JP6636769B2 - Rotor centering method for reluctance resolver - Google Patents

Rotor centering method for reluctance resolver Download PDF

Info

Publication number
JP6636769B2
JP6636769B2 JP2015213445A JP2015213445A JP6636769B2 JP 6636769 B2 JP6636769 B2 JP 6636769B2 JP 2015213445 A JP2015213445 A JP 2015213445A JP 2015213445 A JP2015213445 A JP 2015213445A JP 6636769 B2 JP6636769 B2 JP 6636769B2
Authority
JP
Japan
Prior art keywords
rotor
winding
teeth
centering
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015213445A
Other languages
Japanese (ja)
Other versions
JP2017083357A (en
Inventor
林 康一
康一 林
柴田 伸二
伸二 柴田
勇介 堤
勇介 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2015213445A priority Critical patent/JP6636769B2/en
Publication of JP2017083357A publication Critical patent/JP2017083357A/en
Application granted granted Critical
Publication of JP6636769B2 publication Critical patent/JP6636769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、リラクタンス型レゾルバに対し、ロータの磁気的な中心と回転中心を一致させる芯出し方法に関する。   The present invention relates to a method for centering a reluctance resolver so that the magnetic center of the rotor and the center of rotation are aligned.

リラクタンスレゾルバは、励磁巻線に交流信号が入力されると、測定対象の位置の変化に対応して周期的に振幅が変調された、互いに位相が90°異なる2相の信号を検出巻線から出力する。この2相の出力信号は、磁性体から成るロータ外周部の凹凸によって振幅変調される。   When an AC signal is input to the excitation winding, the reluctance resolver detects from the detection winding two-phase signals whose phases are 90 ° different from each other and whose amplitude is periodically modulated in accordance with a change in the position of the measurement target. Output. The amplitude of the two-phase output signal is modulated by the unevenness of the outer periphery of the rotor made of a magnetic material.

ロータ外周部の凹凸形状の磁気的な中心と回転軸の中心が一致していないと、2相の出力信号にオフセット誤差が発生し、正確な位置検出ができない。このオフセット誤差を低減するため、ロータと回転軸間の芯出しを行う必要がある。   If the magnetic center of the concavo-convex shape on the outer periphery of the rotor does not coincide with the center of the rotation axis, an offset error occurs in the two-phase output signal, and accurate position detection cannot be performed. In order to reduce this offset error, it is necessary to perform centering between the rotor and the rotating shaft.

ロータ外周部の凹凸形状の誤差により、歯ごとの磁束の通りやすさに差が生じるため、ロータの機械的な中心位置と磁気的な中心位置は必ずしも一致しない。ここで、機械的な中心位置はロータ形状から求めた座標としての中心位置であり、磁気的な中心位置は検出信号のオフセット誤差が最小となるときのロータの回転中心位置である。   A difference occurs in the ease of passing the magnetic flux for each tooth due to an error in the uneven shape of the outer peripheral portion of the rotor, so that the mechanical center position and the magnetic center position of the rotor do not always match. Here, the mechanical center position is the center position as coordinates obtained from the rotor shape, and the magnetic center position is the rotation center position of the rotor when the offset error of the detection signal is minimized.

そのため、ロータと回転軸の中心を機械的に芯出しすると、磁気的な中心位置と合わないことがある。また、回転軸の回転中心と回転軸の形状中心は、軸受精度バラツキ等により、一致しない問題もある。そのため、ロータの磁気的な中心と回転軸の回転中心を一致させる芯出し方法が望まれていた。   Therefore, if the center of the rotor and the center of the rotating shaft are mechanically centered, the center may not be aligned with the magnetic center. Further, there is also a problem that the center of rotation of the rotating shaft and the center of shape of the rotating shaft do not coincide due to variations in bearing accuracy or the like. Therefore, a centering method that matches the magnetic center of the rotor with the rotation center of the rotating shaft has been desired.

