JP6637288B2 - Ferrite and method for producing ferrite - Google Patents

Ferrite and method for producing ferrite Download PDF

Info

Publication number
JP6637288B2
JP6637288B2 JP2015216756A JP2015216756A JP6637288B2 JP 6637288 B2 JP6637288 B2 JP 6637288B2 JP 2015216756 A JP2015216756 A JP 2015216756A JP 2015216756 A JP2015216756 A JP 2015216756A JP 6637288 B2 JP6637288 B2 JP 6637288B2
Authority
JP
Japan
Prior art keywords
ferrite
mol
raw material
mno
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015216756A
Other languages
Japanese (ja)
Other versions
JP2017088422A (en
Inventor
稲垣 正幸
正幸 稲垣
充次 加藤
充次 加藤
勉 淺枝
勉 淺枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NJ Components Co Ltd
Original Assignee
NJ Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NJ Components Co Ltd filed Critical NJ Components Co Ltd
Priority to JP2015216756A priority Critical patent/JP6637288B2/en
Publication of JP2017088422A publication Critical patent/JP2017088422A/en
Application granted granted Critical
Publication of JP6637288B2 publication Critical patent/JP6637288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、フェライト及びフェライトの製造方法に関する。   The present invention relates to ferrite and a method for producing ferrite.

従来、電源回路等に用いられるトランスやコイル等のフェライトコアには、Mn系フェライトが用いられている。これは、Mn系フェライトは、Ni系フェライトと比べ低損失であり、高い磁気特性を有するためである。   Conventionally, Mn-based ferrite has been used for ferrite cores such as transformers and coils used in power supply circuits and the like. This is because Mn-based ferrite has lower loss and higher magnetic properties than Ni-based ferrite.

近年、電子機器の小型化が進んでおり、トランスやコイル等も小型化が求められ、これに伴い、トランスやコイル等のフェライトコアも小型化が進められてきている。しかし、Mn系フェライトコアでは、その抵抗が低いためにコアに直接巻線することができず、トランスやコイル等の小型化に限界がある。   In recent years, downsizing of electronic devices has been advanced, and downsizing of transformers, coils, and the like has been demanded, and accordingly, downsizing of ferrite cores, such as transformers and coils, has been promoted. However, Mn-based ferrite cores cannot be wound directly on the core because of their low resistance, and there is a limit to miniaturization of transformers and coils.

そこで、例えば特許文献1及び特許文献2に示されるように、トランスやコイル等のフェライトコアに、Ni系フェライトを用いる技術が提案されている。Ni系フェライトコアは、その抵抗が高いためコアに直接巻線することができ、トランスやコイル等の小型化を可能とする。   Therefore, as disclosed in Patent Literature 1 and Patent Literature 2, for example, a technique using Ni-based ferrite for a ferrite core such as a transformer or a coil has been proposed. Since the Ni-based ferrite core has a high resistance, it can be directly wound around the core, thereby enabling downsizing of a transformer or a coil.

特開2002−289421号公報JP-A-2002-289421 特開2003−321272号公報JP 2003-321272 A

しかしながら、上記の従来技術では、Ni系フェライトコアは、飽和磁束密度が小さいため、直流重畳特性が劣るという問題がある。すなわち、Ni系フェライトコアは、小さいコイル電流(励磁電流)であっても磁気飽和が生じるため、直流重畳電流が低電流領域にあってもインダクタンスが大きく変動するという問題がある。   However, in the above-described conventional technology, the Ni-based ferrite core has a problem that the DC superposition characteristics are inferior because the saturation magnetic flux density is small. That is, the Ni-based ferrite core has magnetic saturation even with a small coil current (excitation current), and thus has a problem that the inductance greatly varies even when the DC superimposed current is in a low current region.

本願の開示の技術は、上記に鑑みてなされたものであって、飽和磁束密度が大きく、直流重畳特性が良好なフェライトを提供することを目的とする。   The technology disclosed in the present application has been made in view of the above, and has as its object to provide a ferrite having a large saturation magnetic flux density and good DC superimposition characteristics.

本願の開示の技術は、例えば、フェライトは、主成分原料として、Feを45〜50mol%、ZnOを10〜30mol%、CuOを0〜15mol%、MnOを2.5〜12mol%、残部にNiOを含み、副成分原料として、TiをTiO換算で〜3wt%、LiをLiCl換算で0.5〜1.5wt%を含んだことを特徴とする。 According to the technology disclosed in the present application, for example, ferrite is 45 to 50 mol% of Fe 2 O 3 , 10 to 30 mol% of ZnO, 0 to 15 mol% of CuO, 2.5 to 12 mol% of MnO as a main component material, balance to include NiO, as auxiliary ingredient material, 1 to 3 wt% of Ti in terms of TiO 2, and Li in LiCl terms 0. It is characterized by containing 5 to 1.5 wt%.

また、本願の開示の技術は、例えば、フェライトは、副成分原料として、NbをNb換算で0〜1wt%さらに含んだことを特徴とする。 Also, the technique disclosed in the present application, for example, ferrite, as a subcomponent materials, characterized in that it contains Nb 0 to 1 wt% addition calculated as Nb 2 O 5.

