JP6637873B2 - Positive active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Positive active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP6637873B2
JP6637873B2 JP2016215334A JP2016215334A JP6637873B2 JP 6637873 B2 JP6637873 B2 JP 6637873B2 JP 2016215334 A JP2016215334 A JP 2016215334A JP 2016215334 A JP2016215334 A JP 2016215334A JP 6637873 B2 JP6637873 B2 JP 6637873B2
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
lithium ion
ion secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016215334A
Other languages
Japanese (ja)
Other versions
JP2018073737A (en
Inventor
高行 吉田
高行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016215334A priority Critical patent/JP6637873B2/en
Publication of JP2018073737A publication Critical patent/JP2018073737A/en
Application granted granted Critical
Publication of JP6637873B2 publication Critical patent/JP6637873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、及びリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

リチウムイオン二次電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車両用や人工衛星用といった大型用途におけるリチウムイオン二次電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。車両などの動力機器は、PCやモバイル機器よりも高い電流値、すなわち高出力が必要とされることから、組み立て後の電池に高レートで放電を行った際にも放電電位があまり変化しないことが求められている。この場合、一般的には高レートでのサイクル特性が良好であれば、放電電位があまり変化してないことが多い。従って、放電電位変化の抑制のために高レートでのサイクル特性が良好であることが望まれている。しかも、このような高出力の電池は、40℃以上の環境や、0℃以下の環境でも高レートでのサイクル特性が必要となる場合があり、このような高温や低温でも高レートのサイクル特性を発揮できる電池ができれば、高出力用途向けリチウムイオン二次電池のさらなる発展が期待できる。 Generally, a lithium-containing transition metal oxide is used as a positive electrode active material of a lithium ion secondary battery. Specifically, it is lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) or the like, and the characteristics are improved (high capacity, cycle characteristics, storage characteristics, internal resistance reduction). , Rate characteristics) and security in order to improve the security. Lithium-ion secondary batteries for large-scale applications such as vehicles and artificial satellites are required to have different characteristics from those for mobile phones and personal computers. Since power devices such as vehicles require higher current values, that is, higher output, than PCs and mobile devices, the discharge potential does not change much even when the assembled battery is discharged at a high rate. Is required. In this case, generally, if the cycle characteristics at a high rate are good, the discharge potential often does not change much. Therefore, it is desired that the cycle characteristics at a high rate be good in order to suppress the discharge potential change. In addition, such a high-output battery may require high-rate cycle characteristics even in an environment of 40 ° C. or higher or in an environment of 0 ° C. or lower. If a battery capable of exhibiting the above characteristics can be made, further development of a lithium ion secondary battery for high power applications can be expected.

このようなリチウムイオン二次電池において求められる電池特性の向上について、従来、種々の研究・開発が行われている(特許文献1〜2)。   Conventionally, various researches and developments have been made on the improvement of the battery characteristics required for such a lithium ion secondary battery (Patent Documents 1 and 2).

特許第3192374号公報Japanese Patent No. 3192374 特許第4872150号公報Japanese Patent No. 4872150

ここで、高出力を実現するため、車両用リチウムイオン二次電池の正極活物質においては、ZrやWといった、実際には充放電に寄与しないが電池全体の充放電反応を活性化させる、いわゆる電極反応触媒としての役割のある元素を添加することで、高出力化を図ることができることが知られている。しかしながら、より高い出力を求めてこれらの元素の添加量を増加させると、出力は確かに高まるものの、容量の絶対値は低くなってしまって逆に放電電位の安定化につながらないことが判明した。そのため車両性能との関係から電極反応触媒の添加量に上下限ができてしまうが、実際の添加量は少量にとどまるため、触媒が徐々に溶解または反応すると出力が次第に低下していくという問題があった。   Here, in order to realize a high output, in a positive electrode active material of a lithium ion secondary battery for a vehicle, a so-called Zr or W, which does not actually contribute to charge / discharge but activates a charge / discharge reaction of the entire battery, a so-called, It is known that high output can be achieved by adding an element having a role as an electrode reaction catalyst. However, it has been found that, when a higher output is sought and the added amount of these elements is increased, the output is certainly increased, but the absolute value of the capacity is reduced, which does not lead to stabilization of the discharge potential. For this reason, the upper and lower limits can be set for the amount of the electrode reaction catalyst in relation to the vehicle performance.However, the actual amount of addition is limited to a small amount, and the output gradually decreases when the catalyst is gradually dissolved or reacted. there were.

ここで、電極反応触媒について、ZrはLi2ZrO3など、WはLi2WO4などの形態で作動することが知られており、これらは電解液にはすぐに溶解しないものの、本発明者の検討によれば、Wが徐々に溶解することが判明した。また、Zrについては、電池反応の副反応として、電解液の酸化分解の結果生じるCO2との間で例えば
の平衡反応が起こるのであるが、ここで発生したLi2CO3が電解液と反応するため、一度ZrO2とLi2CO3に分かれた状態でさらにLi2CO3と電解液とが反応して電解液が分解すると、前述の平衡反応が左から右の方にどんどん進んでしまい、電解液とLi2CO3とが反応する機会が増えてしまってLi2ZrO3が少なくなり高出力を保つことができなくなることが判明した。
Here, regarding the electrode reaction catalyst, it is known that Zr operates in a form of Li 2 ZrO 3 or the like, and W operates in a form of Li 2 WO 4 or the like. These do not dissolve immediately in the electrolytic solution. According to the examination of the above, it was found that W gradually dissolved. As for Zr, as a side reaction of the battery reaction, for example, between Zr and CO 2 resulting from oxidative decomposition of the electrolyte,
However, since Li 2 CO 3 generated here reacts with the electrolyte, Li 2 CO 3 and the electrolyte further react once in a state of being separated into ZrO 2 and Li 2 CO 3. When the electrolyte is decomposed, the above-described equilibrium reaction proceeds more rapidly from left to right, increasing the chance of the reaction between the electrolyte and Li 2 CO 3 , decreasing the amount of Li 2 ZrO 3 and increasing the output. It turned out to be impossible to keep.

このような問題を鑑みて、本発明は、高温および低温で繰り返し充放電を行っても高出力が確保できるリチウムイオン二次電池用正極活物質を提供することを課題とする。   In view of such a problem, an object of the present invention is to provide a positive electrode active material for a lithium ion secondary battery that can ensure high output even when repeatedly charged and discharged at high and low temperatures.

本発明者は、上記問題を解決するため種々の検討を行った結果、正極活物質の粒子を所定の組成式とし、当該粒子にZr及びWを所定モル比で付着させた正極活物質について、所定のF(フッ素)入り混酸処理を行って得られたろ液に含まれるZr及びWが所定量となるように制御することで、上記課題を解決することができることを見出した。   The present inventor has conducted various studies to solve the above-described problems.As a result, the particles of the positive electrode active material have a predetermined composition formula, and Zr and W are attached to the particles at a predetermined molar ratio. It has been found that the above problem can be solved by controlling the amount of Zr and W contained in a filtrate obtained by performing a predetermined mixed acid treatment containing F (fluorine) to a predetermined amount.

