JP6635906B2 - Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery - Google Patents

Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP6635906B2
JP6635906B2 JP2016205524A JP2016205524A JP6635906B2 JP 6635906 B2 JP6635906 B2 JP 6635906B2 JP 2016205524 A JP2016205524 A JP 2016205524A JP 2016205524 A JP2016205524 A JP 2016205524A JP 6635906 B2 JP6635906 B2 JP 6635906B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016205524A
Other languages
Japanese (ja)
Other versions
JP2017017042A (en
Inventor
高行 吉田
高行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016205524A priority Critical patent/JP6635906B2/en
Publication of JP2017017042A publication Critical patent/JP2017017042A/en
Application granted granted Critical
Publication of JP6635906B2 publication Critical patent/JP6635906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池、及びリチウムイオン二次電池用正極活物質の製造方法に関する。   The present invention relates to a method for producing a lithium ion secondary battery and a positive electrode active material for a lithium ion secondary battery.

リチウムイオン二次電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン二次電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Generally, a lithium-containing transition metal oxide is used as a positive electrode active material of a lithium ion secondary battery. Specifically, it is lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ) or the like, and the characteristics are improved (high capacity, cycle characteristics, storage characteristics, internal resistance reduction). , Rate characteristics) and security in order to improve the security. Lithium-ion rechargeable batteries for large-scale applications such as in-vehicle applications and road-leveling applications are required to have different characteristics from those of mobile phones and personal computers.

このようなリチウムイオン二次電池において求められる電池特性の向上について、従来、種々の研究・開発が行われている(特許文献1〜3)。   Conventionally, various researches and developments have been made on the improvement of battery characteristics required for such a lithium ion secondary battery (Patent Documents 1 to 3).

特許第3769871号公報Japanese Patent No. 3769871 特許第4062856号公報Japanese Patent No. 4062856 特開2015−3838号公報JP-A-2005-3838

現在用いられているリチウムイオン二次電池は、円筒型、角型、パウチ型などがあり、円筒型と角型・パウチ型とは構成要素に要求される特性が異なっている。正極活物質に関しては、基本的に角型・パウチ型では、電池容量やサイクル特性が良好であることはもちろん、膨れを防止するために低不純物であることが求められている。   Currently used lithium ion secondary batteries include a cylindrical type, a square type, a pouch type, and the like. The characteristics required for components are different between the cylindrical type and the square type / pouch type. Regarding the positive electrode active material, basically, the square type and the pouch type are required to have not only good battery capacity and cycle characteristics but also low impurities in order to prevent swelling.

一般的に角型・パウチ型リチウムイオン二次電池では、前述の通り、その正極活物質中の不純物が低くなっていることが重要であるが、これは正極活物質の製造工程に起因している。すなわち、従来の製造工程では、リチウム化合物(水酸化リチウム、炭酸リチウム等)と遷移金属化合物(炭酸塩、水酸化物、酸化物等)とを混合し、焼成して製造している。この時、リチウムの物質量とリチウム以外の金属(Me)との物質量との比(Li/Me)について、例えば層状化合物Li1+αMeO2を仮定した際、角型・パウチ型リチウムイオン二次電池用正極活物質ではαが0.995〜1.005という、円筒型に比べて極めて化学量論組成に近い量で仕込むこととなる。なぜなら、Meと反応した分以外のLiは、正極活物質中にアルカリ不純物(Li2CO3、LiOH)として残存してしまうが、円筒型ではこの残存したアルカリ不純物のため、電池に組み立てた際に内部でアルカリ不純物が分解して二酸化炭素が発生し、極板が円筒缶に押し付けられてより良好な電池特性となるか、副反応に伴う内圧上昇の際に円筒型電池上部に設けた安全弁を作動させて速やかに圧力を低下させるのに対し、角型・パウチ型の場合は発生する二酸化炭素は外形を変形させ、電池端子との接触が悪くなったり、極板と端子との接触が悪くなってしまって電池として働かなくなってしまったりするからである。ここで、焼成に用いるリチウム化合物として水酸化リチウムを選択すると、焼成後に炭酸リチウムや水酸化リチウムが多量に検出されてしまうのが実態であり、そのため焼成前のリチウム化合物として炭酸リチウムを選択し、焼成後の炭酸リチウム量を抑制するのが角型・パウチ型リチウムイオン二次電池用正極活物質の開発では常識となっている。
原料に炭酸リチウムを用いる焼成では、一般的に炭酸リチウムの融点がTG−DTAで測定すると730℃となることから、730℃近辺でいったん炭酸リチウムを溶融して、そのあと本焼成となる800〜1000℃近辺に持っていくことが多い。しかし本発明者が検討を行ったところ、実際の遷移金属とリチウムとの反応は500℃近辺で始まっており、上記の溶融工程を行ってしまうと、一旦形成した活物質粒子同士の融着が発生し、焼成後の解砕の際に過大な力が必要となってしまってせっかくできていた一次粒子を破壊し、この時にもともと粒子内部にあった炭酸リチウムが表面に現われるか、空気中の二酸化炭素と正極活物質の新規一次粒子破断面とが接触することにより炭酸リチウムが不純物として発生してしまって膨れの抑制になっていないことがわかった。これを防ぐために弱い力で解砕した後ふるい等で分級することも考えられているが、粗大粒子を分級したとしても、本来の粒子ではない凝集粒子(例えば、リチウムニッケル酸化物系正極活物質では一次粒子が凝集して二次粒子を形成するが、平均二次粒子径よりも小さい二次粒子が三次凝集し、平均二次粒子径と同じ凝集径を持つ粒子)が電極作製時にプレスをかけることで壊れてしまい、この場合も上記と似たようなメカニズムにより炭酸リチウムが表面に現われるか炭酸リチウムが不純物として発生し、やはり膨れの抑制につながっていないことが判明した。
この対策として、Li/Meを上述の範囲よりもやや多めに仕込み、結果として得られた焼成粉を水洗することがあったが、水洗したままの正極活物質では表面にLi欠陥が生成するためサイクル特性が悪く、またこれを焼成すると表面に酸素欠陥が多量に発生し、やはりサイクル特性が悪くなることが判明した。
Generally, in a prismatic / pouch-type lithium-ion secondary battery, as described above, it is important that impurities in the positive electrode active material are low, but this is due to the manufacturing process of the positive electrode active material. I have. That is, in the conventional manufacturing process, a lithium compound (lithium hydroxide, lithium carbonate, etc.) and a transition metal compound (carbonate, hydroxide, oxide, etc.) are mixed and fired. At this time, as for the ratio (Li / Me) between the amount of lithium and the amount of metal other than lithium (Me), for example, assuming a layered compound Li 1 + α MeO 2 , a square-shaped / pouch-shaped lithium ion In the positive electrode active material for a secondary battery, α is 0.995 to 1.005, which is an amount much closer to the stoichiometric composition compared to the cylindrical type. This is because Li other than that reacted with Me remains in the positive electrode active material as alkaline impurities (Li 2 CO 3 , LiOH). Alkali impurities are decomposed inside to generate carbon dioxide, and the electrode plate is pressed against the cylindrical can to obtain better battery characteristics, or a safety valve provided at the top of the cylindrical battery when the internal pressure rises due to side reaction In the case of a square or pouch type, the carbon dioxide generated deforms the outer shape, making contact with the battery terminals worse, or contact between the electrode plate and the terminals. This is because the battery becomes worse and does not work as a battery. Here, when lithium hydroxide is selected as the lithium compound to be used for firing, it is a reality that a large amount of lithium carbonate or lithium hydroxide is detected after firing, and therefore, lithium carbonate is selected as the lithium compound before firing, It is common knowledge in the development of a positive electrode active material for a rectangular / pouch type lithium ion secondary battery to suppress the amount of lithium carbonate after firing.
In firing using lithium carbonate as a raw material, the melting point of lithium carbonate is generally 730 ° C. as measured by TG-DTA, so that the lithium carbonate is melted once at around 730 ° C., and then the main firing is performed. It is often brought to around 1000 ° C. However, the present inventor has studied and found that the actual reaction between the transition metal and lithium has started around 500 ° C., and if the above-mentioned melting step is performed, the fusion of the active material particles once formed may occur. It is generated and destroys the primary particles that have been created by excessive force when crushing after firing, and lithium carbonate originally inside the particles appears on the surface at this time, or it is in air. It was found that lithium carbonate was generated as an impurity due to contact between carbon dioxide and the new primary particle fracture surface of the positive electrode active material, and swelling was not suppressed. In order to prevent this, it is considered that the particles are crushed with a weak force and then classified with a sieve or the like, but even if the coarse particles are classified, aggregated particles that are not the original particles (for example, lithium nickel oxide-based positive electrode active material) In this case, the primary particles aggregate to form secondary particles, but secondary particles smaller than the average secondary particle diameter are tertiary aggregated, and particles having the same aggregate diameter as the average secondary particle diameter) are pressed during electrode fabrication. In this case, it was found that lithium carbonate appeared on the surface or lithium carbonate was generated as an impurity by a mechanism similar to the above, and this did not lead to suppression of blistering.
As a countermeasure, Li / Me may be charged slightly larger than the above range, and the resulting fired powder may be washed with water. However, in the positive electrode active material that has been washed with water, Li defects are generated on the surface. It was found that the cycle characteristics were poor, and when this was fired, a large amount of oxygen defects were generated on the surface, and the cycle characteristics were also poor.

このような問題を鑑みて、本発明は、充放電効率及びサイクル特性が良好で膨れの発生が抑制された角型またはパウチ型リチウムイオン二次電池を提供することを課題とする。   In view of such a problem, an object of the present invention is to provide a prismatic or pouch-type lithium ion secondary battery that has good charge / discharge efficiency and cycle characteristics and suppresses swelling.

本発明者は、上記問題を解決するため種々の検討を行った結果、所定の組成式を有する正極活物質を用いた、オルト水素−パラ水素変換率が0.2%以下である正極と、所定のシグナルの強度比を有する電解液と、所定の構成を有する負極とを備えたリチウムイオン二次電池によれば、充放電効率及びサイクル特性が良好で膨れの発生が抑制された角型・パウチ型リチウムイオン二次電池を提供することができることを見出した。   The present inventor has conducted various studies to solve the above problems, and as a result, using a positive electrode active material having a predetermined composition formula, a positive electrode having an ortho hydrogen-para hydrogen conversion rate of 0.2% or less, According to a lithium ion secondary battery including an electrolyte having a predetermined signal intensity ratio and a negative electrode having a predetermined configuration, a square-shaped battery having good charge / discharge efficiency and cycle characteristics and suppressed swelling is provided. It has been found that a pouch-type lithium ion secondary battery can be provided.