開示の技術によれば、例えば、飽和磁束密度が大きく、直流重畳特性が良好なフェライトを提供することができる。   According to the disclosed technology, for example, it is possible to provide a ferrite having a large saturation magnetic flux density and good direct-current superposition characteristics.

図1は、実施形態に係るフェライトの製造手順の一例を示す図である。FIG. 1 is a diagram illustrating an example of a procedure for manufacturing a ferrite according to the embodiment.

[実施形態]
実施形態に係るフェライトは、主成分原料に、透磁率及び飽和磁束密度を確保するために第1の副成分原料が添加されたものである。さらに、実施形態に係るフェライトは、主成分原料に、焼結性を確保するために、第2の副成分原料が添加されたものである。実施形態に係る磁性材料においては、第1の副成分原料及び第2の副成分原料(以下、第1の副成分原料及び第2の副成分原料を、副成分原料と総称する場合がある)の種類及び添加量が最適化される。この最適化によって、適切な焼成温度で、密度が十分に確保された焼結体(磁性磁器組成物)が得られるとともに、その磁性磁器組成物が十分高い透磁率及び飽和磁束密度を有する。例えば、トランスやコイル等の電源回路等の内部に、実施形態に係るフェライトを適用することにより、高い抵抗を有するフェライトにコイルを直接巻線でき、優れた直流重畳特性の小型のトランス等を得ることができる。
[Embodiment]
The ferrite according to the embodiment is obtained by adding a first subcomponent material to a main component material in order to secure magnetic permeability and a saturation magnetic flux density. Further, the ferrite according to the embodiment is obtained by adding a second subcomponent material to a main component material in order to secure sinterability. In the magnetic material according to the embodiment, a first sub-component raw material and a second sub-component raw material (hereinafter, the first sub-component raw material and the second sub-component raw material may be collectively referred to as a sub-component raw material). And the amount of addition are optimized. By this optimization, a sintered body (magnetic porcelain composition) having a sufficient density can be obtained at an appropriate firing temperature, and the magnetic porcelain composition has sufficiently high magnetic permeability and saturation magnetic flux density. For example, by applying the ferrite according to the embodiment to the inside of a power supply circuit such as a transformer or a coil, a coil can be directly wound around a ferrite having a high resistance, and a small transformer having excellent DC superimposition characteristics can be obtained. be able to.

実施形態の一例に係るフェライトは、主成分原料として、Feを45〜50mol%、ZnOを10〜30mol%、CuOを0〜15mol%、MnOを2.5〜12mol%、NiOを残部として含有するNi−Zn系フェライトにおいて、Fe及びMnOを合計で50mol%以上含有し、第1の副成分原料として、TiをTiO換算で0〜3wt%、LiをLiCl換算で0〜1.5wt%含有する。これにより、実施形態の一例に係るフェライトは、MnOの含有量を増加させたことによりNi−ZnフェライトにおいてMn置換量が増加しても、大気中焼成によるフェライトの酸化を防止するとともに、異相の生成を抑制するので、飽和磁束密度を得ることができる。 Ferrite according to an example embodiment, the balance as a main component material, Fe 2 O 3 the 45~50mol%, ZnO of 10~30mol%, 0~15mol% of CuO, 2.5~12mol% of MnO, and NiO In a Ni—Zn ferrite contained as a material, Fe 2 O 3 and MnO are contained in a total of 50 mol% or more, and Ti is 0 to 3 wt% in terms of TiO 2 and Li is 0 in terms of LiCl as a first subcomponent material. 1.51.5 wt%. Thereby, the ferrite according to an example of the embodiment prevents the ferrite from being oxidized by sintering in the air, even if the amount of Mn substitution in the Ni-Zn ferrite is increased by increasing the content of MnO. Since generation is suppressed, a saturation magnetic flux density can be obtained.

さらに、実施形態の一例に係るフェライトは、第2の副成分原料として、NbをNb換算で0〜1wt%を含有する。これにより、大気中での焼成の際のフェライトの焼結性を改善してより低温での焼成を可能として焼結性を高めるとともに、透磁率を高めることができる。 Furthermore, ferrite according to an example embodiment, as the second subcomponent material, containing 0 to 1 wt% of Nb calculated as Nb 2 O 5. Thereby, the sinterability of ferrite at the time of sintering in the air is improved to enable sintering at a lower temperature, thereby improving the sinterability and increasing the magnetic permeability.

[実施形態に係るフェライト焼成物の製造方法]
図1は、実施形態に係るフェライトの製造手順の一例を示す図である。先ず、フェライトの主成分原料を秤量する(ステップS01)。例えば、実施形態に係るフェライトの主成分原料において、Feを45〜50mol%、ZnOを10〜30mol%、CuOを0〜15mol%、MnOを2.5〜12mol%、残部にNiOを秤量する。
[Method of Manufacturing Ferrite Sintered Product According to Embodiment]
FIG. 1 is a diagram illustrating an example of a procedure for manufacturing a ferrite according to the embodiment. First, a main component material of ferrite is weighed (step S01). For example, in the main component raw material of the ferrite according to the embodiment, 45 to 50 mol% of Fe 2 O 3 , 10 to 30 mol% of ZnO, 0 to 15 mol% of CuO, 2.5 to 12 mol% of MnO, and NiO to the balance Weigh.

