JP6637093B2 - Coil spring - Google Patents
Coil spring Download PDFInfo
- Publication number
- JP6637093B2 JP6637093B2 JP2018046198A JP2018046198A JP6637093B2 JP 6637093 B2 JP6637093 B2 JP 6637093B2 JP 2018046198 A JP2018046198 A JP 2018046198A JP 2018046198 A JP2018046198 A JP 2018046198A JP 6637093 B2 JP6637093 B2 JP 6637093B2
- Authority
- JP
- Japan
- Prior art keywords
- coil spring
- axial direction
- region
- winding
- end turn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004804 winding Methods 0.000 claims description 39
- 230000007704 transition Effects 0.000 claims description 29
- 230000006835 compression Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910000669 Chrome steel Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QKJXFFMKZPQALO-UHFFFAOYSA-N chromium;iron;methane;silicon Chemical compound C.[Si].[Cr].[Fe] QKJXFFMKZPQALO-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
Landscapes
- Springs (AREA)
Description
本発明は、内燃機関の弁ばねや高圧ポンプ用ばね等に利用可能なコイルばねに関する。 The present invention relates to a coil spring that can be used as a valve spring of an internal combustion engine, a spring for a high-pressure pump, and the like.
ばね線材を軸線方向一方側から他方側へ延びる螺旋形状に成形してなるコイルばねは、内燃機関の弁ばねや高圧ポンプ用ばね等として、広く利用されている、 Coil springs formed by forming a spring wire into a spiral shape extending from one side to the other side in the axial direction are widely used as valve springs for internal combustion engines, springs for high-pressure pumps, and the like.
前記コイルばねは、軸線方向に圧縮された際に軸線方向に沿った弾性力を発揮することを意図した部材であるが、圧縮時に、軸線方向に沿った弾性力に加えて、軸線方向とは直交する方向にも力(横力)を発生することが知られている。 The coil spring is a member intended to exhibit an elastic force along the axial direction when compressed in the axial direction, but when compressed, in addition to the elastic force along the axial direction, It is known that a force (lateral force) is also generated in a direction orthogonal to the direction.
横力の発生は可能な限り防止することが望まれる。
即ち、例えば、前記コイルばねを往復動するプランジャーの押圧部材として用いた場合に横力が生じると、前記プランジャーと当該プランジャーが往復動可能に収容される案内面との間に生じる摩擦力が大きくなる。
前記摩擦力の増加は、前記プランジャーの摺動抵抗に起因する摩耗や摩擦熱の上昇を招き、前記プランジャーが用いられる高圧ポンプ等の装置に作動不具合を生じさせる恐れがある。
It is desirable to prevent the generation of lateral force as much as possible.
That is, for example, when a lateral force is generated when the coil spring is used as a pressing member of a reciprocating plunger, friction generated between the plunger and a guide surface in which the plunger is reciprocally accommodated. Strength increases.
The increase in the frictional force causes wear and an increase in frictional heat due to the sliding resistance of the plunger, which may cause malfunction of a device such as a high-pressure pump using the plunger.
この点に関し、本願の筆頭出願人は、横力の低減を目的としたコイルばねを提案している(下記特許文献1参照)。 In this regard, the first applicant of the present application has proposed a coil spring for reducing lateral force (see Patent Document 1 below).
前記特許文献1に記載のコイルばねは、セット高さから最大使用高さまでの間で有効巻数が整数となるように設計されたものであり、前記有効巻数が整数又は整数近傍とはされていないコイルばねに比して、横力を低減することができる。 The coil spring described in Patent Document 1 is designed such that the effective number of turns is an integer between the set height and the maximum use height, and the effective number of turns is not an integer or near an integer. Lateral force can be reduced as compared with a coil spring.
ところで、前記コイルばねは、軸線方向両端部に位置する座巻き部と、前記両端の座巻き部の間に位置する中央巻き部とを有しており、軸線方向に隣接するばね線材の間に隙間(線間隙間)が存在する領域が有効巻き部となる。 By the way, the coil spring has an end winding portion located at both ends in the axial direction and a center winding portion located between the end winding portions at both ends, and is provided between spring wires adjacent in the axial direction. An area where a gap (interline gap) exists is an effective winding portion.
前記特許文献1は、前記有効巻き部の巻数がセット高さから最大使用高さまでの間で整数となるように設計するという思想を開示するものではある。 Patent Document 1 discloses the idea of designing the number of turns of the effective winding portion to be an integer between the set height and the maximum use height.
本発明は、横力の発生を可及的に防止し得るコイルばねの提供を目的とする。 An object of the present invention is to provide a coil spring capable of preventing generation of lateral force as much as possible.