上記知見を基礎にして完成した本発明は一側面において、α−NaFeO2型の構造を持ち、組成式がLi1+αTO2
(式中、0≦α≦0.002であり、TはNi、Co、Mn、Mg及びAlから選択される少なくとも1種からなり、Mnを含む場合は組成比:Mn/Tが0.1以下であり、Alを含む場合は組成比:Al/Tが0.03以下であり、Mgを含む場合は組成比:Mg/Tが0.015以下である)
で表される正極活物質を備え、
下記(1)〜(3)の測定手順で測定されるオルト水素−パラ水素変換率が0.2%以下である正極と、
13C NMRを測定した際に150〜160ppmのシグナルに対する160〜170ppmのシグナルの強度比が0.002以下である電解液と、
黒鉛、難黒鉛化性炭素、及び、分子内に芳香環とカルボニル基を2つ以上有し前記芳香環が積み重なった構造を有する化合物のうちいずれか1種または2種以上を負極活物質として用いた負極と、
を備えたリチウムイオン二次電池である。
(1)リチウムイオン二次電池を解体して正極を取り出し、前記正極から前記正極活物質層を剥がして120℃で10時間乾燥することで電極剥離乾燥物を作製する。
(2)前記電極剥離乾燥物を、ICP発光分光分析法によって前記Tが0.2モルとなる重量分採取し、内径0.7cm、外径1cmのリング状オリフィスを内壁に沿って固定した内径1cmのフッ素樹脂製の直管に、外径1cmの30メッシュであるフッ素樹脂メッシュを前記リング状オリフィスに接触するように充填した後、前記採取した電極剥離乾燥物を前記直管内の前記フッ素樹脂メッシュの表面に接触するように詰める。
(3)前記直管を70Kに冷やし、前記直管の前記電極剥離乾燥物側にある入口から流入ガスとして純オルト水素を1.3L/minで10秒間流し込み、前記直管の前記フッ素樹脂メッシュ側にある出口から排出される排出ガスをファーカスの熱伝導度計で測定することで、排出ガスにおけるパラ水素の体積をAとし、流出ガスの総体積をBとしたときの(A/B)×100%で示される体積百分率であるオルト水素−パラ水素変換率を求める。
In one aspect, the present invention, which has been completed based on the above findings, has an α-NaFeO 2 type structure, and has a composition formula of Li 1 + α TO 2
(Where 0 ≦ α ≦ 0.002, and T is at least one selected from Ni, Co, Mn, Mg, and Al. When Mn is contained, the composition ratio: Mn / T is 0.1. (When Al is contained, the composition ratio: Al / T is 0.03 or less, and when Mg is contained, the composition ratio: Mg / T is 0.015 or less.)
With a positive electrode active material represented by
A positive electrode having an ortho-hydrogen / para-hydrogen conversion of 0.2% or less as measured by the following measurement procedures (1) to (3);
An electrolyte having an intensity ratio of a signal of 160 to 170 ppm to a signal of 150 to 160 ppm when measuring 13 C NMR of 0.002 or less;
One or more of graphite, non-graphitizable carbon, and a compound having two or more aromatic rings and carbonyl groups in a molecule and having a structure in which the aromatic rings are stacked are used as a negative electrode active material. Negative electrode,
Is a lithium ion secondary battery provided with:
(1) A lithium ion secondary battery is disassembled, a positive electrode is taken out, the positive electrode active material layer is peeled off from the positive electrode, and dried at 120 ° C. for 10 hours to produce a dried electrode peeled product.
(2) The dried electrode peeled product was collected by ICP emission spectroscopy in such a manner that the T became 0.2 mol, and a ring-shaped orifice having an inner diameter of 0.7 cm and an outer diameter of 1 cm was fixed along the inner wall. After filling a 1 cm fluororesin straight pipe with a fluororesin mesh of 30 mesh having an outer diameter of 1 cm so as to come into contact with the ring-shaped orifice, the collected electrode-peeled and dried product is filled with the fluororesin in the straight pipe. Pack so that it contacts the surface of the mesh.
(3) The straight tube is cooled to 70K, and pure ortho hydrogen is fed as an inflow gas at a flow rate of 1.3 L / min for 10 seconds from an inlet of the straight tube on the side of the electrode-peeled dried product, and the fluororesin mesh of the straight tube is flown. By measuring the exhaust gas discharged from the outlet on the side with a thermal conductivity meter of Farcus, the volume of parahydrogen in the exhaust gas is defined as A, and the total volume of outflow gas is defined as B (A / B). An ortho-hydrogen-para-hydrogen conversion, which is a volume percentage indicated by × 100%, is determined.

本発明は別の一側面において、α−NaFeO2型の構造を持ち、組成式がLi1+αTO2
(式中、0≦α≦0.002であり、TはNi、Co、Mn、Mg及びAlから選択される少なくとも1種からなり、Mnを含む場合は組成比:Mn/Tが0.1以下であり、Alを含む場合は組成比:Al/Tが0.03以下であり、Mgを含む場合は組成比:Mg/Tが0.015以下である)
で表されるリチウムイオン二次電池用正極活物質の製造方法であり、
前記Tの水酸化物または酸化物と、炭酸リチウムとの混合物を作製する工程と、
前記混合物を焼成する工程であって、760〜1000℃である焼成最高温度までの昇温時において焼成雰囲気を0.002MPa以上の炭酸ガス分圧と0.018MPa以上の酸素分圧とを有する雰囲気に制御し、且つ、前記焼成最高温度に到達してから前記焼成最高温度を保持し、冷却を開始するまでの間は炭酸ガスを含まず酸素分圧が0.018〜0.1MPaとなる雰囲気に制御する工程と、
を含むリチウムイオン二次電池用正極活物質の製造方法である。
In another aspect, the present invention has an α-NaFeO 2 type structure and a composition formula of Li 1 + α TO 2
(Where 0 ≦ α ≦ 0.002, and T is at least one selected from Ni, Co, Mn, Mg, and Al. When Mn is contained, the composition ratio: Mn / T is 0.1. (When Al is contained, the composition ratio: Al / T is 0.03 or less, and when Mg is contained, the composition ratio: Mg / T is 0.015 or less.)
A method for producing a positive electrode active material for a lithium ion secondary battery represented by
Producing a mixture of the hydroxide or oxide of T and lithium carbonate;
An atmosphere having a carbon dioxide gas partial pressure of 0.002 MPa or more and an oxygen partial pressure of 0.018 MPa or more when the temperature is raised to the maximum firing temperature of 760 to 1000 ° C. , And the maximum firing temperature is maintained after reaching the maximum firing temperature, and until the start of cooling, the oxygen partial pressure is 0.018 to 0.1 MPa without carbon dioxide gas. Controlling the atmosphere,
A method for producing a positive electrode active material for a lithium ion secondary battery, comprising:

本発明によれば、充放電効率及びサイクル特性が良好で膨れの発生が抑制された角型・パウチ型リチウムイオン電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the charge / discharge efficiency and a cycle characteristic can be provided and the square-shaped / pouch-type lithium ion battery which suppressed generation | occurrence | production of swelling can be provided.

(a)は実施例3の陰極側に流通させた化合物である。(b)は実施例3で回収した化合物である。(A) is a compound which was circulated on the cathode side in Example 3. (B) is the compound recovered in Example 3. 実施例12で用いた焼成装置の模式図である。FIG. 13 is a schematic view of a firing device used in Example 12. 実施例3の反応系の概略模式図である。FIG. 3 is a schematic diagram of a reaction system of Example 3. オルト水素−パラ水素変換率の測定装置の模式図である。It is a schematic diagram of a measuring device of ortho hydrogen-para hydrogen conversion.

(リチウムイオン二次電池の構成)
本発明のリチウムイオン二次電池は、正極と、電解液と、負極とを備える。
本発明のリチウムイオン二次電池の正極活物質は、α−NaFeO2型の構造を持ち、組成式がLi1+αTO2
(式中、0≦α≦0.002であり、TはNi、Co、Mn、Mg及びAlから選択される少なくとも1種からなり、Mnを含む場合は組成比:Mn/Tが0.1以下であり、Alを含む場合は組成比:Al/Tが0.03以下であり、Mgを含む場合は組成比:Mg/Tが0.015以下である)で表される。また、本発明のリチウムイオン二次電池は、正極について、下記(1)〜(3)の測定手順で測定されるオルト水素−パラ水素変換率が0.2%以下である。
(1)リチウムイオン二次電池を解体して正極を取り出し、前記正極から前記正極活物質層を剥がして120℃で10時間乾燥することで電極剥離乾燥物を作製する。
(2)前記電極剥離乾燥物を、ICP発光分光分析法によって前記Tが0.2モルとなる重量分採取し、内径0.7cm、外径1cmのリング状オリフィスを内壁に沿って固定した内径1cmのフッ素樹脂製の直管に、外径1cmの30メッシュであるフッ素樹脂メッシュを前記リング状オリフィスに接触するように充填した後、前記採取した電極剥離乾燥物を前記直管内の前記フッ素樹脂メッシュの表面に接触するように詰める。
(3)前記直管を70Kに冷やし、前記直管の前記電極剥離乾燥物側にある入口から流入ガスとして純オルト水素を1.3L/minで10秒間流し込み、前記直管の前記フッ素樹脂メッシュ側にある出口から排出される排出ガスをファーカスの熱伝導度計で測定することで、排出ガスにおけるパラ水素の体積をAとし、流出ガスの総体積をBとしたときの(A/B)×100%で示される体積百分率であるオルト水素−パラ水素変換率を求める。
(Configuration of lithium-ion secondary battery)
The lithium ion secondary battery of the present invention includes a positive electrode, an electrolyte, and a negative electrode.
The positive electrode active material of the lithium ion secondary battery of the present invention has an α-NaFeO 2 type structure, and has a composition formula of Li 1 + α TO 2
(Where 0 ≦ α ≦ 0.002, and T is at least one selected from Ni, Co, Mn, Mg, and Al. When Mn is contained, the composition ratio: Mn / T is 0.1. (If Al is contained, the composition ratio: Al / T is 0.03 or less, and if Mg is contained, the composition ratio: Mg / T is 0.015 or less.) In the lithium ion secondary battery of the present invention, the ortho-hydrogen / para-hydrogen conversion rate of the positive electrode measured by the following measurement procedures (1) to (3) is 0.2% or less.
(1) A lithium ion secondary battery is disassembled, a positive electrode is taken out, the positive electrode active material layer is peeled off from the positive electrode, and dried at 120 ° C. for 10 hours to produce a dried electrode peeled product.
(2) The dried electrode peeled product was collected by ICP emission spectroscopy in such a manner that the T became 0.2 mol, and a ring-shaped orifice having an inner diameter of 0.7 cm and an outer diameter of 1 cm was fixed along the inner wall. After filling a 1 cm fluororesin straight pipe with a fluororesin mesh of 30 mesh having an outer diameter of 1 cm so as to come into contact with the ring-shaped orifice, the collected electrode-peeled and dried product is filled with the fluororesin in the straight pipe. Pack so that it contacts the surface of the mesh.
(3) The straight tube is cooled to 70K, and pure ortho hydrogen is fed as an inflow gas at a flow rate of 1.3 L / min for 10 seconds from an inlet of the straight tube on the side of the electrode-peeled dried product, and the fluororesin mesh of the straight tube is flown. By measuring the exhaust gas discharged from the outlet on the side with a thermal conductivity meter of Farcus, the volume of parahydrogen in the exhaust gas is defined as A, and the total volume of outflow gas is defined as B (A / B). An ortho-hydrogen-para-hydrogen conversion, which is a volume percentage indicated by × 100%, is determined.

本発明のリチウムイオン二次電池の正極活物質が上述の組成を有し、且つ、当該正極活物質を用いて正極を構成し、これをリチウムイオン二次電池とした際に、当該電池を解体して取り出した正極の上記(1)〜(3)の測定手順で測定されるオルト水素−パラ水素変換率が0.2%以下に制御されている。当該変換率の値は、当該正極活物質粒子から不純物のLi塩(炭酸リチウム、水酸化リチウム等)を除いた表面の表面酸素欠陥量および表面Li欠陥量と相関があり、表面酸素欠陥量および表面Li欠陥量が多いほど当該変換率が大きくなる。この表面欠陥量が多いと、充放電での正極活物質粒子へのリチウムイオンの挿入・脱離が起こる際に、特に表面付近の結晶格子が不完全な形で膨張・収縮するため、当該結晶格子がサイクルを経るごとにリチウムイオン伝導経路がつぶれてしまいサイクル特性の悪い正極活物質となってしまう。表面付近はリチウムイオン伝導経路として極めて重要であり、バルク内部の酸素欠陥やLi欠陥よりも影響が大きい。この点、本発明中にて定義されるオルト水素−パラ水素変換率が0.2%以下と極めて少ない値であれば、サイクル特性が良好な角型・パウチ型リチウムイオン二次電池を提供することができる。   When the positive electrode active material of the lithium ion secondary battery of the present invention has the above-described composition, and a positive electrode is formed using the positive electrode active material, and this is used as a lithium ion secondary battery, the battery is disassembled. The ortho-hydrogen-para-hydrogen conversion of the positive electrode taken out in the above-described measurement procedures (1) to (3) is controlled to 0.2% or less. The value of the conversion rate has a correlation with the amount of surface oxygen defects and the amount of surface Li defects on the surface of the positive electrode active material particles from which impurities such as Li salts (lithium carbonate, lithium hydroxide, etc.) have been removed. The conversion ratio increases as the amount of surface Li defects increases. If this amount of surface defects is large, the insertion and detachment of lithium ions into and from the positive electrode active material particles during charging and discharging occur, particularly when the crystal lattice near the surface expands and contracts in an incomplete form. Each time the lattice goes through a cycle, the lithium ion conduction path is broken, resulting in a positive electrode active material having poor cycle characteristics. The vicinity of the surface is extremely important as a lithium ion conduction path, and has a greater effect than oxygen defects and Li defects inside the bulk. In this regard, if the ortho-hydrogen-para-hydrogen conversion rate defined in the present invention is an extremely small value of 0.2% or less, a rectangular / pouch type lithium ion secondary battery having good cycle characteristics is provided. be able to.