次に、ステップS01により秤量されたフェライトの主成分原料、つまり、Fe、ZnO、CuO、MnO、NiOを、湿式ボールミル等を用いて、例えば1時間にわたり湿式混合する(ステップS02)。 Next, the main components of ferrite weighed in step S01, that is, Fe 2 O 3 , ZnO, CuO, MnO, and NiO are wet-mixed using, for example, a wet ball mill for one hour (step S02).

次に、ステップS02により混合されたフェライトの主成分原料の混合物を乾燥させ、乾燥後、大気中で例えば2時間にわたり850℃で仮焼成する(ステップS03)。次に、ステップS03により仮焼成されたフェライトの主成分原料の混合物を、例えばボールミルを用いて48時間にわたり、所定粒度になるまで粉砕する(ステップS04)。そして、TiOを0〜3wt%、LiClを0〜1.5wt%(以上、第1の副成分原料)秤量する(ステップS05)。なお、ステップS05において、第1の副成分原料に加え、Nbを0〜1wt%(以上、第2の副成分原料)秤量してもよい。 Next, the mixture of the main components of ferrite mixed in step S02 is dried, and after drying, is temporarily calcined at 850 ° C. for 2 hours in the air (step S03). Next, the mixture of the main components of the ferrite preliminarily calcined in step S03 is ground using a ball mill, for example, for 48 hours to a predetermined particle size (step S04). Then, TiO 2 is weighed from 0 to 3 wt% and LiCl is weighed from 0 to 1.5 wt% (the first sub-component material) (step S05). In step S05, in addition to the first sub-component raw material, Nb 2 O 5 may be weighed from 0 to 1 wt% (the second sub-component raw material).

次に、ステップS04により粉砕して得られた粉砕物に、ステップS05により秤量されたフェライトの副成分原料を十分に混合する(ステップS06)。このようにして、フェライトの原料の組成が定まる。   Next, the ferrite subcomponent raw material weighed in step S05 is sufficiently mixed with the pulverized product obtained in step S04 (step S06). Thus, the composition of the ferrite raw material is determined.

次に、上述したステップS01〜S06で生成した混合物であるフェライトの原料にバインダー(PVA溶液等)を適宜添加して、適切な大きさの粒体となるように造粒を行う(ステップS07)。   Next, a binder (PVA solution or the like) is appropriately added to the raw material of the ferrite, which is the mixture generated in the above-described steps S01 to S06, and granulation is performed to obtain granules having an appropriate size (step S07). .

次に、ステップS07による造粒によって得られた造粒物を、例えばトロイダル状に成形する(ステップS08)。次に、ステップS08による成形によって得られた成形物を、例えば1150℃の焼成温度で3時間にわたり大気中で焼成する(ステップS09)。ステップS09による焼成により、フェライトの原料が焼成されたフェライトが得られる。   Next, the granulated material obtained by the granulation in step S07 is formed into, for example, a toroidal shape (step S08). Next, the molded product obtained by the molding in step S08 is fired in the air at a firing temperature of, for example, 1150 ° C. for 3 hours (step S09). By firing in step S09, ferrite obtained by firing a ferrite raw material is obtained.

開示の技術に係るフェライトの主成分原料の組成及び副成分原料の添加重量比を規定するにあたり、先ず、主成分原料のうちMnOのmol%を求めた。下記の(表1)は、主成分原料として、Feを49.5mol%、ZnOを20mol%、NiOを10.5〜22.5mol%、CuOを8mol%、MnOを0〜12mol%含有するNi−Zn系フェライトについて、副成分原料を添加せず、NiO及びMnOの各mol%をNiO+MnO=22.5mol%の条件下で変化させたときの各サンプルの透磁率μ、飽和磁束密度Bs[mT]、密度D[g/m]、焼成温度[℃]を示す。 In defining the composition of the main component raw material of ferrite and the addition weight ratio of the subcomponent raw material according to the disclosed technology, first, mol% of MnO in the main component raw material was determined. The following (Table 1) shows that 49.5 mol% of Fe 2 O 3 , 20 mol% of ZnO, 10.5 to 22.5 mol% of NiO, 8 mol% of CuO, and 0 to 12 mol% of MnO as main component raw materials. With respect to the contained Ni-Zn-based ferrite, the magnetic permeability μ and the saturation magnetic flux density of each sample when the mol% of NiO and MnO were changed under the condition of NiO + MnO = 22.5 mol% without adding the auxiliary ingredient material Bs [mT], density D [g / m 3 ] and firing temperature [° C.] are shown.