本発明の芯出し方法は、リラクタンスレゾルバのロータ芯出しにおいて、リラクタンスレゾルバのステータコアの設置位置に、内周部に複数の歯を備えるとともに磁性体から成るロータ変位検出用コアを設置し、前記ロータ変位検出用コアの歯に、前記ロータとの距離に比例した信号を出力する検出巻線を1以上を巻回し、前記ロータを回転させた際に、前記検出巻線から得られる出力信号に基づき、前記回転中心に対する前記ロータの位置を変更する、ことを特徴とする。   In the centering method of the present invention, in the centering of the rotor of the reluctance resolver, a rotor displacement detection core including a plurality of teeth on an inner peripheral portion and made of a magnetic material is installed at an installation position of a stator core of the reluctance resolver, On the teeth of the displacement detection core, one or more detection windings that output a signal proportional to the distance to the rotor are wound, and when the rotor is rotated, based on an output signal obtained from the detection winding. And changing the position of the rotor with respect to the rotation center.

本発明の方法によれば、リラクタンスレゾルバのロータの磁気的な中心と回転中心を一致させる芯出しができる。   ADVANTAGE OF THE INVENTION According to the method of this invention, centering which matches the magnetic center of a rotor of a reluctance resolver and a rotation center can be performed.

本発明における、ロータとロータ変位検出用コアを説明する図である。FIG. 3 is a diagram illustrating a rotor and a rotor displacement detection core according to the present invention. 本発明における、芯出し時の接続と出力信号を説明する図である。FIG. 4 is a diagram illustrating connection and output signals at the time of centering according to the present invention. 本発明における、4つの巻線を用いた芯出し方法を説明する図である。It is a figure explaining the centering method using four windings in the present invention.

図1にレゾルバのロータ1とロータ変位検出用コア2の構造を示す。ロータ1は磁性体から成り、外周部に35個の凹凸形状を持つ。ロータ変位検出用コア2は、ロータ1の芯出しの際に用いられるコアであり、本実施形態では、レゾルバのステータコアをロータ変位検出用コア2として使用している。ロータ変位検出用コア2は、レゾルバステータコアが設置される位置に仮固定されている。ロータ変位検出用コア2は磁性体から成り、内周部に20個の歯を等間隔に配置している。ロータ変位検出用コア2の歯には4つの巻線3,4,5,6が巻装されている。巻線3は、歯101、歯102、歯119、歯120に巻回されている。巻線4は、歯104、歯105、歯106、歯107に巻回されている。巻線5は、歯109、歯110、歯111、歯112に巻回されている。巻線6は、歯114、歯115、歯116、歯117に巻回されている。歯102、歯105、歯107、歯110、歯112、歯115、歯117、歯120は、回転軸中心から径方向に生じる交流磁束に対して同位相の起電圧が発生するように巻線が巻回されており、歯101、歯104、歯106、歯109、歯111、歯114、歯116、歯119は、回転軸中心から径方向に生じる交流磁束に対して逆位相の起電圧が発生するように巻線が巻回されている。図に記載はないが、励磁巻線は検出巻線と同様、隣り合う歯が回転軸中心から径方向に生じる交流磁束に対して逆位相となるように巻回している。このように巻線を巻回することにより、4つの巻線3,4,5,6からは、それぞれ隣接する4つの歯を通る磁束の平均に比例した起電圧が発生する。これにより、ロータ1の外周部の凹凸の影響がキャンセルされ、4つの巻線3,4,5,6には、ロータ1と各巻線の距離に比例した起電圧が発生する。   FIG. 1 shows the structure of a rotor 1 and a rotor displacement detecting core 2 of a resolver. The rotor 1 is made of a magnetic material and has 35 irregularities on the outer periphery. The rotor displacement detection core 2 is a core used for centering the rotor 1, and in the present embodiment, the stator core of the resolver is used as the rotor displacement detection core 2. The rotor displacement detection core 2 is temporarily fixed at a position where the resolver stator core is installed. The rotor displacement detecting core 2 is made of a magnetic material, and has 20 teeth arranged at equal intervals on the inner peripheral portion. Four windings 3, 4, 5, 6 are wound around the teeth of the rotor displacement detecting core 2. The winding 3 is wound around the teeth 101, 102, 119 and 120. The winding 4 is wound around the teeth 104, 105, 106 and 107. The winding 5 is wound around the teeth 109, 110, 111 and 112. The winding 6 is wound around the teeth 114, 115, 116 and 117. The teeth 102, 105, 107, 110, 112, 115, 117, and 120 are wound so that an in-phase electromotive force is generated with respect to an alternating magnetic flux generated radially from the center of the rotation axis. Are wound, and the teeth 101, 104, 106, 109, 111, 114, 116, and 119 have an electromotive force having an opposite phase to an alternating magnetic flux generated in a radial direction from the center of the rotation axis. The winding is wound so as to generate the following. Although not shown in the figure, the excitation winding is wound so that adjacent teeth have a phase opposite to that of the AC magnetic flux generated in the radial direction from the center of the rotation shaft, similarly to the detection winding. By winding the windings in this manner, the four windings 3, 4, 5, and 6 generate an electromotive voltage proportional to the average of the magnetic flux passing through four adjacent teeth. As a result, the influence of the irregularities on the outer peripheral portion of the rotor 1 is canceled, and an electromotive voltage is generated in the four windings 3, 4, 5, 6 in proportion to the distance between the rotor 1 and each winding.