また、炭酸リチウム中のLiの物質量と、Tを構成する元素(Mg、Al、Ni、Co、Mn)の総物質量との比(すなわち、上記組成式中の1+α)は、1.000〜1.002であることが好ましい。この比が1.000より小さい場合は、未反応のTの化合物が焼成後も残存することになり、このような状態で電池を組み立てると当該残存分が充放電反応の際に何らかの悪影響を及ぼすおそれがある。この比が1.002より大きい場合は、上記の通り電池を組み立て充放電させた際に電池外形が変化するおそれがあり、外形が変化した電池は端子との接触や極板と端子との接触が悪化するおそれがある。   The ratio of the amount of Li in lithium carbonate to the total amount of elements (Mg, Al, Ni, Co, Mn) constituting T (that is, 1 + α in the above composition formula) is 1.000. ~ 1.002 is preferred. If this ratio is less than 1.000, unreacted T compounds will remain after firing, and if the battery is assembled in such a state, the remaining components will have some adverse effect on the charge / discharge reaction. There is a risk. When the ratio is greater than 1.002, the battery outer shape may change when the battery is assembled and charged and discharged as described above, and the battery having the changed outer shape may come into contact with the terminal or contact between the electrode plate and the terminal. May worsen.

本発明のリチウムイオン二次電池を構成する電解液は、13C NMRを測定した際に150〜160ppmのシグナルに対する160〜170ppmのシグナルの強度比が0.002以下となっている。このような電解液の主成分としては、例えば、エチレンカーボネートなどの環状カーボネートと、プロピレンカーボネートなどの鎖状カーボネートとを、体積比2:8〜6:4の割合で混合し、その中に0.8〜1.6mol/Lの濃度でLiPF6を溶解したものなどが好ましい。これらの体積比や化合物種や濃度は、あくまで例示であって、当業者が通常考慮する範囲で適宜変更可能である。13C NMRを測定した際に、環状または鎖状カーボネートの有機化合物が存在すれば、150〜160ppmにシグナルが現われるが、これが炭酸イオンとなると、シグナルが160〜170ppmにシフトする。当該炭酸イオンは、一部が正極上の正極活物質の表面から溶解して電解液中に存在しており、これが電池の膨れを促進している。従って、もともと正極活物質表面に存在する等で電池作製時に電解液に溶解した炭酸イオンが、電解液中のカーボネートに対してモル比で0.002以下であるならば、電解液の膨れを抑制することができる。尚、炭酸イオンは、水酸化リチウムによる環状または鎖状カーボネートの有機化合物の部分分解物が正極上で酸化することによっても発生し得る。この酸化が起こる場合は、正極活物質粒子表面の酸素を使用する可能性があり、表面酸欠量が増加するため、オルト水素−パラ水素変換率が増加し得る。 In the electrolytic solution constituting the lithium ion secondary battery of the present invention, when 13 C NMR is measured, the intensity ratio of the signal of 160 to 170 ppm to the signal of 150 to 160 ppm is 0.002 or less. As a main component of such an electrolytic solution, for example, a cyclic carbonate such as ethylene carbonate and a chain carbonate such as propylene carbonate are mixed at a volume ratio of 2: 8 to 6: 4, and 0% is contained therein. It is preferable to dissolve LiPF 6 at a concentration of 0.8 to 1.6 mol / L. These volume ratios, compound types, and concentrations are merely examples, and can be appropriately changed within a range normally considered by those skilled in the art. When 13 C NMR is measured, if an organic compound of a cyclic or chain carbonate is present, a signal appears at 150 to 160 ppm, but when it becomes a carbonate ion, the signal shifts to 160 to 170 ppm. The carbonate ions are partially dissolved from the surface of the positive electrode active material on the positive electrode and are present in the electrolytic solution, which promotes swelling of the battery. Therefore, if carbonate ions originally present on the surface of the positive electrode active material and dissolved in the electrolytic solution at the time of battery production are 0.002 or less in molar ratio with respect to carbonate in the electrolytic solution, swelling of the electrolytic solution is suppressed. can do. Note that carbonate ions can also be generated when a partial decomposition product of an organic compound of cyclic or chain carbonate by lithium hydroxide is oxidized on the positive electrode. When this oxidation occurs, oxygen on the surface of the positive electrode active material particles may be used, and the amount of surface oxygen deficiency increases, so that the ortho-hydrogen-para-hydrogen conversion rate may increase.

本発明のリチウムイオン二次電池を構成する負極は、黒鉛、難黒鉛化性炭素、及び、分子内に芳香環とカルボニル基を2つ以上有し前記芳香環が積み重なった構造を有する化合物のうちいずれか1種または2種以上を負極活物質として用いている。   The negative electrode constituting the lithium ion secondary battery of the present invention includes graphite, non-graphitizable carbon, and a compound having a structure in which two or more aromatic rings and carbonyl groups are present in a molecule and the aromatic rings are stacked. One or more of them are used as the negative electrode active material.

尚、本発明のリチウムイオン二次電池を構成する正極は、後述した方法で作製された正極活物質を、当業者が通常の方法で例えばアルミニウム箔上に塗布することにより作製できるが、例えば、当該正極活物質を3kgと、ポリフッ化ビニリデンを2質量%含むN−メチル−2−ピロリドン1kgと、アセチレンブラック90gとで構成された正極合剤を、厚さ15μmのアルミニウム箔からなる正極芯材の両面に塗布し、乾燥し、圧延して、正極活物質層を形成し、総厚が130μmの正極を作製することで、容易に本発明の正極を作製することができる。当該正極活物質から正極を作製する方法については、当業者が通常考え得る範囲において改変可能である。   Incidentally, the positive electrode constituting the lithium ion secondary battery of the present invention can be prepared by applying a positive electrode active material prepared by the method described below, for example, by a person skilled in the art by, for example, aluminum foil. A positive electrode core material comprising a positive electrode mixture composed of 3 kg of the positive electrode active material, 1 kg of N-methyl-2-pyrrolidone containing 2% by mass of polyvinylidene fluoride, and 90 g of acetylene black, made of an aluminum foil having a thickness of 15 μm The positive electrode of the present invention can be easily manufactured by forming a positive electrode having a total thickness of 130 μm by coating on both sides, drying and rolling to form a positive electrode active material layer. The method for producing a positive electrode from the positive electrode active material can be modified within a range that can be normally considered by those skilled in the art.

(リチウムイオン二次電池用正極活物質の製造方法)
次に、本発明のリチウムイオン二次電池用正極活物質の製造方法について詳細に説明する。
本発明のリチウムイオン二次電池用正極活物質の製造方法について説明する。まず、リチウムイオン二次電池用正極活物質の組成式におけるTの水酸化物または酸化物と、炭酸リチウムとの混合物(混合粉)を作製する。この場合、炭酸塩としてTを共沈させる場合はリチウム化合物と混合する前にあらかじめ仮焼すること等によりTの酸化物としておくのが好ましい。また、Tの水酸化物も、リチウム化合物と混合する前にあらかじめ仮焼すること等によりTの酸化物とすることができる。当該仮焼の条件は例えば、回転炉中で300〜500℃の温度で1.5〜5時間程度で行うが、Tの炭酸塩またはTの水酸化物をTの酸化物に変換することが目的であるため、その目的が達成されたと当業者が判断できる範囲で適宜変更可能である。
(Method for producing positive electrode active material for lithium ion secondary battery)
Next, a method for producing the positive electrode active material for a lithium ion secondary battery of the present invention will be described in detail.
The method for producing the positive electrode active material for a lithium ion secondary battery of the present invention will be described. First, a mixture (mixed powder) of a hydroxide or oxide of T in the composition formula of the positive electrode active material for a lithium ion secondary battery and lithium carbonate is prepared. In this case, when coprecipitating T as a carbonate, it is preferable to calcine it before mixing it with a lithium compound to form an oxide of T in advance. Also, the T hydroxide can be converted to a T oxide by calcining before mixing with the lithium compound. The calcination is performed, for example, in a rotary furnace at a temperature of 300 to 500 ° C. for about 1.5 to 5 hours, but it is possible to convert T carbonate or T hydroxide to T oxide. Since it is an object, it can be appropriately changed within a range in which a person skilled in the art can determine that the object has been achieved.

次に、当該混合物を焼成する。ここで、焼成条件としては、焼成最高温度までの昇温時において焼成雰囲気を0.002MPa以上の炭酸ガス分圧と0.018MPa以上の酸素分圧とを有する雰囲気に制御し、且つ、焼成最高温度に到達してから焼成最高温度を保持し、冷却を開始するまでの間は炭酸ガスを含まず酸素分圧が0.018MPaとなる雰囲気に制御する。焼成炉の種類は特に限定されず、雰囲気・ガス分圧を適切に調節できればよいが、正極活物質の製造に通常用いられるローラーハースキルン、プッシャーキルン、管型炉、マッフル炉などを用いると、容易に本発明の正極活物質の製造方法を実施できる。この際、図2に示されるように、格別に二酸化炭素の分圧の調整が必要である昇温過程および高温保持での二酸化炭素追い出し部分で密閉式バッチ炉並びにマスフローコントローラー(マスコン)を用いて各ガス分圧を緻密に制御し、二酸化炭素追い出し後の高温保持過程並びに冷却過程で連続炉を用いる構成を持つ複合炉を用いることが特に好ましい。ここで、「密閉」とは常時完全に密閉しているわけではなく、ガス導入口に該当する部分と、圧力上昇時に排気する排気口は必要に応じて制御盤より指示を出して自動開閉するように設計されている。下記の実施例12では二酸化炭素の追い出しを1000℃で行っているが、反応系に合わせて二酸化炭素の追い出しのタイミングは適宜変更することが可能である。複合炉中の連続炉は、ローラーハースキルンでもよいし、プッシャーキルンでもよい。開放式の炉を用いる場合に全圧を0.1MPa以上に設定する場合は、当該炉全体を密閉した部屋に入れて全圧を調節するか、当該炉内にシャッターを設置して部分的に密閉することで、容易に全圧を0.1MPaとしたままでガス組成の調整を行うことができる。   Next, the mixture is fired. Here, as the firing conditions, the firing atmosphere is controlled to an atmosphere having a carbon dioxide gas partial pressure of 0.002 MPa or more and an oxygen partial pressure of 0.018 MPa or more when the temperature is raised to the maximum firing temperature. After reaching the temperature, the firing maximum temperature is maintained, and the atmosphere is controlled so as not to contain carbon dioxide gas and to have an oxygen partial pressure of 0.018 MPa until cooling is started. The type of the firing furnace is not particularly limited, as long as the atmosphere and the gas partial pressure can be appropriately adjusted.However, when a roller hearth kiln, a pusher kiln, a tube furnace, a muffle furnace, or the like, which is usually used for producing a positive electrode active material, The method for producing a positive electrode active material of the present invention can be easily implemented. At this time, as shown in FIG. 2, a closed batch furnace and a mass flow controller (mascon) were used in the heating process in which the partial pressure of carbon dioxide was particularly required to be adjusted and the portion of carbon dioxide to be driven out at high temperature. It is particularly preferable to use a complex furnace having a structure in which the partial pressure of each gas is precisely controlled and a continuous furnace is used in the high-temperature holding process and the cooling process after the carbon dioxide drive. Here, "sealing" does not always mean completely closed, and the part corresponding to the gas introduction port and the exhaust port that exhausts when the pressure rises are automatically opened and closed by issuing instructions from the control panel as necessary It is designed to be. In Example 12 described below, carbon dioxide was expelled at 1000 ° C., but the timing of carbon dioxide expelling can be appropriately changed according to the reaction system. The continuous furnace in the combined furnace may be a roller hearth kiln or a pusher kiln. When the total pressure is set to 0.1 MPa or more when using an open furnace, the entire furnace is placed in a closed room and the total pressure is adjusted, or a shutter is installed in the furnace and a part of the furnace is partially installed. By sealing, the gas composition can be easily adjusted while keeping the total pressure at 0.1 MPa.