本発明は、前記目的を達成するために、軸線方向一方側に設けられ、軸線方向一方側を向く第1座面が形成された第1座巻き部と、軸線方向他方側に設けられ、軸線方向他方側を向く第2座面が形成された第2座巻き部と、前記第1及び第2座巻き部の間の中央巻き部とを備えたコイルばねであって、前記第1座巻き部は、軸線方向一方側の第1端部から、軸線方向一方側において自然長状態での線間隙間がゼロとされた第1基準点を形成する部分まで延びる第1座巻き部エッジ領域と、前記第1座巻き部エッジ領域から前記中央巻き部まで延びる第1座巻き部移行領域とを含み、前記第1座巻き部エッジ領域は、前記第1座巻き部移行領域に比して、前記コイルばねの軸線方向一方側へ折り曲げられており、前記第1座面は、前記第1座巻き部エッジ領域及び前記第1座巻き部移行領域に跨がって形成されているコイルばねを提供する。 In order to achieve the above object, the present invention provides a first end turn portion provided on one side in the axial direction and having a first seating surface facing one side in the axial direction, and a first end turn portion provided on the other side in the axial direction. A coil spring comprising: a second end turn having a second seat surface facing the other side in the direction; and a center turn between the first and second end turns. A first end turn edge region extending from a first end portion on one side in the axial direction to a portion forming a first reference point where a line gap in a natural length state is zero on one side in the axial direction; A first end turn transition region extending from the first end turn edge region to the central turn, wherein the first end turn edge region, compared to the first end turn transition region, The coil spring is bent to one side in the axial direction, and the first seat surface is the first end winding. Providing parts edge regions and a coil spring which is formed straddling said first seat winding portion transition region.
好ましくは、前記第2座巻き部は、軸線方向他方側の第2端部から、軸線方向他方側において自然長状態での線間隙間がゼロとされた第2基準点を形成する部分まで延びる第2座巻き部エッジ領域と、前記第2座巻き部エッジ領域から前記中央巻き部まで延びる第2座巻き部移行領域とを含むものとされ、前記第2座巻き部エッジ領域は、前記第2座巻き部移行領域に比して、前記コイルばねの軸線方向他方側へ折り曲げられており、前記第2座面は、前記第2座巻き部エッジ領域及び前記第2座巻き部移行領域に跨がって形成される。 Preferably, the second end turn portion extends from the second end portion on the other side in the axial direction to a portion forming a second reference point where the line gap in the natural length state is zero on the other side in the axial direction. It includes a second end turn edge region and a second end turn transition region extending from the second end turn edge region to the central turn, wherein the second end turn edge region includes the second end turn edge region. The coil spring is bent to the other side in the axial direction as compared with the 2 end winding portion transition region, and the second seat surface is formed in the second end winding portion edge region and the second end winding portion transition region. It is formed straddling.
本発明に係るコイルばねにおいては、軸線方向一方側に設けられ、軸線方向一方側を向く第1座面が形成された第1座巻き部と、軸線方向他方側に設けられ、軸線方向他方側を向く第2座面が形成された第2座巻き部と、前記第1及び第2座巻き部の間の中央巻き部とを備え、前記第1座巻き部のうち軸線方向一方側の第1端部から軸線方向一方側において自然長状態での線間隙間がゼロとされた第1基準点を形成する部分まで延びる第1座巻き部エッジ領域が、前記第1座巻き部エッジ領域から前記中央巻き部まで延びる第1座巻き部移行領域に比して、当該コイルばねの軸線方向一方側へ折り曲げられており、前記第1座面が前記第1座巻き部エッジ領域及び前記第1座巻き部移行領域に跨がって形成されているので、前記第1座面の研磨量を十分に確保して当該第1座面の平坦性を担保しつつ、前記第1座巻き部を厚くすることができ、圧縮動作時の横力発生を減少させることができる。 In the coil spring according to the present invention, a first end turn portion provided on one side in the axial direction and having a first seating surface facing one side in the axial direction is provided, and a first end turn portion provided on the other side in the axial direction and the other side in the axial direction. A second end winding portion formed with a second seat surface facing the first end winding portion, and a center winding portion between the first and second end winding portions. A first end turn edge region extending from one end to a portion forming a first reference point where a line gap in a natural length state is zero on one side in the axial direction is formed from the first end turn edge region. The coil spring is bent toward one side in the axial direction of the coil spring as compared with the first end turn transition region extending to the central turn, and the first seat surface is formed by the first end turn edge region and the first end turn. Since it is formed so as to straddle the end turn transition region, the first seat surface is ground. While the amount to ensure sufficient to ensure the flatness of the first seating surface, wherein it is possible to thicken the first seat winding portion, it is possible to reduce the lateral forces generated during the compression operation.
以下、本発明に係るコイルばねの一実施の形態について、添付図面を参照しつつ説明する。
図1及び図2に、それぞれ、本実施の形態に係るコイルばね1Aの自然長状態での斜視図及び正面図を示す。
Hereinafter, an embodiment of a coil spring according to the present invention will be described with reference to the accompanying drawings.
1 and 2 show a perspective view and a front view, respectively, of the coil spring 1A according to the present embodiment in a natural length state.
