガラス繊維を主成分とする不織布からなるセパレータを介して交互に積層し、電極の耳部を溶接して極板群とし、アクリル製の電槽にセパレータ密度が250kg/m3になるように加圧して組み込んだ。本比較例で使用するセパレータは、1.8mm厚、平均細孔径2.0μm、灼熱減量10%、イモゴライト付着量8.6×10-5kgとしたものを使用した。比重1.30の硫酸電解液中に添加剤として硫酸マグネシウムを加えなかった以外は、実施例1と同様とした。
(Comparative Example 2)
The prepared three paste-type positive electrode plates and four paste-type negative electrode plates are alternately laminated via a separator made of a nonwoven fabric mainly composed of glass fiber having a thickness of 1.8 mm, and the ears of the electrodes are welded. The electrode group was assembled into an acrylic battery case under pressure so as to have a separator density of 250 kg / m 3 . The separator used in this comparative example had a thickness of 1.8 mm, an average pore diameter of 2.0 μm, a loss on ignition of 10%, and an adhesion amount of imogolite of 8.6 × 10 −5 kg. Example 1 was the same as Example 1 except that magnesium sulfate was not added as an additive to a sulfuric acid electrolyte having a specific gravity of 1.30.

<実施例及び比較例の制御弁式鉛蓄電池の短絡試験>
上記した電槽化成の後に、満充電状態にした制御弁式鉛蓄電池を、雰囲気温度25℃の大気中で、0.2CA(1.8A)で終止電圧が1.75V/セルまで放電して初期の放電容量を確認する。続いて、制御弁式鉛蓄電池の正極端子と負極端子との間に、30Ω、10Wのホーロー抵抗器を取り付け、雰囲気温度40℃の大気中に2週間放置して完全放電をする。次に、雰囲気温度25℃の大気中で2.45V/セル、制限電流が1.7Aの定電圧充電を16時間行う。そして、充電状態で制御弁式鉛蓄電池を解体して、セパレータに短絡痕があるか否かを確認した。なお、上記した短絡試験方法は、いわゆる加速試験方法である。
<Short circuit test of control valve type lead storage batteries of Examples and Comparative Examples>
After the above-mentioned battery case formation, the fully charged state of the control valve type lead-acid battery was discharged in the atmosphere at an ambient temperature of 25 ° C. at 0.2 CA (1.8 A) to a final voltage of 1.75 V / cell. Check the initial discharge capacity. Subsequently, a 30 Ω, 10 W enamel resistor is attached between the positive electrode terminal and the negative electrode terminal of the control valve type lead-acid battery, and left in the atmosphere at an ambient temperature of 40 ° C. for 2 weeks to completely discharge. Next, constant voltage charging at 2.45 V / cell and a limiting current of 1.7 A is performed for 16 hours in the atmosphere at an ambient temperature of 25 ° C. Then, the control valve type lead storage battery was disassembled in the charged state, and it was confirmed whether or not there was a short circuit mark on the separator. The above-described short-circuit test method is a so-called accelerated test method.

短絡試験結果は短絡した場合を「×」、短絡しなかった場合を「○」と判定し評価した。   The results of the short-circuit test were evaluated by judging the case of short-circuiting as “x” and the case of not short-circuiting as “「 ”.

<繰り返し短絡試験>
上記の短絡試験を繰り返し、短絡のし難さを評価した。繰り返し短絡評価結果は、試験の繰り返し数が1回未満で短絡したものを「×」、1回以上2回未満で短絡したものを「△」、2回以上4回未満で短絡したものを「○」、4回以上で短絡しなかったものを「◎」として評価した。
<Repeated short circuit test>
The above-mentioned short circuit test was repeated, and the difficulty of short circuit was evaluated. The results of the repeated short-circuit evaluation were as follows: "x" indicates that the test was repeated less than 1 time, "x" indicates that the test was short-circuited once or more than 2 times, and "「 "indicates that the test was short-circuited 2 times or less than 4 times. ○ ”, those that did not short-circuit four or more times were evaluated as“ ◎ ”.