次に、ロータ1の芯出し方法を説明する。まず、一つの巻線のみ、例えば、巻線3のみを用いた芯出し方法を説明する。図2に芯出し時の接続と出力信号のイメージ図を示す。処理回路基板50によって生成された励磁信号は巻線3に入力され、ロータ1と巻線3の相対位置に応じて変調された信号が出力される。回転軸中心7とロータ1の磁気的中心8が一致していないと、出力信号は図2左下のような正弦波となる。この正弦波の最大値と最小値を確認し、最大値をとる角度へロータ1を回転させる。その後、信号が最大値と最小値の中間の値となるように、信号が小さくなる方向、すなわち巻線3から離れる方向へロータを移動させる。すると、ロータ1は図2右上のような配置となり、ロータ1を回転させたときの出力信号は図2右下のように振幅が小さくなる。この出力信号の振幅が許容値以下となるまで上記作業を繰り返す。振幅が許容値以下の場合、回転軸中心7とロータ1の磁気的中心8はほぼ一致していると判断し、芯出しを終了する。その後、ロータを接着固定する。なお、本実施形態では、ロータ1を検出信号が最大値をとる角度まで回転させてから移動させているが、検出信号が最小値をとる角度まで回転させてから移動させてもよい。この場合、ロータ1は巻線3に近づく方向に移動させればよい。   Next, a method of centering the rotor 1 will be described. First, a centering method using only one winding, for example, only the winding 3 will be described. FIG. 2 shows an image diagram of connections and output signals at the time of centering. The excitation signal generated by the processing circuit board 50 is input to the winding 3, and a signal modulated according to the relative position between the rotor 1 and the winding 3 is output. If the center 7 of the rotating shaft does not coincide with the magnetic center 8 of the rotor 1, the output signal becomes a sine wave as shown in the lower left of FIG. The maximum value and the minimum value of the sine wave are confirmed, and the rotor 1 is rotated to an angle at which the maximum value is obtained. Thereafter, the rotor is moved in a direction in which the signal decreases, that is, in a direction away from the winding 3 so that the signal has an intermediate value between the maximum value and the minimum value. Then, the rotor 1 is arranged as shown in the upper right of FIG. 2, and the amplitude of the output signal when the rotor 1 is rotated becomes smaller as shown in the lower right of FIG. The above operation is repeated until the amplitude of the output signal becomes equal to or smaller than the allowable value. If the amplitude is equal to or less than the allowable value, it is determined that the center 7 of the rotating shaft and the magnetic center 8 of the rotor 1 are almost the same, and the centering is terminated. Thereafter, the rotor is fixedly bonded. In the present embodiment, the rotor 1 is moved after being rotated to the angle at which the detection signal takes the maximum value, but may be moved after being rotated to the angle at which the detection signal takes the minimum value. In this case, the rotor 1 may be moved in a direction approaching the winding 3.

次に、複数の巻線を用いた場合の芯出し方法を説明する。巻線3と巻線5のように回転軸に対向して巻線を配置し、逆位相となるように接続すると、1方向に対する線形性が向上するため、精度の高い1方向の芯出しができる。このときの芯出し方法や接続は、巻線3のみを用いた芯出し方法と同様である。   Next, a centering method using a plurality of windings will be described. When the windings are arranged opposite to the rotating shaft like the windings 3 and 5 and connected so that the phases are opposite to each other, the linearity in one direction is improved. it can. The centering method and connection at this time are the same as the centering method using only the winding 3.