このような構成により、充放電効率及びサイクル特性が高く、かつ低アルカリの正極活物質を作ることができ、これを用いて角型またはパウチ型リチウムイオン二次電池を構成した場合、膨れを抑制することができる高充放電効率及び高サイクル特性の電池を構成することができる。そもそも空気中で炭酸リチウムのTG−DTAを測定すると730℃近辺で融解に伴う吸熱ピークが現われるが、本発明者はこれが純粋な炭酸リチウムの融解ではなく、炭酸リチウムから一部の二酸化炭素が脱離し、炭酸リチウムと酸化リチウムとの共晶化合物となった結果の融点であり、そのため実際の焼成反応において当該温度でフラックスとしての作用を期待しても難しいと考えた。すなわち、本来の炭酸リチウムの融点は二酸化炭素中で測定する必要があり、これは997℃であって、二酸化炭素が焼成炉中に存在する場合は730℃より大きく997℃以下のどこかの温度で「炭酸リチウム」または「炭酸リチウム及び酸化リチウム」が溶融すると考えられる。従って、焼成炉中の酸素濃度および二酸化炭素濃度を規定して焼成する必要があり、これによって炭酸リチウムからの二酸化炭素脱離反応・遷移金属原料からのアニオン脱離反応・リチウム化合物のフラックス発生時期を適切に制御することで、電池作製時に正極のオルト水素−パラ水素変換率が0.2%以下で電解液の13C NMRを測定した際に150〜160ppmのシグナルに対する160〜170ppmのシグナルの強度比が0.002以下となるようにすることができ、これまでにないレベルの充放電効率・サイクル特性が高くかつ膨れが少ない角型またはパウチ型リチウムイオン二次電池に用いることができる正極活物質を製造することができる。従来はこのような場合焼成時に空気を大量に流して二酸化炭素を追い出し、正極活物質を製造していたが、このやり方で焼成後の炭酸リチウム量を抑制するには、焼成容器の底にきわめて薄くしか焼成原料を充填することができず、焼成原料を匣鉢に大量に充填する際の障害となっており、また正極活物質粒子からのリチウム揮散量も多くなってしまって肝心の充放電効率が低くなってしまっていた。このため、従来、良好な充放電効率及びサイクル特性と膨れ抑制とを本発明のように高いレベルで実現することは困難であった。 With such a configuration, it is possible to produce a positive electrode active material having high charge / discharge efficiency and cycle characteristics and a low alkali, and when using this to form a prismatic or pouch-type lithium ion secondary battery, suppressing swelling Thus, a battery having high charge / discharge efficiency and high cycle characteristics can be constructed. When TG-DTA of lithium carbonate is measured in the air in the first place, an endothermic peak accompanying melting appears around 730 ° C., but this is not pure lithium carbonate melting, but some carbon dioxide is desorbed from lithium carbonate. It is the melting point as a result of the separation and the eutectic compound of lithium carbonate and lithium oxide. Therefore, it was considered that it was difficult to expect the action as a flux at the temperature in the actual firing reaction. That is, the original melting point of lithium carbonate needs to be measured in carbon dioxide, which is 997 ° C., and if carbon dioxide is present in the firing furnace, any temperature above 730 ° C. and below 997 ° C. It is considered that "lithium carbonate" or "lithium carbonate and lithium oxide" melts. Therefore, it is necessary to regulate the oxygen concentration and the carbon dioxide concentration in the firing furnace and to perform the firing, whereby the carbon dioxide elimination reaction from lithium carbonate, the anion elimination reaction from the transition metal raw material, and the timing of lithium compound flux generation Is properly controlled, when the ortho-hydrogen-para-hydrogen conversion of the positive electrode is 0.2% or less during the production of the battery and the 13 C NMR of the electrolyte is measured, the signal of 160 to 170 ppm with respect to the signal of 150 to 160 ppm is measured. A positive electrode having an intensity ratio of 0.002 or less, which can be used for a prismatic or pouch-type lithium ion secondary battery having an unprecedented level of high charge / discharge efficiency / cycle characteristics and little swelling Active material can be manufactured. Conventionally, in such a case, a large amount of air was flowed during the firing to drive out carbon dioxide to produce a positive electrode active material. The firing material can be filled only thinly, which is an obstacle to filling the firing material in large quantities in the sagger, and the amount of lithium volatilized from the positive electrode active material particles also increases, so the essential charge and discharge Efficiency had been reduced. For this reason, conventionally, it has been difficult to realize good charge / discharge efficiency, cycle characteristics, and suppression of blistering at a high level as in the present invention.

次に、焼成した粉(焼成粉)を、必要であれば、ロールミル、パルべライザー等を用いて解砕し、所定の平均粒子径を有する正極活物質を得る。この平均粒子径については、当業者が通常実施する方法で当該リチウムイオン二次電池の使用用途に応じて適宜変更可能である。   Next, the fired powder (fired powder) is crushed using a roll mill, a pulverizer or the like, if necessary, to obtain a positive electrode active material having a predetermined average particle diameter. The average particle diameter can be appropriately changed according to the intended use of the lithium ion secondary battery by a method usually performed by those skilled in the art.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
なお、以下に述べる実施例では、400〜1000℃でのCO2分圧を0.002MPa以上として、炭酸リチウムを溶融させず、997℃近辺で一気に炭酸ガスを含まない雰囲気を導入して反応させて製造した。反応系の中には低温で反応するタイプもあるため、760〜997℃の任意の温度で空気を導入した例についても併せて示す。
Hereinafter, examples for better understanding of the present invention and its advantages will be provided, but the present invention is not limited to these examples.
In the examples described below, the CO 2 partial pressure at 400 to 1000 ° C. was set to 0.002 MPa or more, lithium carbonate was not melted, and at around 997 ° C., an atmosphere containing no carbon dioxide was introduced at once to cause a reaction. Manufactured. Since some reaction systems react at low temperatures, examples in which air is introduced at an arbitrary temperature of 760 to 997 ° C. are also shown.

・実施例1
<前駆体の合成>
前駆体の合成は、以下のようにして実施した。なお、以下では「制御」と記載しているが、ポンプ等の自動によっても目視と手動によるものでもよい。
まず、硫酸コバルト、硫酸マグネシウムを水に溶解し、硫酸コバルトと硫酸マグネシウムとが溶解している水溶液Aを作製した。このとき、この水溶液のCo濃度が0.982mol/L、Mg濃度が0.015mol/Lとなるように調整した。これとは別に、アルミン酸ナトリウムを水に溶解し、アルミン酸ナトリウムが溶解している水溶液Bを作製した。このとき、この水溶液のAl濃度が0.003mol/Lとなるように作製した。さらに、炭酸ナトリウム水溶液CをNa濃度が1mol/Lとなるように作製した。空の反応槽を用意して、中身を窒素ガスで置換し、攪拌機を水はねしない程度に速く回転しながら、まずA、Bを同時に投入し、初期混合液を作製した。このときの投入速度はA、Bともに0.5L/minとした。その後AおよびBを投入し続けながらpHを監視し、5分ごとに0.1ずつ上昇させるようにCを添加した。pHが8.0になった時点で、pHの上昇の制御を止め、pHが8.2±0.2となるようにCの送液のオンオフ制御を行った。こうして初期混合液から粒子成長を行い、(Mg、Al)添加遷移金属炭酸塩とした。この(Mg、Al)添加遷移金属炭酸塩の粒径が10μmとなった時点でA、B、Cの添加を中止した。(Mg、Al)添加遷移金属炭酸塩作製中は、反応槽内部の酸素濃度が0.1ppm以下となるように維持し、A、BまたはA、B、Cが混合した反応液を50±2℃に維持し、攪拌機の回転速度は撹拌羽根がほぼ水に浸かるまでは水はねしない程度に速くなるよう、速度を調節した。撹拌羽根がほぼ水に浸かってからは一定の速度で回転した。これを中継槽に移し、ろ過・水洗を行った。水洗後の(Mg、Al)添加遷移金属炭酸塩ケーキを、バットに2cm以下の厚さになるように敷き、120℃で10時間乾燥した。こうして、(Mg、Al)添加遷移金属炭酸塩の粉末を合成した。この(Mg、Al)添加遷移金属炭酸塩の粉末を回転炉中に入れ、当該回転炉中に空気を導入しながら400℃で3時間熱分解して上記炭酸塩の粉末を(Mg、Al)添加遷移金属酸化物の粉末となし、これを前駆体とした。
-Example 1
<Synthesis of precursor>
The synthesis of the precursor was performed as follows. In the following, "control" is described, but the control may be automatic, such as with a pump, or may be performed visually or manually.
First, cobalt sulfate and magnesium sulfate were dissolved in water to prepare an aqueous solution A in which cobalt sulfate and magnesium sulfate were dissolved. At this time, the aqueous solution was adjusted so that the Co concentration was 0.982 mol / L and the Mg concentration was 0.015 mol / L. Separately, sodium aluminate was dissolved in water to prepare an aqueous solution B in which sodium aluminate was dissolved. At this time, the aqueous solution was prepared such that the Al concentration was 0.003 mol / L. Further, an aqueous sodium carbonate solution C was prepared such that the Na concentration became 1 mol / L. An empty reaction vessel was prepared, the contents were replaced with nitrogen gas, and A and B were simultaneously charged at first while simultaneously rotating the stirrer so as not to splash water to prepare an initial mixed solution. The charging speed at this time was 0.5 L / min for both A and B. Thereafter, the pH was monitored while A and B were continuously added, and C was added so as to increase by 0.1 every 5 minutes. When the pH reached 8.0, the control of the increase in the pH was stopped, and the on / off control of the C solution sending was performed so that the pH became 8.2 ± 0.2. In this way, particles were grown from the initial mixed solution to obtain (Mg, Al) -added transition metal carbonate. When the particle size of the (Mg, Al) -added transition metal carbonate reached 10 μm, the addition of A, B, and C was stopped. During the preparation of the (Mg, Al) -added transition metal carbonate, the oxygen concentration inside the reaction vessel was maintained at 0.1 ppm or less, and the reaction solution containing A, B or a mixture of A, B, and C was 50 ± 2. C., and the rotation speed of the stirrer was adjusted such that the stirring blade was fast enough not to splash water until it was almost immersed in water. After the stirring blade was almost immersed in water, it was rotated at a constant speed. This was transferred to a relay tank and filtered and washed with water. The (Mg, Al) -added transition metal carbonate cake after water washing was spread on a vat so as to have a thickness of 2 cm or less, and dried at 120 ° C. for 10 hours. Thus, (Mg, Al) -added transition metal carbonate powder was synthesized. The (Mg, Al) -added transition metal carbonate powder is placed in a rotary furnace, and thermally decomposed at 400 ° C. for 3 hours while introducing air into the rotary furnace to convert the carbonate powder into (Mg, Al). A powder of the added transition metal oxide was used as a precursor.

<正極活物質の合成>
生成した前駆体と、Li2CO3(SQM製)とを、Li/(遷移金属+Al+アルカリ土類金属)がモル比で1.002となるように仕込み、ヘンシェルミキサーで混合して混合粉を作製した。この混合粉を匣鉢に充填し、(1)1000℃までは2℃/minで昇温し、(2)1000℃で10時間保持後、(3)300℃まで2℃/minで冷却し、(4)その後室温中で放冷するという焼成パターンで焼成するようにした。その際、CO2:N2:O2の流量を、(1)では0.8:0:0.2、(2)及び(3)では0:0.8:0.2とした。放冷したものをロールミルとパルベライザーを用いて解砕し、正極活物質とした。尚、焼成中の全圧は0.1MPaに維持した。
<Synthesis of positive electrode active material>
The produced precursor and Li 2 CO 3 (manufactured by SQM) were charged so that the molar ratio of Li / (transition metal + Al + alkaline earth metal) was 1.002, and mixed with a Henschel mixer to obtain a mixed powder. Produced. This mixed powder was filled in a sagger, and (1) the temperature was raised to 1000 ° C at a rate of 2 ° C / min, (2) the temperature was kept at 1000 ° C for 10 hours, and (3) the temperature was cooled to 300 ° C at a rate of 2 ° C / min. (4) After that, firing was performed in a firing pattern of allowing to cool at room temperature. At that time, the flow rates of CO 2 : N 2 : O 2 were set to 0.8: 0: 0.2 in (1) and 0: 0.8: 0.2 in (2) and (3). The cooled product was crushed using a roll mill and a pulverizer to obtain a positive electrode active material. The total pressure during firing was maintained at 0.1 MPa.