上記知見を基礎にして完成した本発明は一側面において、組成式がLiMO2(式中、MはNi、Co、Mnの1種以上であり、Niを含む場合は組成比:Ni/Mが0.5以上であり、Coを含む場合は組成比:Co/Mが0.2以下であり、Mnを含む場合は組成比:Mn/Mが0.3以下である。)で表され、粒子に疎な部分及び密な部分が存在し、前記粒子の疎な部分にZr及びWが付着している正極活物質であり、前記組成式のMと、前記粒子の疎な部分に付着するZr及びWとのモル比で、Zr/M=0.005〜0.007、且つ、W/M=0.001〜0.002を満たし、1mol/Lの濃度のF入り混酸10mLを加え、10秒間攪拌後に0.1μmのフィルターでろ過してろ液と残渣とを得る処理をF入り混酸処理Aとし、前記正極活物質0.1gに対して、1回目のF入り混酸処理Aを行ってろ液1と残渣1とを得た後、前記残渣1にさらに2回目の前記F入り混酸処理Aを行ってろ液2と残渣2とを得るという操作を繰り返し、残渣(X−1)にX回目の前記F入り混酸処理Aを行ってろ液Xと残渣Xとを得るとき、1回目の前記F入り混酸処理Aを行って得られたろ液1よりも、10回目の前記F入り混酸処理Aを行って得られたろ液10の方が、ろ液中におけるZrのモル比:Zr/(Ni+Co+Mn)及びWのモル比:W/(Ni+Co+Mn)がいずれも小さく、30回目〜50回目のいずれか以降の前記F入り混酸処理Aを行って得られたろ液はZrのモル比:Zr/(Ni+Co+Mn)及びWのモル比:W/(Ni+Co+Mn)がいずれも0.001未満となる、リチウムイオン二次電池用正極活物質である。尚、本発明で言う「1mol/Lの濃度のF入り混酸」とは、1mol/Lの濃度のHFと、1mol/Lの濃度のHNO3と、1mol/Lの濃度のH2SO4とを、体積比0.4:24.9:74.7の比率で混合したものである。 According to one aspect of the present invention, which has been completed based on the above findings, the composition formula is LiMO 2 (where M is at least one of Ni, Co, and Mn, and when Ni is contained, the composition ratio is Ni / M). 0.5 or more, and when Co is contained, the composition ratio: Co / M is 0.2 or less, and when Mn is contained, the composition ratio: Mn / M is 0.3 or less.) there are sparse portions and dense portions particle, a positive electrode active material in the sparse portion of the particles Zr and W are attached, and M of the composition formula, adheres to sparse portion of the particles In a molar ratio with Zr and W, Zr / M = 0.005 to 0.007, and satisfying W / M = 0.001 to 0.002, and 10 mL of a mixed acid containing F at a concentration of 1 mol / L is added, After stirring for 10 seconds, the mixture is filtered through a 0.1 μm filter to obtain a filtrate and a residue. Then, after performing the first F-containing mixed acid treatment A on 0.1 g of the positive electrode active material to obtain a filtrate 1 and a residue 1, the residue 1 is further subjected to the second F-containing mixed acid treatment A. When the residue (X-1) is subjected to the X-th mixed acid treatment A containing F to obtain the filtrate X and the residue X, the operation of obtaining the filtrate 2 and the residue X is repeated. The filtrate 10 obtained by performing the tenth F-containing mixed acid treatment A has a higher molar ratio of Zr in the filtrate: Zr / (Ni + Co + Mn) than the filtrate 1 obtained by performing the mixed acid treatment A. The molar ratio of W: W / (Ni + Co + Mn) is small, and the filtrate obtained by performing the mixed acid treatment A with F after any one of the 30th to 50th times has a Zr molar ratio of Zr / (Ni + Co + Mn) and W molar ratio: W / (Ni + Co + Mn) This is a positive electrode active material for a lithium ion secondary battery, which is also less than 0.001. The term “mixed acid containing F at a concentration of 1 mol / L” referred to in the present invention refers to HF at a concentration of 1 mol / L, HNO 3 at a concentration of 1 mol / L, and H 2 SO 4 at a concentration of 1 mol / L. Are mixed at a volume ratio of 0.4: 24.9: 74.7.

本発明は別の一側面において、本発明のリチウムイオン二次電池用正極活物質を備えたリチウムイオン二次電池用正極である。   In another aspect, the present invention is a positive electrode for a lithium ion secondary battery, including the positive electrode active material for a lithium ion secondary battery of the present invention.

本発明は更に別の一側面において、本発明のリチウムイオン二次電池用正極と、負極と、電解液とを備えたリチウムイオン二次電池である。   In still another aspect, the present invention is a lithium ion secondary battery including the positive electrode for a lithium ion secondary battery of the present invention, a negative electrode, and an electrolyte.

本発明によれば、高温および低温で繰り返し充放電を行っても高出力が確保できるリチウムイオン二次電池用正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion secondary batteries which can ensure high output even if charge / discharge is repeatedly performed at high temperature and low temperature can be provided.

(リチウムイオン二次電池用正極活物質の構成)
本発明のリチウムイオン二次電池用正極活物質は、組成式がLiMO2(式中、MはNi、Co、Mnの1種以上であり、Niを含む場合は組成比:Ni/Mが0.5以上であり、Coを含む場合は組成比:Co/Mが0.2以下であり、Mnを含む場合は組成比:Mn/Mが0.3以下である。)で表され、正極活物質の疎な部分にZr及びWが付着している。当該Zr及びWは電極反応触媒を構成する元素である。また、本発明のリチウムイオン二次電池用正極活物質は、粒子の組成式のMと、正極活物質の疎な部分に付着するZr及びWとがモル比で、Zr/M=0.005〜0.007、且つ、W/M=0.001〜0.002を満たす。このような構成によれば、電解液分解で発生する二酸化炭素を素早く吸収する触媒の溶解を抑制することができ、高温および低温で繰り返し使用した際の出力の劣化を抑制し、高温および低温で繰り返し充放電を行っても高出力が確保できるリチウムイオン二次電池用正極活物質を提供することができる。
(Composition of positive electrode active material for lithium ion secondary battery)
The positive electrode active material for a lithium ion secondary battery of the present invention has a composition formula of LiMO 2 (where M is at least one of Ni, Co, and Mn, and when Ni is contained, the composition ratio: Ni / M is 0) 0.5 or more, and when Co is contained, the composition ratio: Co / M is 0.2 or less, and when Mn is contained, the composition ratio: Mn / M is 0.3 or less.) Zr and W are attached to the sparse portion of the active material. Zr and W are elements constituting an electrode reaction catalyst. Further, in the positive electrode active material for a lithium ion secondary battery of the present invention, the molar ratio of M in the particle composition formula to Zr and W attached to the sparse portion of the positive electrode active material is Zr / M = 0.005. 0.000.007 and W / M = 0.001 to 0.002. According to such a configuration, it is possible to suppress the dissolution of the catalyst that rapidly absorbs the carbon dioxide generated by the decomposition of the electrolyte, suppress the deterioration of the output when repeatedly used at high and low temperatures, and reduce the output at high and low temperatures. It is possible to provide a positive electrode active material for a lithium ion secondary battery capable of ensuring a high output even when repeatedly charged and discharged.

正極活物質へのZr及びWの付着の形態としては、例えば、正極活物質粒子の中心が密であり、粒子表面が疎であるとき、当該粒子表面に隙間ができるが、その隙間にLi2ZrO3等のZr化合物、及び、Li2WO4等のW化合物の電極反応触媒が存在している形態等が挙げられる。このような形態であると、電極反応触媒の機能を発揮させ、かつ触媒の溶出を防ぐことができる。これによって、高温下でも低温下でも高レートで繰り返し充電した際にサイクル特性がよい電池を形成することができる。また、粒子内だけでなく粒子間でも疎密のばらつきを有することで、活物質の疎な部分(すなわち酸溶出しやすい部分)に多くの添加元素が存在することが好ましい。これは例えば、疎な前駆体粒子は表面から中心に単純に向かっている細孔だけでなく、表面から中心方向に一旦入り込んだのち、粒子表面と平行な方向または再度粒子表面に向かうような細孔が存在することがあり、そのような細孔のある前駆体粒子は焼成の際に大きく収縮してごつごつした活物質粒子になるため、充放電時に凸部に電流が過度に集中してしまってサイクル特性が悪化するためである。ZrやWの化合物は、単に触媒としての添加元素という役割だけでなく、これらの疎な前駆体粒子の粒子骨格を保持し、焼成時にごつごつした活物質粒子の生成を抑制することによってもサイクル特性の改善に寄与している。また、活物質の疎な部分は、当該活物質を用いてリチウム二次電池を作製した際に、電解液と接触する可能性が高い。上記の電解液の酸化分解の結果発生するCO2のたまる部分はこの活物質の疎な部分であるため、この部分に電極反応触媒を配置することで、発生したCO2を効率よく吸収することができる。 The form of deposition of Zr and W to the positive electrode active material, for example, the center of the positive electrode active material particles is dense, when the particle surface is sparse, but a gap on the particle surface, Li 2 the gap Examples include a form in which an electrode reaction catalyst of a Zr compound such as ZrO 3 and a W compound such as Li 2 WO 4 is present. In such a form, the function of the electrode reaction catalyst can be exhibited, and the elution of the catalyst can be prevented. This makes it possible to form a battery having good cycle characteristics when repeatedly charged at a high rate under both high and low temperatures. In addition, it is preferable that a large amount of additional elements be present in a portion where the active material is sparse (that is, a portion where acid is easily eluted) because of the unevenness of density not only within the particles but also between the particles. This is because, for example, sparse precursor particles are not only pores that simply go from the surface to the center, but also fine particles that once enter the center from the surface and then move in a direction parallel to the particle surface or toward the particle surface again. There may be pores, and the precursor particles having such pores are greatly shrunk during firing to become rugged active material particles, so that the current is excessively concentrated on the projections during charging and discharging. This is because cycle characteristics deteriorate. The compounds of Zr and W not only function as an additive element as a catalyst, but also retain the particle skeleton of these sparse precursor particles and suppress the generation of rugged active material particles during firing. It has contributed to improvement. In addition, the sparse part of the active material is likely to come into contact with the electrolyte when a lithium secondary battery is manufactured using the active material. Since the portion where CO 2 accumulates as a result of the oxidative decomposition of the electrolytic solution is a sparse portion of the active material, by disposing an electrode reaction catalyst in this portion, the generated CO 2 can be efficiently absorbed. Can be.