また、巻線3、巻線4、巻線5、巻線6のように、各巻線を回転中心に対して90°の位置に配置すると、直交する2方向の変位に対しての信号変化が検知できる。これを利用して、芯出しを行ってもよい。例えば、巻線3と巻線5とを逆位相となるように接続するとともに、巻線4と巻線6とを逆位相となるように接続し、各巻線を処理回路基板50に接続する。そして、その状態で、回転軸中心7を中心にしてロータ1を回転させる。このとき得られた巻線3,5の出力値を縦軸、巻線4,6の出力値を横軸に取ると、図3右側に示すようなリサージュ円が得られる。ロータ1の磁気的中心8が、回転軸中心7に近づくほど、このリサージュ円の径は、小さくなる。ここで、このリサージュ円の中心座標を(xc,yc)とすると、回転軸中心7とロータ1の磁気的中心8が一致したとき、巻線3,5の出力値は、xc、巻線4,6の出力値は、ycとなり、リサージュ円は、点となる。そこで、芯出しを行う際には、リサージュ円の中心の座標(xc,yc)を取得し、巻線3,5の出力値がxcに、巻線4,6の出力値がycに、近づくように、ロータ1を移動させればよい。例えば、リサージュ円の中心座標(xc,yc)が得られれば、巻線3,5の出力値がxcをとる角度へロータ1を回転させる。そして、その状態で、巻線4,6の出力値がycに近づく方向にロータ1を移動させる。この移動量のおおよその値は、リサージュ円の半径から算出することができる。そして、再度、ロータ1を回転させて、リサージュ円を取得する。そして、最終的に、リサージュ円の径が、許容値以下となるまで、上記の手順を繰り返す。なお、上記の説明は、巻線3と5、および、巻線4と6は、接続されているが、これらは、接続されなくてもよい。すなわち、巻線3と巻線5は接続されず、巻線4と巻線6は接続されず、巻線3(または巻線5)の出力値と巻線4(または巻線6)の出力値とに基づいて、芯出しを行ってもよい。   Further, when each winding is arranged at a position of 90 ° with respect to the rotation center like the winding 3, the winding 4, the winding 5, and the winding 6, a signal change with respect to displacement in two orthogonal directions is obtained. Can be detected. This may be used to perform centering. For example, the winding 3 and the winding 5 are connected to be in opposite phases, the winding 4 and the winding 6 are connected to be in opposite phases, and each winding is connected to the processing circuit board 50. Then, in this state, the rotor 1 is rotated about the rotation shaft center 7. When the output values of the windings 3 and 5 obtained at this time are plotted on the vertical axis and the output values of the windings 4 and 6 are plotted on the horizontal axis, a Lissajous circle as shown on the right side of FIG. 3 is obtained. As the magnetic center 8 of the rotor 1 approaches the rotation axis center 7, the diameter of the Lissajous circle becomes smaller. Here, assuming that the center coordinates of this Lissajous circle are (xc, yc), when the center 7 of the rotating shaft coincides with the magnetic center 8 of the rotor 1, the output values of the windings 3 and 5 are xc and winding 4 , 6 becomes yc, and the Lissajous circle becomes a point. Therefore, when performing centering, the coordinates (xc, yc) of the center of the Lissajous circle are acquired, and the output values of the windings 3 and 5 approach xc and the output values of the windings 4 and 6 approach yc. Thus, the rotor 1 may be moved. For example, if the center coordinates (xc, yc) of the Lissajous circle are obtained, the rotor 1 is rotated to an angle at which the output values of the windings 3 and 5 take xc. Then, in that state, the rotor 1 is moved in a direction in which the output values of the windings 4 and 6 approach yc. The approximate value of the movement amount can be calculated from the radius of the Lissajous circle. Then, the rotor 1 is rotated again to acquire a Lissajous circle. Then, the above procedure is repeated until the diameter of the Lissajous circle becomes equal to or smaller than the allowable value. In the above description, the windings 3 and 5 and the windings 4 and 6 are connected, but they need not be connected. That is, winding 3 and winding 5 are not connected, winding 4 and winding 6 are not connected, and the output value of winding 3 (or winding 5) and the output value of winding 4 (or winding 6) Centering may be performed based on the value.

なお、図1のロータ変位検出用コアは、レゾルバのステータコアを流用している。そのため、直交する4方向に対して45°方向が異なる歯103,108,113,118には、巻線が巻装されていない。このように、本発明のリラクタンスレゾルバのロータ芯出し方法では、ロータ変位検出用コアとしてレゾルバのステータコアを流用することが可能である。そのため、ロータ変位検出用のセンサを低コストに製作することができる。   Note that the rotor displacement detection core in FIG. 1 uses the stator core of the resolver. For this reason, no winding is wound around the teeth 103, 108, 113, and 118 whose directions differ by 45 ° from the four orthogonal directions. Thus, in the method for centering the rotor of the reluctance resolver of the present invention, it is possible to use the stator core of the resolver as the rotor displacement detecting core. Therefore, the sensor for detecting the rotor displacement can be manufactured at low cost.

1 ロータ、2 ロータ変位検出用コア、3〜6 巻線、7 回転軸中心、8 磁気的中心、50 処理回路基板、101〜120 歯。   Reference Signs List 1 rotor, 2 rotor displacement detection core, 3 to 6 windings, 7 rotation axis center, 8 magnetic center, 50 processing circuit board, 101 to 120 teeth.

Claims (2)

リラクタンスレゾルバのロータ芯出し方法であって、
リラクタンスレゾルバのステータコアの設置位置に、内周部に複数の歯を備えるとともに磁性体から成るロータ変位検出用コアを設置し、
前記ロータ変位検出用コアの歯に、前記ロータとの距離に比例した信号を出力する検出巻線を1以上巻回し、
前記ロータを回転させた際に前記検出巻線から得られる出力信号が最大値または最小値をとる角度に前記ロータを回転させたうえで、前記出力信号が前記最大値と前記最小値との中間の値となるように、前記ロータを直線移動させる工程を、前記信号の振幅が、予め規定された許容値以下となるまで繰り返す、
ことを特徴とするリラクタンスレゾルバのロータ芯出し方法。
A method for centering a rotor of a reluctance resolver,
At the installation position of the stator core of the reluctance resolver, a plurality of teeth are provided on an inner peripheral portion and a rotor displacement detection core made of a magnetic material is installed,
Wherein the teeth of the rotor displacement detecting core, turning 1 following the first volume of the detection winding which outputs a signal proportional to the distance between said rotor,
After rotating the rotor at an angle at which an output signal obtained from the detection winding takes a maximum value or a minimum value when the rotor is rotated, the output signal is an intermediate value between the maximum value and the minimum value. The step of linearly moving the rotor is repeated until the amplitude of the signal becomes equal to or less than a predetermined allowable value,
A method for centering a rotor of a reluctance resolver.
リラクタンスレゾルバのロータ芯出し方法であって、
リラクタンスレゾルバのステータコアの設置位置に、内周部に複数の歯を備えるとともに磁性体から成るロータ変位検出用コアを設置し、
前記ロータ変位検出用コアの歯に、前記ロータとの距離に比例した信号を出力する検出巻線を1以上巻回し、
前記1以上の検出巻線は、前記歯に巻かれたx方向検出巻線と、前記x方向検出巻線に対して90度異なる方向の歯に巻かれたy方向検出巻線と、を含み、
前記二つの検出巻線のうち、前記x方向検出巻線の出力信号を縦軸に、前記y方向検出巻線の出力信号を横軸にとった際に得られるリサージュ円の中心および半径を算出し、前記x方向検出巻線の出力信号が、前記中心のx座標値と等しくなる角度まで前記ロータを回転させたうえで、前記ロータを、y方向に前記半径分だけ直線移動させる工程を、前記半径が許容値以下となるまで、繰り返す、
ことを特徴とするリラクタンスレゾルバのロータ芯出し方法。
A method for centering a rotor of a reluctance resolver,
At the installation position of the stator core of the reluctance resolver, a plurality of teeth are provided on an inner peripheral portion and a rotor displacement detection core made of a magnetic material is installed,
One or more detection windings that output a signal proportional to the distance from the rotor are wound around teeth of the rotor displacement detection core,
The one or more detection windings include: an x-direction detection winding wound around the teeth; and a y-direction detection winding wound around teeth having a direction different from the x-direction detection winding by 90 degrees. ,
Calculating the center and radius of a Lissajous circle obtained when the output signal of the x-direction detection winding is taken on the vertical axis and the output signal of the y-direction detection winding is taken on the horizontal axis, of the two detection windings Then, after the output signal of the x-direction detection winding, the rotor is rotated to an angle equal to the center x-coordinate value, and then the rotor is linearly moved in the y-direction by the radius. until said radius is equal to or less than the allowable value, repeating,
A method for centering a rotor of a reluctance resolver.
JP2015213445A 2015-10-29 2015-10-29 Rotor centering method for reluctance resolver Active JP6636769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015213445A JP6636769B2 (en) 2015-10-29 2015-10-29 Rotor centering method for reluctance resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213445A JP6636769B2 (en) 2015-10-29 2015-10-29 Rotor centering method for reluctance resolver