図1及び図2に示すように、本実施の形態に係るコイルばね1Aは、ばね線材100が軸線方向一方側から他方側へ延びる螺旋形状に成形されてなるものであり、内燃機関の弁ばねや高圧ポンプ用ばね等に好適に利用される。 As shown in FIGS. 1 and 2, a coil spring 1 </ b> A according to the present embodiment is configured such that a spring wire 100 is formed in a spiral shape extending from one side in the axial direction to the other side. And springs for high pressure pumps.
前記コイルばね1Aは、前記ばね線材100の実巻きを基準とすると、前記ばね線材100の長手方向一方側の第1端部110を含み、且つ、前記コイルばね1Aの軸線方向一方側を向く第1座面11が形成された第1座巻き部10と、前記ばね線材100の長手方向他方側の第2端部120を含み、且つ、前記コイルばね1Aの軸線方向他方側を向く第2座面21が形成された第2座巻き部20と、前記第1及び第2座巻き部10、20の間の中央巻き部30とを有している。 The coil spring 1A includes a first end 110 on one side in the longitudinal direction of the spring wire 100, based on the actual winding of the spring wire 100, and a first end 110 that faces one side in the axial direction of the coil spring 1A. A second seat including a first end winding portion 10 on which one seat surface 11 is formed, and a second end portion 120 on the other side in the longitudinal direction of the spring wire 100, and facing the other side in the axial direction of the coil spring 1A. It has a second end turn 20 having a surface 21 formed thereon, and a center turn 30 between the first and second end turns 10 and 20.
前記コイルばね1Aにおいては、前記コイルばね1Aの軸線方向に隣接するばね線材100同士の間に線間隙間が存在する領域が、弾性力を発揮する有効巻き部として作用する。 In the coil spring 1A, a region in which an interline gap exists between the spring wires 100 adjacent to each other in the axial direction of the coil spring 1A acts as an effective winding portion exhibiting an elastic force.
ここで、軸線方向に隣接するばね線材100同士の間の前記線間隙間について詳述する。
前記線間隙間は、軸線方向一方側においては自然長状態での線間隙間がゼロとされた第1基準点51から軸線方向一方側へ螺旋状に進むに従って広がり、前記中央巻き部30においては前記コイルばね1Aに求められる弾性力に応じて設定される基準値L(L>0、下記図3参照)とされ、軸線方向他方側においては軸線方向一方側へ螺旋状に進むに従って狭まって第2基準点52においてゼロとされている。
Here, the interline gap between the spring wires 100 adjacent in the axial direction will be described in detail.
The line gap expands in the axial direction from the first reference point 51 where the line gap in the natural length state is zero on one side in the axial direction to the one side in the axial direction spirally. A reference value L (L> 0, see FIG. 3 below) is set in accordance with the elastic force required for the coil spring 1A. The reference value L decreases on the other side in the axial direction as it spirals toward one side in the axial direction. It is set to zero at the two reference points 52.
即ち、図2に示すように、前記線間隙間によって形成される螺旋形状(以下、線間巻きと言う)は、軸線方向一方側において自然長状態での線間隙間がゼロとされた前記第1基準点51から軸線方向他方側へ螺旋形状に沿って周方向に進むに従って自然長状態での線間隙間が大きくなる第1端部領域61と、前記第1端部領域61よりも軸線方向他方側に位置し、自然長状態での線間隙間が基準値のLとされた基準領域65と、前記基準領域65より軸線方向他方側に位置し、軸線方向他方側へ螺旋形状に沿って周方向に進むに従って線間隙間が狭くなり、前記第2基準点52において自然長状態での線間隙間がゼロとなる第2端部領域62とを有している。 That is, as shown in FIG. 2, the spiral shape formed by the gap between the lines (hereinafter referred to as the winding between the lines) is such that the gap between the lines in the natural length state on one side in the axial direction is zero. A first end region 61 in which the gap between the lines in the natural length state increases as the circumferential direction progresses along the spiral shape from one reference point 51 to the other side in the axial direction, and an axial direction more than the first end region 61 A reference region 65 located on the other side and having a gap between lines in a natural length state having a reference value of L, and located on the other side in the axial direction from the reference region 65, along the spiral shape toward the other side in the axial direction. There is a second end region 62 in which the line gap becomes narrower as it advances in the circumferential direction, and the line gap in the natural length state becomes zero at the second reference point 52.
図3に、前記コイルばね1Aにおける、線間巻き数と線間隙間との関係を表すグラフを示す。 FIG. 3 is a graph showing the relationship between the number of turns between wires and the gap between wires in the coil spring 1A.
図3に示すように、本実施の形態に係る前記コイルばね1Aにおいては、前記第1端部領域61は、線間巻き数が1を超え且つ終端位置61Eにおける自然長状態での線間距離が基準値Lよりも大となるように構成されている。 As shown in FIG. 3, in the coil spring 1 </ b> A according to the present embodiment, the first end region 61 has a line-to-line distance in a natural length state at the end position 61 </ b> E in which the number of line turns exceeds one. Is larger than the reference value L.