本発明のリチウムイオン二次電池用正極活物質は、1mol/Lの濃度のF入り混酸10mLを加え、10秒間攪拌後に0.1μmのフィルターでろ過してろ液と残渣とを得る処理をF入り混酸処理Aとし、正極活物質0.1gに対して、1回目のF入り混酸処理Aを行ってろ液1と残渣1とを得た後、残渣1にさらに2回目のF入り混酸処理Aを行ってろ液2と残渣2とを得ることを繰り返し、残渣(X−1)にX回目のF入り混酸処理Aを行ってろ液Xと残渣Xとを得るとき、1回目のF入り混酸処理Aを行って得られたろ液1よりも、10回目のF入り混酸処理Aを行って得られたろ液10の方が、ろ液中におけるZrのモル比:Zr/(Ni+Co+Mn)及びWのモル比:W/(Ni+Co+Mn)がいずれも小さく、30回目〜50回目のいずれか以降のF入り混酸処理Aを行って得られたろ液はZrのモル比:Zr/(Ni+Co+Mn)及びWのモル比:W/(Ni+Co+Mn)がいずれも0.001未満となる。
このように、1回目のF入り混酸処理Aを行って得られたろ液1よりも、10回目のF入り混酸処理Aを行って得られたろ液10の方が、ろ液中におけるZrのモル比:Zr/(Ni+Co+Mn)及びWのモル比:W/(Ni+Co+Mn)がいずれも小さくなることで、前述のとおり活物質の疎な部分にZr化合物およびW化合物が残留し、二酸化炭素を吸収する触媒として働くという効果が生じる。また、30回目〜50回目のいずれか以降のF入り混酸処理Aを行って得られたろ液はZrのモル比:Zr/(Ni+Co+Mn)及びWのモル比:W/(Ni+Co+Mn)がいずれも0.001未満となり、これらの構成により活物質の疎な部分により多くのZr化合物及びW化合物を含んでいることになり、一方活物質の密な部分にはほとんどZr化合物及びW化合物を含んでいないことになる。このため、より電解液と接触する部分に優先的にZr化合物及びW化合物を配置し、かつ分解して二酸化炭素が発生しても長時間にわたってそれを吸収することが可能となっている。後述の比較例4のように、活物質表面にZr化合物及びW化合物を被覆するだけでは、二酸化炭素を吸収する能力がすぐになくなってしまい、高温高レートおよび低温高レートでのサイクル特性の劣化を招いている。また、比較例3のように、活物質全体にわたってZr、Wが存在している場合は、そもそもZr化合物及びW化合物と電解液との接触性が悪く、やはり高温高レートおよび低温高レートでのサイクル特性の劣化を招いてしまう。尚、0.1μmのフィルターについては、例えば0.1μmのPTFEメンブレンフィルターを用いると、容易に上記のF入り混酸処理Aを行うことができる。また、F入り混酸と接触するろ過器やビーカー等はテフロン(登録商標)などのフッ素樹脂製か、またはテフロン(登録商標)などのフッ素樹脂でコーティングしたものが不純物のコンタミ防止の観点から望ましい。この際、SPCフィルターホルダーにテフロン(登録商標)コーティングした物を用いると、容易に上記のF入り混酸処理Aを行うことができる。また、サポートスクリーンを用いる場合は、テフロン(登録商標)などのフッ素樹脂製のものが好ましい。
The positive electrode active material for a lithium ion secondary battery of the present invention is prepared by adding 10 mL of an F-containing mixed acid having a concentration of 1 mol / L, stirring the mixture for 10 seconds, and then filtering through a 0.1 μm filter to obtain a filtrate and a residue. The mixed acid treatment A was performed, and the first F-containing mixed acid treatment A was performed on 0.1 g of the positive electrode active material to obtain a filtrate 1 and a residue 1. Then, the residue 1 was further subjected to a second F-containing mixed acid treatment A. When the residue (X-1) is subjected to the Xth mixed acid treatment A with F to obtain the filtrate X and the residue X, the first mixed acid treatment A with F is performed. The filtrate 10 obtained by performing the mixed acid treatment A with F ten times has a higher molar ratio of Zr in the filtrate: the molar ratio of Zr / (Ni + Co + Mn) and W than the filtrate 1 obtained by performing : W / (Ni + Co + Mn) is small, 30 times or more The filtrate obtained by performing the mixed acid treatment A containing F in the 0th or subsequent times has a molar ratio of Zr: Zr / (Ni + Co + Mn) and a molar ratio of W: W / (Ni + Co + Mn) of less than 0.001. .
As described above, the filtrate 10 obtained by performing the tenth F-containing mixed acid treatment A has a higher molar ratio of Zr in the filtrate than the filtrate 1 obtained by performing the first F-containing mixed acid treatment A. The ratio: Zr / (Ni + Co + Mn) and the molar ratio of W: W / (Ni + Co + Mn) both become small, so that the Zr compound and the W compound remain in the sparse portion of the active material and absorb carbon dioxide as described above. This has the effect of acting as a catalyst. Further, the filtrate obtained by performing the mixed acid treatment A containing F in any of the 30th to 50th times has a molar ratio of Zr: Zr / (Ni + Co + Mn) and a molar ratio of W: W / (Ni + Co + Mn) of 0. 0.001 or less, so that the sparse portion of the active material contains more Zr compounds and W compounds, while the dense portion of the active material contains almost no Zr compound and W compound. Will be. For this reason, it is possible to arrange the Zr compound and the W compound preferentially in a portion that comes into contact with the electrolytic solution, and to absorb carbon dioxide for a long time even if it is decomposed to generate carbon dioxide. Just coating the surface of the active material with a Zr compound and a W compound as in Comparative Example 4 described below immediately loses the ability to absorb carbon dioxide, and deteriorates the cycle characteristics at high temperature and high rate and low temperature and high rate. Has been invited. Also, when Zr and W are present throughout the active material as in Comparative Example 3, the contact between the Zr compound and the W compound and the electrolytic solution is poor in the first place, and the high-temperature high-rate and low-temperature high-rate This leads to deterioration of cycle characteristics. Note that, for a 0.1 μm filter, for example, if a 0.1 μm PTFE membrane filter is used, the mixed acid treatment A containing F can be easily performed. Further, a filter or a beaker which comes into contact with the mixed acid containing F is preferably made of a fluororesin such as Teflon (registered trademark) or coated with a fluororesin such as Teflon (registered trademark) from the viewpoint of preventing contamination of impurities. At this time, if the SPC filter holder coated with Teflon (registered trademark) is used, the mixed acid treatment A containing F can be easily performed. When a support screen is used, a screen made of a fluororesin such as Teflon (registered trademark) is preferable.