Figure 0006638244
(実施例6)
作製したペースト式正極板3枚とペースト式負極板4枚を、厚みが1.8mmのガラス繊維を主成分とする不織布からなるセパレータを介して交互に積層し、電極の耳部を溶接して極板群を作製した。この極板群を、アクリル製の電槽にセパレータ密度が250kg/m3になるように加圧して組み込んだ。本実施例で使用するセパレータは、1.8mm厚、平均細孔径2.0μm、灼熱減量10%、アロフェン付着量8.6×10-5kgとしたものを使用した。上記電槽に、比重1.30の硫酸溶液中に添加剤として硫酸マグネシウムを0.1モル/dm3加えたものを用いた。比重1.30の希硫酸電解液を0.13×10-33注入し、周囲温度が約25℃、課電量が250%、化成時間が48時間の条件で電槽化成を行い、公称容量が17Ah−2Vの制御弁式鉛蓄電池を作製した。
Figure 0006638244
(Example 6)
The prepared three paste-type positive electrode plates and four paste-type negative electrode plates are alternately laminated via a separator made of a nonwoven fabric mainly composed of glass fiber having a thickness of 1.8 mm, and the ears of the electrodes are welded. An electrode group was prepared. The electrode group was assembled under pressure so as to have a separator density of 250 kg / m 3 in an acrylic battery case. The separator used in this example had a thickness of 1.8 mm, an average pore diameter of 2.0 μm, a loss on ignition of 10%, and an attached amount of allophane of 8.6 × 10 −5 kg. In the above-mentioned battery case, a solution obtained by adding 0.1 mol / dm 3 of magnesium sulfate as an additive to a sulfuric acid solution having a specific gravity of 1.30 was used. 0.13 × 10 −3 m 3 of dilute sulfuric acid electrolyte having a specific gravity of 1.30 was injected, and the battery was formed under the conditions of an ambient temperature of about 25 ° C., a charge amount of 250%, and a formation time of 48 hours. A control valve type lead-acid battery having a capacity of 17 Ah-2V was produced.

(実施例7〜9)
実施例1で使用した電解液中の硫酸マグネシウムの添加量をそれぞれ0.5、1.0、2.5モル/dm3とした他は実施例6と同様にして制御弁式鉛蓄電池を作製した。
(Examples 7 to 9)
A control valve type lead-acid battery was fabricated in the same manner as in Example 6, except that the amounts of magnesium sulfate in the electrolyte used in Example 1 were changed to 0.5, 1.0, and 2.5 mol / dm 3 , respectively. did.

Figure 0006638244
表1に示した試験結果から、実施例1〜5(イモゴライトが混抄されたセパレータ)は、希硫酸電解液中に添加剤として硫酸マグネシウムを0.05〜2.5mol/dm3加えることで、繰り返し短絡試験に対する短絡の抑制効果が大きく、比較例1(イモゴライトが混抄されず、硫酸マグネシウムを添加しない場合)よりも著しく優れることが判った。また、繰り返し短絡試験に対する短絡の抑制効果の観点から、実施例1〜5は、比較例2(イモゴライトが混抄されず、硫酸マグネシウムを添加しない場合)よりも優れることが判った。
Figure 0006638244
From the test results shown in Table 1, Examples 1 to 5 (separator mixed with imogolite) were obtained by adding 0.05 to 2.5 mol / dm 3 of magnesium sulfate as an additive to a diluted sulfuric acid electrolyte solution. It was found that the effect of suppressing short-circuiting in the repeated short-circuit test was large, and was significantly superior to Comparative Example 1 (when imogolite was not mixed and magnesium sulfate was not added). In addition, from the viewpoint of the effect of suppressing short circuits in the repeated short circuit test, Examples 1 to 5 were found to be superior to Comparative Example 2 (when imogolite was not mixed and magnesium sulfate was not added).