本実施の形態においては、図3に示すように、前記第1端部領域61の終端位置61Eは、前記第1基準点51から軸線方向他方側へ線間巻き約1.2巻きの位置に位置されており、基準値Lは4.7mmに設定され、終端位置61Eにおける自然長状態の線間距離は5.5mm(基準値L×1.17)に設定されている。 In the present embodiment, as shown in FIG. 3, the end position 61E of the first end region 61 is located at a position of about 1.2 turns between the first reference point 51 and the other side in the axial direction from the first reference point 51. The reference value L is set to 4.7 mm, and the distance between the lines in the natural length state at the end position 61E is set to 5.5 mm (reference value L × 1.17).
その上で、図3に示すように、前記コイルばね1Aは、前記線間巻きが前記第1端部領域61及び前記基準領域65の間に第1移行領域63(1)を有するように構成されている。 Then, as shown in FIG. 3, the coil spring 1 </ b> A is configured such that the line winding has a first transition region 63 (1) between the first end region 61 and the reference region 65. Have been.
前記第1移行領域63(1)は、前記第1端部領域61の終端位置61Eから軸線方向他方側へ螺旋形状に沿って進むに従って線間距離が小さくなって基準値のLに到達するように構成されている。 The first transition area 63 (1) is such that the distance between the lines decreases as the helical shape progresses from the end position 61 </ b> E of the first end area 61 to the other side in the axial direction and reaches the reference value L. Is configured.
かかる構成を備えることにより、前記コイルばね1Aが自然長状態から圧縮動作される際に、前記第1端部領域61に線間隙間ゼロが生じることを有効に防止でき、圧縮動作時の横力の発生を有効に抑えることができる。 With this configuration, when the coil spring 1 </ b> A performs the compression operation from the natural length state, it is possible to effectively prevent the occurrence of zero line gap in the first end region 61, and the lateral force during the compression operation is reduced. Can be effectively suppressed.
即ち、前記コイルばね1Aにおいては、軸線方向一方側に設けられる前記第1端部領域61の終端位置61Eでの線間距離が基準値Lよりも大とされている。
従って、図4に示すような前記コイルばね1Aの圧縮動作に、軸線方向一方側において有効巻き数の変化が生じることを有効に防止することができ、これにより、圧縮動作時の横力発生を有効に抑えることができる。
That is, in the coil spring 1A, the line distance at the end position 61E of the first end region 61 provided on one side in the axial direction is larger than the reference value L.
Therefore, in the compression operation of the coil spring 1A as shown in FIG. 4, it is possible to effectively prevent a change in the effective number of turns on one side in the axial direction, thereby reducing the generation of a lateral force during the compression operation. It can be effectively suppressed.
図3に示すように、本実施の形態に係る前記コイルばね1Aにおいては、前記第2端部領域62は、線間巻き数が1を超え且つ終端位置61Eにおける自然長状態での線間距離が基準値Lよりも大となるように構成されている。 As shown in FIG. 3, in the coil spring 1 </ b> A according to the present embodiment, the second end region 62 has a line-to-line distance of more than 1 and a line length in a natural length state at the end position 61 </ b> E. Is larger than the reference value L.
本実施の形態においては、前記第2端部領域62は、前記第1端部領域61と実質的に同一構成とされている。
即ち、図3に示すように、前記第2端部領域62の開始位置62Sは、前記第2基準点52から線間巻き数において軸線方向一方側へ約1.2巻きの位置に位置されており、開始位置62Sにおける自然長状態の線間距離は前記第1端部領域61における終端位置61Eの線間距離と同一の5.5mm(基準値L×1.17)に設定されている。
In the present embodiment, the second end region 62 has substantially the same configuration as the first end region 61.
That is, as shown in FIG. 3, the start position 62S of the second end region 62 is located at a position of about 1.2 turns in the axial direction from the second reference point 52 to one side in the axial direction with respect to the number of turns between the lines. The line distance in the natural length state at the start position 62S is set to 5.5 mm (reference value L × 1.17), which is the same as the line distance at the end position 61E in the first end region 61.
その上で、図3に示すように、前記コイルばね1Aは、前記線間巻きが前記基準領域65及び前記第2端部領域62の間に第2移行領域63(2)を有するように構成されている。 Then, as shown in FIG. 3, the coil spring 1 </ b> A is configured such that the wire winding has a second transition area 63 (2) between the reference area 65 and the second end area 62. Have been.
前記第2移行領域63(2)は、前記基準領域65の終端位置65Eから軸線方向他方側へ螺旋形状に沿って進むに従って線間距離が基準値のLから大きくなって前記第2端部領域62の開始位置62Sに到達するように構成されている。 In the second transition region 63 (2), as the distance from the terminal position 65E of the reference region 65 to the other side in the axial direction along the spiral shape increases, the distance between the lines increases from the reference value L, and the second end region It is configured to reach a start position 62S of 62.