この際、他の技術との組み合わせの関係上、本発明の技術を利用したリチウムイオン二次電池用正極活物質がすでに他の導電助剤、高分子などと組み合わされて複合体となっている場合は、本来はそれらを除去して正極活物質のみでF入り混酸処理Aを行うことが望ましいが、それが難しい場合は、例えば正味の正極活物質として0.1gとなるようにその採取量を決めることで、当該正極活物質が本発明の技術的範囲に適合するかどうかを判定することができる可能性がある。例えば、本発明の正極活物質と導電助剤と高分子とが80.0(質量%):10.0(質量%):10.0(質量%)の割合で構成されている複合体の場合は、その複合体として0.125gを採取し、これに対してF入り混酸処理Aを行うことで、当該正極活物質が本発明の技術的範囲に適合するかどうかを判定することができる可能性がある。   At this time, due to the combination with other technologies, the positive electrode active material for a lithium ion secondary battery utilizing the technology of the present invention is already combined with another conductive auxiliary, a polymer, etc. to form a composite. In this case, it is originally desirable to remove them and perform the mixed acid treatment A with F using only the positive electrode active material. However, if it is difficult, for example, the amount of the collected positive electrode active material is adjusted to 0.1 g as a net positive electrode active material. By determining, it may be possible to determine whether the positive electrode active material conforms to the technical scope of the present invention. For example, a composite in which the positive electrode active material, the conductive additive, and the polymer of the present invention are constituted at a ratio of 80.0 (% by mass): 10.0 (% by mass): 10.0 (% by mass). In this case, 0.125 g of the composite is collected, and the mixed acid treatment A containing F is performed on the composite to determine whether or not the positive electrode active material conforms to the technical scope of the present invention. there is a possibility.

(リチウムイオン二次電池用正極及びそれを用いたリチウムイオン二次電池の構成)
本発明のリチウムイオン二次電池用正極は、例えば、上述の構成のリチウムイオン二次電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。正極中には、さらにジ(ビス(6−t−ブチル−4−メチルフェノキシ))チタンなどを添加することもできる。また、本発明のリチウムイオン二次電池は、このような構成のリチウムイオン二次電池用正極と、負極と、電解液とを備えている。
(Positive electrode for lithium ion secondary battery and configuration of lithium ion secondary battery using the same)
The positive electrode for a lithium ion secondary battery of the present invention is, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion secondary battery with the above-described configuration, a conductive auxiliary, and a binder from an aluminum foil or the like. It has a structure provided on one side or both sides of a current collector. Di (bis (6-t-butyl-4-methylphenoxy)) titanium and the like can be further added to the positive electrode. Further, the lithium ion secondary battery of the present invention includes the positive electrode for a lithium ion secondary battery having such a configuration, a negative electrode, and an electrolytic solution.

(リチウムイオン二次電池用正極活物質の製造方法)
次に、本発明に係るリチウムイオン二次電池用正極活物質の製造方法について説明する。
まず、上記正極活物質粒子の組成式に示されたMの酸性水溶液と、錯化剤としてL−アルギニンの水溶液と、水酸化ナトリウム水溶液とを用意し、これらを例えば反応槽内の液のpHが11.5±0.2となるように窒素中で一つの反応槽に添加する。反応温度は当業者が通常想定する範囲で行うことができるが、一般的には40〜80℃が好ましい。このとき、共沈による種晶が生成するため、この3つを混合したものはスラリーとなる。できれば、Mの酸性水溶液とL−アルギニンの水溶液とは、よく錯化できるよう、反応槽内に個別にかつ同時に添加することが望ましい。MとL−アルギニンとのモル比は、例えば0.1〜10の範囲で定めることができるが、1程度であれば反応槽内の液のpHの急速な変動が抑制できる場合が多く、作業が容易となる。当該種晶をろ過・水洗によりスラリーから取り出す。続いて、種晶をもう一度水中に分散させて種晶スラリーとし、ここに前記Mの水溶液、前記水酸化ナトリウム水溶液、アンモニア水を窒素中で添加することで、前駆体粒子の核成長を促す。この場合も反応温度は当業者が通常想定する範囲で行うことができるが、一般的には40〜80℃が好ましい。この際、用いる錯化剤はL−アルギニンでなく、その一部または全部についてHSAB則でいうところのアンモニアより軟らかい塩基のいずれかに置き換えても、同様の効果を発することが考えられる。この際、用いる塩基の種類に応じて、適宜、水溶液濃度・Mとのモル比・反応槽内の液のpH・反応温度等を設定する。
ここで、当該アンモニア水は、添加初期から下記式に従って徐々に添加速度を減少させながら添加する。
添加速度(L/min)=初期添加速度(L/min)−0.014×添加時間(h)
式中の初期添加速度は、当業者が通常想定する範囲で設定できるが、例えば初期のNH3とMとのモル比を0.1〜10の間の任意の値に設定し、そこからMの水溶液の添加速度に対応する形で当該初期添加速度を決めればよい。
また、水酸化ナトリウム水溶液は、この核成長の際にも反応槽内の液のpHが例えば11.5±0.2を維持するように添加する。
(Method for producing positive electrode active material for lithium ion secondary battery)
Next, a method for producing the positive electrode active material for a lithium ion secondary battery according to the present invention will be described.
First, an acidic aqueous solution of M represented by the composition formula of the positive electrode active material particles, an aqueous solution of L-arginine as a complexing agent, and an aqueous solution of sodium hydroxide are prepared. Is added to one reaction vessel in nitrogen so that the value is 11.5 ± 0.2. The reaction can be carried out at a temperature usually within the range normally assumed by those skilled in the art, but is generally preferably 40 to 80 ° C. At this time, since seed crystals are generated by coprecipitation, a mixture of the three forms a slurry. If possible, it is desirable that the acidic aqueous solution of M and the aqueous solution of L-arginine be separately and simultaneously added to the reaction vessel so as to be well complexed. The molar ratio between M and L-arginine can be determined, for example, in the range of 0.1 to 10. However, if it is about 1, rapid fluctuation of the pH of the liquid in the reaction tank can be suppressed in many cases. Becomes easier. The seed crystal is removed from the slurry by filtration and washing with water. Subsequently, the seed crystal is dispersed again in water to form a seed crystal slurry, and the aqueous solution of M, the aqueous solution of sodium hydroxide, and aqueous ammonia are added in nitrogen to promote nucleus growth of the precursor particles. In this case as well, the reaction can be carried out at a temperature usually assumed by those skilled in the art. In this case, it is considered that the same effect is exerted even if the complexing agent used is not L-arginine but a part or all of the complexing agent is replaced with any of the bases softer than ammonia according to the HSAB rule. At this time, the concentration of the aqueous solution, the molar ratio to M, the pH of the liquid in the reaction tank, the reaction temperature, and the like are appropriately set according to the type of the base to be used.
Here, the aqueous ammonia is added while gradually decreasing the addition rate according to the following equation from the initial stage of the addition.
Addition rate (L / min) = Initial addition rate (L / min)-0.014 x addition time (h)
The initial addition rate in the formula can be set within a range normally assumed by those skilled in the art. For example, the initial molar ratio of NH 3 to M is set to any value between 0.1 and 10, and M The initial addition rate may be determined in a manner corresponding to the addition rate of the aqueous solution.
Also, the aqueous sodium hydroxide solution is added so that the pH of the liquid in the reaction tank is maintained at, for example, 11.5 ± 0.2 during the nucleus growth.

次に、Mの酸性水溶液、水酸化ナトリウム水溶液及びアンモニア水を添加して得られた生成物をろ過、水洗及び乾燥することで前駆体を作製する。
次に、前駆体粒子にジルコニウム化合物およびタングステン化合物を窒素中で含浸させる。当該含浸手段としては、まず、前駆体を濃タングステン酸アンモニウム水溶液中に投入して前駆体スラリーを形成する。
Next, a precursor is produced by filtering, washing and drying the product obtained by adding an acidic aqueous solution of M, an aqueous sodium hydroxide solution and aqueous ammonia.
Next, the precursor particles are impregnated with a zirconium compound and a tungsten compound in nitrogen. As the impregnation means, first, the precursor is charged into a concentrated aqueous solution of ammonium tungstate to form a precursor slurry.