また、表2に示した試験結果から、アロフェンが混抄されたセパレータ(実施例6〜9)は、希硫酸電解液中に添加剤として硫酸マグネシウムを0.1〜2.5モル/dm3加えることで、繰り返し短絡試験に対する短絡の抑制効果が大きく、比較例1(イモゴライトを混抄せず、かつ硫酸マグネシウムを添加しない場合)よりも著しく優れることが判った。また、繰り返し短絡試験に対する短絡の抑制効果の観点から、実施例6〜9は、比較例2(イモゴライトが混抄されず、硫酸マグネシウムを添加しない場合)よりも優れることが判った。 Further, from the test results shown in Table 2, for the separator mixed with allophane (Examples 6 to 9), 0.1 to 2.5 mol / dm 3 of magnesium sulfate was added as an additive to the diluted sulfuric acid electrolyte solution. Thus, it was found that the effect of suppressing the short-circuit in the repeated short-circuit test was large, and was significantly superior to Comparative Example 1 (in which imogolite was not mixed and magnesium sulfate was not added). In addition, from the viewpoint of the effect of suppressing short circuits in the repeated short circuit test, Examples 6 to 9 were found to be superior to Comparative Example 2 (when imogolite was not mixed and magnesium sulfate was not added).

これらの結果は、マグネシウムイオンとして硫酸マグネシウムを添加することにより、放電により負極板中に生成した硫酸鉛が電解液中に溶解することを抑制することによると考えられる。これらの作用により、正負極板間の浸透短絡を防止することが可能となる。従って本発明によると、セパレータの取り扱い性や電解液の拡散性を悪化させることなく、セパレータ中に析出した硫酸塩結晶が二酸化鉛に酸化して、結晶が成長してセパレータを貫通して浸透短絡が発生することを防止することができる。   These results are considered to be due to the fact that the addition of magnesium sulfate as magnesium ions suppresses the dissolution of lead sulfate generated in the negative electrode plate by the discharge into the electrolytic solution. By these actions, it is possible to prevent a penetration short circuit between the positive and negative electrode plates. Therefore, according to the present invention, the sulfate crystals precipitated in the separator are oxidized to lead dioxide without deteriorating the handleability of the separator and the diffusivity of the electrolytic solution, and the crystals grow and penetrate the separator to cause osmotic short circuit. Can be prevented from occurring.

なお、実施例3〜5(イモゴライトが混抄され、硫酸マグネシウムの添加量が0.5〜2.5モル/dm3の場合)及び実施例8、9(アロフェンが混抄され、硫酸マグネシウムの添加量が1.0〜2.5モル/dm3の場合)では、繰り返し短絡試験に対する短絡の抑制効果が非常に大きくなり、永続的な短絡防止効果が顕著になることが判った。 Examples 3 to 5 (when imogolite is mixed and the amount of magnesium sulfate added is 0.5 to 2.5 mol / dm 3 ) and Examples 8 and 9 (allophane is mixed and the amount of magnesium sulfate added) Is 1.0 to 2.5 mol / dm 3 ), the effect of suppressing the short circuit in the repeated short circuit test is very large, and the permanent short circuit preventing effect is remarkable.

Claims (2)

電槽内に、正極板及び負極板が、イモゴライトの粒子を保持したセパレータを介して交互に積層された極板群と電解液とが収容された制御弁式鉛蓄電池において、
前記イモゴライトの存在量が、電解液体積当たり0.064kg/m 3 以上19.8kg/m 3 以下であり、
前記電解液は、該電解液に対して0.5〜2.5mol/dm 3 のマグネシウムイオンを含んでいることを特徴とする制御弁式鉛蓄電池。
In a battery case, a positive-electrode plate and a negative-electrode plate, in a control valve-type lead-acid battery containing an electrode group and an electrolyte that are alternately stacked via a separator holding imogolite particles ,
The amount of the imogolite is 0.064 kg / m 3 or more and 19.8 kg / m 3 or less per electrolyte volume ;
The control valve type lead storage battery , wherein the electrolyte contains 0.5 to 2.5 mol / dm 3 of magnesium ions with respect to the electrolyte .
電槽内に、正極板及び負極板が、アロフェンの粒子を保持したセパレータを介して交互に積層された極板群と電解液とが収容された制御弁式鉛蓄電池において、In a battery case, a positive-electrode plate and a negative-electrode plate, in a control valve-type lead-acid battery containing an electrode group and an electrolyte that are alternately stacked via a separator that holds allophane particles,
前記アロフェンの存在量が、電解液体積当たり0.082kg/m  The amount of the allophane is 0.082 kg / m per electrolyte volume. 3Three 以上27.6kg/m27.6 kg / m or more 3Three 以下であり、Below,
前記電解液は、該電解液に対して1.0〜2.5mol/dmThe electrolyte is 1.0 to 2.5 mol / dm with respect to the electrolyte. 3Three のマグネシウムイオンを含んでいることを特徴とする制御弁式鉛蓄電池。A control valve type lead-acid battery characterized by containing magnesium ions.
JP2015155064A 2015-08-05 2015-08-05 Control valve type lead-acid battery Active JP6638244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015155064A JP6638244B2 (en) 2015-08-05 2015-08-05 Control valve type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015155064A JP6638244B2 (en) 2015-08-05 2015-08-05 Control valve type lead-acid battery