かかる構成を備えることにより、前記コイルばね1Aが自然長状態から圧縮動作される際に、前記第2端部領域62に線間隙間ゼロが生じることを有効に防止でき、圧縮動作時の横力の発生を有効に抑えることができる。 With such a configuration, when the coil spring 1A performs the compression operation from the natural length state, it is possible to effectively prevent the occurrence of zero line gap in the second end region 62, and the lateral force during the compression operation Can be effectively suppressed.
前記コイルばね1Aは、例えば、図5に示す製造装置200によって製造される。
図5に示すように、前記製造装置200は、ばね線材100を供給する供給ローラ210と、前記供給ローラ210によって搬送されるばね線材100をガイドするガイド部材215と、前記ガイド部材215によってガイドされた状態で前記供給ローラ210によって搬送されるばね線材100の搬送方向下流側に設けられ、直線状のばね線材100を螺旋状のコイルばね1Aに成形する第1及び第2コイリングツール220(1)、220(2)と、前記第1及び第2コイリングツール220(1)、220(2)によって螺旋状に成形されたコイルばね1Aをガイドする芯金部材225と、前記コイルばね1Aのピッチを調整するピッチツール230と、前記芯金225と共働してばね線材100を切断する切断ツール235とを有している。
The coil spring 1A is manufactured by, for example, a manufacturing apparatus 200 shown in FIG.
As shown in FIG. 5, the manufacturing device 200 is guided by the supply roller 210 that supplies the spring wire 100, a guide member 215 that guides the spring wire 100 conveyed by the supply roller 210, and guided by the guide member 215. First and second coiling tools 220 (1) that are provided on the downstream side in the transport direction of the spring wire 100 transported by the supply roller 210 in the folded state, and form the linear spring wire 100 into a helical coil spring 1A. , 220 (2), a metal core member 225 for guiding the coil spring 1A spirally formed by the first and second coiling tools 220 (1), 220 (2), and a pitch of the coil spring 1A. And a cutting tool 235 for cutting the spring wire 100 in cooperation with the core metal 225. There.
前記第1及び第2コイリングツール220(1)、220(2)は、成形されるコイルばね1Aの中心を基準とした径方向に関し位置調整可能とされており、径方向位置の変更に応じてコイルばね1Aのコイル径を変更する。 The positions of the first and second coiling tools 220 (1) and 220 (2) can be adjusted in the radial direction with reference to the center of the coil spring 1A to be formed. Change the coil diameter of the coil spring 1A.
前記ピッチツール230は、コイルばね1Aの中心を基準とした径方向に関し位置調整可能とされており、径方向位置の変更に応じてコイルばね1Aのピッチを変更する。 The pitch tool 230 can adjust the position in the radial direction with reference to the center of the coil spring 1A, and changes the pitch of the coil spring 1A according to the change in the radial position.
前記切断ツール235は、コイルばね1Aの中心を基準とした径方向に関し往復動可能とされており、前記芯金225の係合面226と共働して前記ばね線材100を切断する切断位置と前記芯金225から離間された退避位置との間で移動可能とされている。 The cutting tool 235 is reciprocally movable in the radial direction with reference to the center of the coil spring 1 </ b> A, and cooperates with the engaging surface 226 of the cored bar 225 to cut the spring wire 100. It is movable between a retracted position separated from the cored bar 225.
好ましくは、図3に示すように、前記第1端部領域61は、前記第1基準点51から前記終端位置61Eまで一定の線間隙間ピッチ角を有するものとされ、前記線間隙間ピッチ角は、軸線方向一方側への線間巻き1巻き当たりの線間隙間の変位量がLとなるように設定される。
かかる構成によれば、前記ピッチツール230の位置制御の容易化を図ることができる。
Preferably, as shown in FIG. 3, the first end region 61 has a constant line gap pitch angle from the first reference point 51 to the terminal position 61E, and the line gap pitch angle Is set such that the amount of displacement between the wire gaps per one turn between the wires in the axial direction is L.
According to such a configuration, the position control of the pitch tool 230 can be facilitated.
同様に、好ましくは、図3に示すように、前記第2端部領域62は、開始位置62Sから前記第2基準点52まで一定の線間隙間ピッチ角を有するものとされ、前記線間隙間ピッチ角は、軸線方向一方側への線間巻き1巻き当たりの線間隙間の変位量が−Lとなるように設定される。 Similarly, preferably, as shown in FIG. 3, the second end region 62 has a constant line gap pitch angle from a start position 62S to the second reference point 52, and the line gap The pitch angle is set such that the amount of displacement between the wire gaps per one turn between the wires in the axial direction is -L.
ここで、本実施の形態に係るコイルばね1A及び従来のコイルばねに対して行った、横力に関する実験結果について説明する。 Here, a description will be given of the results of experiments on the lateral force performed on the coil spring 1A according to the present embodiment and the conventional coil spring.