次にこれを真空含浸させ、窒素中で仮焼してタングステン含浸済み前駆体とする。次に、タングステン含浸済み前駆体をジルコニアスラリー中に投入し、真空含浸させてタングステン含浸済み前駆体にジルコニアを含浸させ、その後ろ過・水洗・乾燥して含浸済み前駆体とする。
次に、含浸済み前駆体と水酸化リチウムとを混合した後、焼成する。このとき、モル比でLi/Mが1.01〜1.10となるような量と、Li/(Zr+W)が2.00〜2.03となるような量とを合わせた量のLi源を配合することが好ましい。ここで、化学量論組成よりも多めにLiを仕込むのは、焼成時にLiが少し揮発することから、その分を考慮し多めに入れているのである。また、焼成条件は、組成等にも依存するが、例えばNi:Co:Mnが8:1:1のものは、0.08MPa以上の酸素分圧を有する雰囲気において750〜800℃で3〜28時間とすることができる。
Next, this is impregnated in a vacuum and calcined in nitrogen to obtain a tungsten-impregnated precursor. Next, the tungsten-impregnated precursor is charged into a zirconia slurry, impregnated in vacuum to impregnate the tungsten-impregnated precursor with zirconia, and then filtered, washed with water and dried to obtain an impregnated precursor.
Next, after the impregnated precursor and lithium hydroxide are mixed, firing is performed. At this time, the amount of the Li source is such that the molar ratio of Li / M is 1.01 to 1.10. And the amount of Li / (Zr + W) is 2.00 to 2.03. Is preferably blended. Here, the reason why Li is charged more than the stoichiometric composition is that Li is volatilized a little at the time of sintering, so that Li is added in consideration of the amount. The firing conditions also depend on the composition and the like. For example, those having a Ni: Co: Mn of 8: 1: 1 have a firing temperature of 750 to 800 ° C. in an atmosphere having an oxygen partial pressure of 0.08 MPa or more. Can be time.

次に、焼成した粉(焼成粉)を、必要であれば、ロールミル、パルべライザー等を用いて解砕し、所定の平均粒子径を有する正極活物質を得る。   Next, the fired powder (fired powder) is crushed using a roll mill, a pulverizer or the like, if necessary, to obtain a positive electrode active material having a predetermined average particle diameter.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Hereinafter, examples for better understanding of the present invention and its advantages will be provided, but the present invention is not limited to these examples.

以下の実施例1〜6及び比較例1〜4において、添加物の含浸までは全て窒素中で実施した。
・実施例1
<種晶の作製>
まず、硫酸ニッケル、硫酸コバルト、硫酸マンガンがNi:Co:Mnのモル比で8:1:1となるように溶解している水溶液Aを準備した。この中の遷移金属の濃度はトータルで1mol/Lである。これとは別に、L−アルギニンを1820g用意し、80℃の水10Lにゆっくりと添加し、十分に撹拌して溶解させ、その後徐冷してL−アルギニン水溶液Bを作製した。また、0.2mol/Lの水酸化ナトリウム水溶液Cを用意した。これらを50℃でそれぞれ一つの反応容器の中に0.6L/minでチューブポンプにより投入した。ただしCについては、反応中にpHが11.5±0.2を維持するように添加した。L−アルギニン水溶液Bがなくなった時点で上記A、B、Cの送液を停止した。これをろ過・水洗して、種晶とした。
In the following Examples 1 to 6 and Comparative Examples 1 to 4, all the steps up to impregnation with additives were performed in nitrogen.
-Example 1
<Preparation of seed crystal>
First, an aqueous solution A in which nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in a molar ratio of Ni: Co: Mn of 8: 1: 1 was prepared. The concentration of the transition metal in this is 1 mol / L in total. Separately from this, 1820 g of L-arginine was prepared, slowly added to 10 L of water at 80 ° C., sufficiently stirred and dissolved, and then gradually cooled to prepare an aqueous L-arginine solution B. Also, a 0.2 mol / L sodium hydroxide aqueous solution C was prepared. These were charged into one reaction vessel at 50 ° C. at 0.6 L / min by a tube pump. However, C was added so that the pH was maintained at 11.5 ± 0.2 during the reaction. When the L-arginine aqueous solution B disappeared, the supply of the above A, B, and C was stopped. This was filtered and washed with water to give a seed crystal.

<前駆体の作製>
0.1mol/Lのアンモニア水Dを用意した。種晶と水を重量比で1:10の割合で反応容器の中に入れて混合し、種晶スラリーとした。当該スラリー中に50℃でAを0.6L/minの割合で添加しながら、Dを次の添加速度になるように当該種晶スラリー中に添加した。さらにCについても、反応中にpHが11.5±0.2を維持するように添加した。
添加速度(L/min)=初期添加速度(L/min)−0.014×添加時間(h)
添加速度が0になった時点ですべての送液を停止し、ろ過・水洗を行い、その後乾燥して前駆体とした。
<Preparation of precursor>
0.1 mol / L aqueous ammonia D was prepared. The seed crystal and water were placed in a reaction vessel at a weight ratio of 1:10 and mixed to obtain a seed crystal slurry. While adding A at a rate of 0.6 L / min at 50 ° C. to the slurry, D was added to the seed crystal slurry at the following addition rate. Further, C was added so as to maintain the pH at 11.5 ± 0.2 during the reaction.
Addition rate (L / min) = Initial addition rate (L / min)-0.014 x addition time (h)
When the addition rate became 0, all the liquid feeding was stopped, filtration and washing were performed, and then the precursor was dried to obtain a precursor.

<添加物の含浸>
タングステン酸アンモニウムの3.6重量%水溶液を用意し、前駆体中の遷移金属総物質量に対してタングステンが0.001molの比となるよう、前記タングステン酸アンモニウム水溶液と前駆体とを混合してタングステン添加スラリーを作製した。これを真空引きできる容器の内部に入れ、真空引きを行った。当該スラリーから泡が発生したが、その泡が発生しなくなったところで真空容器から当該スラリーを取り出し、ろ過して400℃で1時間仮焼し、タングステン含浸済み前駆体とした。ジルコニアを1重量%と適量のアンモニアを含むpH=11の水分散スラリーを用意し、この中へ(Ni+Co+Mn+W)の総物質量に対して0.005molの比となるようにタングステン含浸済み前駆体を添加してジルコニア添加スラリーを作製した。これを真空引きできる容器の内部に入れ、真空引きを行った。当該ジルコニア添加スラリーから泡が発生したが、その泡が発生しなくなったところで真空容器から当該ジルコニア添加スラリーを取り出し、ろ過・水洗を行った。この時、水洗に用いた水はpH=7.0±0.5のものであり、水洗後のろ液が白濁せず、そのpHが7.0±0.5で落ち着いたところで水洗の終点とした。この水洗で得られたケーキを120℃で12時間乾燥して含浸済み前駆体とした。
<Impregnation of additives>
An aqueous solution of 3.6% by weight of ammonium tungstate is prepared, and the aqueous solution of ammonium tungstate and the precursor are mixed so that the ratio of tungsten to the total amount of transition metals in the precursor is 0.001 mol. A tungsten-added slurry was prepared. This was placed in a container that can be evacuated and evacuated. Foam was generated from the slurry, but when the foam was no longer generated, the slurry was taken out of the vacuum vessel, filtered, and calcined at 400 ° C. for 1 hour to obtain a tungsten-impregnated precursor. A water-dispersed slurry having a pH of 11 containing 1% by weight of zirconia and an appropriate amount of ammonia is prepared, and a tungsten-impregnated precursor is added into the slurry so as to have a ratio of 0.005 mol with respect to the total amount of (Ni + Co + Mn + W). This was added to produce a zirconia-added slurry. This was placed in a container that can be evacuated and evacuated. Foam was generated from the zirconia-added slurry, but when the foam ceased to be generated, the zirconia-added slurry was taken out of the vacuum vessel and filtered and washed with water. At this time, the water used for the water washing had a pH of 7.0 ± 0.5, and the filtrate after the water washing did not become cloudy. When the pH was settled at 7.0 ± 0.5, the end point of the water washing was reached. And The cake obtained by this water washing was dried at 120 ° C. for 12 hours to obtain an impregnated precursor.