Publications (2)

Publication Number Publication Date
JP2017083357A JP2017083357A (en) 2017-05-18
JP6636769B2 true JP6636769B2 (en) 2020-01-29

Family

ID=58710832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213445A Active JP6636769B2 (en) 2015-10-29 2015-10-29 Rotor centering method for reluctance resolver

Country Status (1)

Country Link
JP (1) JP6636769B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7118028B2 (en) * 2019-04-26 2022-08-15 オークマ株式会社 Resolver stator centering method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235717Y2 (en) * 1972-10-31 1977-08-15
JPS5788317A (en) * 1980-11-25 1982-06-02 S G:Kk Rotation angle detecting device
JPH01112110A (en) * 1987-10-26 1989-04-28 Sony Corp Optical rotary encoder
JPH04136714A (en) * 1990-09-28 1992-05-11 Okuma Mach Works Ltd Encoder
JP3309025B2 (en) * 1994-11-30 2002-07-29 オークマ株式会社 Reluctance type resolver
JP3693280B2 (en) * 1999-08-16 2005-09-07 オークマ株式会社 Resolver assembly equipment
JP2003004484A (en) * 2001-06-19 2003-01-08 Sankyo Seiki Mfg Co Ltd Rotation sensor
JP2003057260A (en) * 2001-08-10 2003-02-26 Toyota Motor Corp Rotational speed detector
JP4223324B2 (en) * 2003-05-23 2009-02-12 三菱電機株式会社 Optical encoder
JP2005295639A (en) * 2004-03-31 2005-10-20 Nissan Motor Co Ltd Method and device for fixing resolver
JP2008224301A (en) * 2007-03-09 2008-09-25 Hiroshima Industrial Promotion Organization Rotator displacement measuring apparatus
JP2012078238A (en) * 2010-10-04 2012-04-19 Okuma Corp Reluctance type resolver
JP2014163801A (en) * 2013-02-25 2014-09-08 Canon Inc Eccentricity detector, and eccentricity detection method
JP6132785B2 (en) * 2014-02-24 2017-05-24 三菱電機株式会社 Eccentricity adjustment device

Also Published As

Publication number Publication date
JP2017083357A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6549676B2 (en) Measurement of absolute angular position
US10281299B2 (en) Angle sensor, a bearing unit, electrical motor, a control system and error-check system
KR102477526B1 (en) Magnet ring with jitter pole
JP6389001B2 (en) Sensor device for detecting a rotation angle of a rotating component member in a non-contact manner
CN107179095B (en) The angle correction method of rotary encoder and rotary encoder
CN110546463B (en) Method for determining the angular position of a rotating component
US9989381B2 (en) Angle sensor with magnetic patterns
WO2013153653A1 (en) Resolver device, motor control device, and motor control method
US20190368902A1 (en) Encoder wheel assembly and method for ascertaining an absolute angular position and a rotational direction
JP2017151032A (en) Signal processor and control device
JP6636769B2 (en) Rotor centering method for reluctance resolver
US20180356254A1 (en) Sensor arrangement comprising an angle sensor and rolling bearing arrangement comprising sensor arrangement
US20170350731A1 (en) Electrostatic encoder
JP2018132357A (en) Rotary encoder
KR101655297B1 (en) Apparatus for correcting position of linear hole sensor and control method of thereof
US11923728B2 (en) Method of determining runout
KR101430186B1 (en) Method for detecting phase of resolver and apparatus thereof
JP6568452B2 (en) Rotor centering method for reluctance resolver
JP2008275461A (en) Signal processing device of rotation angle detector
JP2016008929A (en) Revolution speed sensor
JP6525846B2 (en) Resolver
JP2018112450A (en) Rotational angle detection device
JP2010014410A (en) Rotational position detecting apparatus of rotator
JP2024054797A (en) Rotation angle detection device, rotation angle detection method, and rotation angle detection program
JP2012237619A (en) Rotational angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191219

R150 Certificate of patent or registration of utility model

Ref document number: 6636769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150