<正極活物質の評価>
−組成−
得られた正極活物質の粉末は、ICP及びイオンクロマトグラフ法により、Li、Ni、Mn、Co及びその他の金属元素の含有量を測定し、Li以外の金属に対するLiのモル比、Li以外の金属に対する各金属のモル比について評価した。
<Evaluation of positive electrode active material>
-Composition-
The powder of the obtained positive electrode active material was measured for the content of Li, Ni, Mn, Co and other metal elements by ICP and ion chromatography, and the molar ratio of Li to metals other than Li, except for Li, The molar ratio of each metal to metal was evaluated.

−残留アルカリ−
得られた正極活物質の粉末を水に添加して10分撹拌した後、水中に存在するリチウム化合物が正極活物質中の残留アルカリであるとみなした上で、そのpHを酸で滴定することにより残留アルカリ(Li2CO3及びLiOH)の質量を求め、正極活物質に対しての質量の割合(質量%)を求めた。
-Residual alkali-
After adding the obtained powder of the positive electrode active material to water and stirring for 10 minutes, it is assumed that the lithium compound present in the water is the residual alkali in the positive electrode active material, and the pH is titrated with an acid. To determine the mass of the residual alkali (Li 2 CO 3 and LiOH), and the ratio of the mass to the positive electrode active material (% by mass).

<角型リチウムイオン二次電池の作製>
−正極の作製−
得られた正極活物質を3kgと、呉羽化学(株)製のPVDF#1320(PVDFを12重量%含むN−メチル−2−ピロリドン(以下、NMPと略記)溶液)1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機で攪拌し、正極合剤ペーストを調製した。このペーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥し、圧延して、正極活物質層を形成し、総厚が130μmの正極を得た。正極は43mm幅の帯状に裁断した。
<Preparation of prismatic lithium ion secondary battery>
-Preparation of positive electrode-
3 kg of the obtained positive electrode active material, 1 kg of PVDF # 1320 (N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) solution containing 12% by weight of PVDF) manufactured by Kureha Chemical Co., Ltd., and 90 g of acetylene black And an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture paste. This paste was applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and rolled to form a positive electrode active material layer, thereby obtaining a positive electrode having a total thickness of 130 μm. The positive electrode was cut into a strip having a width of 43 mm.

−負極Aの作製−
人造黒鉛3kgと、日本ゼオン(株)製のBM−400B(変性スチレンブタジエンゴムを40質量%含む水性分散液)75gと、CMC30gと、適量の水とを、双腕式練合機で攪拌し、負極合剤ペーストを調製した。このペーストを厚さ10μmの銅箔からなる負極集電体の両面に塗布し、乾燥し、圧延して、負極活物質層を形成し、総厚が140μmの負極を得た。負極は45mm幅の帯状に裁断した。この負極を負極Aとする。
-Preparation of negative electrode A-
3 kg of artificial graphite, 75 g of BM-400B (aqueous dispersion containing modified styrene-butadiene rubber of 40% by mass) manufactured by Zeon Corporation, 30 g of CMC, and an appropriate amount of water were stirred with a double-arm kneader. , To prepare a negative electrode mixture paste. This paste was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to form a negative electrode active material layer, thereby obtaining a negative electrode having a total thickness of 140 μm. The negative electrode was cut into a band having a width of 45 mm. This negative electrode is referred to as negative electrode A.

−角型リチウムイオン二次電池の作製−
作製した正極と作製した負極Aとを、これらの間に厚さ20μmのポリエチレン製の微多孔質フィルムからなるセパレーター(セルガード(株)製のA089(商品名))を介して捲回し、断面が略楕円形の電極群を構成した。電極群をアルミニウム製の角型の電池缶に収容した。電池缶は、底部と、側壁とを有する。電池缶の上部は開口しており、その形状は略矩形である。側壁の主要平坦部の厚みは80μmとした。その後、電池缶と正極リードまたは負極リードとの短絡を防ぐための絶縁体を電極群の上部に配置した。次に、絶縁ガスケットで囲まれた負極端子を中央に有する矩形の封口板を、電池缶の開口に配置した。負極リードは、負極端子と接続した。正極リードは、封口板の下面と接続した。開口の端部と封口板とをレーザーで溶接し、電池缶の開口を封口した。その後、封口板の注液孔から2.5gの非水電解質を電池缶に注入した。最後に、注液孔を封栓で溶接により塞いだ。この状態で24時間絶縁物の上で放置した。こうして、高さが50mmであり、幅が34mmであり、内空間の厚みが約5.2mmであり、設計容量が850mAhである角型リチウムイオン二次電池を複数完成させた。尚、上記非水電解質としては、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPF6が1M(モル/リットル)の割合で溶解された溶液について、アルゴンガスを通気して当該溶液中に溶解している二酸化炭素を十分追い出した状態で使用した。完成後の角型リチウムイオン二次電池を解体して非水電解質を吸い出し、当該吸い出された非水電解質の13C NMRスペクトル(測定方法は常法による)を測定し、150〜160ppmの領域に出現したシグナル(電解液のカルボニル基起因)に対する160〜170ppmの領域に出現したシグナル(炭酸根起因)を求めた。この角型リチウムイオン二次電池の開回路電圧を測定したところ、3.0Vとなった。
-Preparation of prismatic lithium ion secondary battery-
The prepared positive electrode and the prepared negative electrode A were wound between them with a separator (A089 (trade name) manufactured by Celgard Co., Ltd.) made of a polyethylene microporous film having a thickness of 20 μm. A substantially elliptical electrode group was formed. The electrode group was housed in a square battery can made of aluminum. The battery can has a bottom and a side wall. The upper part of the battery can is open, and its shape is substantially rectangular. The thickness of the main flat portion of the side wall was 80 μm. Thereafter, an insulator for preventing a short circuit between the battery can and the positive electrode lead or the negative electrode lead was disposed on the upper part of the electrode group. Next, a rectangular sealing plate having a negative electrode terminal surrounded by an insulating gasket at the center was arranged at the opening of the battery can. The negative electrode lead was connected to the negative electrode terminal. The positive electrode lead was connected to the lower surface of the sealing plate. The end of the opening and the sealing plate were welded with a laser to close the opening of the battery can. Thereafter, 2.5 g of the non-aqueous electrolyte was injected into the battery can from the injection hole of the sealing plate. Finally, the injection hole was closed by welding with a stopper. In this state, it was left on the insulator for 24 hours. Thus, a plurality of prismatic lithium ion secondary batteries having a height of 50 mm, a width of 34 mm, an inner space thickness of about 5.2 mm, and a design capacity of 850 mAh were completed. As the non-aqueous electrolyte, a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) in a volume ratio of 30:70 was mixed with LiPF 6 at a ratio of 1 M (mol / liter). The solution dissolved in was used in a state in which argon gas was ventilated to sufficiently remove carbon dioxide dissolved in the solution. The completed prismatic lithium-ion secondary battery is disassembled and a non-aqueous electrolyte is sucked out. The 13 C NMR spectrum of the sucked-out non-aqueous electrolyte is measured by a conventional method. The signal (attributable to the carbonate group) that appeared in the region of 160 to 170 ppm with respect to the signal (attributable to the carbonyl group of the electrolytic solution) that appeared in the above was determined. When the open circuit voltage of this prismatic lithium ion secondary battery was measured, it was 3.0 V.

−オルト水素−パラ水素変換率の測定−
作製した角型リチウムイオン二次電池を解体して正極シートを取り出し、当該正極シートから正極活物質層の塗膜をPTFEヘラで剥がして120℃で10時間乾燥して電極剥離乾燥物となし、図4の装置に当該電極剥離乾燥物を詰めて10秒間1.3L/minの純オルト水素を流通し、出口から排出されるガスについてFarkasの熱伝導度計によってオルト水素とパラ水素との割合を求め、これから(出口ガスのパラ水素量)/(出口ガス総量)の百分率としてオルト水素−パラ水素変換率(%)を求めた。
-Measurement of ortho-hydrogen-para-hydrogen conversion-
Disassemble the produced rectangular lithium ion secondary battery, take out the positive electrode sheet, peel off the coating film of the positive electrode active material layer from the positive electrode sheet with a PTFE spatula, dry at 120 ° C. for 10 hours to obtain an electrode peeled dry product, The apparatus in FIG. 4 was packed with the dried electrode peeled product, and 1.3 L / min of pure ortho-hydrogen was allowed to flow for 10 seconds. The ratio of ortho-hydrogen to para-hydrogen was measured by a Farkas thermal conductivity meter for the gas discharged from the outlet. From this, the ortho-hydrogen-para-hydrogen conversion (%) was calculated as a percentage of (amount of para-hydrogen in outlet gas) / (total amount of outlet gas).

−角型リチウムイオン二次電池の充放電−
作製した角型リチウムイオン二次電池について、25℃で充電電流850mAで充電終止電位4.2Vまで充電した後、同じく25℃で放電電流850mAで放電終止電位3.0Vまで放電した。この充放電を同じように25℃で20サイクル繰り返し、初回の充電容量(mAh/g)に対する初回の放電容量(mAh/g)の百分率(%)を充放電効率とし、初回の放電容量(mAh/g)に対する20サイクルの放電容量(mAh/g)の百分率(%)を20サイクル後容量維持率とした。また、電池の高温サイクル後の膨れを調査するため、90℃にて充電電流850mAで充電終止電位4.2Vまで充電した後、同じく90℃にて放電電流850mAで放電終止電位3.0Vまで放電した。この充放電を同じように90℃で100サイクル繰り返し、初期の内空間の厚み5.2mmからの厚さ変化をX線CTスキャンにより測定し、この変化分のうち最も大きい値を厚さ増分(mm)とした。X線CTスキャン測定は常法によった。
これらの結果を表1及び2に示す。
-Charge and discharge of prismatic lithium ion secondary battery-
The prepared rectangular lithium ion secondary battery was charged at 25 ° C. to a charge cut-off potential of 4.2 V at a charge current of 850 mA, and then discharged at 25 ° C. to a discharge cut-off potential of 3.0 V at a discharge current of 850 mA. This charge / discharge is repeated in the same manner at 25 ° C. for 20 cycles, and the percentage (%) of the initial discharge capacity (mAh / g) to the initial charge capacity (mAh / g) is defined as the charge / discharge efficiency, and the initial discharge capacity (mAh) / G), the percentage (%) of the discharge capacity (mAh / g) for 20 cycles was defined as the capacity retention rate after 20 cycles. In addition, in order to investigate the swelling of the battery after the high-temperature cycle, the battery was charged at 90 ° C. with a charging current of 850 mA to a charging end potential of 4.2 V, and then discharged at 90 ° C. with a discharging current of 850 mA to a discharging end potential of 3.0 V. did. This charging / discharging is repeated in the same manner at 90 ° C. for 100 cycles, and the thickness change from the initial inner space thickness of 5.2 mm is measured by an X-ray CT scan. mm). X-ray CT scan measurement was performed by a conventional method.
The results are shown in Tables 1 and 2.