<正極活物質の製造>
上記含浸済み前駆体と、LiOH・H2Oとを混合して、酸素中で780℃で10時間焼成することで、正極活物質とした。このときのLiOH・H2Oの量は、次のようにして決定した。まず、含浸済み前駆体中のNi、Co、Mn、W、Zrの量をICPにて算出し、Ni、Co、Mnについてはその総物質量に対して焼成時のLi揮発分を考慮し1.02mol分となるLiOH・H2Oの量を計算し、W、Zrについてはその総物質量に対して焼成時のLi揮発分を考慮し2.01mol分となるLiOH・H2Oの量を計算した。これらの二つのLiOH・H2Oの量を合算し、含浸済み前駆体に対するLiOH・H2O混合量とした。仮に本項目の製法において、W、Zrの添加がない場合は、当業者が通常実施する焼成時のLi揮発分を考慮したLi/Meの計算と全く変わらない。焼成後の塊を、ロールクラッシャーとパルベライザーを用いて解砕して本発明の正極活物質とした。
<Manufacture of positive electrode active material>
The above-impregnated precursor and LiOH.H 2 O were mixed and calcined at 780 ° C. for 10 hours in oxygen to obtain a positive electrode active material. At this time, the amount of LiOH.H 2 O was determined as follows. First, the amounts of Ni, Co, Mn, W, and Zr in the impregnated precursor were calculated by ICP. Calculate the amount of LiOH.H 2 O to be 2.02 mol. For W and Zr, the amount of LiOH.H 2 O to be 2.01 mol. Was calculated. The amounts of these two LiOH.H 2 O were added together to obtain a LiOH.H 2 O mixing amount with respect to the impregnated precursor. If there is no addition of W and Zr in the production method of this item, there is no difference from the calculation of Li / Me in consideration of the volatile matter of Li at the time of calcination usually performed by those skilled in the art. The mass after firing was crushed using a roll crusher and a pulverizer to obtain a positive electrode active material of the present invention.

・実施例2
正極活物質と、アセチレンブラックと、PVdFのNMP溶液とを混合してスラリーを作製した後、さらにその混合スラリー中にスラリー全体量に対して0.1質量%のジ(ビス(6−t−ブチル−4−メチルフェノキシ))チタンを添加し、混合してNMPで粘度調整に移行したこと以外は実施例1と同様に実験を行った。
-Example 2
After mixing a positive electrode active material, acetylene black, and an NMP solution of PVdF to prepare a slurry, 0.1% by mass of di (bis (6-t-t- An experiment was performed in the same manner as in Example 1 except that butyl-4-methylphenoxy)) titanium was added, mixed, and the viscosity was adjusted with NMP.

・実施例3
最初の水溶液Aについて、Ni:Co:Mnのモル比を5:2:3としたことおよび焼成温度を950℃としたこと以外は実施例1と同様に実験を行った。
-Example 3
For the first aqueous solution A, an experiment was performed in the same manner as in Example 1 except that the molar ratio of Ni: Co: Mn was 5: 2: 3 and the firing temperature was 950 ° C.

・実施例4
<添加物の含浸>において、(Ni+Co+Mn+W)の総物質量に対して0.007molの比となるようにタングステン含浸済み前駆体を添加してジルコニア添加スラリーを作製したこと以外は実施例1と同様に試験を行った。
-Example 4
<Impregnation of additive> Same as Example 1 except that a tungsten-impregnated precursor was added so as to have a ratio of 0.007 mol to the total amount of (Ni + Co + Mn + W) to prepare a zirconia-added slurry. Was tested.

・実施例5
<添加物の含浸>において、タングステン酸アンモニウムの3.6重量%水溶液を用意し、前駆体中の遷移金属総物質量に対してタングステンが0.002molの比となるよう、前記タングステン酸アンモニウム水溶液と前駆体とを混合したこと以外は実施例1と同様に試験を行った。
-Example 5
In <Impregnation of Additives>, a 3.6 wt% aqueous solution of ammonium tungstate was prepared, and the aqueous solution of ammonium tungstate was prepared such that the ratio of tungsten to the total amount of transition metal in the precursor was 0.002 mol. The test was conducted in the same manner as in Example 1 except that the precursor and the precursor were mixed.

・実施例6
<添加物の含浸>において、タングステン酸アンモニウムの3.6重量%水溶液を用意し、前駆体中の遷移金属総物質量に対してタングステンが0.002molの比となるよう、前記タングステン酸アンモニウム水溶液と前駆体とを混合してタングステン添加スラリーを作製するのと、(Ni+Co+Mn+W)の総物質量に対して0.007molの比となるようにタングステン含浸済み前駆体を添加してジルコニア添加スラリーを作製したこと以外は実施例1と同様に試験を行った。
-Example 6
In <Impregnation of Additives>, a 3.6 wt% aqueous solution of ammonium tungstate was prepared, and the aqueous solution of ammonium tungstate was prepared such that the ratio of tungsten to the total amount of transition metal in the precursor was 0.002 mol. And a precursor are mixed to produce a tungsten-added slurry, and a tungsten-impregnated precursor is added so as to have a ratio of 0.007 mol to the total amount of (Ni + Co + Mn + W) to produce a zirconia-added slurry. A test was performed in the same manner as in Example 1 except that the test was performed.

・比較例1
Zr、Wを添加しなかったこと以外は実施例1と同様に実験を行った。
-Comparative example 1
The experiment was performed in the same manner as in Example 1 except that Zr and W were not added.

・比較例2
最初の水溶液Aについて、Ni:Co:Mnのモル比を1:1:1としたことおよび焼成温度を980℃としたこと以外は実施例1と同様に実験を行った。
-Comparative example 2
For the first aqueous solution A, an experiment was conducted in the same manner as in Example 1 except that the molar ratio of Ni: Co: Mn was 1: 1: 1 and the firing temperature was 980 ° C.

・比較例3
種晶の作製時および前駆体の作製時に、Aにモル比でZr/(Ni+Co+Mn)=0.001となるように硫酸ジルコニウムを添加し、Cに0.002mol/Lのタングステン酸アンモニウムを添加し、その後の添加物の含浸を全く行わず、含浸済み前駆体の代わりに上記前駆体を<正極活物質の製造>で用いたこと以外は実施例1と同様に実験を行った。
-Comparative example 3
At the time of preparing a seed crystal and at the time of preparing a precursor, zirconium sulfate is added to A so that the molar ratio becomes Zr / (Ni + Co + Mn) = 0.001, and 0.002 mol / L ammonium tungstate is added to C. An experiment was carried out in the same manner as in Example 1 except that no subsequent impregnation of the additive was performed and the precursor was used in <Production of positive electrode active material> instead of the impregnated precursor.

・比較例4
比較例1の正極活物質に、次の処理を行って本例の正極活物質とした。すなわち、水酸化ナトリウム水溶液でpH=11に調整したタングステン酸アンモニウム((NH42WO4)の0.4g/L水溶液300mLに、比較例1の正極活物質100gを分散してスラリーとし、pH=4の硫酸を1滴(約0.03mL程度)ずつ滴下して表面にタングステンを被覆した。これを乾燥してタングステン含量をICPによって求め、モル比でLi/Wが2となるようにLi2CO3を混合し、酸素雰囲気下780℃で1時間焼成した。これをロールクラッシャーで解砕し、その85g分を0.4g/L硫酸ジルコニウム水溶液300mL中に分散した。これにpH=11の水酸化ナトリウム水溶液を1滴(約0.03mL程度)ずつ滴下して表面にジルコニウムを被覆した。これを乾燥してジルコニウム含量をICPによって求め、モル比でLi/Zrが2となるようにLi2CO3を混合し、酸素雰囲気下780℃で1時間焼成した。これをロールクラッシャーで解砕し、正極活物質とした。
-Comparative example 4
The following treatment was performed on the positive electrode active material of Comparative Example 1 to obtain a positive electrode active material of this example. That is, 100 g of the positive electrode active material of Comparative Example 1 was dispersed in 300 mL of a 0.4 g / L aqueous solution of ammonium tungstate ((NH 4 ) 2 WO 4 ) adjusted to pH = 11 with an aqueous sodium hydroxide solution to form a slurry. The surface was coated with tungsten by dropping sulfuric acid of pH = 4 one by one (about 0.03 mL). This was dried, and the tungsten content was determined by ICP. Li 2 CO 3 was mixed so that the molar ratio of Li / W became 2, followed by firing at 780 ° C. for 1 hour in an oxygen atmosphere. This was crushed by a roll crusher, and 85 g thereof was dispersed in 300 mL of a 0.4 g / L zirconium sulfate aqueous solution. To this, zirconium was coated on the surface by dropping an aqueous solution of sodium hydroxide having a pH of 11 drop by drop (about 0.03 mL). This was dried, and the zirconium content was determined by ICP. Li 2 CO 3 was mixed so that the molar ratio of Li / Zr became 2, followed by firing at 780 ° C. for 1 hour in an oxygen atmosphere. This was crushed with a roll crusher to obtain a positive electrode active material.