Figure 0006637288
Figure 0006637288

(表1)に示すサンプル11は、主成分原料にMnOを含有しない例を示す。以下、透磁率μ及び飽和磁束密度Bsが、サンプル11(以下、比較例と呼ぶ)の透磁率μ及び飽和磁束密度Bs以上のサンプルを合格サンプルとした。また、各サンプルの密度D、焼成温度が、それぞれ、概ね5.0〜5.1[g/m]、概ね1000〜1200[℃]である場合に、このサンプルを合格サンプルとした。なお、(表1)及び下記の(表2)〜(表4)において、合格サンプルは、サンプル13〜16、21〜23、31〜36、41〜46である。 Sample 11 shown in (Table 1) shows an example in which the main component material does not contain MnO. Hereinafter, a sample whose magnetic permeability μ and saturation magnetic flux density Bs are equal to or higher than the magnetic permeability μ and saturation magnetic flux density Bs of Sample 11 (hereinafter, referred to as a comparative example) was regarded as an acceptable sample. In addition, when the density D and the firing temperature of each sample were approximately 5.0 to 5.1 [g / m 3 ] and approximately 1000 to 1200 [° C.], respectively, this sample was regarded as an acceptable sample. In Table 1 and the following Tables 2 to 4, acceptable samples are samples 13 to 16, 21 to 23, 31 to 36, and 41 to 46.

(表1)に示すサンプル13〜16は、主成分原料にMnOを2.5〜12mol%含有することにより、比較例に対して透磁率μ及び飽和磁束密度Bsが向上した。サンプル13〜16は、密度D、焼成温度が、いずれも、それぞれ、5.0〜5.1[g/m]、1000〜1200[℃]であった。また、サンプル16よりもさらにMnOを12mol%より増加させたとしても、サンプル13〜16から分かるとおり、MnOのmol%が増大するにつれて飽和磁束密度Bsが低下するため、比較例と比べて飽和磁束密度Bsが下回り、合格サンプルとはならない。 In Samples 13 to 16 shown in (Table 1), the magnetic permeability μ and the saturation magnetic flux density Bs were improved as compared with the comparative example by containing 2.5 to 12 mol% of MnO as the main component material. Samples 13 to 16 had a density D and a firing temperature of 5.0 to 5.1 [g / m 3 ] and 1000 to 1200 [° C.], respectively. Further, even when MnO is further increased from 12 mol% as compared with Sample 16, as can be seen from Samples 13 to 16, the saturation magnetic flux density Bs decreases as the mol% of MnO increases, so the saturation magnetic flux density is lower than that of Comparative Example. The density Bs is lower, and is not a passing sample.

以上から、透磁率μ及び飽和磁束密度Bsの向上は、主成分原料において、MnOが2.5mol%以上12mol%以下の組成比である場合に得られたとして、主成分原料におけるMnOのmol%の組成比の最大値を12mol%、最小値を2.5mol%と判断できる。よって、MnOの適正組成比は、2.5mol%以上12mol%以下と規定することができる。   From the above, it is assumed that the improvement of the magnetic permeability μ and the saturation magnetic flux density Bs is obtained when the composition ratio of MnO is 2.5 mol% or more and 12 mol% or less in the main component material, and the mol% of MnO in the main component material is increased. It can be determined that the maximum value of the composition ratio is 12 mol% and the minimum value is 2.5 mol%. Therefore, the appropriate composition ratio of MnO can be specified to be 2.5 mol% or more and 12 mol% or less.

次に、開示の技術に係るフェライトの副成分原料の添加重量比を規定するため、主成分原料のmol%を固定し、副成分原料のうちTiOのwt%を求めた。下記の(表2)は、主成分原料として、Feを49.5mol%、ZnOを20mol%、NiOを17.5mol%、CuOを8mol%、MnOを5mol%含有するNi−Zn系フェライトについて、添加する副成分原料のwt%を変化させたときの各サンプルの透磁率μ、飽和磁束密度Bs[mT]、密度D[g/m]、焼成温度[℃]を示す。 Next, in order to define the addition weight ratio of subcomponent material of ferrite according to the disclosed technique, to secure the mol% of the main component material, to determine the wt% of TiO 2 of the subcomponent material. The following (Table 2) shows a Ni—Zn-based material containing 49.5 mol% of Fe 2 O 3 , 20 mol% of ZnO, 17.5 mol% of NiO, 8 mol% of CuO, and 5 mol% of MnO as main component materials. For ferrite, the magnetic permeability μ, saturation magnetic flux density Bs [mT], density D [g / m 3 ], and firing temperature [° C.] are shown for each sample when the wt% of the added subcomponent material is changed.

Figure 0006637288
Figure 0006637288

(表2)に示すサンプル21は、副成分材料を全く添加しない例であり、比較例に対して透磁率μ及び飽和磁束密度Bsが向上した。また、(表2)に示すサンプル22〜23は、LiClを0.5wt%、Nbを0.15wt%と添加重量比を固定し、TiOを1〜3wt%添加することにより、比較例に対して透磁率μ及び飽和磁束密度Bsが向上した。一方、(表2)に示すサンプル24は、LiClを0.5wt%、Nbを0.15wt%と固定し、TiOを5wt%添加することにより、比較例に対して透磁率μ及び飽和磁束密度Bsが低下した。特に、透磁率が向上した。サンプル21〜24は、いずれも、密度D、焼成温度が、それぞれ、5.1[g/m]、1100〜1200[℃]であった。 Sample 21 shown in (Table 2) is an example in which no auxiliary component material was added, and the magnetic permeability μ and the saturation magnetic flux density Bs were improved as compared with the comparative example. Samples 22 to 23 shown in (Table 2) were prepared by adding LiCl at 0.5 wt%, Nb 2 O 5 at 0.15 wt%, and adding TiO 2 at 1 to 3 wt%. The magnetic permeability μ and the saturation magnetic flux density Bs were improved with respect to the comparative example. On the other hand, Sample 24 shown in (Table 2) was prepared by fixing LiCl to 0.5 wt%, Nb 2 O 5 to 0.15 wt%, and adding TiO 2 to 5 wt% to obtain a magnetic permeability μ relative to the comparative example. And the saturation magnetic flux density Bs decreased. In particular, the magnetic permeability was improved. Samples 21 to 24 had a density D and a firing temperature of 5.1 [g / m 3 ] and 1100 to 1200 [° C.], respectively.

なお、(表2)の各サンプルは、MnOのmol%を5wt%とした。しかし、(表2)のサンプル22〜23から、MnOのmol%が一定であれば、TiOのwt%が増大するにつれて飽和磁束密度Bsが低下する。また、(表1)のサンプル13〜16から分かるとおり、MnOのmol%を5wt%より増加させても、増加に応じて飽和磁束密度Bsが低下するだけである。さらに、(表1)のサンプル13〜14から分かるとおり、MnOを、2.5mol%としても5mol%としても、飽和磁束密度Bsは477mT、470mTと大差なく、MnOのmol%増加に応じて、飽和磁束密度Bsが若干低下しただけである。よって、(表2)に示すように、MnOを5mol%としてTiOのwt%の最大値及び最小値を定めてもよい。 In each sample of Table 2, the mol% of MnO was 5 wt%. However, from the sample 22-23 (Table 2), if the mol% of MnO is constant, the saturation magnetic flux density Bs as wt% of TiO 2 is increased is reduced. Further, as can be seen from Samples 13 to 16 in (Table 1), even if the mol% of MnO is increased from 5 wt%, only the saturation magnetic flux density Bs decreases in accordance with the increase. Furthermore, as can be seen from Samples 13 and 14 in (Table 1), the saturation magnetic flux density Bs is not significantly different from 477 mT and 470 mT regardless of whether MnO is set to 2.5 mol% or 5 mol%. Only the saturation magnetic flux density Bs is slightly reduced. Therefore, as shown in (Table 2), it may define the maximum and minimum values of wt% of TiO 2 to MnO as 5 mol%.

以上から、透磁率μ及び飽和磁束密度Bsの向上は、主成分原料に添加する副成分原料としてTiOを0wt%以上3wt%以下の添加重量比である場合に得られたとして、副成分原料であるTiOの添加重量比の最大値を3wt%、最小値を0wt%と判断できる。よって、TiOの適正添加重量比は、0wt%以上3wt%以下と規定することができる。 From the above, it is assumed that the magnetic permeability μ and the saturation magnetic flux density Bs are improved when the addition weight ratio of TiO 2 is 0 wt% or more and 3 wt% or less as a subcomponent raw material added to the main component raw material. It can be determined that the maximum value of the weight ratio of TiO 2 added is 3 wt% and the minimum value is 0 wt%. Therefore, the proper addition weight ratio of TiO 2 can be specified to be 0 wt% or more and 3 wt% or less.

また、下記の(表3)に示すサンプル31〜33は、主成分原料として、Feを49.5mol%、ZnOを20mol%、NiOを18.5mol%、CuOを8mol%、MnOを4mol%含有するNi−Zn系フェライトについて、副成分原料としてTiOを1wt%、Nbを0.15wt%と添加重量比を固定し、LiClを0〜1wt%添加したときの各サンプルの透磁率μ、飽和磁束密度Bs[mT]、密度D[g/m]、焼成温度[℃]を示す。 Further, samples 31 to 33 shown in the following (Table 3), as a main component material, Fe 2 O 3 and 49.5 mol%, ZnO of 20 mol%, NiO and 18.5 mol%, 8 mol% of CuO, and MnO for Ni-Zn ferrite containing 4 mol%, each sample when a subcomponent material for TiO 2 1 wt%, the Nb 2 O 5 is fixed to 0.15 wt% and additive weight ratio, and the LiCl was added 0 to 1 wt% , The saturation magnetic flux density Bs [mT], the density D [g / m 3 ], and the firing temperature [° C.].

Figure 0006637288
Figure 0006637288

(表3)に示すサンプル31〜33は、LiClを0〜1wt%添加することにより、比較例に対して透磁率μ及び飽和磁束密度Bsが向上した。また、サンプル31〜33は、いずれも、密度D、焼成温度が、それぞれ、5.1〜5.2[g/m]、1000[℃]であった。また、サンプル33と比較して、さらにLiClを1wt%より増加させたとしても、サンプル32〜33から分かるとおり、LiClのwt%が増大するにつれて飽和磁束密度Bsが低下するため、比較例と比べて飽和磁束密度Bsが下回り、合格サンプルとはならない。 In Samples 31 to 33 shown in Table 3, by adding 0 to 1 wt% of LiCl, the magnetic permeability μ and the saturation magnetic flux density Bs were improved as compared with the comparative example. Further, in all of the samples 31 to 33, the density D and the sintering temperature were 5.1 to 5.2 [g / m 3 ] and 1000 [° C.], respectively. Further, even when LiCl is further increased from 1 wt% as compared with Sample 33, as can be seen from Samples 32 to 33, the saturation magnetic flux density Bs decreases as the wt% of LiCl increases. As a result, the saturation magnetic flux density Bs is lower, and the sample is not acceptable.

よって、透磁率μ及び飽和磁束密度Bsの向上は、主成分原料に添加する副成分原料としてLiClを0wt%以上1wt%以下の添加重量比である場合に得られたとして、副成分原料であるLiClの添加重量比の上限値を1wt%、最小値を0wt%と判断できる。   Therefore, the improvement of the magnetic permeability μ and the saturation magnetic flux density Bs is considered to be obtained when the additive weight ratio of LiCl is 0 wt% or more and 1 wt% or less as a subcomponent material added to the main component material, and is a subcomponent material. It can be determined that the upper limit value of the added weight ratio of LiCl is 1 wt% and the minimum value is 0 wt%.

さらに、(表3)に示すサンプル34〜36は、主成分原料として、Feを49.5mol%、ZnOを20mol%、NiOを16.5mol%、CuOを8mol%、MnOを6mol%含有するNi−Zn系フェライトについて、副成分原料としてTiOを3wt%、Nbを0.15wt%と添加重量比を固定し、LiClを1〜2wt%添加したときの各サンプルの透磁率μ、飽和磁束密度Bs[mT]、密度D[g/m]、焼成温度[℃]を示す。 Further, Samples 34 to 36 shown in (Table 3) had 49.5 mol% of Fe 2 O 3 , 20 mol% of ZnO, 16.5 mol% of NiO, 8 mol% of CuO, and 6 mol% of MnO as main component materials. for Ni-Zn ferrite containing, 3 wt% of TiO 2 as a subcomponent material, a Nb 2 O 5 is fixed to 0.15 wt% and additive weight ratio, permeability of each sample when the LiCl was added 1 to 2 wt% The magnetic permeability μ, the saturation magnetic flux density Bs [mT], the density D [g / m 3 ], and the firing temperature [° C.] are shown.

(表3)に示すサンプル34〜35は、LiClを1〜1.5wt%添加することにより、比較例に対して透磁率μ及び飽和磁束密度Bsが向上した。一方、(表3)に示すサンプル36は、LiClを2wt%添加することにより、比較例に対して透磁率μ及び飽和磁束密度Bsが低下した。また、サンプル34〜35は、いずれも、密度D、焼成温度が、それぞれ、5〜5.1[g/m]、1200[℃]であった。一方、サンプル36は、密度D、焼成温度が、それぞれ、4.8[g/m]、1200[℃]であった。また、サンプル36と比較して、さらにLiClを2wt%より増加させたとしても、比較例と比べて飽和磁束密度Bsが下回るため、合格サンプルとはならない。 In Samples 34 to 35 shown in (Table 3), the magnetic permeability μ and the saturation magnetic flux density Bs were improved as compared with the comparative example by adding 1 to 1.5 wt% of LiCl. On the other hand, in Sample 36 shown in (Table 3), by adding 2 wt% of LiCl, the magnetic permeability μ and the saturation magnetic flux density Bs were lower than those of the comparative example. In addition, all of the samples 34 to 35 had the density D and the firing temperature of 5 to 5.1 [g / m 3 ] and 1200 [° C.], respectively. On the other hand, Sample 36 had a density D and a firing temperature of 4.8 [g / m 3 ] and 1200 [° C.], respectively. Further, even if LiCl is further increased from 2 wt% as compared with the sample 36, since the saturation magnetic flux density Bs is lower than that of the comparative example, the sample is not acceptable.

以上から、LiClの適正添加重量比をまとめると、適正添加重量比は、0wt%以上1.5wt%以下と規定することができる。   From the above, the proper addition weight ratio of LiCl can be defined as 0 wt% or more and 1.5 wt% or less.

また、下記の(表4)に示すサンプル41〜46は、主成分原料として、Feを49.5mol%、ZnOを20mol%、NiOを19.5mol%、CuOを8mol%、MnOを3mol%含有するNi−Zn系フェライトについて、副成分原料としてTiOを1wt%、LiClを0.5wt%と添加重量比を固定し、Nbを0〜1wt%添加したときの各サンプルの透磁率μ、飽和磁束密度Bs[mT]、密度D[g/m]、焼成温度[℃]を示す。 Samples 41 to 46 shown in the following (Table 4) have 49.5 mol% of Fe 2 O 3 , 20 mol% of ZnO, 19.5 mol% of NiO, 8 mol% of CuO, and MnO as main component materials. for Ni-Zn ferrite containing 3 mol%, each sample when a subcomponent material for TiO 2 1 wt%, the LiCl secure the added weight and 0.5 wt%, and the Nb 2 O 5 added 0 to 1 wt% , The saturation magnetic flux density Bs [mT], the density D [g / m 3 ], and the firing temperature [° C.].

Figure 0006637288
Figure 0006637288

(表4)に示すサンプル41〜46は、いずれも比較例に対して透磁率μ及び飽和磁束密度Bsが向上した。また、サンプル41〜46は、いずれも、密度D、焼成温度が、それぞれ、5〜5.1[g/m]、1100[℃]であった。また、サンプル46と比較して、さらにMnOを12mol%より増加させたとしても、比較例と比べて飽和磁束密度Bsが下回るため、合格サンプルとはならない。 Samples 41 to 46 shown in (Table 4) all have improved magnetic permeability μ and saturation magnetic flux density Bs as compared with the comparative example. In addition, in all of the samples 41 to 46, the density D and the firing temperature were 5 to 5.1 [g / m 3 ] and 1100 [° C.], respectively. Further, even if MnO is further increased by more than 12 mol% as compared with the sample 46, the saturation magnetic flux density Bs is lower than that of the comparative example, so that the sample is not acceptable.

以上から、透磁率μ及び飽和磁束密度Bsの向上は、主成分原料に添加する副成分原料としてNbを0wt%以上1wt%以下の添加重量比である場合に得られたとして、副成分原料であるNbの添加重量比の最大値を1wt%、最小値を0wt%と判断できる。よって、Nbの適正添加重量比は、0wt%以上1wt%以下と規定することができる。 From the above, it is assumed that the magnetic permeability μ and the saturation magnetic flux density Bs were improved when Nb 2 O 5 was added at a weight ratio of 0 wt% or more and 1 wt% or less as a sub component material added to the main component material. It can be determined that the maximum value of the addition weight ratio of Nb 2 O 5 as the component raw material is 1 wt% and the minimum value is 0 wt%. Therefore, the proper addition weight ratio of Nb 2 O 5 can be specified to be 0 wt% or more and 1 wt% or less.

なお、実施形態に係るフェライトを積層インダクタ内に配置するには、成形の際にフェライトの原料をシート状に成形し、シート状のフェライトの原料を、シート状の磁性層とともに積層する。そして、シート状のフェライトの原料と磁性層とが積層された積層体を焼成して焼結体にするとしてもよい。   In order to arrange the ferrite according to the embodiment in the laminated inductor, the ferrite raw material is formed into a sheet at the time of molding, and the sheet-shaped ferrite raw material is laminated together with the sheet-shaped magnetic layer. Then, the laminate in which the sheet-like ferrite raw material and the magnetic layer are laminated may be fired to be a sintered body.

Claims (4)

主成分原料として、
Feを45〜50mol%、ZnOを10〜30mol%、CuOを0〜15mol%、MnOを2.5〜12mol%、残部にNiO
を含み、
副成分原料として、
TiをTiO換算で〜3wt%、LiをLiCl換算で0.5〜1.5wt%
を含んだことを特徴とするフェライト。
As a main ingredient material,
45 to 50 mol% of Fe 2 O 3 , 10 to 30 mol% of ZnO, 0 to 15 mol% of CuO, 2.5 to 12 mol% of MnO, and NiO
Including
As a sub ingredient material,
0 Ti 1 to 3 wt% in terms of TiO 2, and Li in LiCl terms. 5 to 1.5 wt%
A ferrite comprising:
前記副成分原料として、
NbをNb換算で0.1〜1wt%
さらに含んだことを特徴とする請求項1に記載のフェライト。
As the auxiliary component raw material,
Nb is converted to Nb 2 O 5 as 0 . 1 to 1 wt%
The ferrite according to claim 1, further comprising:
Feを45〜50mol%、ZnOを10〜30mol%、CuOを0〜15mol%、MnOを2.5〜12mol%、残部にNiOを含んだフェライトの主成分原料を仮焼成する仮焼成ステップと、
前記仮焼成ステップにより仮焼成したフェライトの主成分原料を所定粒度になるまで粉砕する粉砕ステップと、
前記粉砕ステップにより粉砕されたフェライトの主成分原料に、TiをTiO換算で〜3wt%、LiをLiCl換算で0.5〜1.5wt%を含んだ副成分原料を混合し、混合物を生成する混合物生成ステップと、
前記混合物にバインダーを添加して造粒物を生成する造粒ステップと、
前記造粒ステップにより生成された造粒物を所定形状の成形物に成形する成形ステップと、
前記成形ステップにより成形された成形物を、大気中にて焼成する焼成ステップと
を含んだことを特徴とするフェライトの製造方法。
Fe 2 O 3 the 45~50mol%, ZnO of 10~30mol%, 0~15mol% of CuO, 2.5~12mol% of MnO, calcination of calcined ferrite of main component material containing NiO to the remainder Steps and
A pulverizing step of pulverizing the main component raw material of the ferrite preliminarily calcined by the calcining step to a predetermined particle size,
In the main component raw material of the ferrite pulverized in the pulverization step, 1 to 3 wt% of Ti in terms of TiO 2 and 0 . Mixing a sub-component material containing 5 to 1.5 wt% to form a mixture,
A granulation step of adding a binder to the mixture to produce a granulated product,
A molding step of molding the granulated product generated by the granulation step into a molded product of a predetermined shape,
A firing step of firing the molded article formed by the molding step in the air.
前記副成分原料として、
NbをNb換算で0.1〜1wt%
さらに含んだことを特徴とする請求項3に記載のフェライトの製造方法。
As the auxiliary component raw material,
Nb is converted to Nb 2 O 5 as 0 . 1 to 1 wt%
The method for producing ferrite according to claim 3, further comprising:
JP2015216756A 2015-11-04 2015-11-04 Ferrite and method for producing ferrite Active JP6637288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015216756A JP6637288B2 (en) 2015-11-04 2015-11-04 Ferrite and method for producing ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015216756A JP6637288B2 (en) 2015-11-04 2015-11-04 Ferrite and method for producing ferrite