本実施の形態に係るコイルばね1Aの一例(実施例)として、下記構成のコイルばね1aを用意した。
・実施例に係るコイルばね1aの構成
ばね線材の材質:シリコンクロム 鋼オイルテンパー線(SWOSC-V)相当の鋼線
ばね線材の線径:3.3mm
コイルばねのコイル径:17.4mm
自然長状態のコイルばねの長さ:41mm
総巻き数:6.0
有効巻き数:4.0
基準領域65での線間隙間の距離(基準値L):4.6mm
第1端部領域61の終端位置61E(第1基準点51からの線間巻き数):0.9
第1端部領域61の終端位置61Eでの線間隙間の距離:5.7mm
第1移行領域63(1)の線間巻き数:0.5
第2端部領域62の開始位置62S(第2基準点52からの線間巻き数):0.9
第2端部領域62の開始位置62Sでの線間隙間の距離:5.7mm
第2移行領域63(2)の線間巻き数:0.5
As an example (example) of the coil spring 1A according to the present embodiment, a coil spring 1a having the following configuration was prepared.
-Configuration of the coil spring 1a according to the embodiment Material of the spring wire: Silicon chrome steel Oil-tempered wire (SWOSC-V) or equivalent steel wire Wire diameter of the spring wire: 3.3 mm
Coil diameter of coil spring: 17.4 mm
Length of coil spring in natural length state: 41 mm
Total number of turns: 6.0
Effective number of turns: 4.0
Distance between line gaps in reference region 65 (reference value L): 4.6 mm
End position 61E of first end region 61 (number of turns between lines from first reference point 51): 0.9
Distance between the line gaps at the end position 61E of the first end region 61: 5.7 mm
Number of turns between lines in the first transition area 63 (1): 0.5
Start position 62S of second end region 62 (number of turns between lines from second reference point 52): 0.9
Distance between the line gaps at the start position 62S of the second end region 62: 5.7 mm
Number of turns between lines of the second transition area 63 (2): 0.5
前記実施例に係るコイルばね1aに生じる横力をサイドフォースばね試験機(日本計測システム株式会社製 SFTシリーズ)にて測定した。
図6に、その結果を示す。
The lateral force generated in the coil spring 1a according to the example was measured with a side force spring tester (SFT series manufactured by Japan Measurement System Co., Ltd.).
FIG. 6 shows the results.
従来のコイルばねの一例(比較例)として、下記構成のコイルばねを用意し、同様の実験を行った。
・比較例に係るコイルばねの構成
ばね線材の材質:シリコンクロム 鋼オイルテンパー線(SWOSC-V)相当の鋼線
ばね線材の線径:3.3mm
コイルばねのコイル径:17.4mm
自然長状態のコイルばねの長さ:40mm
総巻き数:5.8
有効巻き数:3.8
基準領域65での線間隙間の距離(基準値L):6.1mm
第1端部領域61の終端位置61E(第1基準点51からの線間巻き数):1
第1端部領域61の終端位置61Eでの線間隙間の距離:6.1mm
第2端部領域62の開始位置62S(第2基準点52からの線間巻き数):1
第2端部領域62の開始位置62Sでの線間隙間の距離:6.1mm
As an example (comparative example) of a conventional coil spring, a coil spring having the following configuration was prepared, and a similar experiment was performed.
-Configuration of coil spring according to comparative example Material of spring wire: Silicon chrome steel Oil-tempered wire (SWOSC-V) or equivalent steel wire Spring wire diameter: 3.3 mm
Coil diameter of coil spring: 17.4 mm
Length of coil spring in natural length state: 40mm
Total number of turns: 5.8
Effective number of turns: 3.8
Distance between line gaps in reference region 65 (reference value L): 6.1 mm
End position 61E of first end region 61 (number of turns between lines from first reference point 51): 1
Distance between the line gaps at the end position 61E of the first end region 61: 6.1 mm
Start position 62S of second end region 62 (number of turns between lines from second reference point 52): 1
Distance between line gaps at the start position 62S of the second end region 62: 6.1 mm
前記比較例に生じる横力も前記サイドフォースばね試験機(日本計測システム株式会社製 SFTシリーズ)にて測定した。
その結果を図6に併せて示す。
The lateral force generated in the comparative example was also measured by the side force spring tester (SFT series manufactured by Nippon Keisoku System).
The results are also shown in FIG.
図6に示されるように、前記第1及び第2端部領域61、62の線間巻き数が1を超え、前記第1端部領域61の終端位置61E及び前記第2端部領域62の開始位置62Sでの線間距離が基準領域65での線間距離Lよりも大とされている前記実施例1aにおいては、前記比較例に比して、横力の発生が格段に抑えられている。
この結果は、前記実施例に係るコイルばね1aにおいては、圧縮動作に際し、前記第1及び第2端部領域61、62において線間隙間ゼロの発生が有効に防止できていることを意味する。
As shown in FIG. 6, the number of turns between the first and second end regions 61 and 62 exceeds 1, and the end position 61E of the first end region 61 and the second end region 62 In the embodiment 1a in which the line distance at the start position 62S is larger than the line distance L in the reference region 65, the generation of the lateral force is remarkably suppressed as compared with the comparative example. I have.