<正極活物質の分析>
得られた正極活物質について、ICP−OES(日立ハイテクサイエンス製SPS3100)、イオンクロマトグラフ(サーモフィッシャー製ICS−1600)によって組成分析を行った。これとは別に、次の方法で酸溶出によるZr、W量の測定を行った。まず、249mLの1mol/LのHNO3を2Lのテフロン(登録商標)製ビーカー内に用意し、撹拌しながらこの中に加熱しないように徐々に747mLの1mol/LのH2SO4を添加した。添加完了後、撹拌を維持しながら4mLの1mol/LのHFを添加し、1mol/Lの濃度のF入り混酸とした。次に0.1gの正極活物質を50ccテフロン(登録商標)製ビーカーに入れてその中に上記1mol/Lの濃度のF入り混酸10mLを加え、約10秒間撹拌後0.1μmのPTFEメンブレンフィルターで吸引ろ過した。このろ液を1回目のろ液(ろ液1)とし、PTFEメンブレンフィルター上の残渣(残渣1)をPTFEメンブレンフィルターから取り出して50ccテフロン(登録商標)製ビーカーに移し再び前述のF入り混酸を加え、同様の処理をしてそのろ液を2回目のろ液(ろ液2)とした。以降これを繰り返し、上記のICP−OESを用いて1回目〜100回目のろ液(ろ液1〜ろ液100)についてのZr、Wの(Ni+Co+Mn)に対するモル比を求めた。
<Analysis of positive electrode active material>
The composition of the obtained positive electrode active material was analyzed by ICP-OES (SPS3100 manufactured by Hitachi High-Tech Science) and ion chromatograph (ICS-1600 manufactured by Thermo Fisher). Separately, Zr and W amounts were measured by acid elution according to the following method. First, 249 mL of 1 mol / L HNO 3 was prepared in a 2 L Teflon (registered trademark) beaker, and 747 mL of 1 mol / L H 2 SO 4 was gradually added thereto while stirring without heating. . After completion of the addition, 4 mL of 1 mol / L HF was added while maintaining the stirring to obtain a mixed acid containing F at a concentration of 1 mol / L. Next, 0.1 g of the positive electrode active material was placed in a 50 cc Teflon (registered trademark) beaker, and 10 mL of the F-containing mixed acid having a concentration of 1 mol / L was added thereto. After stirring for about 10 seconds, a 0.1 μm PTFE membrane filter was used. And suction filtered. This filtrate was used as the first filtrate (filtrate 1), and the residue on the PTFE membrane filter (residue 1) was taken out of the PTFE membrane filter, transferred to a 50 cc Teflon (registered trademark) beaker, and again mixed with the F-containing mixed acid described above. In addition, the same treatment was performed, and the filtrate was used as a second filtrate (filtrate 2). This was repeated thereafter, and the molar ratio of Zr and W to (Ni + Co + Mn) for the first to 100th filtrates (filtrate 1 to filtrate 100) was determined using the above ICP-OES.

<リチウムイオン二次電池の作製>
得られた正極活物質と、アセチレンブラックと、PVdFのNMP溶液(PVdF含量10質量%)とを、正極活物質:アセチレンブラック:PVdFが重量比で85:10:5となるように混合し、追加で純NMPを徐々に添加して粘度が20〜25℃で20〜25Pa・sとなるようにした。これを100μmのアプリケーターを用いてウェットベースで100μmの厚さになるようにアルミニウム箔上に塗布し、120℃で10時間乾燥させ線荷重10kN/cmで加圧して正極板とした。これとは別に、人造黒鉛と、前記PVdFのNMP溶液とを、人造黒鉛:PVdFが重量比で9:1となるように混合し、追加でNMPを徐々に添加して粘度が20〜25℃で20〜25Pa・sとなるようにした。これを100μmのアプリケーターを用いてウェットベースで100μmの厚さになるように銅箔上に塗布し、120℃で10時間乾燥させ線荷重10kN/cmで加圧して負極板とした。別にセパレーター(セルガード(株)製のA089(商品名))を用意し、当該セパレーター、前述の正極板、前述の負極板を15cm×15cmのサイズに切り取り、正極板上の正極塗膜と負極板上の負極塗膜とが向かい合うように、正極板、セパレーター負極板を重ね合わせた。これを1組の電極群とし、この電極群を8組用意し、すべての電極群をアルミニウム箔と銅箔とが接触するように重ね合わせた。一番外側の銅箔に長さ10cmのマイナス端子(両端から2cmの部分以外は絶縁被覆あり)の一端、アルミニウム箔に長さ10cmのプラス端子(両端から2cmの部分以外は絶縁被覆あり)の一端をスポット溶接した。シール後のうちのりが縦18cm×横18cmとなるようにラミネートフィルムを2枚用意し、3方をシールした。前記端子付きの電極群を当該フィルム袋内に入れ、端子が袋の外に出るようにした。1M LiPF6/(EC+EMC)を電解液として袋内に入れた。ここで、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)とを配合する割合は、体積比でEC:EMC=3:7とした。この時、電極がすべて浸かるように入れた。天井つりさげ型のシール機にて残りの1方をシールし、リチウムイオン二次電池とした。
<Production of lithium ion secondary battery>
The obtained positive electrode active material, acetylene black, and an NMP solution of PVdF (PVdF content of 10% by mass) are mixed so that the weight ratio of the positive electrode active material: acetylene black: PVdF is 85: 10: 5, In addition, pure NMP was gradually added so that the viscosity became 20 to 25 Pa · s at 20 to 25 ° C. This was applied on an aluminum foil so as to have a thickness of 100 μm on a wet base using a 100 μm applicator, dried at 120 ° C. for 10 hours, and pressed with a linear load of 10 kN / cm to obtain a positive electrode plate. Separately, artificial graphite and the NMP solution of PVdF were mixed so that the weight ratio of artificial graphite: PVdF was 9: 1, and NMP was gradually added, and the viscosity was increased to 20 to 25 ° C. At 20 to 25 Pa · s. This was applied on a copper foil so as to have a thickness of 100 μm on a wet base using a 100 μm applicator, dried at 120 ° C. for 10 hours, and pressed at a linear load of 10 kN / cm to obtain a negative electrode plate. Separately, a separator (A089 (trade name) manufactured by Celgard Co., Ltd.) was prepared, and the separator, the positive electrode plate, and the negative electrode plate were cut into a size of 15 cm × 15 cm. The positive electrode plate and the separator negative electrode plate were overlapped so that the upper negative electrode coating film faced. This was used as one electrode group, and eight electrode groups were prepared, and all the electrode groups were overlapped so that the aluminum foil and the copper foil were in contact with each other. One end of a negative terminal with a length of 10 cm on the outermost copper foil (there is an insulating coating except for the portion 2 cm from both ends), and a positive terminal with a length of 10 cm on the aluminum foil (the insulating coating except for the portion 2 cm from both ends). One end was spot-welded. Two laminated films were prepared so that the glue after sealing was 18 cm long and 18 cm wide, and three sides were sealed. The electrode group with the terminal was put in the film bag, and the terminal was made to go out of the bag. 1M LiPF 6 / (EC + EMC) was placed in the bag as an electrolyte. Here, the mixing ratio of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) was EC: EMC = 3: 7 in volume ratio. At this time, all the electrodes were soaked. The other one was sealed with a ceiling-hanging sealing machine to obtain a lithium ion secondary battery.

<リチウムイオン二次電池の測定>
同じ電池を二つ用意し、一方を50℃、2.5Cで充放電を行い、1回目の放電容量に対する100回目の放電容量の比の百分率を高温高レートサイクル特性(%)として求めた。また、もう一方を−10℃、2.5Cで充放電を行い、1回目の放電容量に対する100回目の放電容量の比の百分率を低温高レートサイクル特性(%)として求めた。
これらの結果を表1に示す。
<Measurement of lithium ion secondary battery>
Two identical batteries were prepared, one was charged and discharged at 50 ° C. and 2.5 C, and the percentage of the ratio of the 100th discharge capacity to the first discharge capacity was determined as a high-temperature high-rate cycle characteristic (%). The other was charged and discharged at −10 ° C. and 2.5 C, and the percentage of the ratio of the 100th discharge capacity to the first discharge capacity was determined as a low-temperature high-rate cycle characteristic (%).
Table 1 shows the results.