Publications (2)

Publication Number Publication Date
JP2017088422A JP2017088422A (en) 2017-05-25
JP6637288B2 true JP6637288B2 (en) 2020-01-29

Family

ID=58767593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015216756A Active JP6637288B2 (en) 2015-11-04 2015-11-04 Ferrite and method for producing ferrite

Country Status (1)

Country Link
JP (1) JP6637288B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004031B (en) * 2021-04-19 2022-04-22 西南科技大学 Microwave ferrite material and preparation and application method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3246839B2 (en) * 1994-09-30 2002-01-15 太陽誘電株式会社 Oxide magnetic material
JP3245049B2 (en) * 1996-03-29 2002-01-07 太陽誘電株式会社 Ferrite material and ferrite
JPH11219812A (en) * 1998-01-29 1999-08-10 Tokin Corp Oxide magnetic material
JP4302904B2 (en) * 2001-03-23 2009-07-29 Tdk株式会社 Choke coil and power transformer
CN1255355C (en) * 2004-08-19 2006-05-10 浙江大学 Low temperature coefficient, low loss and high saturated flux density ferrite material and preparing method
JP2006151742A (en) * 2004-11-29 2006-06-15 Tdk Corp Ferrite material and electronic component using the same
KR101255155B1 (en) * 2011-04-11 2013-04-22 주식회사 이엠따블유 NiZnCu FERRITE AND PREPARATION METHOD THEREOF

Also Published As

Publication number Publication date
JP2017088422A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP5582279B2 (en) Inductance element comprising Ni-Zn-Cu ferrite sintered body
US8679362B2 (en) Nickel-zinc-copper based ferrite composition, and multilayered chip device using the same
CN105837192B (en) NiMnZn-based ferrite
JP2011097524A (en) Ferrite composition, magnetic member for antenna element, and antenna element
JP5515195B2 (en) Ni-Zn ferrite powder, green sheet containing the Ni-Zn ferrite powder, and Ni-Zn ferrite sintered body.
JP6637288B2 (en) Ferrite and method for producing ferrite
CN105384435A (en) Manganese-zinc ferrite material with quaternary formula and ultrahigh Bs and preparation method
JP6715073B2 (en) Ni-Zn ferrite material and Ni-Zn ferrite manufacturing method
JP2004296865A (en) Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor
JP5560436B2 (en) MnZnNi ferrite
JP6655381B2 (en) Ni-Mn-Zn ferrite material
JP6967418B2 (en) Magnetic materials and laminated chip parts
JP2022059859A (en) MnZn BASED FERRITE AND MANUFACTURING METHOD OF SAME
JP6380730B2 (en) Ferrite composition, ferrite core and electronic component
JP4766339B2 (en) Sintered ferrite and manufacturing method thereof
JP6716191B2 (en) Ferrite core
JP6323042B2 (en) Ferrite composition, ferrite core and electronic component
JP2010184845A (en) Mn-Zn-Ni-BASED FERRITE
JP2010143821A (en) Ferrite composition and electronic component
JP2008184364A (en) Oxide magnetic material
JP6380729B2 (en) Ferrite composition, ferrite core and electronic component
JP2018052790A (en) Ferrite and production method of ferrite
JP6311298B2 (en) Ferrite composition, ferrite core and electronic component
JP6442251B2 (en) Magnetic material and magnetic porcelain composition
JP2015214434A (en) Ferrite ceramic, coil device and method for producing the ferrite ceramic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191220

R150 Certificate of patent or registration of utility model

Ref document number: 6637288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250