This result means that in the coil spring 1a according to the embodiment, a zero gap between lines can be effectively prevented in the first and second end regions 61 and 62 during the compression operation.
好ましくは、前記コイルばね1Aは、前記第1基準点51から前記第2基準点52までの線間巻き数が整数倍となるように構成される。
即ち、前記第1基準点51及び前記第2基準点52が周方向に関し同一位置に位置するように構成される。
かかる構成によれば、圧縮動作時の横力発生をより有効に防止することができる。
Preferably, the coil spring 1A is configured such that the number of turns between the lines from the first reference point 51 to the second reference point 52 is an integral multiple.
That is, the first reference point 51 and the second reference point 52 are configured to be located at the same position in the circumferential direction.
According to this configuration, it is possible to more effectively prevent the generation of the lateral force during the compression operation.
また、好ましくは、前記第1座巻き部10のうち前記第1基準点51より端部側に位置する領域を軸線方向一方側へ折り曲げることができる。 Also, preferably, a region of the first end winding portion 10 located on the end side from the first reference point 51 can be bent to one side in the axial direction.
図7に、前記第1座巻き部10のうち前記第1基準点51より端部側に位置する領域を軸線方向一方側へ折り曲げた変形例1Bの部分正面図を示す。 FIG. 7 is a partial front view of a modified example 1B in which a region of the first end winding portion 10 located on the end side from the first reference point 51 is bent to one side in the axial direction.
図7に示すように、前記変形例1Bにおいては、前記第1座巻き部10は、前記ばね線材100のうち長手方向一方側の第1端部110から前記第1基準点51を形成する部分まで延びる第1座巻き部エッジ領域111と、前記第1座巻き部エッジ領域111から前記中央巻き部30まで延びる第1座巻き部移行領域112とを含んでいる。 As shown in FIG. 7, in Modification 1B, the first end turn 10 is a portion of the spring wire 100 that forms the first reference point 51 from the first end 110 on one side in the longitudinal direction. A first end turn edge region 111 extending to the first end turn edge region 111 and a first end turn transition region 112 extending from the first end turn edge region 111 to the central turn 30.
そして、前記第1座巻き部エッジ領域111は、前記第1座巻き部移行領域112に比して、前記コイルばね1Bの軸線方向一方側へ折り曲げられており、前記第1座面11は、前記第1座巻き部エッジ領域111から前記第1座巻き部移行領域112との境界を跨いで前記第1座巻き部移行領域112へ至るように形成されている。 The first end turn edge region 111 is bent to one side in the axial direction of the coil spring 1B compared to the first end turn transition region 112, and the first seat surface 11 is It is formed so as to extend from the first end turn edge region 111 to the first end turn transition region 112 across the boundary between the first end turn transition region 112.
斯かる構成の前記変形例1Bによれば、前記第1座面11の研磨量を十分に確保して前記第1座面11の平坦性を担保しつつ、前記第1座巻き部10を厚くすることができ、圧縮動作時の横力発生をさらに減少させることができる。 According to the modified example 1B of such a configuration, the first seat winding portion 10 is thickened while securing the polishing amount of the first seating surface 11 sufficiently and ensuring the flatness of the first seating surface 11. Therefore, the generation of the lateral force during the compression operation can be further reduced.
当然ながら、前記第2座巻き部20にも同様の構成を適用することができる。
即ち、前記第2座巻き部20が、前記ばね線材100のうち長手方向他方側の第2端部120から前記第2基準点52を形成する部分まで延びる第2座巻き部エッジ領域(図示せず)と、前記第2座巻き部エッジ領域から前記中央巻き部30まで延びる第2座巻き部移行領域(図示せず)とを含むものとし、前記第2座巻き部エッジ領域を、前記第2座巻き部移行領域に比して、前記コイルばね1の軸線方向他方側へ折り曲げ、前記第2座面21を、前記第2座巻き部エッジ領域から前記第2座巻き部移行領域との境界を跨いで前記第2座巻き部移行領域へ至るように形成することができる。
Naturally, the same configuration can be applied to the second end winding portion 20.
That is, the second end turn portion 20 extends from the second end 120 on the other side in the longitudinal direction of the spring wire 100 to a portion forming the second reference point 52 (shown in the figure). And a second end turn transition region (not shown) extending from the second end turn edge region to the central turn 30. The second end turn edge region is defined by the second end turn edge region. The coil spring 1 is bent to the other side in the axial direction as compared with the end turn transition region, and the second seat surface 21 is moved from the second end turn edge region to the second end turn transition region. Can be formed so as to reach the second end winding transition region.