・実施例2
下記のように負極Bを作製し、当該負極Bを負極Aに代えて用いたこと以外は、実施例1と同様に行った。結果を表1及び2に示す。
(負極Bの作製)
(株)クレハバッテリーマテリアルズジャパン製のカーボトロンP3kgと、日本ゼオン(株)製のBM−400B(変性スチレンブタジエンゴムを40質量%含む水性分散液)75gと、CMC30gと、適量の水とを、双腕式練合機で攪拌し、負極合剤ペーストを調製した。このペーストを厚さ10μmの銅箔からなる負極集電体の両面に塗布し、乾燥し、圧延して、負極活物質層を形成し、総厚が140μmの負極を得た。負極は45mm幅の帯状に裁断した。この負極を負極Bとする。
-Example 2
A negative electrode B was prepared as described below, and the same operation as in Example 1 was performed except that the negative electrode B was used instead of the negative electrode A. The results are shown in Tables 1 and 2.
(Preparation of negative electrode B)
3 kg of Carbotron P manufactured by Kureha Battery Materials Japan Co., Ltd., 75 g of BM-400B (aqueous dispersion containing 40% by mass of modified styrene butadiene rubber) manufactured by Zeon Corporation, 30 g of CMC, and an appropriate amount of water, The mixture was stirred with a double-arm kneading machine to prepare a negative electrode mixture paste. This paste was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to form a negative electrode active material layer, thereby obtaining a negative electrode having a total thickness of 140 μm. The negative electrode was cut into a band having a width of 45 mm. This negative electrode is referred to as negative electrode B.

・実施例3
下記のように負極Cを作製し、当該負極Cを負極Aに代えて用いたこと以外は、実施例1と同様に行った。結果を表1及び2に示す。
(負極Cの作製)
図3のように、陽極側に水素、陰極側に図1(a)の化合物を500℃で流通し、陽極をMの酸化物で構成し、陰極をMの黒鉛層間化合物で構成して電気分解を行った。動作原理は既存の水蒸気電解と同じであるが、固体電解質中を移動するイオンはMのカチオンである。図中には示していないが、陽極のMの酸化物はNi−Zn−Cuフェライトを、Mの黒鉛層間化合物には(Ni2+、Fe3+)−黒鉛層間化合物を用いた。生成した図1(b)の化合物(MはNi2+、Fe2+で、Ni:Feはモル比で1:3)の蒸気を磁石で分離後、冷却した磁石で析出させて回収した。回収した図1(b)の化合物を3kgと、(株)クレハバッテリーマテリアルズジャパン製のKFポリマー105gと、NMP1050gとを、双腕式練合機で攪拌し、負極合剤ペーストを調製した。このペーストを厚さ10μmの銅箔からなる負極集電体の両面に塗布し、乾燥し、圧延して、負極活物質層を形成し、総厚が140μmの負極を得た。負極は45mm幅の帯状に裁断した。この負極を負極Cとする。
-Example 3
A negative electrode C was prepared as described below, and the same operation as in Example 1 was performed except that the negative electrode C was used instead of the negative electrode A. The results are shown in Tables 1 and 2.
(Preparation of negative electrode C)
As shown in FIG. 3, hydrogen flows on the anode side, the compound of FIG. 1A flows on the cathode side at 500 ° C., the anode is composed of M oxide, and the cathode is composed of M graphite intercalation compound. Decomposition was performed. The principle of operation is the same as that of the existing steam electrolysis, but the ions traveling in the solid electrolyte are M cations. Although not shown in the figure, the oxide of M at the anode was Ni-Zn-Cu ferrite, and the graphite intercalation compound of M was (Ni 2+ , Fe 3+ ) -graphite intercalation compound. The generated vapor of the compound of FIG. 1B (M is Ni 2+ , Fe 2+ , Ni: Fe in a molar ratio of 1: 3) was separated by a magnet, collected by cooling with a cooled magnet, and collected. 1 kg of the collected compound of FIG. 1 (b), 105 g of KF polymer manufactured by Kureha Battery Materials Japan Co., Ltd., and 1050 g of NMP were stirred with a double-arm kneader to prepare a negative electrode mixture paste. This paste was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to form a negative electrode active material layer, thereby obtaining a negative electrode having a total thickness of 140 μm. The negative electrode was cut into a band having a width of 45 mm. This negative electrode is referred to as negative electrode C.

・実施例4
正極活物質の製造方法において、Li/(遷移金属+Al+アルカリ土類金属)を1.000としたこと以外は実施例1と同じようにして行った。結果を表1及び2に示す。
-Example 4
In the method for producing the positive electrode active material, the same procedure as in Example 1 was performed except that Li / (transition metal + Al + alkaline earth metal) was 1.000. The results are shown in Tables 1 and 2.

・実施例5
以下のように前駆体を合成し、焼成時の最高温度を760℃としたこと以外は実施例1と同じようにして行った。結果を表1及び2に示す。
<前駆体の合成>
前駆体の合成は、以下のようにして実施した。尚、途中で「制御」とあるが、ポンプ等の自動によっても目視と手動によるものでもよい。
まず、硫酸ニッケル、硫酸コバルトを水に溶解し、硫酸ニッケルと硫酸コバルトとが溶解している水溶液Aを作製した。このとき、この水溶液のNi濃度が0.82mol/L、Co濃度が0.15mol/Lとなるように調整した。これとは別に、硫酸アルミニウム、アンモニアを水に溶解し、硫酸アルミニウムとアンモニアとが溶解している水溶液Bを作製した。このとき、この水溶液のAl濃度が0.03mol/L、アンモニウムイオン濃度が2.003mol/Lとなるように作製した。さらに、pH調整用の水酸化ナトリウム水溶液CをNa濃度が1mol/Lとなるように作製した。空の反応槽を用意して、中身を窒素ガスで置換し、攪拌機を水はねしない程度に速く回転しながら、まずA、Bを同時に投入し、種晶を作製した。このときの投入速度はA、Bともに0.5L/minとした。その後AおよびBを投入し続けながらpHを監視し、5分ごとに0.1ずつ上昇させるようにCを添加した。pHが10.8になった時点で、pHの上昇の制御を止め、pHが11.0±0.2となるようにCの送液のオンオフ制御を行った。こうして種晶から粒子成長を行い、Al添加遷移金属水酸化物とした。このAl添加遷移金属水酸化物の粒径が10μmとなった時点でA、B、Cの添加を中止した。Al添加遷移金属水酸化物作製中は、反応槽内部の酸素濃度が0.1ppm以下となるように維持し、A、BまたはA、B、Cが混合した反応液を50±2℃に維持し、攪拌機の回転速度は撹拌羽根がほぼ水に浸かるまでは水はねしない程度に速くなるよう、速度を調節した。撹拌羽根がほぼ水に浸かってからは一定の速度で回転した。これを中継槽に移し、ろ過・水洗を行った。水洗後のAl添加遷移金属水酸化物ケーキを、120℃で乾燥した。こうして、前駆体であるAl添加遷移金属水酸化物の粉末を合成した。
-Example 5
A precursor was synthesized as follows, and carried out in the same manner as in Example 1 except that the maximum temperature during firing was 760 ° C. The results are shown in Tables 1 and 2.
<Synthesis of precursor>
The synthesis of the precursor was performed as follows. Although "control" is described in the middle, it may be automatic or visual or manual by a pump or the like.
First, nickel sulfate and cobalt sulfate were dissolved in water to prepare an aqueous solution A in which nickel sulfate and cobalt sulfate were dissolved. At this time, the aqueous solution was adjusted so that the Ni concentration was 0.82 mol / L and the Co concentration was 0.15 mol / L. Separately, aluminum sulfate and ammonia were dissolved in water to prepare an aqueous solution B in which aluminum sulfate and ammonia were dissolved. At this time, the aqueous solution was prepared such that the Al concentration was 0.03 mol / L and the ammonium ion concentration was 2.003 mol / L. Further, an aqueous sodium hydroxide solution C for pH adjustment was prepared such that the Na concentration became 1 mol / L. An empty reaction vessel was prepared, the contents were replaced with nitrogen gas, and A and B were simultaneously charged first while rotating the stirrer so fast as not to splash water, thereby producing a seed crystal. The charging speed at this time was 0.5 L / min for both A and B. Thereafter, the pH was monitored while A and B were continuously added, and C was added so as to increase by 0.1 every 5 minutes. When the pH reached 10.8, the control of the increase in the pH was stopped, and the ON / OFF control of the C solution sending was performed so that the pH became 11.0 ± 0.2. In this way, the grains were grown from the seed crystal to obtain an Al-added transition metal hydroxide. When the particle diameter of the Al-added transition metal hydroxide reached 10 μm, the addition of A, B, and C was stopped. During the preparation of the Al-added transition metal hydroxide, the oxygen concentration inside the reaction tank was maintained at 0.1 ppm or less, and the reaction solution containing A, B or a mixture of A, B, and C was maintained at 50 ± 2 ° C. The rotation speed of the stirrer was adjusted such that the rotation speed was high enough not to splash the water until the stirring blade was almost immersed in water. After the stirring blade was almost immersed in water, it was rotated at a constant speed. This was transferred to a relay tank and filtered and washed with water. The Al-added transition metal hydroxide cake after water washing was dried at 120 ° C. Thus, a powder of an Al-added transition metal hydroxide as a precursor was synthesized.

・実施例6
以下のように前駆体を合成し、焼成時の最高温度を780℃としたこと以外は実施例1と同じようにして行った。結果を表1及び2に示す。
<前駆体の合成>
前駆体の合成は、以下のようにして実施した。尚、途中で「制御」とあるが、ポンプ等の自動によっても目視と手動によるものでもよい。
まず、硫酸ニッケル、硫酸コバルト、硫酸マンガンを水に溶解し、硫酸ニッケルと硫酸コバルトと硫酸マンガンとが溶解している水溶液Aを作製した。このとき、この水溶液のNi濃度が0.80mol/L、Co濃度が0.10mol/L、Mn濃度が0.10mol/Lとなるように調整した。これとは別に、アンモニアを水に溶解し、アンモニアが溶解している水溶液Bを作製した。このとき、この水溶液のアンモニウムイオン濃度が2.003mol/Lとなるように作製した。さらに、pH調整用の水酸化ナトリウム水溶液CをNa濃度が1mol/Lとなるように作製した。空の反応槽を用意して、中身を窒素ガスで置換し、攪拌機を水はねしない程度に速く回転しながら、まずA、Bを同時に投入し、種晶を作製した。このときの投入速度はA、Bともに0.5L/minとした。その後AおよびBを投入し続けながらpHを監視し、5分ごとに0.1ずつ上昇させるようにCを添加した。pHが10.8になった時点で、pHの上昇の制御を止め、pHが11±0.2となるようにCの送液のオンオフ制御を行った。こうして種晶から粒子成長を行い、遷移金属水酸化物とした。この遷移金属水酸化物の粒径が10μmとなった時点でA、B、Cの添加を中止した。遷移金属水酸化物作製中は、反応槽内部の酸素濃度が0.1ppm以下となるように維持し、A、BまたはA、B、Cが混合した反応液を50±2℃に維持し、攪拌機の回転速度は撹拌羽根がほぼ水に浸かるまでは水はねしない程度に速くなるよう、速度を調節した。撹拌羽根がほぼ水に浸かってからは一定の速度で回転した。これを中継槽に移し、ろ過・水洗を行った。水洗後の遷移金属水酸化物ケーキを、120℃で乾燥した。こうして、前駆体である遷移金属水酸化物の粉末を合成した。
-Example 6
A precursor was synthesized as follows, and the same procedure as in Example 1 was performed except that the maximum temperature during firing was set to 780 ° C. The results are shown in Tables 1 and 2.
<Synthesis of precursor>
The synthesis of the precursor was performed as follows. Although "control" is described in the middle, it may be automatic or visual or manual by a pump or the like.
First, nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in water to prepare an aqueous solution A in which nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved. At this time, the aqueous solution was adjusted so that the Ni concentration was 0.80 mol / L, the Co concentration was 0.10 mol / L, and the Mn concentration was 0.10 mol / L. Separately, ammonia was dissolved in water to prepare an aqueous solution B in which ammonia was dissolved. At this time, the aqueous solution was prepared such that the ammonium ion concentration was 2.003 mol / L. Further, an aqueous sodium hydroxide solution C for pH adjustment was prepared such that the Na concentration became 1 mol / L. An empty reaction vessel was prepared, the contents were replaced with nitrogen gas, and A and B were simultaneously charged first while rotating the stirrer so fast as not to splash water, thereby producing a seed crystal. The charging speed at this time was 0.5 L / min for both A and B. Thereafter, the pH was monitored while A and B were continuously added, and C was added so as to increase by 0.1 every 5 minutes. When the pH reached 10.8, the control of the rise of the pH was stopped, and the on / off control of the C solution sending was performed so that the pH became 11 ± 0.2. In this way, particles were grown from the seed crystal to obtain a transition metal hydroxide. When the particle size of the transition metal hydroxide reached 10 μm, the addition of A, B, and C was stopped. During the preparation of the transition metal hydroxide, the oxygen concentration inside the reaction tank is maintained at 0.1 ppm or less, and the reaction solution in which A, B or A, B, C is mixed is maintained at 50 ± 2 ° C. The rotation speed of the stirrer was adjusted so that the rotation speed was high enough not to splash water until the stirring blades were almost immersed in water. After the stirring blade was almost immersed in water, it was rotated at a constant speed. This was transferred to a relay tank and filtered and washed with water. The transition metal hydroxide cake after washing with water was dried at 120 ° C. Thus, a transition metal hydroxide powder as a precursor was synthesized.

・実施例7
正極活物質の合成時に、(1)の段階でCO2:N2:O2を0.6:0.2:0.2としたこと以外は実施例1と同様に行った。結果を表1及び2に示す。
-Example 7
The synthesis was performed in the same manner as in Example 1 except that the ratio of CO 2 : N 2 : O 2 was changed to 0.6: 0.2: 0.2 in the step (1) during the synthesis of the positive electrode active material. The results are shown in Tables 1 and 2.

・実施例8
正極活物質の合成時に、(1)の段階でCO2:N2:O2を0.02:0.8:0.18としたこと以外は実施例1と同様に行った。結果を表1及び2に示す。
-Example 8
The synthesis was performed in the same manner as in Example 1 except that the ratio of CO 2 : N 2 : O 2 was changed to 0.02: 0.8: 0.18 in the step (1) during the synthesis of the positive electrode active material. The results are shown in Tables 1 and 2.

・実施例9
正極活物質の合成時に、(2)及び(3)の段階でCO2:N2:O2を0:0.5:0.5としたこと以外は実施例1と同様に行った。結果を表1及び2に示す。
-Example 9
The synthesis was performed in the same manner as in Example 1 except that CO 2 : N 2 : O 2 was changed to 0: 0.5: 0.5 in steps (2) and (3) during the synthesis of the positive electrode active material. The results are shown in Tables 1 and 2.

・実施例10
正極活物質の合成時に(2)及び(3)の段階で純酸素を流通したこと以外は実施例1と同様に行った。結果を表1及び2に示す。
-Example 10
The procedure was performed in the same manner as in Example 1 except that pure oxygen was passed in steps (2) and (3) during the synthesis of the positive electrode active material. The results are shown in Tables 1 and 2.

・実施例11
正極活物質の合成時に、(2)及び(3)の段階でCO2:N2:O2を0:0.82:0.18としたこと以外は実施例1と同様に行った。結果を表1及び2に示す。
Example 11
The synthesis was carried out in the same manner as in Example 1 except that CO 2 : N 2 : O 2 was changed to 0: 0.82: 0.18 in the steps (2) and (3) during the synthesis of the positive electrode active material. The results are shown in Tables 1 and 2.

・実施例12
本実施例では、焼成時に図2のような装置を用いた。実施例1の正極活物質の合成における焼成の際に、まずバッチ焼成部に混合粉の入った匣鉢を入れ、焼成雰囲気中のCO2分圧を0.06MPa以上かつO2分圧を0.02MPa以上の割合で維持するよう、制御盤とマスフローコントローラー(図2中のマスコン)によって制御しながら、2℃/minで1000℃まで昇温し、昇温後はその温度を保持しながらCO2の導入を停止してO2分圧が0.1MPa以上となるように雰囲気を調節し、CO2センサーでCO2が検出されなくなった段階で連続焼成部へのシャッターを開けて焼成炉全体に純O2を流しながら連続焼成部で1000℃で9.5時間保持後、2℃/minで300℃まで冷却して取り出した。この際、バッチ焼成部については2℃/minでの昇温をそのまま時間制御の焼成パターンとなるようにヒーター出力を調節し、連続焼成部については1000℃保持後2℃/minでの降温となるようにキルン上下のヒーター出力およびローラー速度を調節し、時間制御の焼成パターンを空間(匣鉢の位置)制御の焼成パターンに直して行った。結果として得られた焼成物をロールミルとパルベライザーを用いて解砕し、これを正極活物質としたこと以外は実施例1と同様に行った。なお、バッチ炉焼成中の全圧の制御範囲は0.12±0.02MPaとし、なるべく0.1MPaに近づくように制御目標を0.1MPaとしたが、実際には二酸化炭素を導入したり発生させたりした際に全圧が瞬間的に最高0.2MPaまで上昇することがあった。結果を表1及び2に示す。
-Example 12
In this embodiment, an apparatus as shown in FIG. 2 was used during firing. At the time of firing in the synthesis of the positive electrode active material in Example 1, first, a sagger containing the mixed powder was placed in the batch firing section, and the CO 2 partial pressure in the firing atmosphere was 0.06 MPa or more and the O 2 partial pressure was 0. The temperature was raised to 1000 ° C. at a rate of 2 ° C./min while controlling with a control panel and a mass flow controller (mass control in FIG. 2) so as to maintain the temperature at a rate of 0.02 MPa or more. Stop the introduction of 2 , adjust the atmosphere so that the O 2 partial pressure becomes 0.1 MPa or more, and open the shutter to the continuous firing section when CO 2 is no longer detected by the CO 2 sensor. Then, it was kept at 1000 ° C. for 9.5 hours in a continuous baking section while flowing pure O 2 through it, cooled to 300 ° C. at 2 ° C./min and taken out. At this time, the heater output was adjusted so that the temperature rise at 2 ° C./min for the batch firing section was a firing pattern of time control as it was, and for the continuous firing section, the temperature was lowered at 2 ° C./min after holding at 1000 ° C. The heater output above and below the kiln and the roller speed were adjusted so that the firing pattern of the time control was changed to the firing pattern of the space (position of the sagger) control. The resulting fired product was crushed using a roll mill and a pulverizer, and the same operation as in Example 1 was carried out except that this was used as a positive electrode active material. The control range of the total pressure during the batch furnace firing was set to 0.12 ± 0.02 MPa, and the control target was set to 0.1 MPa so as to approach 0.1 MPa as much as possible. In some cases, the total pressure instantaneously rises to a maximum of 0.2 MPa. The results are shown in Tables 1 and 2.

・実施例13
実施例5の前駆体であるAl添加遷移金属水酸化物の粉末を回転炉中に入れ、当該回転炉中に(N2:O2の体積比が97:3の混合ガス)を導入しながら320℃で2.5時間熱分解して上記水酸化物の粉末をAl添加遷移金属酸化物の粉末となし、これを正極活物質の合成時に前駆体としてLi2CO3と混合したこと以外は実施例5と同様に行った。結果を表1及び2に示す。
-Example 13
The powder of the Al-added transition metal hydroxide, which is the precursor of Example 5, was placed in a rotary furnace, and (a mixed gas having a volume ratio of N 2 : O 2 of 97: 3) was introduced into the rotary furnace. Except that it was thermally decomposed at 320 ° C. for 2.5 hours to turn the hydroxide powder into an Al-added transition metal oxide powder, which was mixed with Li 2 CO 3 as a precursor during the synthesis of the positive electrode active material. Performed in the same manner as in Example 5. The results are shown in Tables 1 and 2.

・実施例14
実施例6の前駆体である遷移金属水酸化物の粉末を回転炉中に入れ、当該回転炉中に(N2:O2の体積比が95:5の混合ガス)を導入しながら320℃で2.5時間熱分解して上記水酸化物の粉末を遷移金属酸化物の粉末となし、これを正極活物質の合成時に前駆体としてLi2CO3と混合したこと以外は実施例6と同様に行った。結果を表1及び2に示す。
-Example 14
The powder of the transition metal hydroxide, which is the precursor of Example 6, was placed in a rotary furnace, and 320 ° C was introduced into the rotary furnace while introducing (a mixed gas having a volume ratio of N 2 : O 2 of 95: 5). Example 6 except that the above-mentioned hydroxide powder was converted into a transition metal oxide powder by pyrolysis for 2.5 hours, and this was mixed with Li 2 CO 3 as a precursor during the synthesis of the positive electrode active material. Performed similarly. The results are shown in Tables 1 and 2.

・比較例1
実施例6において、水溶液A中のNi濃度が0.70mol/L、Co濃度が0.10mol/L、Mn濃度が0.20mol/Lとなるように調整したこと以外は実施例6と同様に行った。結果を表1及び2に示す。
-Comparative example 1
Example 6 was the same as Example 6, except that the Ni concentration in the aqueous solution A was adjusted to 0.70 mol / L, the Co concentration to 0.10 mol / L, and the Mn concentration to 0.20 mol / L. went. The results are shown in Tables 1 and 2.

・比較例2
実施例5において、水溶液A中のNi濃度が0.78mol/L、Co濃度が0.15mol/Lとなるように調整し、水溶液B中のAl濃度が0.07mol/L、アンモニウムイオン濃度が2.003mol/Lとなるように作製したこと以外は実施例5と同様に行った。結果を表1及び2に示す。
-Comparative example 2
In Example 5, the Ni concentration in the aqueous solution A was adjusted to be 0.78 mol / L, the Co concentration was adjusted to be 0.15 mol / L, the Al concentration in the aqueous solution B was 0.07 mol / L, and the ammonium ion concentration was The procedure was performed in the same manner as in Example 5, except that it was prepared to be 2.003 mol / L. The results are shown in Tables 1 and 2.

・比較例3
実施例1において、水溶液A中のCo濃度が0.979mol/L、Mg濃度が0.018mol/Lとなるように調整したこと以外は実施例1と同様に行った。結果を表1及び2に示す。
-Comparative example 3
Example 1 was repeated in the same manner as in Example 1 except that the Co concentration in the aqueous solution A was adjusted to 0.979 mol / L and the Mg concentration to 0.018 mol / L. The results are shown in Tables 1 and 2.

・比較例4
正極活物質の合成時に、(1)の段階でCO2:N2:O2を0:0.8:0.2としたこと以外は実施例1と同様に行った。結果を表1及び2に示す。
-Comparative example 4
The synthesis was carried out in the same manner as in Example 1 except that CO 2 : N 2 : O 2 was changed to 0: 0.8: 0.2 in the step (1) during the synthesis of the positive electrode active material. The results are shown in Tables 1 and 2.

・比較例5
正極活物質の合成時に、(1)の段階でCO2:N2:O2を0.6:0.4:0としたこと以外は実施例1と同様に行った。結果を表1及び2に示す。
-Comparative example 5
The synthesis was carried out in the same manner as in Example 1 except that the ratio of CO 2 : N 2 : O 2 was changed to 0.6: 0.4: 0 in the step (1) during the synthesis of the positive electrode active material. The results are shown in Tables 1 and 2.

・比較例6
正極活物質の合成時に、(2)及び(3)の段階でCO2:N2:O2を0.02:0:0.98としたこと以外は実施例1と同様に行った。結果を表1及び2に示す。
Comparative Example 6
The synthesis was carried out in the same manner as in Example 1 except that CO 2 : N 2 : O 2 was changed to 0.02: 0: 0.98 in the steps (2) and (3) during the synthesis of the positive electrode active material. The results are shown in Tables 1 and 2.

・比較例7
正極活物質の合成時に、(2)及び(3)の段階でCO2:N2:O2を0:0.9:0.1としたこと以外は実施例1と同様に行った。結果を表1及び2に示す。
Comparative Example 7
The synthesis was performed in the same manner as in Example 1 except that CO 2 : N 2 : O 2 was changed to 0: 0.9: 0.1 in the steps (2) and (3) during the synthesis of the positive electrode active material. The results are shown in Tables 1 and 2.

・比較例8
比較例1の前駆体である遷移金属水酸化物の粉末を回転炉中に入れ、当該回転炉中に(N2:O2の体積比が92:8の混合ガス)を導入しながら340℃で2.7時間熱分解して上記水酸化物の粉末を遷移金属酸化物の粉末となし、これを正極活物質の合成時に前駆体としてLi2CO3と混合したこと以外は比較例1と同様に行った。結果を表1及び2に示す。
Comparative Example 8
The transition metal hydroxide powder, which is the precursor of Comparative Example 1, was placed in a rotary furnace, and 340 ° C. while introducing (a mixed gas having a volume ratio of N 2 : O 2 of 92: 8) into the rotary furnace. Comparative Example 1 except that the above-mentioned hydroxide powder was converted to a transition metal oxide powder by pyrolysis for 2.7 hours, and this was mixed with Li 2 CO 3 as a precursor during the synthesis of the positive electrode active material. Performed similarly. The results are shown in Tables 1 and 2.

実施例1〜14のリチウムイオン二次電池は、いずれも充放電効率及びサイクル特性が良好でかつ膨れの発生が抑制された角型リチウムイオン二次電池であった。
比較例1〜8のリチウムイオン二次電池は、充放電効率及びサイクル特性が不良であるか、または、膨れが発生した。
実施例では角型のリチウムイオン二次電池を作製したが、ガス発生があると膨らんで端子接触不良等を発生させるメカニズムは角型もパウチ型も一緒であるため、本願発明の構成は、角型だけでなくパウチ型のリチウムイオン二次電池にも同様に効果があると言える。
Each of the lithium ion secondary batteries of Examples 1 to 14 was a prismatic lithium ion secondary battery having good charge / discharge efficiency and cycle characteristics and suppressed occurrence of swelling.
The lithium ion secondary batteries of Comparative Examples 1 to 8 had poor charge / discharge efficiency and cycle characteristics, or had blisters.
Although the prismatic lithium ion secondary battery was manufactured in the example, the mechanism of swelling due to the generation of gas and causing terminal contact failure and the like is the same for both the prismatic type and the pouch type. It can be said that not only the pouch type but also the pouch type lithium ion secondary battery has the same effect.

Claims (2)

α−NaFeO2型の構造を持ち、組成式がLi1+αTO2
(式中、0≦α≦0.002であり、TはNi、Co、Mn、Mg及びAlから選択される少なくとも1種からなり、Mnを含む場合は組成比:Mn/Tが0.1以下であり、Alを含む場合は組成比:Al/Tが0.03以下であり、Mgを含む場合は組成比:Mg/Tが0.015以下である)
で表される正極活物質を備え、
下記(1)〜(3)の測定手順で測定されるオルト水素−パラ水素変換率が0.2%以下である正極と、
13C NMRを測定した際に150〜160ppmのシグナルに対する160〜170ppmのシグナルの強度比が0.002以下である電解液と、
黒鉛、難黒鉛化性炭素、及び、分子内に芳香環とカルボニル基を2つ以上有し前記芳香環が積み重なった構造を有する化合物のうちいずれか1種または2種以上を負極活物質として用いた負極と、
を備えたリチウムイオン二次電池。
(1)リチウムイオン二次電池を解体して正極を取り出し、前記正極から前記正極活物質層を剥がして120℃で10時間乾燥することで電極剥離乾燥物を作製する。
(2)前記電極剥離乾燥物を、ICP発光分光分析法によって前記Tが0.2モルとなる重量分採取し、内径0.7cm、外径1cmのリング状オリフィスを内壁に沿って固定した内径1cmのフッ素樹脂製の直管に、外径1cmの30メッシュであるフッ素樹脂メッシュを前記リング状オリフィスに接触するように充填した後、前記採取した電極剥離乾燥物を前記直管内の前記フッ素樹脂メッシュの表面に接触するように詰める。
(3)前記直管を70Kに冷やし、前記直管の前記電極剥離乾燥物側にある入口から流入ガスとして純オルト水素を1.3L/minで10秒間流し込み、前記直管の前記フッ素樹脂メッシュ側にある出口から排出される排出ガスをファーカスの熱伝導度計で測定することで、排出ガスにおけるパラ水素の体積をAとし、流出ガスの総体積をBとしたときの(A/B)×100%で示される体積百分率であるオルト水素−パラ水素変換率を求める。
It has an α-NaFeO 2 type structure and the composition formula is Li 1 + α TO 2
(Where 0 ≦ α ≦ 0.002, and T is at least one selected from Ni, Co, Mn, Mg, and Al. When Mn is contained, the composition ratio: Mn / T is 0.1. (When Al is contained, the composition ratio: Al / T is 0.03 or less, and when Mg is contained, the composition ratio: Mg / T is 0.015 or less.)
With a positive electrode active material represented by
A positive electrode having an ortho-hydrogen / para-hydrogen conversion of 0.2% or less as measured by the following measurement procedures (1) to (3);
An electrolyte having an intensity ratio of a signal of 160 to 170 ppm to a signal of 150 to 160 ppm when measuring 13 C NMR of 0.002 or less;
One or more of graphite, non-graphitizable carbon, and a compound having two or more aromatic rings and carbonyl groups in a molecule and having a structure in which the aromatic rings are stacked are used as a negative electrode active material. Negative electrode,
A lithium ion secondary battery provided with.
(1) A lithium ion secondary battery is disassembled, a positive electrode is taken out, the positive electrode active material layer is peeled off from the positive electrode, and dried at 120 ° C. for 10 hours to produce a dried electrode peeled product.
(2) The dried electrode peeled product was collected by ICP emission spectroscopy in such a manner that the T became 0.2 mol, and a ring-shaped orifice having an inner diameter of 0.7 cm and an outer diameter of 1 cm was fixed along the inner wall. After filling a 1 cm fluororesin straight pipe with a fluororesin mesh of 30 mesh having an outer diameter of 1 cm so as to come into contact with the ring-shaped orifice, the collected electrode-peeled and dried product is filled with the fluororesin in the straight pipe. Pack so that it contacts the surface of the mesh.
(3) The straight tube is cooled to 70K, and pure ortho hydrogen is fed as an inflow gas at a flow rate of 1.3 L / min for 10 seconds from an inlet of the straight tube on the side of the electrode-peeled dried product, and the fluororesin mesh of the straight tube is flown. By measuring the exhaust gas discharged from the outlet on the side with a thermal conductivity meter of Farcus, the volume of parahydrogen in the exhaust gas is defined as A, and the total volume of outflow gas is defined as B (A / B). An ortho-hydrogen-para-hydrogen conversion, which is a volume percentage indicated by × 100%, is determined.
α−NaFeO2型の構造を持ち、組成式がLi1+αTO2
(式中、0≦α≦0.002であり、TはNi、Co、Mn、Mg及びAlから選択される少なくとも1種からなり、Mnを含む場合は組成比:Mn/Tが0.1以下であり、Alを含む場合は組成比:Al/Tが0.03以下であり、Mgを含む場合は組成比:Mg/Tが0.015以下である)
で表されるリチウムイオン二次電池用正極活物質の製造方法であり、
前記Tの水酸化物または酸化物と、炭酸リチウムとの混合物を作製する工程と、
前記混合物を焼成する工程であって、760〜1000℃である焼成最高温度までの昇温時において焼成雰囲気を0.002MPa以上の炭酸ガス分圧と0.018MPa以上の酸素分圧とを有する雰囲気に制御し、且つ、前記焼成最高温度に到達してから前記焼成最高温度を保持し、冷却を開始するまでの間は炭酸ガスを含まず酸素分圧が0.018〜0.1MPaとなる雰囲気に制御する工程と、
を含むリチウムイオン二次電池用正極活物質の製造方法。
It has an α-NaFeO 2 type structure and the composition formula is Li 1 + α TO 2
(Where 0 ≦ α ≦ 0.002, and T is at least one selected from Ni, Co, Mn, Mg, and Al. When Mn is contained, the composition ratio: Mn / T is 0.1. (When Al is contained, the composition ratio: Al / T is 0.03 or less, and when Mg is contained, the composition ratio: Mg / T is 0.015 or less.)
A method for producing a positive electrode active material for a lithium ion secondary battery represented by
Producing a mixture of the hydroxide or oxide of T and lithium carbonate;
An atmosphere having a carbon dioxide gas partial pressure of 0.002 MPa or more and an oxygen partial pressure of 0.018 MPa or more when the temperature is raised to the maximum firing temperature of 760 to 1000 ° C. , And the maximum firing temperature is maintained after reaching the maximum firing temperature, and until the start of cooling, the oxygen partial pressure is 0.018 to 0.1 MPa without carbon dioxide gas. Controlling the atmosphere,
A method for producing a positive electrode active material for a lithium ion secondary battery, comprising:
JP2016205524A 2016-10-19 2016-10-19 Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery Active JP6635906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016205524A JP6635906B2 (en) 2016-10-19 2016-10-19 Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205524A JP6635906B2 (en) 2016-10-19 2016-10-19 Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017017042A JP2017017042A (en) 2017-01-19
JP6635906B2 true JP6635906B2 (en) 2020-01-29

Family

ID=57830944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205524A Active JP6635906B2 (en) 2016-10-19 2016-10-19 Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6635906B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177048B1 (en) * 2018-12-19 2020-11-10 주식회사 포스코 Sintering furnace for cathode material of secondary battery and sintering method thereof
BR112021015499A2 (en) * 2019-02-26 2021-10-05 Linde Gmbh METHOD AND APPARATUS TO PRODUCE A TERNARY CATHODE MATERIAL
CN115959714B (en) * 2022-09-29 2024-06-25 宁夏汉尧富锂科技有限责任公司 Method for preparing low-cobalt-free anode material by using fire-method lean lithium and application of low-cobalt-free anode material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539223B2 (en) * 1998-08-07 2004-07-07 松下電器産業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2000260479A (en) * 1999-03-11 2000-09-22 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP4773636B2 (en) * 2001-06-20 2011-09-14 Agcセイミケミカル株式会社 Method for producing lithium cobalt composite oxide
JP2006001781A (en) * 2004-06-17 2006-01-05 Mitsui Mining & Smelting Co Ltd Manufacturing method of lithium/transition metal compound oxide
JP4937405B1 (en) * 2009-12-28 2012-05-23 住友化学株式会社 Method for producing lithium composite metal oxide
US8986571B2 (en) * 2010-06-09 2015-03-24 Toda Kogyo Corporation Lithium composite compound particles and process for producing the same, and non-aqueous electrolyte secondary battery
JP6043213B2 (en) * 2013-02-27 2016-12-14 日揮触媒化成株式会社 Layered lithium composite oxide and manufacturing method thereof, positive electrode active material for secondary battery including the layered lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as the positive electrode
JP6133720B2 (en) * 2013-07-24 2017-05-24 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
JP6888297B2 (en) * 2014-07-31 2021-06-16 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method

Also Published As

Publication number Publication date
JP2017017042A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
KR102553596B1 (en) Nickel manganese-containing composite hydroxide and method for producing the same
EP3428124B1 (en) Ni based cathode material for rechargeable lithium-ion batteries
JP5880426B2 (en) Nickel composite hydroxide, method for producing the same, and method for producing positive electrode active material
US9318739B2 (en) Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
KR101612591B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
US11973223B2 (en) Manganese composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
KR102115685B1 (en) Precursor for lithium transition metal oxide cathode materials for rechargeable batteries
JP2017162790A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
WO2017126312A1 (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing same, and lithium ion secondary battery
JP7143855B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, evaluation method for lithium metal composite oxide powder
JP2000149948A (en) Positive active material, lithium ion secondary battery and manufacture of its positive active material
JP2018049685A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP6635906B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP7110647B2 (en) Lithium-nickel-containing composite oxide, method for producing the same, lithium-ion secondary battery, and evaluation method for lithium-nickel-containing composite oxide
JP2022177291A (en) Positive electrode active material for high-strength lithium ion secondary battery, and lithium ion secondary battery employing the positive electrode active material
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP7205114B2 (en) Method for producing transition metal composite hydroxide and method for producing positive electrode active material for lithium ion secondary battery
JP7119783B2 (en) Method for producing transition metal composite hydroxide, transition metal composite hydroxide, method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery
WO2019102766A1 (en) Positive electrode active material for lithium ion secondary batteries and method for producing same
JP6409619B2 (en) Transition metal composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JPWO2018123995A1 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery
JP2017188218A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2017182927A (en) Square lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191217

R150 Certificate of patent or registration of utility model

Ref document number: 6635906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250