Publications (2)

Publication Number Publication Date
JP2017033863A JP2017033863A (en) 2017-02-09
JP6638244B2 true JP6638244B2 (en) 2020-01-29

Family

ID=57988640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015155064A Active JP6638244B2 (en) 2015-08-05 2015-08-05 Control valve type lead-acid battery

Country Status (1)

Country Link
JP (1) JP6638244B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018380255A1 (en) * 2017-12-05 2020-06-25 Hitachi Chemical Company, Ltd. Separator for lead acid storage batteries, and lead acid storage battery
JP7274830B2 (en) * 2018-07-09 2023-05-17 エナジーウィズ株式会社 lead acid battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183238A (en) * 2003-12-22 2005-07-07 Shin Kobe Electric Mach Co Ltd Control valve type lead storage battery
JP2006155901A (en) * 2004-11-25 2006-06-15 Shin Kobe Electric Mach Co Ltd Control valve type lead-acid storage battery
JP5573785B2 (en) * 2011-06-22 2014-08-20 株式会社Gsユアサ Lead acid battery
JP2013134957A (en) * 2011-12-27 2013-07-08 Gs Yuasa Corp Method for manufacturing lead-acid battery, and lead-acid battery
WO2015064535A1 (en) * 2013-11-01 2015-05-07 日立化成株式会社 Separator for valve-regulated lead battery and control valve-regulated lead battery using same

Also Published As

Publication number Publication date
JP2017033863A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
JP5769096B2 (en) Lead acid battery
WO2012063745A1 (en) Negative-electrode material for electricity storage device, and negative electrode for electricity storage device using same
CN104969384A (en) Anion conducting material and battery
JP2015005493A (en) Electrode precursor, electrode, and battery
JP6202477B1 (en) Lead acid battery
TW201717470A (en) Ion scavenger for lithium ion secondary cell, liquid electrolyte, separator, and lithium ion secondary cell
KR101561678B1 (en) Electrode material for rechargeable battery and method of fabricating the same
JP4544791B2 (en) Sealed lead acid battery
WO2018229875A1 (en) Liquid-type lead storage battery
WO2024113992A1 (en) Positive electrode sheet for sodium-ion battery, and sodium-ion battery
JP6638244B2 (en) Control valve type lead-acid battery
JP6931185B2 (en) A conductive carbon mixture, an electrode using this mixture, and a power storage device equipped with this electrode.
JP2016213049A (en) Control valve-type lead storage battery
KR101981242B1 (en) COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME
WO2020213499A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4374247B2 (en) Alkaline secondary electrochemical power generator with zinc positive electrode
JP2016186895A (en) Anion conductive membrane, electrode and battery
JP6535950B2 (en) Alkaline storage battery
JP6454496B2 (en) Electrode and battery constructed using the same
JP6616565B2 (en) Anion conductive material
JP2016162612A (en) Control valve type lead storage battery
JP2019079701A (en) Method of manufacturing separator for zinc negative electrode secondary battery and separator for zinc negative electrode secondary battery
JP2019091598A (en) Positive electrode plate and lead storage battery
JP2006210059A (en) Lead acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R151 Written notification of patent or utility model registration

Ref document number: 6638244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250