実施例1〜6は、いずれも高温高レートサイクル特性及び低温高レートサイクル特性が良好であった。
比較例1〜4は、いずれも高温高レートサイクル特性及び低温高レートサイクル特性が不良であった。
Examples 1 to 6 all had good high-temperature high-rate cycle characteristics and low-temperature high-rate cycle characteristics.
Comparative Examples 1 to 4 all had poor high-temperature high-rate cycle characteristics and low-temperature high-rate cycle characteristics.

Claims (3)

組成式がLiMO2
(式中、MはNi、Co、Mnの1種以上であり、Niを含む場合は組成比:Ni/Mが0.5以上であり、Coを含む場合は組成比:Co/Mが0.2以下であり、Mnを含む場合は組成比:Mn/Mが0.3以下である。)
で表され、粒子に疎な部分及び密な部分が存在し、前記粒子の疎な部分にZr及びWが付着している正極活物質であり、
前記組成式のMと、前記粒子の疎な部分に付着するZr及びWとのモル比で、Zr/M=0.005〜0.007、且つ、W/M=0.001〜0.002を満たし、
1mol/Lの濃度のHFと、1mol/Lの濃度のHNO3と、1mol/Lの濃度のH2SO4とを、体積比0.4:24.9:74.7の比率で混合してなる1mol/Lの濃度のF入り混酸10mLを加え、10秒間攪拌後に0.1μmのフィルターでろ過してろ液と残渣とを得る処理をF入り混酸処理Aとし、
前記正極活物質0.1gに対して、1回目のF入り混酸処理Aを行ってろ液1と残渣1とを得た後、前記残渣1にさらに2回目の前記F入り混酸処理Aを行ってろ液2と残渣2とを得る操作を繰り返し、残渣(X−1)にX回目の前記F入り混酸処理Aを行ってろ液Xと残渣Xとを得るとき、
1回目の前記F入り混酸処理Aを行って得られたろ液1よりも、10回目の前記F入り混酸処理Aを行って得られたろ液10の方が、ろ液中におけるZrのモル比:Zr/(Ni+Co+Mn)及びWのモル比:W/(Ni+Co+Mn)がいずれも小さく、
30回目〜50回目のいずれか以降の前記F入り混酸処理Aを行って得られたろ液はZrのモル比:Zr/(Ni+Co+Mn)及びWのモル比:W/(Ni+Co+Mn)がいずれも0.001未満となる、リチウムイオン二次電池用正極活物質。
The composition formula is LiMO 2
(Wherein, M is at least one of Ni, Co, and Mn. When Ni is contained, the composition ratio: Ni / M is 0.5 or more. When Co is contained, the composition ratio: Co / M is 0. .2 or less, and when Mn is contained, the composition ratio: Mn / M is 0.3 or less.)
Is a positive electrode active material in which sparse parts and dense parts are present in the particles, and Zr and W are attached to the sparse parts of the particles ,
And M of the composition formula, the molar ratio of Zr and W adhering to sparse portion of the particles, Zr / M = 0.005-0.007, and, W / M = 0.001 to 0.002 The filling,
HF at a concentration of 1 mol / L, HNO 3 at a concentration of 1 mol / L, and H 2 SO 4 at a concentration of 1 mol / L were mixed at a volume ratio of 0.4: 24.9: 74.7. 10 mol / L of a mixed acid containing F was added, and the mixture was stirred for 10 seconds and filtered through a 0.1 μm filter to obtain a filtrate and a residue.
After performing the first F-containing mixed acid treatment A on 0.1 g of the positive electrode active material to obtain a filtrate 1 and a residue 1, the residue 1 is further subjected to the second F-containing mixed acid treatment A. When the operation of obtaining the liquid 2 and the residue 2 is repeated and the residue (X-1) is subjected to the Xth mixed acid treatment A with F to obtain a filtrate X and a residue X,
The filtrate 10 obtained by performing the tenth F-containing mixed acid treatment A is more likely to have a molar ratio of Zr in the filtrate than the filtrate 1 obtained by performing the first F-containing mixed acid treatment A: The molar ratio of Zr / (Ni + Co + Mn) and W: W / (Ni + Co + Mn) is small;
The filtrate obtained by performing the mixed acid treatment A with F after any one of the 30th to 50th times has a molar ratio of Zr: Zr / (Ni + Co + Mn) and a molar ratio of W: W / (Ni + Co + Mn) of 0. A positive electrode active material for a lithium ion secondary battery, which is less than 001.
請求項1に記載のリチウムイオン二次電池用正極活物質を備えたリチウムイオン二次電池用正極。   A positive electrode for a lithium ion secondary battery, comprising the positive electrode active material for a lithium ion secondary battery according to claim 1. 請求項2に記載のリチウムイオン二次電池用正極と、負極と、電解液とを備えたリチウムイオン二次電池。   A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to claim 2, a negative electrode, and an electrolyte.
JP2016215334A 2016-11-02 2016-11-02 Positive active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery Active JP6637873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016215334A JP6637873B2 (en) 2016-11-02 2016-11-02 Positive active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215334A JP6637873B2 (en) 2016-11-02 2016-11-02 Positive active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2018073737A JP2018073737A (en) 2018-05-10
JP6637873B2 true JP6637873B2 (en) 2020-01-29

Family

ID=62115645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215334A Active JP6637873B2 (en) 2016-11-02 2016-11-02 Positive active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6637873B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100487962C (en) * 2005-03-23 2009-05-13 松下电器产业株式会社 Lithium ion secondary battery and manufacturing method therefor
JP5382061B2 (en) * 2010-06-22 2014-01-08 日亜化学工業株式会社 Positive electrode composition for non-aqueous electrolyte secondary battery and positive electrode slurry using the positive electrode composition
JP5741932B2 (en) * 2011-06-01 2015-07-01 住友金属鉱山株式会社 Transition metal composite hydroxide as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery
JP6286855B2 (en) * 2012-04-18 2018-03-07 日亜化学工業株式会社 Positive electrode composition for non-aqueous electrolyte secondary battery
CN104641497B (en) * 2012-09-25 2017-06-23 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery and positive electrode active material for nonaqueous electrolyte secondary battery
US20160204414A1 (en) * 2013-09-30 2016-07-14 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using the same
JP6524651B2 (en) * 2013-12-13 2019-06-05 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6128398B2 (en) * 2014-12-26 2017-05-17 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2018073737A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP4766040B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
Zhao et al. High-capacity full lithium-ion cells based on nanoarchitectured ternary manganese–nickel–cobalt carbonate and its lithiated derivative
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
US9981859B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method of manufacturing thereof
US10777813B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and process for producing same, and non-aqueous electrolyte secondary battery using the positive electrode active material
CN115986067A (en) Positive electrode active material, preparation method thereof, positive electrode plate and lithium ion secondary battery
JP6888588B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
KR20160091172A (en) Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same
KR20160081692A (en) Silicon-based anode active material, method of preparing the same, anode including the silicon-based anode active material, and lithium secondary battery including the anode
CN108807928B (en) Synthesis of metal oxide and lithium ion battery
CN111771301A (en) Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
JP2021048137A (en) Cathode active material for lithium secondary battery
JP6241996B2 (en) Positive electrode active material for magnesium ion secondary battery, method for producing the same, and magnesium ion secondary battery
JP6919250B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, its precursor, and their manufacturing method
CN103811753A (en) Lithium-rich anode material, lithium battery anode and lithium battery
US20150180026A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2019114454A (en) Method of manufacturing positive electrode material for non-aqueous secondary battery
JP6046995B2 (en) Method for manufacturing sodium secondary battery
US20160308193A1 (en) Nonaqueous electrolyte secondary battery
JP6637873B2 (en) Positive active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US10305095B2 (en) Method of producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2015069960A (en) Lithium air secondary battery
JP7417055B2 (en) Electrode for non-aqueous electrolyte secondary battery and method for manufacturing the same
JP6852747B2 (en) A method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a positive electrode composition for a non-aqueous electrolyte secondary battery.
JP5157253B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6637873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250