1A、1B コイルばね
10 第1座巻き部
11 第1座面
20 第2座巻き部
21 第2座面
30 中央巻き部
51 第1基準点
52 第2基準点
111 第1座巻き部エッジ領域
112 第1座巻き部移行領域
1A, 1B Coil spring 10 First end turn portion 11 First seat surface 20 Second end turn portion 21 Second seat surface 30 Central turn portion 51 First reference point 52 Second reference point 111 First turn end portion edge region 112 First end winding transition area
Claims (2)
前記第1座巻き部は、軸線方向一方側の第1端部から、軸線方向一方側において自然長状態での線間隙間がゼロとされた第1基準点を形成する部分まで延びる第1座巻き部エッジ領域と、前記第1座巻き部エッジ領域から前記中央巻き部まで延びる第1座巻き部移行領域とを含み、
前記第1座巻き部エッジ領域は、前記第1座巻き部移行領域に比して、前記コイルばねの軸線方向一方側へ折り曲げられており、
前記第1座面は、前記第1座巻き部エッジ領域及び前記第1座巻き部移行領域に跨がって形成されていることを特徴とするコイルばね。 A first end turn portion provided on one side in the axial direction and having a first seat surface facing one side in the axial direction is formed, and a second seat surface provided on the other side in the axial direction and facing the other side in the axial direction is formed. A coil spring having a second end turn portion and a center turn portion between the first and second end turn portions,
The first end winding portion extends from a first end portion on one side in the axial direction to a portion forming a first reference point where a line gap in a natural length state is zero on one side in the axial direction. A winding edge region and a first winding transition region extending from the first end winding edge region to the central winding,
The first end turn edge region is bent toward one axial side of the coil spring as compared to the first end turn transition region,
A coil spring, wherein the first bearing surface is formed so as to straddle the first end turn edge region and the first end turn transition region.
前記第2座巻き部エッジ領域は、前記第2座巻き部移行領域に比して、前記コイルばねの軸線方向他方側へ折り曲げられており、
前記第2座面は、前記第2座巻き部エッジ領域及び前記第2座巻き部移行領域に跨がって形成されていることを特徴とする請求項1に記載のコイルばね。 The second end winding portion extends from the second end portion on the other side in the axial direction to a portion forming a second reference point where the line gap in the natural length state is zero on the other side in the axial direction. A winding edge region, a second winding transition region extending from the second winding edge region to the central winding,
The second end turn edge region is bent toward the other axial side of the coil spring as compared to the second end turn transition region,
The coil spring according to claim 1, wherein the second bearing surface is formed so as to straddle the second end winding portion edge region and the second end winding portion transition region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018046198A JP6637093B2 (en) | 2018-03-14 | 2018-03-14 | Coil spring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018046198A JP6637093B2 (en) | 2018-03-14 | 2018-03-14 | Coil spring |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016080015A Division JP6367256B2 (en) | 2016-04-13 | 2016-04-13 | Coil spring |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018100777A JP2018100777A (en) | 2018-06-28 |
JP6637093B2 true JP6637093B2 (en) | 2020-01-29 |
Family
ID=62715148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018046198A Active JP6637093B2 (en) | 2018-03-14 | 2018-03-14 | Coil spring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6637093B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2260606A (en) * | 1938-08-19 | 1941-10-28 | Eaton Mfg Co | Coiled spring |
JPH01131040U (en) * | 1988-03-03 | 1989-09-06 | ||
JP3936427B2 (en) * | 1997-04-08 | 2007-06-27 | Nskワーナー株式会社 | Compression coil spring |
JP2016008678A (en) * | 2014-06-25 | 2016-01-18 | アイシン・エィ・ダブリュ株式会社 | Coil spring and hydraulic control equipment using coil spring |
-
2018
- 2018-03-14 JP JP2018046198A patent/JP6637093B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018100777A (en) | 2018-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6367257B2 (en) | Coil spring | |
KR101880518B1 (en) | Silicon wafer manufacturing method | |
JP7182377B2 (en) | coil spring | |
JP6637093B2 (en) | Coil spring | |
JP6367256B2 (en) | Coil spring | |
JP5100377B2 (en) | Coil spring | |
CN105378312A (en) | Outer ring and roller bearing having such an outer ring | |
KR20230110644A (en) | coil spring | |
DE202010006231U1 (en) | Flexible conduit element | |
US11898635B2 (en) | Tensioner | |
KR102427471B1 (en) | Winding Rolling Element Tension Device | |
GB2182414A (en) | A helically coiled compression spring | |
JP2015135135A (en) | Electromagnetic proportional valve | |
US20140360453A1 (en) | Valve guide insert with frictional pre-broach retention feature | |
JP2021085511A (en) | Bearing device | |
CN110285174A (en) | A kind of aero-engine metal shock reducing pad and preparation method | |
KR20140129437A (en) | Spring of oil pump for vehicle | |
JP2007010096A (en) | Combined ring and its spacer expander, and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6637093 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |