JP6636588B2 - Magnetic dynamic braking assembly - Google Patents
Magnetic dynamic braking assembly Download PDFInfo
- Publication number
- JP6636588B2 JP6636588B2 JP2018168604A JP2018168604A JP6636588B2 JP 6636588 B2 JP6636588 B2 JP 6636588B2 JP 2018168604 A JP2018168604 A JP 2018168604A JP 2018168604 A JP2018168604 A JP 2018168604A JP 6636588 B2 JP6636588 B2 JP 6636588B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- diaphragm
- dynamic braking
- braking assembly
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 164
- 230000006698 induction Effects 0.000 claims description 35
- 238000013016 damping Methods 0.000 claims description 23
- 239000012530 fluid Substances 0.000 claims description 12
- 238000005192 partition Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 3
- 239000011553 magnetic fluid Substances 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims description 2
- 239000013013 elastic material Substances 0.000 claims 2
- 238000002955 isolation Methods 0.000 description 6
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/06—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
- F16F13/08—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
- F16F13/10—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
- F16F13/105—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/53—Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
- F16F9/535—Magnetorheological [MR] fluid dampers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/26—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
- F16F13/266—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for acting dynamically on the walls bounding a passage between working and equilibration chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K5/00—Arrangement or mounting of internal-combustion or jet-propulsion units
- B60K5/12—Arrangement of engine supports
- B60K5/1283—Adjustable supports, e.g. the mounting or the characteristics being adjustable
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/06—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
- F16F13/08—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
- F16F13/10—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/26—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
- F16F13/264—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for acting dynamically on the walls bounding a working chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/26—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
- F16F13/30—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids
- F16F13/305—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids magnetorheological
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2222/00—Special physical effects, e.g. nature of damping effects
- F16F2222/06—Magnetic or electromagnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2224/00—Materials; Material properties
- F16F2224/04—Fluids
- F16F2224/045—Fluids magnetorheological
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Combined Devices Of Dampers And Springs (AREA)
- Vibration Prevention Devices (AREA)
Description
本発明は、概してダンパに関する。具体的には、本発明は、振動力を絶縁するのに有用な磁気動的減衰のためのアセンブリに関する。 The present invention relates generally to dampers. In particular, the present invention relates to an assembly for magnetic dynamic damping useful for isolating vibrational forces.
従来の減衰アセンブリは、振動力を絶縁するために使用され、数々の振動負荷を受ける自動車に特に有用である。減衰アセンブリは、でこぼこ道の走行等の環境的な振動およびエンジンのアイドリング等の内部振動の両方を絶縁するため、自動車のエンジンとシャーシとの間でしばしば利用される。これらのアセンブリは、上昇した圧力下にあるときにリバウンドを与えるチャンバを含む。多くの減衰アセンブリは、チャンバをサブチャンバに不透過的に分割する弾性のダイアフラムを有するデカップラを含む仕切りを備える。サブチャンバのうちの一つが上昇した圧力を受ける場合、ダイアフラムは、その他のサブチャンバ内へと屈曲し、振動力を受動的に減退させる。その際、ダイアフラムは、二番目の種類の振動である、エンジンのアイドリングを絶縁するのに特に有用である。現代の傾向は、受動的な減衰が不要な状況に対し、デカップラを作動状態と非作動状態との間で切り替えるための素子を組み込むことである。一つの例が、Funahashiらの米国特許第5、246、212号に説明されており、ここでダンパは自動車において利用され、振動を受動的に減衰させることができないように、ダイヤフラムを引っ張る分割チャンバの一方の側を曲がった状態になるまで減圧するための真空源を含む。米国特許第9、022、368号に説明されている別の例は、ダイアフラムを隆起した状態と柔軟な状態とで切り替える強磁性ダイアフラムを通して電気を加えることに関する。しかしながら、これらの従来の減衰ユニットの一般的な欠点は、デカップラの減衰力要求を、単に作動状態以上と非作動状態との間でしか調整できないことである。特に、減衰は必要であるが、振動の振幅および周波数の変化の結果、その程度がより小さい又はより大きい状況では、従来技術は満足のいくような動的なデカップラを提供することができなかった。 Conventional damping assemblies are used to isolate vibratory forces and are particularly useful in motor vehicles that are subject to numerous vibration loads. Damping assemblies are often used between the engine and the chassis of an automobile to isolate both environmental vibrations, such as running on bumpy roads, and internal vibrations, such as idling the engine. These assemblies include a chamber that provides rebound when under elevated pressure. Many damping assemblies include a partition that includes a decoupler having an elastic diaphragm that opaquely divides the chamber into sub-chambers. If one of the sub-chambers experiences an elevated pressure, the diaphragm will flex into the other sub-chamber and passively diminish the oscillating force. The diaphragm is then particularly useful for isolating the second type of vibration, engine idling. The current trend is to incorporate elements to switch the decoupler between active and inactive states for situations where passive damping is not required. One example is described in U.S. Pat. No. 5,246,212 to Funahashi et al., Where a damper is utilized in an automobile and a split chamber that pulls a diaphragm so that vibration cannot be passively damped. A vacuum source for reducing pressure until one side of the is bent. Another example described in U.S. Patent No. 9,022,368 relates to applying electricity through a ferromagnetic diaphragm that switches the diaphragm between a raised state and a flexible state. However, a general disadvantage of these conventional damping units is that the damping force requirements of the decoupler can only be adjusted between more than the active state and the inactive state. In particular, in situations where damping is required but the amplitude and frequency of the vibrations are changing to a lesser or greater degree, the prior art has failed to provide a satisfactory dynamic decoupler. .
本発明は、振動力の絶縁に有用な磁気動的制動アセンブリを提供する。アセンブリは、その中に配置された固定磁気源を有する、主チャンバの境界を成すハウジング壁を含む。弾性材料製のダイアフラムは、主チャンバをサブチャンバに不透過的に分割するアセンブリ内に配置される。ダイアフラムは、固定磁気源の近傍に少なくとも一つの磁気作動素子を含む。電流の供給源は、磁気作動素子、固定磁気源、もしくは双方に通電し、磁気作動素子を固定磁気源に対して引き離す又は引き寄せる。磁気ガイドは、固定磁気源を取り囲み、固定磁気源を磁気作動素子に暴露する間隙を形成する。磁気ガイドは、間隙に向かって磁場のルートを定め、アセンブリの他の部分への外向きの電磁干渉を防ぐ。仕切りは、固定磁気源を取り囲み、固定磁気源を磁気作動素子に暴露する間隙を形成し、間隙に向かって磁場をガイドする磁気ガイドを含む。少なくとも一つの磁気作動素子は、ダイアフラムから軸方向に延びて、間隙に向かって延びる表面リブを形成し、表面リブは、通電状態において間隙に入るような輪郭を有する。ダイアフラムは、その内部に配置され、半径方向および軸方向の支持を与えるため少なくとも一つの磁気作動素子の上方に離間して配置され、表面リブと間隙とを整列させる、非磁性インサートをさらに含む。非磁性インサートは、内側に向かって離間した薄肉部および外側に向かって離間した幅広部を有する段付き表面を含み、少なくとも一つの磁気作動素子は、薄肉部上に配置され、幅広部は、少なくとも横方向および軸方向の外側に向かう電磁干渉の一部のルートを、間隙から間隙内へ戻す。 The present invention provides a magnetic dynamic braking assembly useful for isolating vibration forces. The assembly includes a housing wall bounding a main chamber having a fixed magnetic source disposed therein. A diaphragm made of a resilient material is placed in an assembly that divides the main chamber into sub-chambers impermeablely. The diaphragm includes at least one magnetic actuation element near the fixed magnetic source. A source of current energizes the magnetically actuated element, the fixed magnetic source, or both, and pulls or pulls the magnetically actuated element relative to the fixed magnetic source. The magnetic guide surrounds the fixed magnetic source and forms a gap exposing the fixed magnetic source to the magnetic actuation element. The magnetic guide routes the magnetic field toward the gap and prevents outward electromagnetic interference to other parts of the assembly. The partition includes a magnetic guide surrounding the fixed magnetic source, forming a gap exposing the fixed magnetic source to the magnetic actuation element, and guiding a magnetic field toward the gap. The at least one magnetic actuating element extends axially from the diaphragm to form a surface rib extending toward the gap, the surface rib having a contour that enters the gap when energized. The diaphragm further includes a non-magnetic insert disposed therein, spaced apart above the at least one magnetic actuation element to provide radial and axial support, and aligning the surface rib with the gap. The non-magnetic insert includes a stepped surface having an inwardly-spaced thinned portion and an outwardly-spaced widened portion, wherein at least one magnetic actuating element is disposed on the thinned portion, wherein the widened portion has at least Some routes of electromagnetic interference directed laterally and axially outward from the gap back into the gap.
アセンブリは、特定の用途における電磁干渉を防ぎながら、減衰アセンブリ内の同調を増大させる。可変減衰が求められる環境では、振動の振幅もしくは周波数に依存するが、本発明は、ダイアフラムの可変的な可撓性および運動を提供する。ダイアフラムの運動は、ダイアフラムが暴露される磁場の強度に依存する。さらに、磁気粘性流体ダンパ等の、電磁干渉がない方がよい用途では、磁気ガイドが、磁場のルートを直接ダイアフラムに定め、磁気作動流体の磁場への暴露を防ぐ。 The assembly increases tuning within the damping assembly while preventing electromagnetic interference in certain applications. In environments where variable damping is desired, the present invention provides variable flexibility and movement of the diaphragm, depending on the amplitude or frequency of the vibration. The movement of the diaphragm depends on the strength of the magnetic field to which the diaphragm is exposed. Further, in applications where there is no need for electromagnetic interference, such as a magnetorheological fluid damper, the magnetic guide routes the magnetic field directly to the diaphragm, preventing exposure of the magnetic working fluid to the magnetic field.
本発明の他の利点は、添付の図面に関連して考慮される時、以下の詳細な説明を参照することで、よりよく理解され、容易に理解されるであろう。
例示的な実施形態を、添付の図面を参照してより完全に説明する。当実施形態は、磁気動的制動アセンブリを対象とする。しかしながら、例示の実施形態は、この開示を完全たらしめるためのみに提供するものであり、当業者にその範囲を十分に伝えるものである。本開示の実施形態の完全な理解を提供するため、多数の具体的な詳細を要素の例として述べる。図面を参照すると、本発明に従って構築された磁気動的制動アセンブリを、図1および図2に全般的に示す。なお、複数の図を通して、同様の符号は、対応する部品を示す。 Exemplary embodiments are described more fully with reference to the accompanying drawings. This embodiment is directed to a magnetic dynamic braking assembly. However, the exemplary embodiments are provided solely for completeness of the disclosure, and will fully convey the scope to those skilled in the art. In order to provide a thorough understanding of embodiments of the present disclosure, numerous specific details are set forth as example elements. Referring to the drawings, a magnetic dynamic braking assembly constructed in accordance with the present invention is shown generally in FIGS. Note that the same reference numerals indicate corresponding parts throughout the drawings.
磁気動的制動アセンブリは、全般的に図1および2に示す減衰ユニット20を含む。減衰ユニット20は、内部で主チャンバ28の境界を成す、ベース部24と上部26との間で軸A周りに延びている円柱形状のハウジング壁22を有する。障壁30は、ベース部24および上部26との間に離間され、主チャンバ28をベースサブチャンバ32と上部サブチャンバ34との間で分割する。障壁30は、一般的には、ベース部24と上部26との間の中央部を軸Aに垂直に延びる。仕切り36は、主チャンバ28内に配置され、内部保持壁38を含む。内部保持壁38は、軸A周りに半径方向に延び、段によって分割される第一の部分40、第二の部分42、第三の部分44、および第四の部分46を含み、各後続の部分は、段において、先行の部分から半径方向外向きに延びる。第一の部分40は、概ね円柱形状を有する隔離室48を形成する。第二の部分42は、第一の部分40から半径方向外向きに延びて、底部軸受保持空間を形成する。次に、第三の部分44は、第二の部分42から半径方向外向きに延びて、デカップラ保持空間を形成する。次の段において、第四の部分46は、第三の部分44から半径方向外向きに延びて、上部軸受保持空間を形成する。底部軸受リング52は、底部軸受リブ54を含み、第一の部分40と第二の部分42との間の段上に位置し、第二の部分42内に押し込まれる。デカップラ50は、次の段上に位置し、第三の部分44内に押し込まれ、主チャンバ28から隔離室48を不透過的に絶縁する。上部軸受リング56は、上部軸受リブ58を含み、最終段上に位置し、第四の部分46内に押し込まれる。 The magnetic dynamic braking assembly includes a damping unit 20 shown generally in FIGS. The damping unit 20 has a cylindrical housing wall 22 extending around the axis A between a base 24 and an upper part 26, which bounds a main chamber 28 therein. Barrier 30 is spaced between base portion 24 and upper portion 26 and divides main chamber 28 between base sub-chamber 32 and upper sub-chamber 34. The barrier 30 generally extends centrally between the base 24 and the top 26 perpendicular to the axis A. Partition 36 is disposed within main chamber 28 and includes an internal retaining wall 38. The inner retaining wall 38 includes a first portion 40, a second portion 42, a third portion 44, and a fourth portion 46 that extend radially about the axis A and are divided by a step, with each subsequent The portion extends radially outward from the preceding portion at the step. The first portion 40 forms an isolation chamber 48 having a generally cylindrical shape. The second portion 42 extends radially outward from the first portion 40 to form a bottom bearing holding space. Next, the third portion 44 extends radially outward from the second portion 42 to form a decoupler holding space. In the next step, the fourth portion 46 extends radially outward from the third portion 44 to form an upper bearing holding space. The bottom bearing ring 52 includes a bottom bearing rib 54 and is located on a step between the first portion 40 and the second portion 42 and is pressed into the second portion 42. The decoupler 50 is located on the next step and is pushed into the third portion 44 to impermeablely isolate the isolation chamber 48 from the main chamber 28. The upper bearing ring 56 includes an upper bearing rib 58 and is located on the last step and is pressed into the fourth portion 46.
図1〜図4に全般的に示すデカップラ50は、円盤形を有する。デカップラ50は、可撓性のダイアフラム62を画定する環状の外部リング60を含む。外部リング60は、ダイアフラム62を軸方向および半径方向の双方で支持し、上部リング側と底部リング側との間で軸方向に延びる。外部リング60の最外端は、内部保持壁38の第三の部分44と圧入接続で係合するサイズにすることができる。外部リング60は、保持部68に向かって内側に延びるネック部66に向かい内側に延びる円形の外側部分64を形成する断面を有する。保持部68は、ダイアフラム62に接続され、ダイアフラム62を保持する。外部リング60は、ダイアフラム62より厚いため、ダイアフラム62は、上部リング側と底部リング側との間に配置され、上部リング側と底部リング側とから離間している。組み立てられた際、ネック部66は、外部リング60の軸方向の屈曲をいくらか可能としながら、第三の部分44内で円形の外側部分64を保持するために、底部軸受リブ54と上部軸受リブ58との間に隣接して配置される。よって、主チャンバ28が圧力下に置かれた場合、アセンブリは、隔離室48に向かう方向、もしくは、隔離室48から離れる方向へのダイアフラム62の弾性変位を可能にする。 The decoupler 50 shown generally in FIGS. 1-4 has a disk shape. Decoupler 50 includes an annular outer ring 60 that defines a flexible diaphragm 62. The outer ring 60 supports the diaphragm 62 both axially and radially and extends axially between the top ring side and the bottom ring side. The outermost end of the outer ring 60 can be sized to engage the third portion 44 of the inner retaining wall 38 in a press-fit connection. The outer ring 60 has a cross section that forms a circular outer portion 64 that extends inward toward a neck 66 that extends inward toward the retaining portion 68. The holding section 68 is connected to the diaphragm 62 and holds the diaphragm 62. Since the outer ring 60 is thicker than the diaphragm 62, the diaphragm 62 is disposed between the upper ring side and the bottom ring side, and is separated from the upper ring side and the bottom ring side. When assembled, the neck 66 includes a bottom bearing rib 54 and a top bearing rib 54 to retain the circular outer portion 64 within the third portion 44 while allowing some axial bending of the outer ring 60. 58 and adjacently disposed. Thus, when the main chamber 28 is placed under pressure, the assembly allows for elastic displacement of the diaphragm 62 in a direction toward or away from the isolation chamber 48.
図3A〜図4に最もよく説明されるように、デカップラ50に動的リバウンド性を与えるために、仕切り36は、通電状態にある場合に磁場を用いるために利用される固定磁気源70を含む。固定磁気源70は、減衰ユニット20のハウジング壁22に面する外側側面および隔離室48に面する内側側面を含む。デカップラ50は、内部に埋め込まれ、そこから軸方向に延びてダイアフラムリブ74を形成する磁気作動素子72を含む。磁気ガイド76は、磁場を保持するために固定磁気源70周りに延びる。磁気ガイド76は、固定磁気源70の外側に置かれたスリーブ78と、固定磁気源70の内側に配置されたコア80と、を含む。スリーブ78およびコア80は、固定磁気源70の全体が、デカップラ50のダイアフラムリブ74に面するスリーブ78とコア80との間の小さな間隙82を除いて取り囲まれるよう配置される。一つの実施形態において、スリーブ78は、環状のスリーブ壁84を含む。スリーブ壁84は、垂直に、スリーブ壁84から半径方向内側に延びるスリーブリップ86まで延びる。コア80は、環状のコア壁87を含む。コア壁87は、そこから半径方向外向きに延びるコアリップ88まで延びる。スリーブ78およびコア80は、磁場を間隙82内へとガイドし、それをデカップラ50で方向付け、仕切り36の外側での電磁干渉を防ぐ。磁気作動素子72は、使用される磁場まで反応し、そこでは軸方向に延びるダイアフラムリブ74が、間隙82内に引き込まれているか、もしくは間隙82から押し出される。非磁性インサート90(図4に示す)は、磁気作動素子72上に置かれ、半径方向および軸方向に支持し、押し引き運動時に磁気作動素子72を整列させる。インサート90は非磁性であり、仕切り36の磁性動作を妨害せず、また、間隙82に向かって磁場のルートを逆に変更することができる。 As best illustrated in FIGS. 3A-4, to provide the decoupler 50 with dynamic rebound, the partition 36 includes a fixed magnetic source 70 that is utilized to use a magnetic field when energized. . The fixed magnetic source 70 includes an outer side facing the housing wall 22 of the attenuation unit 20 and an inner side facing the isolation chamber 48. The decoupler 50 includes a magnetic actuation element 72 embedded therein and extending axially therefrom to form a diaphragm rib 74. Magnetic guide 76 extends around fixed magnetic source 70 to hold a magnetic field. The magnetic guide 76 includes a sleeve 78 located outside the fixed magnetic source 70 and a core 80 located inside the fixed magnetic source 70. The sleeve 78 and the core 80 are arranged such that the entire fixed magnetic source 70 is surrounded except for a small gap 82 between the sleeve 78 and the core 80 facing the diaphragm rib 74 of the decoupler 50. In one embodiment, sleeve 78 includes an annular sleeve wall 84. The sleeve wall 84 extends vertically to a sleeve lip 86 that extends radially inward from the sleeve wall 84. The core 80 includes an annular core wall 87. The core wall 87 extends to a core lip 88 that extends radially outward therefrom. Sleeve 78 and core 80 guide the magnetic field into gap 82 and direct it with decoupler 50 to prevent electromagnetic interference outside of partition 36. The magnetic actuation element 72 responds to the magnetic field used, wherein an axially extending diaphragm rib 74 is drawn into or out of the gap 82. A non-magnetic insert 90 (shown in FIG. 4) is placed on the magnetic actuating element 72 and supports it radially and axially to align the magnetic actuating element 72 during the push-pull movement. The insert 90 is non-magnetic, does not interfere with the magnetic operation of the partition 36, and can reverse the route of the magnetic field toward the gap 82.
図3Aに示す一つの実施形態において、磁気作動素子72は、ダイアフラム62に埋め込まれた可動コイル72aを含む。可動コイル72aは、ダイアフラム62の中心周りに環状に延びて、軸方向に突出する環状のリブ74を形成する。可動コイル72aには、非通電状態および通電状態があり、それらの状態を切り替えるために電流の供給源94に接続される。好ましい実施形態では、可動コイル72aは、ダイアフラム62内へ外側被覆されており、約200の巻数を含む。またこの実施形態は、ダイアフラム62に埋め込まれた、環状の非磁性インサート90(図4に示す)を利用する。非磁性インサート90は、軸方向段によって分割された薄肉部96および幅広部98を含む。非磁性インサート90は、磁場によって影響を受けることなく、可動コイル72aを支持する。可動コイル72aは、薄肉部96の下方に直接配置され、段に隣接している。固定磁気源70は、コア80とスリーブ78との間の内部保持壁38の第一の部分40に沿って置かれた少なくとも一つの永久磁石70aを含む。好ましい実施形態では、少なくとも一つの永久磁石70aは、リング状の磁石一つを含むが、複数の磁石を用いてもよい。永久磁石70aは、コア80およびスリーブ78によって間隙82内へガイドされる磁場を生成する。可動コイル72aに通電すると、可動コイル72a内へ流れる電流の方向によって、間隙82に対して可動コイル72aを引き寄せるもしくは反発させる電流が形成される。作動中、非磁性インサート90は、磁場によって影響を受けないままとなり、可動コイル72aを間隙82と整列した状態に保ち、磁場のルートを変更し、磁気ガイド76の外側での電磁干渉を防ぐ。図5Aの図形表現は、磁気ガイド76による磁場のルート変更を示し、磁気ガイド76および間隙78の領域に沿った磁場の強度を示す凡例を含む。図5Bおよび図5Cは、可動コイル72aの位置の図形表現であり、可動コイル72aの位置は、供給電流量の関数としての誘起磁場の強度に依存する。 In one embodiment, shown in FIG. 3A, magnetic actuation element 72 includes a moving coil 72 a embedded in diaphragm 62. The movable coil 72a extends annularly around the center of the diaphragm 62 to form an annular rib 74 projecting in the axial direction. The movable coil 72a has a non-energized state and an energized state, and is connected to a current supply source 94 to switch between these states. In a preferred embodiment, the moving coil 72a is overmolded into the diaphragm 62 and includes approximately 200 turns. This embodiment also utilizes an annular non-magnetic insert 90 (shown in FIG. 4) embedded in diaphragm 62. The non-magnetic insert 90 includes a thin portion 96 and a wide portion 98 divided by an axial step. The non-magnetic insert 90 supports the moving coil 72a without being affected by the magnetic field. The movable coil 72a is disposed directly below the thin portion 96 and is adjacent to the step. The stationary magnetic source 70 includes at least one permanent magnet 70a located along the first portion 40 of the inner retaining wall 38 between the core 80 and the sleeve 78. In the preferred embodiment, the at least one permanent magnet 70a includes one ring-shaped magnet, but a plurality of magnets may be used. Permanent magnet 70a generates a magnetic field that is guided into gap 82 by core 80 and sleeve 78. When the movable coil 72a is energized, a current that draws or repels the movable coil 72a with respect to the gap 82 is formed depending on the direction of the current flowing into the movable coil 72a. In operation, the non-magnetic insert 90 remains unaffected by the magnetic field, keeping the moving coil 72a aligned with the gap 82, re-routing the magnetic field, and preventing electromagnetic interference outside the magnetic guide 76. The graphical representation of FIG. 5A shows the rerouting of the magnetic field by the magnetic guide 76 and includes a legend showing the strength of the magnetic field along the area of the magnetic guide 76 and the gap 78. 5B and 5C are graphical representations of the position of the moving coil 72a, where the position of the moving coil 72a depends on the strength of the induced magnetic field as a function of the amount of current supplied.
図3Bに示す別の実施形態では、磁気作動素子72は、上述のようなダイアフラム62に埋め込まれた可動コイル72aおよび非磁性インサート90をさらに含む。しかしながら、固定磁気源70は、コア80とスリーブ78との間の内部保持壁38の第一の部分40に沿って置かれた固定誘導コイル70bを含む。固定誘導コイル70bは、ボビン100に何周か巻き付けられ、電流の供給源94に電気的に接続される。一つの好ましい実施形態では、固定誘導コイル70bは、可動コイル72aよりも巻数が多い。一つの例示的な実施形態では、固定誘導コイル70bは、巻数が約410である。誘導コイル70bおよび可動コイル72aにおける電流変動は、誘導コイル70bおよび可動コイル72aを通る電流の方向に依存して、間隙82から可動コイル72aを引き寄せ、反発させる。固定誘導コイル70bを使用する場合、磁気ガイド76には、ワイヤが通過して延びることが可能とし、固定誘導コイル70bと電流の供給源94との間の電気接続を形成することを可能にするための、一つもしくはそれ以上の開口が形成されてもよい。図6Aにおける図形表現は、磁気ガイド76による磁場のルート変更を示し、磁気ガイド76および間隙78の領域に沿った磁場の強度を示す凡例を含む。図6Bおよび6Cは、可動コイル72aの位置の図形表現であるが、可動コイル72aの位置は、可動コイル72aおよび固定誘導コイル72bの双方に供給される電流量の関数としての誘起磁場の強度に依存する。 In another embodiment, shown in FIG. 3B, the magnetic actuation element 72 further includes a moving coil 72a and a non-magnetic insert 90 embedded in the diaphragm 62 as described above. However, the fixed magnetic source 70 includes a fixed induction coil 70b located along the first portion 40 of the inner retaining wall 38 between the core 80 and the sleeve 78. The fixed induction coil 70b is wound around the bobbin 100 several times and is electrically connected to a current supply source 94. In one preferred embodiment, fixed induction coil 70b has more turns than moving coil 72a. In one exemplary embodiment, fixed induction coil 70b has approximately 410 turns. The current fluctuation in the induction coil 70b and the movable coil 72a draws and repels the movable coil 72a from the gap 82 depending on the direction of the current passing through the induction coil 70b and the movable coil 72a. If a fixed induction coil 70b is used, the magnetic guide 76 allows a wire to extend therethrough and allows an electrical connection between the fixed induction coil 70b and the current source 94 to be formed. One or more openings may be formed. The graphical representation in FIG. 6A shows the rerouting of the magnetic field by the magnetic guide 76 and includes a legend showing the strength of the magnetic field along the area of the magnetic guide 76 and the gap 78. 6B and 6C are graphical representations of the position of the moving coil 72a, the position of the moving coil 72a being dependent on the strength of the induced magnetic field as a function of the amount of current supplied to both the moving coil 72a and the fixed induction coil 72b. Dependent.
図3Cに示すさらに別の実施形態では、磁気作動素子72は、少なくとも一つの可動磁石72bを含む。少なくとも一つの可動磁石72bは、一般的にスリーブ78とコア80との間の間隙82の形状に対応する環状の一つの磁石を含む。可動磁石72bは、常に磁場を供給する。この磁場は常に存在するため、常に二つの相互作用する磁場が存在しないように、この実施形態の固定磁気源70は固定誘導コイル70bである。したがって、固定誘導コイル70bに通電されると、固定誘導コイル70bは、磁場を生成し、可動磁石を間隙82内へ引っ張るか、もしくは間隙82から離れる方向に押す。図7Aにおける図形表現は、一つの環状の可動磁石72bが使用される場合の磁気ガイド76による磁場のルート変更を示し、磁気ガイド76および間隙78の領域に沿った磁場の強度を示す凡例を含む。図7Bおよび7Cは、環状の可動磁石72bの位置の図形表現であり、可動磁石72bの位置は、固定誘導コイル72bに供給される電流の量の関数として磁場の強度に依存する。 In yet another embodiment, shown in FIG. 3C, the magnetic actuation element 72 includes at least one movable magnet 72b. The at least one movable magnet 72b includes one annular magnet generally corresponding to the shape of the gap 82 between the sleeve 78 and the core 80. The movable magnet 72b always supplies a magnetic field. Since this magnetic field is always present, the fixed magnetic source 70 in this embodiment is a fixed induction coil 70b so that there are always no two interacting magnetic fields. Thus, when current is applied to the fixed induction coil 70b, the fixed induction coil 70b generates a magnetic field and pulls the movable magnet into the gap 82 or pushes the movable magnet away from the gap 82. The graphical representation in FIG. 7A shows the rerouting of the magnetic field by the magnetic guide 76 when one annular movable magnet 72b is used, and includes a legend showing the strength of the magnetic field along the area of the magnetic guide 76 and the gap 78. . 7B and 7C are graphical representations of the location of the annular movable magnet 72b, which depends on the strength of the magnetic field as a function of the amount of current supplied to the fixed induction coil 72b.
図3Dに示す別の実施形態では、磁気作動素子72は、複数のブロック磁石72cを含む。ブロック磁石72cは、スリーブ78とコア80との間の間隙82に対応する環状形状にダイアフラム62上に配置される。先出の実施形態と同様、ブロック磁石72cは、常に磁場を供給する。この磁場が常に存在するため、常に二つの相互作用する磁場が存在しないように、この実施形態の固定磁気源70は固定誘導コイル70bである。したがって、固定誘導コイル70bに通電されると、固定誘導コイル70bは、磁場を生成し、間隙82内へブロック磁石72cを引っ張るか、もしくは間隙82から離れる方向に押す。図8Aにおける図形表現は、ブロック磁石72cを利用する場合の磁気ガイド76による磁場のルート変更を示し、磁気ガイド76および間隙78の領域に沿った磁場の強度を示す凡例を含む。図8Bおよび8Cは、ブロック磁石72cの位置の図形表現であり、ブロック磁石72cの位置は、固定誘導コイル70bに供給される電流の量の関数として磁場の強度に依存する。 In another embodiment shown in FIG. 3D, the magnetic actuation element 72 includes a plurality of block magnets 72c. The block magnet 72c is arranged on the diaphragm 62 in an annular shape corresponding to the gap 82 between the sleeve 78 and the core 80. As in the previous embodiment, the block magnet 72c always supplies a magnetic field. Since this magnetic field is always present, the fixed magnetic source 70 in this embodiment is a fixed induction coil 70b so that there are no two interacting magnetic fields at all times. Therefore, when the fixed induction coil 70b is energized, the fixed induction coil 70b generates a magnetic field and pulls the block magnet 72c into the gap 82 or pushes the block magnet 72c away from the gap 82. The graphical representation in FIG. 8A shows the rerouting of the magnetic field by the magnetic guide 76 when using the block magnet 72c and includes a legend showing the strength of the magnetic field along the area of the magnetic guide 76 and the gap 78. 8B and 8C are graphical representations of the location of the block magnet 72c, which depends on the strength of the magnetic field as a function of the amount of current supplied to the fixed induction coil 70b.
好ましい実施形態における減衰ユニット20は、磁気流動性流体(MR流体)を含む。MR流体を利用した減衰ユニット20の障壁30は、一般的に上部サブチャンバ34とベースサブチャンバ32との間に延びる流路102を形成する。サブチャンバ32、34のうちの一つに振動力によって付加圧力が供されると、MR流体は加圧されたサブチャンバから加圧の度合いがより低いサブチャンバへと絞り出される(squeezed)。サブチャンバ32,34の間でMR流体を移動させる圧力の大きさおよびMR流体が流れる速度を調整するために、ソレノイド104が流路102に隣接して配置される。ソレノイド104に電流が供給されると、流路102の周りに延びる磁界が形成される。MR流体が磁場に曝されると、MR流体中の磁性粒子は、粘度を増加させるように整列し、それにより流路102を通る絞り出しに対して抵抗性が高まる。このように、MRダンパの特定のリバウンド特性は、ソレノイド104を通って供給される電流の量によって変化し得る。 The damping unit 20 in the preferred embodiment includes a magnetic fluid (MR fluid). The barrier 30 of the damping unit 20 using the MR fluid generally forms a flow path 102 extending between the upper sub-chamber 34 and the base sub-chamber 32. When an applied pressure is applied to one of the sub-chambers 32, 34 by an oscillating force, the MR fluid is squeezed from the pressurized sub-chamber to a less pressurized sub-chamber. A solenoid 104 is positioned adjacent the flow path 102 to adjust the magnitude of the pressure that moves the MR fluid between the sub-chambers 32 and 34 and the speed at which the MR fluid flows. When a current is supplied to the solenoid 104, a magnetic field extending around the flow path 102 is formed. When the MR fluid is exposed to a magnetic field, the magnetic particles in the MR fluid align to increase viscosity, thereby increasing resistance to squeezing through the flow path 102. As such, the particular rebound characteristics of the MR damper may vary with the amount of current supplied through the solenoid 104.
固定磁気源70の磁場をガイドすることに加えて、磁気スリーブ78およびコア80は、流路102から離れる方向に磁場のルートを変更し局在化させることによって、流路の干渉も防止する。この機能性によれば、ソレノイド104によって生成される磁場は、MR流体と相互作用する唯一の磁場となる。別の言い方をすれば、デカップラ50の押し引きは、流路102の周りの粘度に影響を及ぼさず、ソレノイド104は、デカップラ50の押し引きに影響を与えない。 In addition to guiding the magnetic field of the fixed magnetic source 70, the magnetic sleeve 78 and the core 80 also relocate and localize the magnetic field away from the flow path 102 to prevent flow path interference. According to this functionality, the magnetic field generated by solenoid 104 is the only magnetic field that interacts with the MR fluid. Stated another way, pushing and pulling the decoupler 50 does not affect the viscosity around the flow path 102, and the solenoid 104 does not affect the pushing and pulling of the decoupler 50.
運転中は、電流の供給源94は、巻かれた固定誘導コイル70b又は可動コイル72aのいずれかの端部に電流を供給することができる。結果として、生成された磁場の磁極を反転することができ、引く代わりに押す。さらに、必要に応じて電流を増減することができる。増減の一端では電流が供給されないので、ダイアフラム62は制限無く屈曲する。拡縮の反対側では、最大電流が固定誘導コイル70b、可動コイル、又はその両方に供給される。最大電流が供給されると、強い磁場が発生し、ダイアフラム62のリブ92が間隙82内に完全に引き込まれ、ダイアフラム62の振動、すなわち減衰が抑制される。増減の途中では、間隙82に対するリブ92の動きをいくらか制限する中程度の電流量を供給することができるが、已然としてダイアフラム62がある程度の可撓性を保持することを可能にする。電流の供給源94は、振動の閾値周波数又は振幅を認識し、デカップラ50からの最適な減衰を得るのに十分な電流を提供するようにプログラムされた、CPU106などのコントローラに電気的に接続することができる。CPU106が認識する閾値は、一つ以上のサブチャンバ32,34における圧力変化の速度であってもよい。その後、CPU106は、電流の供給源94に信号を送り、可動コイル72aおよび固定誘導コイル70b内の特定の方向にある量の電流を供給し、最終的に運転者と乗客の両方により滑らかな乗車を提供することができる。 During operation, the current supply 94 can supply current to either end of the wound fixed induction coil 70b or the moving coil 72a. As a result, the poles of the generated magnetic field can be reversed and pushed instead of pulled. Further, the current can be increased or decreased as needed. Since no current is supplied at one end of the increase or decrease, the diaphragm 62 bends without limitation. On the other side of the scaling, the maximum current is supplied to the fixed induction coil 70b, the moving coil, or both. When the maximum current is supplied, a strong magnetic field is generated, the ribs 92 of the diaphragm 62 are completely drawn into the gap 82, and the vibration, that is, the damping of the diaphragm 62 is suppressed. In the middle of the increase or decrease, a moderate amount of current can be supplied which somewhat limits the movement of the ribs 92 with respect to the gap 82, but still allows the diaphragm 62 to retain some flexibility. The current source 94 is electrically connected to a controller, such as a CPU 106, that is programmed to recognize the threshold frequency or amplitude of the oscillation and provide sufficient current to obtain optimal damping from the decoupler 50. be able to. The threshold value recognized by the CPU 106 may be a speed of a pressure change in one or more of the sub-chambers 32 and 34. Thereafter, the CPU 106 sends a signal to the current supply 94 to supply a certain amount of current in a particular direction within the moving coil 72a and the fixed induction coil 70b, and ultimately a smoother ride for both the driver and the passenger. Can be provided.
なお、本明細書に記載された複数の実施形態では、仕切り36は障壁30に一体化され、軸Aに沿って延在することを理解されたい。しかしながら、仕切り36は、軸Aからずれていてもよく、減衰ユニット20内のどこにでも隔離室48を形成することができる。隔離室48は大気に開放されていてもよく、又は完全に閉鎖されていてもよい。同様に、振動力は軸Aに沿っている必要はなく、最終的にデカップラ50が、それが分割する任意のチャンバの変化する圧力に応答する。さらに、磁気ガイド76および非磁性インサート90は、任意の数の適切な材料を含んでいてもよいことを理解されたい。例えば、これらの要素は、磁場、具体的には磁束のルートを変更する高い透磁率を有する材料を含むことができる。非限定的なほんの数例として、これらの材料は、コバルト鉄、パーマロイ、および理想的には高透磁率と低重量とを組み合わせた多くのその他の適切な材料を含むことができる。 It should be understood that in the embodiments described herein, the divider 36 is integral with the barrier 30 and extends along the axis A. However, the partition 36 may be offset from the axis A and may form an isolation chamber 48 anywhere in the damping unit 20. The isolation chamber 48 may be open to the atmosphere or may be completely closed. Similarly, the oscillating force need not be along axis A, and eventually decoupler 50 responds to the changing pressure of any chamber it divides. Further, it should be understood that magnetic guide 76 and non-magnetic insert 90 may include any number of suitable materials. For example, these elements can include a material having a high magnetic permeability that alters the magnetic field, specifically the route of the magnetic flux. By way of non-limiting example only, these materials may include cobalt iron, permalloy, and many other suitable materials, ideally combining high permeability and low weight.
明らかに、本発明の多くの改変および変形が上記の教示に照らして可能であり、添付の特許請求の範囲内にある限り、具体的に記載された以外の方法で実施されてもよい。先出の引用は、本発明の新規性がその効用を行使するあらゆる組み合わせを網羅するものと解釈すべきである。装置請求項における「前記」という言葉の使用は、請求項の包含範囲に含まれるよう意図される肯定的な引用である先行詞に言及する、又は、請求項の包含範囲に含まれることを意図しない単語の前に付く。また、請求項中の参照符号は便宜上のものに過ぎず、いかなる意味においても限定として解釈されるべきではない。 Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described as long as it falls within the scope of the appended claims. The foregoing citation should be construed as covering all combinations in which the novelty of the present invention exercises its utility. The use of the word "said" in a device claim refers to an antecedent that is a positive citation intended to be included in the scope of the claim, or is intended to be included in the scope of the claim. Precede words that do not. Also, reference signs in the claims are for convenience only and should not be construed as limiting in any way.
Claims (11)
ベース部と上部との間を延び、その中の主チャンバの境界を成すハウジング壁を含む、減衰ユニットと、
前記減衰ユニット内に配置され、前記主チャンバを複数のサブチャンバに不透過的に分割する弾性材料製のダイアフラムを含む、仕切りと、
電流の供給源と、
を備え、
前記ダイアフラムは、少なくとも一つの磁気作動素子を含み、
前記仕切りは、前記少なくとも一つの磁気作動素子の近傍で磁場を生成するための固定磁気源をさらに含み、
前記電流の供給源は、前記ダイアフラムの前記少なくとも一つの磁気作動素子を前記固定磁気源に対して調節する磁界が生成されるように、前記電流の供給源が前記仕切りに電流を供給する通電状態と、前記電流の供給源が電流を供給せず、前記ダイアフラムが制限されずに前記サブチャンバのうちの一つで変化した圧力によって屈曲する、非通電状態とを含み、
前記仕切りは、前記固定磁気源を取り囲み、前記固定磁気源を前記磁気作動素子に暴露する間隙を形成し、前記間隙に向かって前記磁場をガイドする磁気ガイドを含み、
前記少なくとも一つの磁気作動素子は、前記ダイアフラムから軸方向に延びて、前記間隙に向かって延びる表面リブを形成し、前記表面リブは、前記通電状態において前記間隙に入るような輪郭を有し、
前記ダイアフラムは、その内部に配置され、半径方向および軸方向の支持を与えるため前記少なくとも一つの磁気作動素子の上方に離間して配置され、前記表面リブと前記間隙とを整列させる、非磁性インサートをさらに含み、
前記非磁性インサートは、内側に向かって離間した薄肉部および外側に向かって離間した幅広部を有する段付き表面を含み、前記少なくとも一つの磁気作動素子は、前記薄肉部上に配置され、前記幅広部は、少なくとも横方向および軸方向の外側に向かう電磁干渉の一部のルートを、前記間隙から前記間隙内へ戻す、
磁気動的制動アセンブリ。 A magnetic dynamic braking assembly,
A damping unit comprising a housing wall extending between the base portion and the upper portion and bounding the main chamber therein;
A partition disposed in the damping unit and including a diaphragm made of an elastic material that opaquely divides the main chamber into a plurality of sub-chambers;
A current source;
With
The diaphragm includes at least one magnetic actuation element,
The partition further includes a fixed magnetic source for generating a magnetic field near the at least one magnetic actuation element,
The current source is configured to supply current to the partition such that a magnetic field is generated that adjusts the at least one magnetic actuating element of the diaphragm relative to the fixed magnetic source; If the source of the current does not supply a current to bend by pressure change in one of the sub-chamber without the diaphragm is restricted, and a non-energized state seen including,
The partition includes a magnetic guide surrounding the fixed magnetic source, forming a gap exposing the fixed magnetic source to the magnetic actuating element, and guiding the magnetic field toward the gap.
The at least one magnetic actuating element extends axially from the diaphragm to form a surface rib extending toward the gap, the surface rib having a contour that enters the gap in the energized state;
A non-magnetic insert disposed therein, spaced apart above the at least one magnetic actuation element to provide radial and axial support, aligning the surface ribs with the gap; Further comprising
The non-magnetic insert includes a stepped surface having an inwardly-spaced thinned portion and an outwardly-spaced widened portion, wherein the at least one magnetic actuating element is disposed on the thinned portion and includes the widened portion. The portion returns at least a portion of the lateral and axially outward electromagnetic interference routes from the gap into the gap.
Magnetic dynamic braking assembly.
前記少なくとも一つの磁気作動素子は、可動磁石を含む、
又は、
前記少なくとも一つの磁気作動素子は、可動コイルを含み、前記電流の供給源は、前記可動コイルにも電気的に接続され、前記可動コイルおよび前記固定誘導コイルに独立して電流を供給し、相互作用する磁場を生成する、
請求項1に記載の磁気動的制動アセンブリ。 The fixed magnetic source includes a fixed induction coil, and the current source is electrically connected to the fixed induction coil to supply current and generate the magnetic field;
Wherein the at least one magnetic actuation element includes a movable magnet.
Or
The at least one magnetic actuating element includes a moving coil, the current source is also electrically connected to the moving coil, and supplies current independently to the moving coil and the fixed induction coil. Produce a working magnetic field,
The magnetic dynamic braking assembly according to claim 1 .
請求項1に記載の磁気動的制動アセンブリ。 The fixed magnetic source includes a fixed permanent magnet that generates the magnetic field, the at least one magnetic actuating element includes a moving coil, and the moving coil is electrically connected to the current source that operates the moving coil. And interacts with the magnetic field generated by the fixed permanent magnet,
The magnetic dynamic braking assembly according to claim 1 .
磁気流動性流体を含み、
流路と、前記流路に入る前記磁気流動性流体の粘度を変化させる、前記流路に隣接したソレノイドと、を有する、
請求項1から3のいずれか1項に記載の磁気動的制動アセンブリ。 The damping unit comprises:
Including a magnetic fluid,
A flow path, which changes the viscosity of the magnetic fluid flowing into the flow path, having a solenoid adjacent to the flow path,
Magnetic dynamic braking assembly according to any one of claims 1 to 3.
前記固定磁気源は、磁場を生成するため構成されて、前記少なくとも一つの磁気作動素子を引き寄せ、反発させ、
前記磁気ガイドは、前記磁場を阻止し、前記磁場のルートを前記間隙に向かって変更する、
請求項1に記載の磁気動的制動アセンブリ。 The magnetic dynamic braking assembly comprises a decoupler including a diaphragm made of an elastic material ;
Before SL stationary magnetic source is configured to generate a magnetic field, the attracted at least one magnetic actuation element, is repelled,
Before Symbol magnetic guide is to prevent the magnetic field is changed toward the root of the magnetic field in the gap,
The magnetic dynamic braking assembly according to claim 1.
請求項5に記載の磁気動的制動アセンブリ。 The at least one magnetic actuation element has an annular shape, and the gap has a corresponding annular shape profile to allow entry of the at least one magnetic actuation element;
The magnetic dynamic braking assembly according to claim 5 .
請求項6に記載の磁気動的制動アセンブリ。 The non-magnetic insert is annular in shape,
The magnetic dynamic braking assembly according to claim 6 .
請求項5から7のいずれか1項に記載の磁気動的制動アセンブリ。 The decoupler is stiffer than the diaphragm and includes an outer ring portion that delimits the diaphragm and provides axial and radial support to the diaphragm.
A magnetic dynamic braking assembly according to any one of claims 5 to 7 .
請求項8に記載の磁気動的制動アセンブリ。 The damping unit includes a top bearing ring and a bottom bearing ring, the outer ring portion of the decoupler is sandwiched between the top bearing ring and the bottom bearing ring, and the outer ring portion has a circular outer portion. , Having a cross-section forming an intermediate neck portion and an internal retainer, each of the bearing rings to allow some axial bending of the neck portion while retaining the circular outer portion. A bearing rib extending oppositely toward the neck of the outer ring.
The magnetic dynamic braking assembly according to claim 8 .
請求項5から9のいずれか1項に記載の磁気動的制動アセンブリ。 The magnetic guide includes a sleeve and a core pressed together, the sleeve including an annular sleeve wall that extends radially inward from the annular sleeve wall to a sleeve lip. Extending, the core includes an annular core wall, the annular core wall extending from the annular core wall to a core lip extending radially outwardly.
A magnetic dynamic braking assembly according to any one of claims 5 to 9 .
請求項5から10のいずれか1項に記載の磁気動的制動アセンブリ。
Before SL damping unit includes a magneto-rheological fluid has a flow path, to change the viscosity of the magneto-rheological fluid entering said flow path, and a solenoid adjacent to the flow channel,
Magnetic dynamic braking assembly according to any one of claims 1 to 5 0.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762556924P | 2017-09-11 | 2017-09-11 | |
US62/556,924 | 2017-09-11 | ||
US16/046,801 US10690217B2 (en) | 2017-09-11 | 2018-07-26 | Magnetically dynamic damping assembly |
US16/046,801 | 2018-07-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019049355A JP2019049355A (en) | 2019-03-28 |
JP6636588B2 true JP6636588B2 (en) | 2020-01-29 |
Family
ID=63556182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018168604A Active JP6636588B2 (en) | 2017-09-11 | 2018-09-10 | Magnetic dynamic braking assembly |
Country Status (4)
Country | Link |
---|---|
US (1) | US10690217B2 (en) |
EP (1) | EP3456995B1 (en) |
JP (1) | JP6636588B2 (en) |
CN (1) | CN109058361B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10598248B2 (en) * | 2017-11-01 | 2020-03-24 | Simon Fraser University | Smart fluid damper |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3314335A1 (en) * | 1983-04-20 | 1984-10-31 | Tillmann 6108 Weiterstadt Freudenberg | ENGINE MOUNT |
DE3918753C1 (en) * | 1989-06-08 | 1990-07-12 | Fa. Carl Freudenberg, 6940 Weinheim, De | |
JP2924317B2 (en) | 1991-06-18 | 1999-07-26 | 東海ゴム工業株式会社 | Fluid-filled mounting device |
JPH05164180A (en) | 1991-12-06 | 1993-06-29 | Tokai Rubber Ind Ltd | Fluid sealed type vibration proof device |
US5249782A (en) | 1991-12-06 | 1993-10-05 | Tokai Rubber Industries, Ltd. | Elastic mount and method of manufacturing the elastic mount |
JP3016060B2 (en) * | 1993-04-28 | 2000-03-06 | 本田技研工業株式会社 | Anti-vibration mounting device |
JPH0791484A (en) | 1993-09-21 | 1995-04-04 | Toyoda Gosei Co Ltd | Hydraulic vibration control device |
JP3304554B2 (en) | 1993-09-21 | 2002-07-22 | 豊田合成株式会社 | Liquid filled type vibration damping device |
JPH07158690A (en) | 1993-12-09 | 1995-06-20 | Toyoda Gosei Co Ltd | Fluid-enclosed vibration control device |
JP3688836B2 (en) * | 1996-12-27 | 2005-08-31 | 株式会社ブリヂストン | Vibration isolator |
JPH10238584A (en) | 1997-02-27 | 1998-09-08 | Bridgestone Corp | Vibration control device |
JP3564597B2 (en) | 1997-03-31 | 2004-09-15 | 東洋ゴム工業株式会社 | Liquid filled type vibration damping device |
JP3952584B2 (en) | 1997-12-05 | 2007-08-01 | 東海ゴム工業株式会社 | Active vibration isolator |
JP3692815B2 (en) | 1999-02-05 | 2005-09-07 | 東海ゴム工業株式会社 | Fluid filled active vibration isolator |
JP2000310273A (en) * | 1999-04-23 | 2000-11-07 | Tokai Rubber Ind Ltd | Electromagnetic type active vibration control device |
JP3811469B2 (en) * | 2003-06-13 | 2006-08-23 | 本田技研工業株式会社 | Actuator drive controller for active anti-vibration support device |
GB0419512D0 (en) | 2004-09-02 | 2004-10-06 | Avon Vibration Man Syst Ltd | Controlling vibrations |
JP4980808B2 (en) * | 2007-07-06 | 2012-07-18 | 株式会社ケーヒン | Active anti-vibration support device |
US8172209B2 (en) * | 2007-09-21 | 2012-05-08 | Tokai Rubber Industries, Ltd. | Fluid filled type vibration damping device |
US9068625B2 (en) * | 2008-12-18 | 2015-06-30 | Tokai Rubber Industries, Ltd. | Fluid-filled type vibration damping device |
DE112010001470B4 (en) * | 2009-03-30 | 2018-05-24 | Honda Motor Co., Ltd. | Active - vibration damping bearing device |
JP5226599B2 (en) | 2009-04-27 | 2013-07-03 | 株式会社ブリヂストン | Vibration isolator |
JP5530660B2 (en) * | 2009-05-29 | 2014-06-25 | 東海ゴム工業株式会社 | Fluid-filled active vibration isolator and manufacturing method thereof |
JP5564042B2 (en) * | 2009-07-08 | 2014-07-30 | 本田技研工業株式会社 | Active vibration isolation support device and vibration isolation control method thereof |
WO2011070744A1 (en) * | 2009-12-09 | 2011-06-16 | 東海ゴム工業株式会社 | Electromagnetic actuator and fluid-filled active vibration-damping device using same |
DE102010060885A1 (en) | 2010-08-26 | 2012-03-01 | Contitech Vibration Control Gmbh | Engine mounts for a motor vehicle |
CN101936360A (en) | 2010-09-07 | 2011-01-05 | 吉林大学 | Semi-active control magnetorheological hydraulic mount for automotive powertrain |
JP5719704B2 (en) * | 2011-06-30 | 2015-05-20 | 住友理工株式会社 | Fluid filled active vibration isolator |
PL2732182T3 (en) * | 2011-07-12 | 2017-09-29 | Beijingwest Industries Co. Ltd. | A hydraulic mount apparatus for supporting vibration source |
EP2732181B1 (en) | 2011-07-12 | 2017-04-12 | BeijingWest Industries Co. Ltd. | A magnetorheological fluid-based mount apparatus including rate dip track passage |
DE102011112130A1 (en) | 2011-09-01 | 2013-03-07 | Audi Ag | Air spring device for a motor vehicle |
DE102012103358A1 (en) | 2012-04-18 | 2013-10-24 | Contitech Luftfedersysteme Gmbh | Rolling piston for a Luftfederrollbalg |
ES2629886T3 (en) | 2012-08-15 | 2017-08-16 | Beijingwest Industries Co. Ltd. | A support device |
KR101462911B1 (en) * | 2013-03-19 | 2014-11-19 | 현대자동차주식회사 | Electro-magnetic active mount controlling two-way |
CN103322105B (en) | 2013-07-02 | 2015-03-11 | 山东大学 | Bionic air spring system |
CN106385158B (en) | 2016-09-28 | 2018-11-30 | 北京理工大学 | A kind of liquid-cooled voice coil motor Active suspension |
US10899215B2 (en) * | 2017-09-11 | 2021-01-26 | Beijingwest Industries Co., Ltd. | Hydraulic mount apparatus |
-
2018
- 2018-07-26 US US16/046,801 patent/US10690217B2/en active Active
- 2018-08-10 CN CN201810908668.4A patent/CN109058361B/en active Active
- 2018-09-10 JP JP2018168604A patent/JP6636588B2/en active Active
- 2018-09-10 EP EP18193392.0A patent/EP3456995B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109058361A (en) | 2018-12-21 |
EP3456995A1 (en) | 2019-03-20 |
US10690217B2 (en) | 2020-06-23 |
JP2019049355A (en) | 2019-03-28 |
US20190078642A1 (en) | 2019-03-14 |
EP3456995B1 (en) | 2020-11-11 |
CN109058361B (en) | 2021-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6565072B2 (en) | Damping actuator and active vibration damping device equipped with the actuator | |
US6105943A (en) | Active damping oscillator having non-connected shaft member and outer sleeve movable relative to each other by energization of coils | |
JP3696358B2 (en) | Variable damping force damper | |
US6588737B2 (en) | Fluid-filled active vibration damping device and method of producing the same | |
US7537202B2 (en) | Active vibration damping device | |
CN104145149B (en) | Electromagnetism flexible element | |
US7243764B2 (en) | Magnetically actuated friction damper | |
US20060260891A1 (en) | Magnetorheological piston assembly and damper | |
US20030234476A1 (en) | Vibration damping apparatus containing magnetic spring device | |
JP6636588B2 (en) | Magnetic dynamic braking assembly | |
JP6560419B2 (en) | Liquid filled mounting device | |
EP3434027A1 (en) | Linear actuator | |
CN116261087A (en) | Loudspeaker | |
EP0819866B1 (en) | Vibration damper having oscillating force generating means | |
CA2085920C (en) | Rubber mount | |
JPH05240289A (en) | Rubber mount | |
KR102416316B1 (en) | Radial magnet actuator | |
KR102075907B1 (en) | A mount using magnetic suction force with a shape of magnet shape in consideration of vibration amplitude | |
KR20210087820A (en) | Mr damper having improved assembly and durability | |
JP4906150B2 (en) | damper | |
EP3971002A1 (en) | Liquid seal bushing | |
JPH04341625A (en) | Vibro-isolating damper | |
JP2023053911A (en) | solenoid assembly | |
JPH112277A (en) | Damping force variable damper | |
JPH04331840A (en) | Vibration isolating damper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6636588 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |