JP2017182927A - Square lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery - Google Patents

Square lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery Download PDF

Info

Publication number
JP2017182927A
JP2017182927A JP2016064494A JP2016064494A JP2017182927A JP 2017182927 A JP2017182927 A JP 2017182927A JP 2016064494 A JP2016064494 A JP 2016064494A JP 2016064494 A JP2016064494 A JP 2016064494A JP 2017182927 A JP2017182927 A JP 2017182927A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium ion
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016064494A
Other languages
Japanese (ja)
Inventor
武範 遠山
Takenori Toyama
武範 遠山
高行 吉田
Takayuki Yoshida
高行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2016064494A priority Critical patent/JP2017182927A/en
Publication of JP2017182927A publication Critical patent/JP2017182927A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a square lithium ion battery which is arranged so that the occurrence of the expansion of the battery owing to charge and discharge can be suppressed well, and which enables the achievement of an adequate discharge capacity and good cycle characteristics; and a method for manufacturing a positive electrode active material for a lithium ion battery.SOLUTION: A square lithium ion battery comprises a positive electrode having a positive electrode active material represented by the following composition formula: Li(NiCoMnM)O(where 0.98≤a≤1.02, x+y+z+b=1, 0.5≤x≤0.9, 0.05≤y≤0.3, 0≤z≤0.3, 0≤b≤0.05, and M is at least one element selected from Mg, Al and Zr). As to the positive electrode, the value (α/y) determined by dividing a total cobalt elution amount α by y before charging the battery from 3.0 V is 4 μg or less, and the coefficient of volumetric expansion given by the formula 1 below, and calculated from a volume Vmeasured according to an Archimedes method, and a volume Vmeasured according to the Archimedes method after execution of 100 cycles of charging and discharging the battery at 90°C is 37% or less. Battery volumetric expansion coefficient (%)=100×(V-V)÷V(1).SELECTED DRAWING: None

Description

本発明は、角型リチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法に関する。   The present invention relates to a prismatic lithium ion battery and a method for producing a positive electrode active material for a lithium ion battery.

現在、リチウムイオン電池として、大きく分けて円筒型と角型とラミネートの3種類の電池が存在する。この内、角型リチウムイオン電池については、携帯電話やスマートフォンなどの機器に付属して搭載される形で事業化され、各機器のサイズに応じて種々の電池が製造、販売されている。   Currently, there are three types of lithium-ion batteries: cylindrical, square, and laminate. Among these, prismatic lithium ion batteries have been commercialized in the form of being attached to and mounted on devices such as mobile phones and smartphones, and various types of batteries are manufactured and sold according to the size of each device.

角型リチウムイオン電池に用いられる正極活物質として、とりわけLi2CO3及びLiOHの合計である残留アルカリを低減することが求められている。この理由としては、角型の場合は残留するLi2CO3等に起因して内圧が上昇し、電池が膨れて外形の著しい変形をきたし、その結果装置の内部において正極と端子との間で接触不良を起こし、電池として機能しなくなるためである。このような理由から、角型電池用の正極活物質を作成する工程においては、その焼成前にLiがやや不足となるように(Li/Li以外の金属(以下、Meとも云う)が0.95〜1.00となるように)仕込み、残留アルカリの少ない活物質を得るようにしている。この場合、焼成時に若干Liが揮発するため、実際には正極活物質中のLi/Meは0.94〜0.99程度となる。 As a positive electrode active material used for a prismatic lithium ion battery, it is particularly required to reduce residual alkali, which is the sum of Li 2 CO 3 and LiOH. The reason for this is that, in the case of the square type, the internal pressure rises due to residual Li 2 CO 3 and the like, the battery swells and the outer shape is significantly deformed, and as a result, between the positive electrode and the terminal inside the device. This is because contact failure occurs and the battery does not function. For this reason, in the step of preparing a positive electrode active material for a prismatic battery, Li is slightly insufficient before firing (a metal other than Li / Li (hereinafter also referred to as Me) is 0.00). 95 to 1.00) to obtain an active material with little residual alkali. In this case, since Li is slightly volatilized during firing, the Li / Me in the positive electrode active material is actually about 0.94 to 0.99.

ところが、Liが不足すると、一般的には電池容量などの電池特性が低下してしまう。すなわち、残留アルカリ低減と電池特性向上にはトレードオフの関係があった。理想的には、焼成時に揮発するLi量を考慮しつつ、LiとMeとが焼成時に完全に1:1で反応するようなLi/Meを検討すれば、不純物アルカリがなく、かつLiの不足がない正極活物質が合成できるはずである。   However, when Li is insufficient, battery characteristics such as battery capacity generally deteriorate. That is, there was a trade-off relationship between reducing residual alkali and improving battery characteristics. Ideally, if Li / Me in which Li and Me react completely at 1: 1 during firing is considered while considering the amount of Li volatilized during firing, there is no impurity alkali and there is a lack of Li It should be possible to synthesize a positive electrode active material without any of the above.

しかしながら、現実的にはどんなに混合を工夫しても、部分的にLiリッチ、Meリッチな部分が存在してしまい、未反応Liや未反応Meが残存する問題があり、Li/Meの検討のみでは上記の問題を解決することは困難であった。   However, in reality, no matter how much the mixing is devised, there is a problem that Li-rich and Me-rich portions are partially present, and unreacted Li and unreacted Me remain, and only Li / Me is considered. Then, it was difficult to solve the above problem.

そこで、電池特性を維持したまま、不純物アルカリを低減する方法として、特許文献1又は特許文献2に記載されているように、Liを少し多めに仕込み、一度焼成によって得られた正極活物質前駆体を、水洗して残留アルカリを洗い流し、再び焼成(または乾燥)させて活物質として用いる技術が、角型電池において注目されている。   Therefore, as described in Patent Document 1 or Patent Document 2, as a method of reducing the impurity alkali while maintaining the battery characteristics, a slightly larger amount of Li is charged, and the positive electrode active material precursor obtained by firing once In the prismatic battery, attention has been paid to a technique in which the remaining alkali is washed away with water, fired (or dried) again, and used as an active material.

特開2012−17253号公報JP 2012-17253 A 特開2013−26199号公報JP 2013-26199 A

しかしながら、上記特許文献1又は特許文献2に記載されたような技術を実際に適用した場合、水洗により正極材粒子表面からLiが脱離し、再焼成後に粒子表面の結晶構造が破壊されることで、組成によっては逆に容量が低下する問題や、サイクル特性が悪化する問題等が生じた。   However, when the technique described in Patent Document 1 or Patent Document 2 is actually applied, Li is desorbed from the positive electrode material particle surface by washing, and the crystal structure of the particle surface is destroyed after refiring. However, depending on the composition, there are problems such as a decrease in capacity and a deterioration in cycle characteristics.

そこで、本発明は、電池の充放電によるフクレの発生が良好に抑制され、放電容量及びサイクル特性が良好となる角型リチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法を提供することを課題とする。   Accordingly, the present invention provides a method for producing a prismatic lithium ion battery and a positive electrode active material for a lithium ion battery in which the occurrence of swelling due to charging / discharging of the battery is satisfactorily suppressed and the discharge capacity and cycle characteristics are good. Let it be an issue.

本発明者は、このような問題を解決するため種々の検討を行った結果、正極活物質の洗浄後に、当該正極活物質中のLi/Meを分析して、Liの脱離によって所定のLi/Meに対して不足した分のLiを、リチウム源を加えることで補充した後に、当該正極活物質を焼成することで、残留アルカリが低減され、且つ、所定のLi/Meを有する正極活物質が作製できることを見出した。そして、これによって放電容量及びサイクル特性が良好となる角型リチウムイオン電池が得られることを見出した。   As a result of various studies to solve such a problem, the present inventor analyzed Li / Me in the positive electrode active material after washing the positive electrode active material, and determined a predetermined Li by desorption of Li. After replenishing a shortage of Li with respect to / Me by adding a lithium source, the positive electrode active material is calcined to reduce residual alkali and have a predetermined Li / Me It was found that can be produced. And it discovered that the square-shaped lithium ion battery from which discharge capacity and cycling characteristics become favorable by this is obtained.

上記知見を基礎にして完成した本発明は一側面において、組成式:Lia(NixCoyMnzb)O2
(式中、0.98≦a≦1.02、x+y+z+b=1、0.5≦x≦0.9、0.05≦y≦0.3、0≦z≦0.3、0≦b≦0.05、MはMg、Al、Zrから選択された少なくとも1種類の元素である)で表される正極活物質を有する正極を備え、前記正極は、3.0Vからの充電を行う前に下記測定条件で測定される全コバルト溶出量αをyで割った値(α/y)が4μg以下であり、アルキメデス法により測定した体積V1と、90℃で100サイクル充放電を行った後のアルキメデス法により測定した体積V2とを用いて算出した下記式1で示される体積膨張率が37%以下である角型リチウムイオン電池である。
電池体積膨張率(%)=100×(V2−V1)÷V1 (式1)
<全コバルト溶出量αの測定条件>
(1)正極の作製
前記角型リチウムイオン電池用の正極を正極シートとし、前記正極シートから、直径16mmの円形となるように試験用コイン電池の正極を切り出す。
(2)負極の準備
直径16mmの円形のリチウム金属を負極として準備する。
(3)セパレーターの準備
直径16mmより大きいが2032コイン電池に収まる大きさのセパレーターを準備する。
(4)試験用コイン電池の作製
正極、負極、セパレーターに、非水電解液を含浸させる。非水電解液はエチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPF6が1M(モル/リットル)の割合で溶解されたものとする。含浸された正極、負極、セパレーターを、外殻やスペーサーとともに2032型コイン電池の形に組み立ててかしめる。
(5)トリクル充電
前記試験用コイン電池に対し、45℃の環境下で、4.5Vまで、0.66mAの電流で充電して、その後、45℃で1週間保持するトリクル充電を行う。
(6)金属溶出量の測定
トリクル充電後の前記試験用コイン電池を解体し、負極のリチウム金属を取り出し、コイン電池1つあたりの全コバルト溶出量αとしてICP分析により算出する。このαを別にICP分析によって算出したyで割る。
In one aspect, the present invention completed on the basis of the above knowledge has a composition formula: Li a (Ni x Co y Mn z M b ) O 2
(Wherein 0.98 ≦ a ≦ 1.02, x + y + z + b = 1, 0.5 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.3, 0 ≦ b ≦ 0.05, M is at least one element selected from Mg, Al, and Zr), and the positive electrode is charged before being charged from 3.0V. The value (α / y) obtained by dividing the total cobalt elution amount α measured under the following measurement conditions by y (α / y) is 4 μg or less, and after performing charge / discharge of 100 cycles at 90 ° C. with the volume V 1 measured by Archimedes method This is a prismatic lithium ion battery having a volume expansion coefficient of 37% or less represented by the following formula 1 calculated using the volume V 2 measured by the Archimedes method.
Battery volume expansion rate (%) = 100 × (V 2 −V 1 ) ÷ V 1 (Formula 1)
<Measurement conditions of total cobalt elution amount α>
(1) Production of positive electrode The positive electrode for the rectangular lithium ion battery is used as a positive electrode sheet, and the positive electrode of the test coin battery is cut out from the positive electrode sheet so as to be a circle having a diameter of 16 mm.
(2) Preparation of negative electrode Circular lithium metal having a diameter of 16 mm is prepared as a negative electrode.
(3) Preparation of separator A separator having a diameter larger than 16 mm but fit in a 2032 coin battery is prepared.
(4) Preparation of test coin battery A positive electrode, a negative electrode, and a separator are impregnated with a non-aqueous electrolyte. In the non-aqueous electrolyte, LiPF 6 was dissolved at a rate of 1 M (mol / liter) in a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 30:70. Shall. The impregnated positive electrode, negative electrode, and separator are assembled and caulked together with an outer shell and a spacer into a 2032 type coin battery.
(5) Trickle Charging The test coin battery is charged at a current of 0.66 mA up to 4.5 V in an environment of 45 ° C., and then trickle charged at 45 ° C. for 1 week.
(6) Measurement of metal elution amount The test coin battery after trickle charge is disassembled, the lithium metal of the negative electrode is taken out, and the total cobalt elution amount α per coin battery is calculated by ICP analysis. This α is divided by y separately calculated by ICP analysis.

本発明の角型リチウムイオン電池は一実施形態において、前記正極活物質におけるLi2CO3及びLiOHの合計である残留アルカリの含有量が0.8質量%以下である。 In one embodiment, the prismatic lithium ion battery of the present invention has a residual alkali content of 0.8% by mass or less, which is the sum of Li 2 CO 3 and LiOH in the positive electrode active material.

本発明の角型リチウムイオン電池は別の一実施形態において、前記正極活物質が、組成式:Lia(NixCoyMnzb)O2
(式中、0.98≦a≦1.02、x+y+z+b=1、0.8≦x≦0.9、0.05≦y≦0.15、0≦z≦0.1、0≦b≦0.05、MはMg、Al、Zrから選択された少なくとも1種類の元素である)で表される。
In another embodiment of the prismatic lithium ion battery of the present invention, the positive electrode active material has a composition formula: Li a (Ni x Co y Mn z M b ) O 2
(Where, 0.98 ≦ a ≦ 1.02, x + y + z + b = 1, 0.8 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.15, 0 ≦ z ≦ 0.1, 0 ≦ b ≦ 0.05 and M are at least one element selected from Mg, Al, and Zr).

本発明は更に別の一側面において、組成式:Lia(NixCoyMnzb)O2
(式中、0.98≦a≦1.02、x+y+z+b=1、0.5≦x≦0.9、0.05≦y≦0.3、0≦z≦0.3、0≦b≦0.05、MはMg、Al、Zrから選択された少なくとも1種類の元素である)で表される正極活物質を洗浄する工程と、前記洗浄後の正極活物質を乾燥する工程と、前記乾燥後、ICPによって前記正極活物質中のLi以外の金属元素を定量し、且つ、イオンクロマトグラフによって正極活物質中のLiを定量して、Li/(Li以外の金属元素)の比を算出し、Li/(Li以外の金属元素)の比が所定の値となるよう不足分のLi源を前記正極活物質へ添加する工程と、前記Li源添加後の正極活物質を焼成する工程とを備えたリチウムイオン電池用正極活物質の製造方法である。
In still another aspect of the present invention, the composition formula: Li a (Ni x Co y Mn z M b ) O 2
(Wherein 0.98 ≦ a ≦ 1.02, x + y + z + b = 1, 0.5 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.3, 0 ≦ b ≦ 0.05, M is at least one element selected from Mg, Al, and Zr), a step of drying the positive electrode active material after the cleaning, After drying, the metal element other than Li in the positive electrode active material is quantified by ICP, and the Li in the positive electrode active material is quantified by ion chromatography to calculate the ratio of Li / (metal element other than Li). A step of adding an insufficient amount of Li source to the positive electrode active material such that a ratio of Li / (metal element other than Li) becomes a predetermined value, and a step of firing the positive electrode active material after the addition of the Li source The manufacturing method of the positive electrode active material for lithium ion batteries provided with this.

本発明のリチウムイオン電池用正極活物質の製造方法は一実施形態において、前記Li源が、硝酸リチウム及び/または水酸化リチウムである。   In one embodiment of the method for producing a positive electrode active material for a lithium ion battery of the present invention, the Li source is lithium nitrate and / or lithium hydroxide.

本発明のリチウムイオン電池用正極活物質の製造方法は別の一実施形態において、前記洗浄を、pH5.5〜7.5、Ca濃度が10ppm以下、且つ、Mg濃度が10ppm以下である洗浄液を使用して行う。   In another embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, the cleaning is performed with a cleaning solution having a pH of 5.5 to 7.5, a Ca concentration of 10 ppm or less, and an Mg concentration of 10 ppm or less. Use to do.

本発明によれば、電池の充放電によるフクレの発生が良好に抑制され、放電容量及びサイクル特性が良好となる角型リチウムイオン電池及びリチウムイオン電池用正極活物質の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the swelling by charging / discharging of a battery is suppressed favorably, and the manufacturing method of the square-shaped lithium ion battery and positive electrode active material for lithium ion batteries with which discharge capacity and cycling characteristics become favorable is provided. it can.

(角型リチウムイオン電池の構成)
本発明の角型リチウムイオン電池は、組成式:Lia(NixCoyMnzb)O2
(式中、0.98≦a≦1.02、x+y+z+b=1、0.5≦x≦0.9、0.05≦y≦0.3、0≦z≦0.3、0≦b≦0.05、MはMg、Al、Zrから選択された少なくとも1種類の元素である)で表される正極活物質を有する正極を備える。
角型リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が0.98〜1.02であるが、これは、0.98未満では、安定した結晶構造を保持し難くなるおそれがあり、1.02超では電池の高容量が確保し難くなるおそれがあるためである。また、ニッケルの比率が0.5未満では、放電容量が少なくなる。
(Configuration of prismatic lithium-ion battery)
The prismatic lithium ion battery of the present invention has a composition formula: Li a (Ni x Co y Mn z M b ) O 2
(Wherein 0.98 ≦ a ≦ 1.02, x + y + z + b = 1, 0.5 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.3, 0 ≦ b ≦ 0.05, M is at least one element selected from Mg, Al and Zr).
The ratio of lithium to all metals in the positive electrode active material for a square lithium ion battery is 0.98 to 1.02, but if it is less than 0.98, it may be difficult to maintain a stable crystal structure, This is because if it exceeds 1.02, it may be difficult to secure a high capacity of the battery. Further, when the nickel ratio is less than 0.5, the discharge capacity is reduced.

Mg、Al、Zrから選択された少なくとも1種類の元素である金属元素Mは、サイクル特性を向上させるために添加された微量元素である。金属元素Mの組成bが0.05を超えると、電池特性が不良となることがある。そのため、金属元素Mについて、組成b:0≦b≦0.05に制御されている。   The metal element M, which is at least one element selected from Mg, Al, and Zr, is a trace element added to improve cycle characteristics. If the composition b of the metal element M exceeds 0.05, battery characteristics may be poor. Therefore, the composition b of the metal element M is controlled to 0 ≦ b ≦ 0.05.

また、本発明の角型リチウムイオン電池用正極活物質は、組成式:Lia(NixCoyMnzb)O2
(式中、0.98≦a≦1.02、x+y+z+b=1、0.8≦x≦0.9、0.05≦y≦0.15、0≦z≦0.1、0≦b≦0.05、MはMg、Al、Zrから選択された少なくとも1種類の元素である)で表されるのが好ましい。
The positive electrode active material for prismatic lithium ion battery of the present invention, the composition formula: Li a (Ni x Co y Mn z M b) O 2
(Where, 0.98 ≦ a ≦ 1.02, x + y + z + b = 1, 0.8 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.15, 0 ≦ z ≦ 0.1, 0 ≦ b ≦ 0.05 and M are preferably represented by at least one element selected from Mg, Al and Zr).

本発明の角型リチウムイオン電池用正極活物質は、Li2CO3及びLiOHの合計である残留アルカリの含有量が0.8質量%以下であるのが好ましい。Li2CO3及びLiOHの合計である残留アルカリの含有量が0.8質量%以下に抑制されていると、角型電池等において問題となっていた、正極活物質の残留アルカリにより引き起こされる充放電に伴う電池内での副反応をより良好に抑制することができる。このため、当該角型リチウムイオン電池用正極活物質を使用することで角型リチウムイオン電池の膨れがより抑制される。Li2CO3及びLiOHの合計である残留アルカリの含有量は、0.6質量%以下がより好ましく、0.4質量%以下が更により好ましく、0.2質量%以下が更により好ましく、0.1質量%以下が更により好ましい。 In the positive electrode active material for a prismatic lithium ion battery of the present invention, the content of residual alkali, which is the sum of Li 2 CO 3 and LiOH, is preferably 0.8% by mass or less. When the content of residual alkali, which is the sum of Li 2 CO 3 and LiOH, is suppressed to 0.8% by mass or less, charging caused by residual alkali in the positive electrode active material, which has been a problem in prismatic batteries, etc. The side reaction in the battery accompanying discharge can be suppressed more favorably. For this reason, the swelling of a square-shaped lithium ion battery is suppressed more by using the said positive electrode active material for square-shaped lithium ion batteries. The content of residual alkali which is the sum of Li 2 CO 3 and LiOH is more preferably 0.6% by mass or less, still more preferably 0.4% by mass or less, still more preferably 0.2% by mass or less, and 0% More preferably, it is 1% by mass or less.

正極活物質の残留アルカリの含有量を抑制することで、角型電池等において問題となっていた、正極活物質の残留アルカリが充放電に伴う電池内での副反応を良好に抑制するが、単純に残留アルカリを水洗等により低減するだけでは正極活物質の3aサイトのLiが不足してしまい、そのまま焼成したのでは電池特性に悪影響を及ぼす。これに対し、本発明の角型リチウムイオン電池用正極は、全コバルト溶出量αをyで割った値(α/y)が4μg以下となるように制御されている。ここで、当該全コバルト溶出量αは、下記測定条件で測定される。
<全コバルト溶出量αの測定条件>
(1)正極の作製
前記角型リチウムイオン電池用の正極を正極シートとし、前記正極シートから、直径16mmの円形となるように試験用コイン電池の正極を切り出す。
(2)負極の準備
直径16mmの円形のリチウム金属を負極として準備する。
(3)セパレーターの準備
直径16mmより大きいが2032コイン電池に収まる大きさのセパレーターを準備する。
(4)試験用コイン電池の作製
正極、負極、セパレーターに、非水電解液を含浸させる。非水電解液はエチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPF6が1M(モル/リットル)の割合で溶解されたものとする。含浸された正極、負極、セパレーターを、外殻やスペーサーとともに2032型コイン電池の形に組み立ててかしめる。
(5)トリクル充電
前記試験用コイン電池に対し、45℃の環境下で、4.5Vまで、0.66mAの電流で充電して、その後、45℃で1週間保持するトリクル充電を行う。
(6)金属溶出量の測定
トリクル充電後の前記試験用コイン電池を解体し、負極のリチウム金属を取り出し、コイン電池1つあたりの全コバルト溶出量αとしてICP分析により算出する。このαを別にICP分析によって算出したyで割る。
By suppressing the residual alkali content of the positive electrode active material, the residual alkali of the positive electrode active material, which has been a problem in prismatic batteries and the like, satisfactorily suppresses side reactions in the battery associated with charge / discharge, If the residual alkali is simply reduced by washing or the like, the Li at the 3a site of the positive electrode active material is insufficient, and if it is baked as it is, the battery characteristics are adversely affected. In contrast, the positive electrode for the prismatic lithium ion battery of the present invention is controlled so that the total cobalt elution amount α divided by y (α / y) is 4 μg or less. Here, the total cobalt elution amount α is measured under the following measurement conditions.
<Measurement conditions of total cobalt elution amount α>
(1) Production of positive electrode The positive electrode for the rectangular lithium ion battery is used as a positive electrode sheet, and the positive electrode of the test coin battery is cut out from the positive electrode sheet so as to be a circle having a diameter of 16 mm.
(2) Preparation of negative electrode Circular lithium metal having a diameter of 16 mm is prepared as a negative electrode.
(3) Preparation of separator A separator having a diameter larger than 16 mm but fit in a 2032 coin battery is prepared.
(4) Preparation of test coin battery A positive electrode, a negative electrode, and a separator are impregnated with a non-aqueous electrolyte. In the non-aqueous electrolyte, LiPF 6 was dissolved at a rate of 1 M (mol / liter) in a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 30:70. Shall. The impregnated positive electrode, negative electrode, and separator are assembled and caulked together with an outer shell and a spacer into a 2032 type coin battery.
(5) Trickle Charging The test coin battery is charged at a current of 0.66 mA up to 4.5 V in an environment of 45 ° C., and then trickle charged at 45 ° C. for 1 week.
(6) Measurement of metal elution amount The test coin battery after trickle charge is disassembled, the lithium metal of the negative electrode is taken out, and the total cobalt elution amount α per coin battery is calculated by ICP analysis. This α is divided by y separately calculated by ICP analysis.

このように全コバルト溶出量αをyで割った値(α/y)が4μg以下に制御された角型リチウムイオン電池用の正極の正極活物質においては、Co2+などの低価数金属の含有量がきわめて少ない。通常、水洗等でLiが脱離すると、脱離した部分の金属の価数は還元され、Liが3aサイトに存在していた状態よりも低価数となることが知られている。一般的に低価数の金属が含まれている正極シートを取り出してトリクル充電をかけると、当該低価数金属が電解液中に溶け出し、負極に析出する。すなわち、充電後に負極上に析出した金属量を測定すれば、正極活物質中の3aサイトのLi欠損を評価することができる。このような理由から、全コバルト溶出量αをyで割った値(α/y)を極めて小さくした正極活物質を用いて電池を構成することで、円筒型なみの良好な放電容量およびサイクル特性を得ることができる。全コバルト溶出量αをyで割った値(α/y)は、より好ましくは3μg以下であり、更により好ましくは2μg以下である。 In the positive electrode active material of the positive electrode for the prismatic lithium ion battery in which the total cobalt elution amount α divided by y (α / y) is controlled to 4 μg or less, a low-valent metal such as Co 2+ is used. The content of is very low. In general, it is known that when Li is desorbed by washing or the like, the valence of the metal in the desorbed portion is reduced and becomes lower than the state in which Li was present at the 3a site. In general, when a positive electrode sheet containing a low-valent metal is taken out and trickle charging is performed, the low-valent metal is dissolved in the electrolytic solution and deposited on the negative electrode. That is, by measuring the amount of metal deposited on the negative electrode after charging, the Li deficiency at the 3a site in the positive electrode active material can be evaluated. For this reason, a battery is constructed using a positive electrode active material in which the total cobalt elution amount α divided by y (α / y) is extremely small. Can be obtained. The value (α / y) obtained by dividing the total cobalt elution amount α by y is more preferably 3 μg or less, and even more preferably 2 μg or less.

本発明の角型リチウムイオン電池用正極は、例えば、上述の構成の角型リチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けることで作製される。   The positive electrode for a prismatic lithium ion battery according to the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a prismatic lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. It is produced by providing it on one or both sides of the current collector.

(角型リチウムイオン電池)
本発明の実施形態に係る角型リチウムイオン電池は、本発明の角型リチウムイオン電池用正極を用いて製造される。また、本発明の角型リチウムイオン電池は、アルキメデス法により測定した体積V1と、90℃で100サイクル充放電を行った後のアルキメデス法により測定した体積V2とを用いて算出した下記式1で示される体積膨張率が37%以下である。
電池体積膨張率(%)=100×(V2−V1)÷V1 (式1)
このような構成によれば、充放電による体積膨張率が良好に抑制されるため、放電容量及びサイクル特性が良好となる。
(Square type lithium ion battery)
The prismatic lithium ion battery according to the embodiment of the present invention is manufactured using the positive electrode for the prismatic lithium ion battery of the present invention. Further, prismatic lithium ion battery of the present invention, the volume V 1 measured by the Archimedes method, calculated following equation using the volume V 2 measured by the Archimedes method after the 100 cycles of charge and discharge at 90 ° C. The volume expansion coefficient indicated by 1 is 37% or less.
Battery volume expansion rate (%) = 100 × (V 2 −V 1 ) ÷ V 1 (Formula 1)
According to such a configuration, the volume expansion coefficient due to charging and discharging is satisfactorily suppressed, so that the discharge capacity and cycle characteristics are good.

(角型リチウムイオン電池用正極活物質の製造方法)
本発明の実施形態に係る角型リチウムイオン電池用正極活物質の製造方法について説明する。
まず、組成式:Lia(NixCoyMnzb)O2
(式中、0.98≦a≦1.02、x+y+z+b=1、0.8≦x≦0.9、0.05≦y≦0.15、0≦z≦0.1、0≦b≦0.05、MはMg、Al、Zrから選択された少なくとも1種類の元素である)で表される正極活物質を準備する。
当該正極活物質は、特に限定されないが、例えば、上記組成の正極活物質前駆体に対して700〜1000℃×3〜48時間の焼成を行うことで作製することができる。
(Method for producing positive electrode active material for rectangular lithium ion battery)
The manufacturing method of the positive electrode active material for square-shaped lithium ion batteries which concerns on embodiment of this invention is demonstrated.
First, the composition formula: Li a (Ni x Co y Mn z M b ) O 2
(Where, 0.98 ≦ a ≦ 1.02, x + y + z + b = 1, 0.8 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.15, 0 ≦ z ≦ 0.1, 0 ≦ b ≦ 0.05, M is at least one element selected from Mg, Al, and Zr).
Although the said positive electrode active material is not specifically limited, For example, it can produce by baking 700-1000 degreeC * 3-48 hours with respect to the positive electrode active material precursor of the said composition.

次に、正極活物質を、洗浄液を用いて洗浄する。当該洗浄によって、残留アルカリを十分に除去することができる。また、このとき、当該洗浄を、pH5.5〜7.5、Ca濃度が10ppm以下、且つ、Mg濃度が10ppm以下である洗浄液を使用して行うことが好ましい。洗浄液のpHが7.5を超える場合、アルカリ性物質である残留アルカリ(Li2CO3やLiOH)を洗浄できないおそれがあり、洗浄液のpHが5.5未満の場合は正極活物質を溶解してしまうおそれがある。また、洗浄液中のCa濃度が10ppmを超える、または、Mg濃度が10ppmを超える場合、当該元素が洗浄後に正極活物質中に残存し、電池特性悪化の要因となるおそれがある。
当該洗浄液は、水または希酸を用いることができる。
Next, the positive electrode active material is cleaned using a cleaning liquid. Residual alkali can be sufficiently removed by the washing. At this time, the cleaning is preferably performed using a cleaning solution having a pH of 5.5 to 7.5, a Ca concentration of 10 ppm or less, and an Mg concentration of 10 ppm or less. If the pH of the cleaning liquid exceeds 7.5, residual alkali (Li 2 CO 3 or LiOH) that is an alkaline substance may not be cleaned. If the pH of the cleaning liquid is less than 5.5, the positive electrode active material is dissolved. There is a risk that. Further, when the Ca concentration in the cleaning liquid exceeds 10 ppm or the Mg concentration exceeds 10 ppm, the element remains in the positive electrode active material after cleaning, which may cause deterioration of battery characteristics.
As the cleaning liquid, water or dilute acid can be used.

次に、洗浄後の正極活物質を110〜130℃で1〜48時間加熱することで、乾燥させる。   Next, the washed positive electrode active material is dried by heating at 110 to 130 ° C. for 1 to 48 hours.

次に、上記乾燥後、ICP(Inductively Coupled Plasma:高周波誘導結合プラズマ)によって正極活物質中のLi以外の金属元素(Me)を定量し、且つ、イオンクロマトグラフによって正極活物質中のLiを定量して、Li/Meの比を算出し、Li/Meの比が所定の値(例えば、Li/Me=0.98〜1.02)となるよう不足分のLi源を正極活物質へ添加する。当該Li源は、硝酸リチウム及び/または水酸化リチウムであってもよい。   Next, after the drying, metal elements (Me) other than Li in the positive electrode active material are quantified by ICP (Inductively Coupled Plasma), and Li in the positive electrode active material is quantified by ion chromatography. Then, the Li / Me ratio is calculated, and a shortage of Li source is added to the positive electrode active material so that the Li / Me ratio becomes a predetermined value (for example, Li / Me = 0.98 to 1.02). To do. The Li source may be lithium nitrate and / or lithium hydroxide.

通常、正極活物質前駆体に単にLi源を混合すると、正極活物質の生成および粒成長が同時に起こることとなり、その際に正極活物質前駆体及びLiがそれぞれわずかに偏析し、焼成後に残留アルカリとして生じやすい。これに対し、本発明では、上記のように、洗浄して乾燥させた正極活物質に、適切なLi/Meに対して不足分のLi源を添加した後、後述のように焼成する。このように、正極活物質を洗浄した後に不足分のLi源を加えて焼成すると、固相反応時に既に存在する正極活物質の結晶構造にLiが挿入されるため、固相反応の反応性が良く、表面に残留アルカリが残り難い。従って、生じる正極活物質における残留アルカリの低減と、3aサイトへのLi占有率の向上とを両立することができる。   Usually, when the Li source is simply mixed with the positive electrode active material precursor, the generation of the positive electrode active material and the grain growth occur at the same time. At this time, the positive electrode active material precursor and Li are slightly segregated, and residual alkali after firing. As likely to occur. On the other hand, in the present invention, as described above, an insufficient Li source with respect to appropriate Li / Me is added to the washed and dried positive electrode active material, and then fired as described later. In this way, when the cathode active material is washed and then a sufficient amount of Li source is added and baked, Li is inserted into the crystal structure of the cathode active material already present during the solid-phase reaction, so the reactivity of the solid-phase reaction is reduced. Good, residual alkali hardly remains on the surface. Therefore, it is possible to achieve both reduction of residual alkali in the resulting positive electrode active material and improvement of Li occupancy in the 3a site.

次に、上記Li源添加後の正極活物質を700〜900℃で2〜24時間加熱することで焼成(上記洗浄前の正極活物質が焼成によって作製されているときは、「再焼成」となる)する。続いて必要であれば解砕・分級を行い、正極活物質を得る。   Next, the positive electrode active material after the addition of the Li source is fired by heating at 700 to 900 ° C. for 2 to 24 hours (when the positive electrode active material before washing is produced by firing, “refire”) Be) Subsequently, if necessary, crushing and classification are performed to obtain a positive electrode active material.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

(実施例1)
まず、純水に硫酸ニッケル、硫酸マンガン、硫酸コバルトを40℃で溶解し、(Ni+Co+Mn)の濃度が1.15mol/kgであり、Ni:Co:Mnのモル比が8:1:1である40℃の水溶液Aを用意した。この水溶液Aの中には、Ni、Co、Mn、SO4、H2O以外は実質的に含まない。水溶液Aとは別に、NaOHを純水に溶解して、1.85mol/kgのNaOH水溶液Bを作製した。また、市販の約29wt%のアンモニア水溶液(関東化学)を純水で薄めて、0.1mol%のアンモニア水溶液Cとした。加熱して水溶液B及びCの温度を40℃とし、別途準備した反応槽、水溶液A、B及びCに、それぞれ窒素を流して空気を追い出した。そして、水溶液A及びBをチューブポンプによって毎分1.5Lずつ10分程度反応槽に送液して種晶を形成した後、水溶液A、B及びCをチューブポンプによって毎分0.8Lずつ送液した。生成したスラリーをレーザー回折・散乱型粒度分布計(マイクロトラック)で粒度分布測定を行い、平均粒子径(D50)が15μmを超えたところですべての送液を止めた。これをろ過・水洗した後、400℃で3時間、窒素中で加熱して前駆体を得た。
次に、前駆体中に含まれるニッケル、マンガン、コバルトの含量をICPで分析し、Li/(Ni+Co+Mn)がモル比で0.98となるようにLiOH・H2Oの量を決定した。ICPの分析は常法によった。市販のLiOH・H2Oをジェットミルにて粉砕後当該決定した量を秤量し、ヘンシェルミキサー容器内に前駆体、LiOH・H2Oの順に投入し、蓋を閉じて5分間混合した。混合された粉を取り出した後、10℃/minで500℃まで、5℃/minで760℃まで加熱し、760℃で24時間保持し、5℃/minで400℃まで冷却後、炉扉を徐々に開放して常温まで冷却して解砕することでリチウム複合酸化物を得た。
次に、リチウム複合酸化物を、pH5.8の水で10分洗浄、ろ過後に温度120℃で1時間乾燥した。ICPによって正極活物質中のLi以外の金属元素(Me)を、さらに、イオンクロマトグラフによって正極活物質中のLiを定量し、Li/Meを算出し、Li/Meが表1に記載の値となるよう不足分のLi源(LiOH)を添加した。続いて、温度760℃で12時間の焼成(再焼成)を行って正極活物質を得た。
Example 1
First, nickel sulfate, manganese sulfate, and cobalt sulfate are dissolved in pure water at 40 ° C., the concentration of (Ni + Co + Mn) is 1.15 mol / kg, and the molar ratio of Ni: Co: Mn is 8: 1: 1. A 40 ° C. aqueous solution A was prepared. The aqueous solution A is substantially free of components other than Ni, Co, Mn, SO 4 and H 2 O. Separately from the aqueous solution A, NaOH was dissolved in pure water to prepare a 1.85 mol / kg NaOH aqueous solution B. In addition, a commercially available about 29 wt% ammonia aqueous solution (Kanto Chemical) was diluted with pure water to obtain a 0.1 mol% ammonia aqueous solution C. The temperature of the aqueous solutions B and C was set to 40 ° C. by heating, and nitrogen was passed through each of the separately prepared reaction tanks and aqueous solutions A, B, and C to expel the air. Then, after the aqueous solutions A and B are sent to the reaction tank by 1.5 L per minute to the reaction tank for about 10 minutes to form seed crystals, the aqueous solutions A, B and C are sent 0.8 L per minute by the tube pump. Liquid. The produced slurry was subjected to particle size distribution measurement with a laser diffraction / scattering type particle size distribution meter (Microtrac), and when the average particle diameter (D50) exceeded 15 μm, all liquid feeding was stopped. This was filtered and washed with water, and then heated in nitrogen at 400 ° C. for 3 hours to obtain a precursor.
Next, the contents of nickel, manganese, and cobalt contained in the precursor were analyzed by ICP, and the amount of LiOH.H 2 O was determined so that Li / (Ni + Co + Mn) was 0.98 in molar ratio. The analysis of ICP was performed by a conventional method. Commercially available LiOH · H 2 O was pulverized with a jet mill, and the determined amount was weighed. The precursor and LiOH · H 2 O were placed in this order in a Henschel mixer vessel, and the lid was closed and mixed for 5 minutes. After taking out the mixed powder, it is heated to 500 ° C. at 10 ° C./min, heated to 760 ° C. at 5 ° C./min, held at 760 ° C. for 24 hours, cooled to 400 ° C. at 5 ° C./min, and then the furnace door Was gradually opened, cooled to room temperature and crushed to obtain a lithium composite oxide.
Next, the lithium composite oxide was washed with water at pH 5.8 for 10 minutes, filtered and dried at a temperature of 120 ° C. for 1 hour. ICP was used to quantify metal elements (Me) other than Li in the positive electrode active material, and Li in the positive electrode active material was further quantified by ion chromatography to calculate Li / Me. Li / Me was the value shown in Table 1. Insufficient Li source (LiOH) was added. Subsequently, firing (re-firing) was performed at a temperature of 760 ° C. for 12 hours to obtain a positive electrode active material.

(実施例2)
リチウム複合酸化物を水洗した後に添加するLi源をLiNO3、洗浄液のpHを6.1としたこと以外は実施例1と同様な方法で正極活物質を得た。
(Example 2)
A positive electrode active material was obtained in the same manner as in Example 1 except that LiNO 3 was added as a Li source after the lithium composite oxide was washed with water, and the pH of the cleaning liquid was 6.1.

(実施例3)
リチウム複合酸化物を水洗した後に添加するLi源をLi2CO3、洗浄液のpHを6.8としたこと以外は実施例1と同様な方法で正極活物質を得た。
(Example 3)
A positive electrode active material was obtained in the same manner as in Example 1 except that the Li source added after the lithium composite oxide was washed with water was Li 2 CO 3 and the pH of the washing liquid was 6.8.

(実施例4)
Li/Meを1.00としたこと以外は実施例1と同様な方法で正極活物質を得た。
Example 4
A positive electrode active material was obtained in the same manner as in Example 1 except that Li / Me was set to 1.00.

(実施例5)
リチウム複合酸化物を水洗した後に添加するLi源をLiNO3、洗浄液のpHを7.2としたこと以外は実施例4と同様な方法で正極活物質を得た。
(Example 5)
A positive electrode active material was obtained in the same manner as in Example 4 except that the Li source added after the lithium composite oxide was washed with water was LiNO 3 , and the pH of the washing liquid was 7.2.

(実施例6)
リチウム複合酸化物を水洗した後に添加するLi源をLi2CO3、洗浄液のpHを6.3としたこと以外は実施例4と同様な方法で正極活物質を得た。
(Example 6)
A positive electrode active material was obtained in the same manner as in Example 4 except that Li 2 CO 3 was added after the lithium composite oxide was washed with water, and the pH of the washing liquid was 6.3.

(実施例7)
Li/Meを1.02、洗浄液のpHを5.7としたこと以外は実施例1と同様な方法で正極活物質を得た。
(Example 7)
A positive electrode active material was obtained in the same manner as in Example 1 except that Li / Me was 1.02 and the pH of the cleaning liquid was 5.7.

(実施例8)
リチウム複合酸化物を水洗した後に添加するLi源をLiNO3、洗浄液のpHを7.4としたこと以外は実施例7と同様な方法で正極活物質を得た。
(Example 8)
A positive electrode active material was obtained in the same manner as in Example 7 except that the Li source added after washing the lithium composite oxide with water was LiNO 3 , and the pH of the washing liquid was 7.4.

(実施例9)
リチウム複合酸化物を水洗した後に添加するLi源をLi2CO3、洗浄液のpHを5.5としたこと以外は実施例7と同様な方法で正極活物質を得た。
Example 9
A positive electrode active material was obtained in the same manner as in Example 7 except that the Li source added after the lithium composite oxide was washed with water was Li 2 CO 3 and the pH of the washing liquid was 5.5.

(実施例10)
水溶液AにおけるNi:Co:Mnのモル比を90:5:5、焼成温度を740℃、洗浄液のpHを6.7としたこと以外は実施例4と同様な方法で正極活物質を得た。
(Example 10)
A positive electrode active material was obtained in the same manner as in Example 4 except that the molar ratio of Ni: Co: Mn in the aqueous solution A was 90: 5: 5, the firing temperature was 740 ° C., and the pH of the cleaning solution was 6.7. .

(実施例11)
リチウム複合酸化物を水洗した後に添加するLi源をLiNO3、洗浄液のpHを6.3としたこと以外は実施例10と同様な方法で正極活物質を得た。
(Example 11)
A positive electrode active material was obtained in the same manner as in Example 10, except that LiNO 3 was added as a Li source to be added after the lithium composite oxide was washed with water, and the pH of the cleaning liquid was 6.3.

(実施例12)
リチウム複合酸化物を水洗した後に添加するLi源をLi2CO3、洗浄液のpHを5.7としたこと以外は実施例10と同様な方法で正極活物質を得た。
Example 12
A positive electrode active material was obtained in the same manner as in Example 10 except that the Li source added after the lithium composite oxide was washed with water was Li 2 CO 3 and the pH of the washing liquid was 5.7.

(実施例13)
水溶液AにおけるNi:Co:Mnのモル比を5:2:3、焼成温度を880℃、乾燥時間を48時間、洗浄液のpHを6.9としたこと以外は実施例4と同様な方法で正極活物質を得た。
(Example 13)
In the same manner as in Example 4, except that the molar ratio of Ni: Co: Mn in the aqueous solution A was 5: 2: 3, the firing temperature was 880 ° C., the drying time was 48 hours, and the pH of the cleaning solution was 6.9. A positive electrode active material was obtained.

(実施例14)
リチウム複合酸化物を水洗した後に添加するLi源をLiNO3、洗浄液のpHを6.4としたこと以外は実施例13と同様な方法で正極活物質を得た。
(Example 14)
A positive electrode active material was obtained in the same manner as in Example 13, except that the Li source added after washing the lithium composite oxide with water was LiNO 3 and the pH of the cleaning liquid was 6.4.

(実施例15)
リチウム複合酸化物を水洗した後に添加するLi源をLi2CO3、洗浄液のpHを6.2としたこと以外は実施例13と同様な方法で正極活物質を得た。
(Example 15)
A positive electrode active material was obtained in the same manner as in Example 13 except that the Li source added after the lithium composite oxide was washed with water was Li 2 CO 3 , and the pH of the washing liquid was 6.2.

(実施例16)
まず、純水に硫酸ニッケル、硫酸マグネシウム、硫酸コバルトを40℃で溶解し、(Ni+Co+Mg)の濃度が1.15mol/kgであり、Ni:Co:Mgのモル比が80:15:5である40℃の水溶液Aを用意した。この水溶液Aの中には、Ni、Co、Mg、SO4、H2O以外は実質的に含まない。水溶液Aとは別に、NaOHを純水に溶解して、1.85mol/kgのNaOH水溶液Bを作製した。また、市販の約29wt%のアンモニア水溶液(関東化学)を純水で薄めて、0.1mol%のアンモニア水溶液Cとした。加熱して水溶液B及びCの温度を40℃とし、別途準備した反応槽、水溶液A、B及びCに、それぞれ窒素を流して空気を追い出した。そして、水溶液A及びBをチューブポンプによって毎分1.5Lずつ10分程度反応槽に送液して種晶を形成した後、水溶液A、B及びCをチューブポンプによって毎分0.8Lずつ送液した。生成したスラリーをレーザー回折・散乱型粒度分布計(マイクロトラック)で粒度分布測定を行い、平均粒子径(D50)が15μmを超えたところですべての送液を止めた。これをろ過・水洗した後、400℃で3時間、窒素中で加熱して前駆体を得た。
次に、前駆体中に含まれるニッケル、マグネシウム、コバルトの含量をICPで分析し、Li/(Ni+Co+Mg)がモル比で1.00となるようにLiOH・H2Oの量を決定した。ICPの分析は常法によった。市販のLiOH・H2Oをジェットミルにて粉砕後当該決定した量を秤量し、ヘンシェルミキサー容器内に前駆体、LiOH・H2Oの順に投入し、蓋を閉じて5分間混合した。混合された粉を取り出した後、10℃/minで500℃まで、5℃/minで760℃まで加熱し、760℃で24時間保持し、5℃/minで400℃まで冷却後、炉扉を徐々に開放して常温まで冷却して解砕することでリチウム複合酸化物を得た。
次に、リチウム複合酸化物を、pH7.0の水で10分洗浄、ろ過後に温度120℃で1時間乾燥した。ICPによって正極活物質中のLi以外の金属元素(Me)を、さらに、イオンクロマトグラフによって正極活物質中のLiを定量し、Li/Meを算出し、Li/Meが表1に記載の値となるよう不足分のLi源(LiOH)を添加した。続いて、温度760℃で12時間の焼成(再焼成)を行って正極活物質を得た。
(Example 16)
First, nickel sulfate, magnesium sulfate, and cobalt sulfate are dissolved in pure water at 40 ° C., the concentration of (Ni + Co + Mg) is 1.15 mol / kg, and the molar ratio of Ni: Co: Mg is 80: 15: 5. A 40 ° C. aqueous solution A was prepared. The aqueous solution A is substantially free of components other than Ni, Co, Mg, SO 4 and H 2 O. Separately from the aqueous solution A, NaOH was dissolved in pure water to prepare a 1.85 mol / kg NaOH aqueous solution B. In addition, a commercially available about 29 wt% ammonia aqueous solution (Kanto Chemical) was diluted with pure water to obtain a 0.1 mol% ammonia aqueous solution C. The temperature of the aqueous solutions B and C was set to 40 ° C. by heating, and nitrogen was passed through each of the separately prepared reaction tanks and aqueous solutions A, B, and C to expel the air. Then, after the aqueous solutions A and B are sent to the reaction tank by 1.5 L per minute to the reaction tank for about 10 minutes to form seed crystals, the aqueous solutions A, B and C are sent 0.8 L per minute by the tube pump. Liquid. The produced slurry was subjected to particle size distribution measurement with a laser diffraction / scattering type particle size distribution meter (Microtrac), and when the average particle diameter (D50) exceeded 15 μm, all liquid feeding was stopped. This was filtered and washed with water, and then heated in nitrogen at 400 ° C. for 3 hours to obtain a precursor.
Next, the contents of nickel, magnesium, and cobalt contained in the precursor were analyzed by ICP, and the amount of LiOH.H 2 O was determined so that the molar ratio of Li / (Ni + Co + Mg) was 1.00. The analysis of ICP was performed by a conventional method. Commercially available LiOH · H 2 O was pulverized with a jet mill, and the determined amount was weighed. The precursor and LiOH · H 2 O were placed in this order in a Henschel mixer vessel, and the lid was closed and mixed for 5 minutes. After taking out the mixed powder, it is heated to 500 ° C. at 10 ° C./min, heated to 760 ° C. at 5 ° C./min, held at 760 ° C. for 24 hours, cooled to 400 ° C. at 5 ° C./min, and then the furnace door Was gradually opened, cooled to room temperature and crushed to obtain a lithium composite oxide.
Next, the lithium composite oxide was washed with water at pH 7.0 for 10 minutes, filtered and dried at a temperature of 120 ° C. for 1 hour. ICP was used to quantify metal elements (Me) other than Li in the positive electrode active material, and Li in the positive electrode active material was further quantified by ion chromatography to calculate Li / Me. Li / Me was the value shown in Table 1. Insufficient Li source (LiOH) was added. Subsequently, firing (re-firing) was performed at a temperature of 760 ° C. for 12 hours to obtain a positive electrode active material.

(実施例17)
まず、純水に硫酸ニッケル、硫酸コバルトを40℃で溶解し、(Ni+Co)の濃度が1.09mol/kgであり、Ni:Coのモル比が82:15である40℃の水溶液Aを用意した。この水溶液Aの中には、Ni、Co、Al、SO4、H2O以外は実質的に含まない。水溶液Aとは別に、NaOHと硫酸アルミニウムを純水に溶解して、Alを含む1.85mol/kgのNaOH水溶液Bを作製した。このとき、(Ni+Co):Alの比が97:3となるようにAl濃度を調製した。また、市販の約29wt%のアンモニア水溶液(関東化学)を純水で薄めて、0.1mol%のアンモニア水溶液Cとした。加熱して水溶液B及びCの温度を40℃とし、別途準備した反応槽、水溶液A、B及びCに、それぞれ窒素を流して空気を追い出した。そして、水溶液A及びBをチューブポンプによって毎分1.5Lずつ10分程度反応槽に送液して種晶を形成した後、水溶液A、B及びCをチューブポンプによって毎分0.8Lずつ送液した。生成したスラリーをレーザー回折・散乱型粒度分布計(マイクロトラック)で粒度分布測定を行い、平均粒子径(D50)が15μmを超えたところですべての送液を止めた。これをろ過・水洗した後、400℃で3時間、窒素中で加熱して前駆体を得た。
次に、前駆体中に含まれるニッケル、マグネシウム、コバルトの含量をICPで分析し、Li/(Ni+Co+Al)がモル比で1.00となるようにLiOH・H2Oの量を決定した。ICPの分析は常法によった。市販のLiOH・H2Oをジェットミルにて粉砕後当該決定した量を秤量し、ヘンシェルミキサー容器内に前駆体、LiOH・H2Oの順に投入し、蓋を閉じて5分間混合した。混合された粉を取り出した後、10℃/minで500℃まで、5℃/minで760℃まで加熱し、760℃で24時間保持し、5℃/minで400℃まで冷却後、炉扉を徐々に開放して常温まで冷却して解砕することでリチウム複合酸化物を得た。
次に、リチウム複合酸化物を、pH6.5の水で10分洗浄、ろ過後に温度120℃で1時間乾燥した。ICPによって正極活物質中のLi以外の金属元素(Me)を、さらに、イオンクロマトグラフによって正極活物質中のLiを定量し、Li/Meを算出し、Li/Meが表1に記載の値となるよう不足分のLi源(LiOH)を添加した。続いて、温度760℃で12時間の焼成(再焼成)を行って正極活物質を得た。
(Example 17)
First, nickel sulfate and cobalt sulfate are dissolved in pure water at 40 ° C., and a 40 ° C. aqueous solution A having a (Ni + Co) concentration of 1.09 mol / kg and a Ni: Co molar ratio of 82:15 is prepared. did. The aqueous solution A is substantially free of components other than Ni, Co, Al, SO 4 and H 2 O. Separately from the aqueous solution A, NaOH and aluminum sulfate were dissolved in pure water to prepare a 1.85 mol / kg aqueous NaOH solution B containing Al. At this time, the Al concentration was adjusted so that the ratio of (Ni + Co): Al was 97: 3. In addition, a commercially available about 29 wt% ammonia aqueous solution (Kanto Chemical) was diluted with pure water to obtain a 0.1 mol% ammonia aqueous solution C. The temperature of the aqueous solutions B and C was set to 40 ° C. by heating, and nitrogen was passed through each of the separately prepared reaction tanks and aqueous solutions A, B, and C to expel the air. Then, after the aqueous solutions A and B are sent to the reaction tank by 1.5 L per minute to the reaction tank for about 10 minutes to form seed crystals, the aqueous solutions A, B and C are sent 0.8 L per minute by the tube pump. Liquid. The produced slurry was subjected to particle size distribution measurement with a laser diffraction / scattering type particle size distribution meter (Microtrac), and when the average particle diameter (D50) exceeded 15 μm, all liquid feeding was stopped. This was filtered and washed with water, and then heated in nitrogen at 400 ° C. for 3 hours to obtain a precursor.
Next, the contents of nickel, magnesium, and cobalt contained in the precursor were analyzed by ICP, and the amount of LiOH.H 2 O was determined so that the molar ratio of Li / (Ni + Co + Al) was 1.00. The analysis of ICP was performed by a conventional method. Commercially available LiOH · H 2 O was pulverized with a jet mill, and the determined amount was weighed. The precursor and LiOH · H 2 O were placed in this order in a Henschel mixer vessel, and the lid was closed and mixed for 5 minutes. After taking out the mixed powder, it is heated to 500 ° C. at 10 ° C./min, heated to 760 ° C. at 5 ° C./min, held at 760 ° C. for 24 hours, cooled to 400 ° C. at 5 ° C./min, and then the furnace door Was gradually opened, cooled to room temperature and crushed to obtain a lithium composite oxide.
Next, the lithium composite oxide was washed with water at pH 6.5 for 10 minutes, filtered and dried at a temperature of 120 ° C. for 1 hour. ICP was used to quantify metal elements (Me) other than Li in the positive electrode active material, and Li in the positive electrode active material was further quantified by ion chromatography to calculate Li / Me. Li / Me was the value shown in Table 1. Insufficient Li source (LiOH) was added. Subsequently, firing (re-firing) was performed at a temperature of 760 ° C. for 12 hours to obtain a positive electrode active material.

(実施例18)
まず、純水に硫酸ニッケル、硫酸ジルコニウム、硫酸コバルトを40℃で溶解し、(Ni+Co+Zr)の濃度が1.15mol/kgであり、Ni:Co:Zrのモル比が80:15:5である40℃の水溶液Aを用意した。この水溶液Aの中には、Ni、Co、Zr、SO4、H2O以外は実質的に含まない。水溶液Aとは別に、NaOHを純水に溶解して、1.85mol/kgのNaOH水溶液Bを作製した。また、市販の約29wt%のアンモニア水溶液(関東化学)を純水で薄めて、0.1mol%のアンモニア水溶液Cとした。加熱して水溶液B及びCの温度を40℃とし、別途準備した反応槽、水溶液A、B及びCに、それぞれ窒素を流して空気を追い出した。そして、水溶液A及びBをチューブポンプによって毎分1.5Lずつ10分程度反応槽に送液して種晶を形成した後、水溶液A、B及びCをチューブポンプによって毎分0.8Lずつ送液した。生成したスラリーをレーザー回折・散乱型粒度分布計(マイクロトラック)で粒度分布測定を行い、平均粒子径(D50)が15μmを超えたところですべての送液を止めた。これをろ過・水洗した後、400℃で3時間、窒素中で加熱して前駆体を得た。
次に、前駆体中に含まれるニッケル、ジルコニウム、コバルトの含量をICPで分析し、Li/(Ni+Co+Zr)がモル比で1.00となるようにLiOH・H2Oの量を決定した。ICPの分析は常法によった。市販のLiOH・H2Oをジェットミルにて粉砕後当該決定した量を秤量し、ヘンシェルミキサー容器内に前駆体、LiOH・H2Oの順に投入し、蓋を閉じて5分間混合した。混合された粉を取り出した後、10℃/minで500℃まで、5℃/minで750℃まで加熱し、750℃で24時間保持し、5℃/minで400℃まで冷却後、炉扉を徐々に開放して常温まで冷却して解砕することでリチウム複合酸化物を得た。
次に、リチウム複合酸化物を、pH5.9の水で10分洗浄、ろ過後に温度120℃で1時間乾燥した。ICPによって正極活物質中のLi以外の金属元素(Me)を、さらに、イオンクロマトグラフによって正極活物質中のLiを定量し、Li/Meを算出し、Li/Meが表1に記載の値となるよう不足分のLi源(LiOH)を添加した。続いて、温度750℃で12時間の焼成(再焼成)を行って正極活物質を得た。
(Example 18)
First, nickel sulfate, zirconium sulfate, and cobalt sulfate are dissolved in pure water at 40 ° C., the concentration of (Ni + Co + Zr) is 1.15 mol / kg, and the molar ratio of Ni: Co: Zr is 80: 15: 5. A 40 ° C. aqueous solution A was prepared. The aqueous solution A is substantially free of components other than Ni, Co, Zr, SO 4 , and H 2 O. Separately from the aqueous solution A, NaOH was dissolved in pure water to prepare a 1.85 mol / kg NaOH aqueous solution B. In addition, a commercially available about 29 wt% ammonia aqueous solution (Kanto Chemical) was diluted with pure water to obtain a 0.1 mol% ammonia aqueous solution C. The temperature of the aqueous solutions B and C was set to 40 ° C. by heating, and nitrogen was passed through each of the separately prepared reaction tanks and aqueous solutions A, B, and C to drive out air. Then, after the aqueous solutions A and B are sent to the reaction tank by 1.5 L per minute to the reaction tank for about 10 minutes to form seed crystals, the aqueous solutions A, B and C are sent 0.8 L per minute by the tube pump. Liquid. The produced slurry was subjected to particle size distribution measurement with a laser diffraction / scattering type particle size distribution meter (Microtrac), and when the average particle diameter (D50) exceeded 15 μm, all liquid feeding was stopped. This was filtered and washed with water, and then heated in nitrogen at 400 ° C. for 3 hours to obtain a precursor.
Next, the contents of nickel, zirconium and cobalt contained in the precursor were analyzed by ICP, and the amount of LiOH.H 2 O was determined so that Li / (Ni + Co + Zr) was 1.00 in molar ratio. The analysis of ICP was performed by a conventional method. Commercially available LiOH · H 2 O was pulverized with a jet mill, and the determined amount was weighed. The precursor and LiOH · H 2 O were placed in this order in a Henschel mixer vessel, and the lid was closed and mixed for 5 minutes. After the mixed powder is taken out, it is heated to 500 ° C. at 10 ° C./min, heated to 750 ° C. at 5 ° C./min, kept at 750 ° C. for 24 hours, cooled to 400 ° C. at 5 ° C./min, and then the furnace door Was gradually opened, cooled to room temperature and crushed to obtain a lithium composite oxide.
Next, the lithium composite oxide was washed with water at pH 5.9 for 10 minutes, filtered and dried at a temperature of 120 ° C. for 1 hour. ICP was used to quantify metal elements (Me) other than Li in the positive electrode active material, and Li in the positive electrode active material was further quantified by ion chromatography to calculate Li / Me. Li / Me was the value shown in Table 1. Insufficient Li source (LiOH) was added. Subsequently, firing (re-firing) was performed at a temperature of 750 ° C. for 12 hours to obtain a positive electrode active material.

(比較例1〜5)
比較例1〜5は、水洗工程以降は全て実施しなかったこと以外は実施例と同様の手順で作製した。
(Comparative Examples 1-5)
Comparative Examples 1 to 5 were produced in the same procedure as in the Examples, except that all the steps after the water washing step were not performed.

(比較例6〜10)
比較例6〜10の製法は、水洗後のリチウム源の添加のみ実施しなかったこと以外は実施例と同様の手順で作製した。
(Comparative Examples 6 to 10)
The production methods of Comparative Examples 6 to 10 were prepared in the same procedure as in the Examples, except that only the addition of the lithium source after washing was not performed.

(評価)
−組成−
得られた正極活物質の粉末は、ICP及びイオンクロマトグラフ法により、Li、Ni、Mn、Co及びその他の金属元素の含有量を測定した。分析結果から、製品を組成式:Lia(NixCoyMnzb)O2の組成式で表した場合の、a、x、y、z及びbを求めた。
(Evaluation)
-Composition-
The obtained positive electrode active material powder was measured for the contents of Li, Ni, Mn, Co and other metal elements by ICP and ion chromatography. From the analysis results, the composition of the product formula: Li a (Ni x Co y Mn z M b) when expressed by the composition formula of O 2, obtained a, x, y, and z and b.

−残留アルカリ−
得られた正極活物質の粉末を水に添加して10分撹拌した後、水中に存在するリチウム化合物が正極活物質中の残留アルカリであるとみなした上で、そのpHを酸で滴定することにより残留アルカリ(Li2CO3及びLiOH)の質量を求め、正極活物質に対しての質量の割合(質量%)を求めた。
-Residual alkali-
After the obtained positive electrode active material powder is added to water and stirred for 10 minutes, the lithium compound present in the water is regarded as residual alkali in the positive electrode active material, and the pH is titrated with an acid. Was used to determine the mass of residual alkali (Li 2 CO 3 and LiOH), and the mass ratio (mass%) relative to the positive electrode active material was determined.

−電池特性−
<正極の作製>
実施例および比較例にて作製した各角型リチウムイオン電池用正極活物質を3kgと、呉羽化学(株)製のPVDF#1320(PVDFを12重量%含むN−メチル−2−ピロリドン(以下、NMPと略記)溶液)1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機で攪拌し、正極合剤ペーストを調製した。このペーストを厚さ15μmのアルミニウム箔からなる正極芯材の両面に塗布し、乾燥し、圧延して、正極活物質層を形成し、総厚が130μmの正極を得た。正極は43mm幅の帯状に裁断した。これを2枚作製し、1枚を下記の角型リチウムイオン電池作製用、もう1枚を下記の試験用コイン電池作製用とした。
-Battery characteristics-
<Preparation of positive electrode>
3 kg of the positive electrode active material for each prismatic lithium ion battery produced in Examples and Comparative Examples, and PVDF # 1320 (N-methyl-2-pyrrolidone containing 12% by weight of PVDF (hereinafter, NMP (abbreviated as NMP) Solution) 1 kg, acetylene black 90 g, and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture paste. This paste was applied to both surfaces of a positive electrode core material made of an aluminum foil having a thickness of 15 μm, dried and rolled to form a positive electrode active material layer, whereby a positive electrode having a total thickness of 130 μm was obtained. The positive electrode was cut into a strip having a width of 43 mm. Two of these were prepared, one for the following prismatic lithium ion battery and the other for the following test coin battery.

<負極の作製>
人造黒鉛3kgと、日本ゼオン(株)製のBM−400B(変性スチレンブタジエンゴムを40重量%含む水性分散液)75gと、CMC30gと、適量の水とを、双腕式練合機で攪拌し、負極合剤ペーストを調製した。このペーストを厚さ10μmの銅箔からなる負極芯材の両面に塗布し、乾燥し、圧延して、負極活物質層を形成し、総厚が140μmの負極を得た。負極は45mm幅の帯状に裁断した。
<Production of negative electrode>
3 kg of artificial graphite, 75 g of BM-400B (an aqueous dispersion containing 40% by weight of modified styrene butadiene rubber) manufactured by Nippon Zeon Co., Ltd., 30 g of CMC and an appropriate amount of water were stirred with a double arm kneader. A negative electrode mixture paste was prepared. This paste was applied to both sides of a negative electrode core material made of a copper foil having a thickness of 10 μm, dried and rolled to form a negative electrode active material layer, and a negative electrode having a total thickness of 140 μm was obtained. The negative electrode was cut into a 45 mm wide strip.

<角型リチウムイオン電池の作製>
正極と負極とを、これらの間に厚さ20μmのポリエチレン製の微多孔質フィルムからなるセパレーター(セルガード(株)製のA089(商品名))を介して捲回し、断面が略楕円形の電極群を構成した。電極群をアルミニウム製の角型の電池缶に収容した。電池缶は、底部と、側壁とを有する。電池缶の上部は開口しており、その形状は略矩形である。側壁の主要平坦部の厚みは80μmとした。その後、電池缶と正極リードまたは負極リードとの短絡を防ぐための絶縁体を電極群の上部に配置した。次に、絶縁ガスケットで囲まれた負極端子を中央に有する矩形の封口板を、電池缶の開口に配置した。負極リードは、負極端子と接続した。正極リードは、封口板の下面と接続した。開口の端部と封口板とをレーザーで溶接し、電池缶の開口を封口した。その後、封口板の注液孔から2.5gの非水電解質を電池缶に注入した。最後に、注液孔を封栓で溶接により塞いだ。こうして、高さ50mm、幅34mm、内空間の厚み約5.2mm、設計容量850mAhの角型リチウム二次電池を完成させた。なお、上記非水電解質としては、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPF6が1M(モル/リットル)の割合で溶解されたものを使用した。この開回路電圧を測定したところ、いずれも3.0Vとなった。
<Preparation of prismatic lithium ion battery>
A positive electrode and a negative electrode are wound through a separator (A089 (trade name) manufactured by Celgard Co., Ltd.) made of a polyethylene microporous film having a thickness of 20 μm between the positive electrode and the negative electrode. Groups were made up. The electrode group was accommodated in a rectangular battery can made of aluminum. The battery can has a bottom and a side wall. The upper part of the battery can is opened and its shape is substantially rectangular. The thickness of the main flat part of the side wall was 80 μm. Thereafter, an insulator for preventing a short circuit between the battery can and the positive electrode lead or the negative electrode lead was disposed on the upper part of the electrode group. Next, a rectangular sealing plate having a negative electrode terminal surrounded by an insulating gasket in the center was disposed in the opening of the battery can. The negative electrode lead was connected to the negative electrode terminal. The positive electrode lead was connected to the lower surface of the sealing plate. The end of the opening and the sealing plate were welded with a laser to seal the opening of the battery can. Thereafter, 2.5 g of nonaqueous electrolyte was injected into the battery can through the injection hole of the sealing plate. Finally, the liquid injection hole was closed with a seal by welding. Thus, a prismatic lithium secondary battery having a height of 50 mm, a width of 34 mm, an inner space thickness of about 5.2 mm, and a design capacity of 850 mAh was completed. As the non-aqueous electrolyte, a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 30:70, a ratio of LiPF 6 to 1 M (mol / liter). What was melt | dissolved in was used. The open circuit voltage was measured and found to be 3.0V in all cases.

<角型リチウムイオン電池の充放電条件>
実施例および比較例にて作製した各角型リチウムイオン電池について、充電電流850mAで充電終止電位4.2Vまで充電した後、放電電流850mAで放電終止電位3.0Vまで放電した。この条件を20サイクル繰り返し、初回充電容量(mAh/g)に対する初回放電容量(mAh/g)の百分率(%)を充放電効率、初回放電容量(mAh/g)に対する20サイクル後の放電容量(mAh/g)の百分率(%)を20サイクル後容量維持率とした。また、電池膨れを調査するため、90℃にて充電電流850mAで充電終止電位4.2Vまで充電した後、放電電流850mAで放電終止電位3.0Vまで放電した。この条件を100サイクル繰り返し、初期の内空間の厚み5.2mmからの変化をX線CTスキャンにより測定し、この変化分のうち最も大きい値を厚さ増分(mm)とした。X線CTスキャン測定は常法によった。
<Charging / discharging conditions of prismatic lithium ion battery>
About each square-shaped lithium ion battery produced in the Example and the comparative example, it charged to the end-of-charge potential 4.2V with the charging current 850mA, Then, it discharged to the end-of-discharge potential 3.0V with the discharge current 850mA. This condition was repeated 20 cycles, and the percentage (%) of the initial discharge capacity (mAh / g) relative to the initial charge capacity (mAh / g) was determined as the charge / discharge efficiency, the discharge capacity after 20 cycles relative to the initial discharge capacity (mAh / g) ( The percentage (%) of mAh / g) was defined as the capacity retention rate after 20 cycles. In order to investigate battery swelling, the battery was charged at 90 ° C. with a charging current of 850 mA to a charge end potential of 4.2 V, and then discharged with a discharge current of 850 mA to a discharge end potential of 3.0 V. This condition was repeated 100 cycles, a change from an initial inner space thickness of 5.2 mm was measured by X-ray CT scan, and the largest value among these changes was defined as a thickness increment (mm). X-ray CT scan measurement was performed by a conventional method.

<角型リチウムイオン電池の体積膨張率>
実施例および比較例にて作製した各角型リチウムイオン電池について、内空間の厚みが5.2mmであり開回路電圧が3.0Vとなっている電池を開回路のまま1Lの水の中に入れ、アルキメデス法により体積V1を測定した。次に、上記90℃で充放電を行い電池膨れを調査した電池も同様に開回路電圧を3.0Vとしたままで1Lの水の中に入れ、アルキメデス法により体積V2を測定した。これらの値から、次の式により電池体積膨張率(%)を求めた。当該電池体積膨張率が37%以下であるとき、膨れが良好に制御されているものと判定した。
電池体積膨張率(%)=100×(V2−V1)÷V1
<Volume expansion coefficient of prismatic lithium ion battery>
About each square-shaped lithium ion battery produced in the Example and the comparative example, the thickness of the inner space is 5.2 mm, and the open circuit voltage is 3.0 V. The volume V 1 was measured by Archimedes method. Next, the battery which was charged and discharged at 90 ° C. and investigated the battery swelling was similarly put in 1 L of water with the open circuit voltage kept at 3.0 V, and the volume V 2 was measured by Archimedes method. From these values, the battery volume expansion rate (%) was determined by the following formula. When the battery volume expansion rate was 37% or less, it was determined that the swelling was well controlled.
Battery volume expansion rate (%) = 100 × (V 2 −V 1 ) ÷ V 1

<試験用コイン電池評価条件>
実施例および比較例にて作製した各試験用コイン電池作製用正極について、直径16mmとなるように当該正極を円形に切り出した。さらに、負極として用いる金属リチウムおよびセパレーター(セルガード(株)製のA089(商品名))を正極と同じ形になるように円形に切り出した。ただし、セパレーターは2032コイン電池に収まる程度にやや大きめに切り出した。切り出した正極、負極、セパレーターを上記と同様な非水電解質に含浸し、2032型コイン電池の形に外殻やスペーサーなどの部材とともにかしめた。こうしてできた2032コイン電池を45℃の環境下で、4.5Vまで、0.66mAで充電して、その後、45℃で1週間4.5Vに保持するトリクル充電を行った。トリクル充電後のセルを解体し、負極リチウム金属上に析出したコバルトの量をICPによって分析し、コイン電池あたりの量α(μg)として算出した。この値αを組成式中のyで割った。
実施例1〜18及び比較例1〜10の各試験条件及び評価結果を、表1、表2に示す。
<Test coin cell evaluation conditions>
For each test coin battery production positive electrode produced in Examples and Comparative Examples, the positive electrode was cut into a circle so as to have a diameter of 16 mm. Furthermore, metallic lithium and a separator (A089 (trade name) manufactured by Celgard Co., Ltd.) used as the negative electrode were cut into a circle so as to have the same shape as the positive electrode. However, the separator was cut out slightly larger to fit in the 2032 coin battery. The cut out positive electrode, negative electrode, and separator were impregnated with a non-aqueous electrolyte similar to the above, and caulked together with members such as an outer shell and a spacer into a 2032 type coin battery. The 2032 coin battery thus obtained was charged at 0.66 mA up to 4.5 V under an environment of 45 ° C., and then trickle charging was performed at 45 ° C. and maintained at 4.5 V for one week. The cell after trickle charge was disassembled, and the amount of cobalt deposited on the negative electrode lithium metal was analyzed by ICP and calculated as the amount α (μg) per coin battery. This value α was divided by y in the composition formula.
Tables 1 and 2 show the test conditions and evaluation results of Examples 1 to 18 and Comparative Examples 1 to 10, respectively.

Figure 2017182927
Figure 2017182927

Figure 2017182927
Figure 2017182927

(評価結果)
実施例1〜18の電池は、全コバルト溶出量αをyで割った値(α/y)が4μg以下であり、充放電前後での体積膨張率が37%以下であったため、電池の充放電によるフクレの発生が良好に抑制され、且つ、放電容量及びサイクル特性が良好であった。
比較例1〜5は、全コバルト溶出量αをyで割った値(α/y)が4μgを超え、充放電前後での体積膨張率が37%を超えており、電池の充放電によるフクレの発生が大きかった。
比較例6〜10は、全コバルト溶出量αをyで割った値(α/y)が4μgを超えており、Ni組成が同程度の実施例とそれぞれ比較すると、放電容量またはサイクル特性の悪い角型リチウムイオン電池となった。
(Evaluation results)
In the batteries of Examples 1 to 18, the value (α / y) obtained by dividing the total cobalt elution amount α by y was 4 μg or less, and the volume expansion coefficient before and after charging and discharging was 37% or less. Generation | occurrence | production of the swelling by discharge was suppressed favorably, and discharge capacity and cycling characteristics were favorable.
In Comparative Examples 1 to 5, the value (α / y) obtained by dividing the total cobalt elution amount α by y exceeds 4 μg, and the volume expansion coefficient before and after charging and discharging exceeds 37%. The occurrence of was large.
In Comparative Examples 6 to 10, the value (α / y) obtained by dividing the total cobalt elution amount α by y exceeds 4 μg, and the discharge capacity or cycle characteristics are poor when compared with Examples having the same Ni composition. A square lithium-ion battery was obtained.

Claims (6)

組成式:Lia(NixCoyMnzb)O2
(式中、0.98≦a≦1.02、x+y+z+b=1、0.5≦x≦0.9、0.05≦y≦0.3、0≦z≦0.3、0≦b≦0.05、MはMg、Al、Zrから選択された少なくとも1種類の元素である)で表される正極活物質を有する正極を備え、
前記正極は、3.0Vからの充電を行う前に下記測定条件で測定される全コバルト溶出量αをyで割った値(α/y)が4μg以下であり、
アルキメデス法により測定した体積V1と、90℃で100サイクル充放電を行った後のアルキメデス法により測定した体積V2とを用いて算出した下記式1で示される体積膨張率が37%以下である角型リチウムイオン電池。
電池体積膨張率(%)=100×(V2−V1)÷V1 (式1)
<全コバルト溶出量αの測定条件>
(1)正極の作製
前記角型リチウムイオン電池用の正極を正極シートとし、前記正極シートから、直径16mmの円形となるように試験用コイン電池の正極を切り出す。
(2)負極の準備
直径16mmの円形のリチウム金属を負極として準備する。
(3)セパレーターの準備
直径16mmより大きいが2032コイン電池に収まる大きさのセパレーターを準備する。
(4)試験用コイン電池の作製
正極、負極、セパレーターに、非水電解液を含浸させる。非水電解液はエチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPF6が1M(モル/リットル)の割合で溶解されたものとする。含浸された正極、負極、セパレーターを、外殻やスペーサーとともに2032型コイン電池の形に組み立ててかしめる。
(5)トリクル充電
前記試験用コイン電池に対し、45℃の環境下で、4.5Vまで、0.66mAの電流で充電して、その後、45℃で1週間保持するトリクル充電を行う。
(6)金属溶出量の測定
トリクル充電後の前記試験用コイン電池を解体し、負極のリチウム金属を取り出し、コイン電池1つあたりの全コバルト溶出量αとしてICP分析により算出する。このαを別にICP分析によって算出したyで割る。
Composition formula: Li a (Ni x Co y Mn z M b) O 2
(Wherein 0.98 ≦ a ≦ 1.02, x + y + z + b = 1, 0.5 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.3, 0 ≦ b ≦ 0.05, M is at least one element selected from Mg, Al, Zr), and a positive electrode having a positive electrode active material represented by
The positive electrode has a value (α / y) obtained by dividing the total cobalt elution amount α measured under the following measurement conditions by y before charging from 3.0 V is 4 μg or less,
The volume V 1 measured by the Archimedes method, at 90 ° C. in 100 cycles of charge and discharge a volume expansion ratio represented by the following formula 1 calculated by using the volume V 2 measured by the Archimedes method after 37% or less A certain prismatic lithium-ion battery.
Battery volume expansion rate (%) = 100 × (V 2 −V 1 ) ÷ V 1 (Formula 1)
<Measurement conditions of total cobalt elution amount α>
(1) Production of positive electrode The positive electrode for the rectangular lithium ion battery is used as a positive electrode sheet, and the positive electrode of the test coin battery is cut out from the positive electrode sheet so as to be a circle having a diameter of 16 mm.
(2) Preparation of negative electrode Circular lithium metal having a diameter of 16 mm is prepared as a negative electrode.
(3) Preparation of separator A separator having a diameter larger than 16 mm but fit in a 2032 coin battery is prepared.
(4) Preparation of test coin battery A positive electrode, a negative electrode, and a separator are impregnated with a non-aqueous electrolyte. In the non-aqueous electrolyte, LiPF 6 was dissolved at a rate of 1 M (mol / liter) in a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 30:70. Shall. The impregnated positive electrode, negative electrode, and separator are assembled and caulked together with an outer shell and a spacer into a 2032 type coin battery.
(5) Trickle Charging The test coin battery is charged at a current of 0.66 mA up to 4.5 V in an environment of 45 ° C., and then trickle charged at 45 ° C. for 1 week.
(6) Measurement of metal elution amount The test coin battery after trickle charge is disassembled, the lithium metal of the negative electrode is taken out, and the total cobalt elution amount α per coin battery is calculated by ICP analysis. This α is divided by y separately calculated by ICP analysis.
前記正極活物質におけるLi2CO3及びLiOHの合計である残留アルカリの含有量が0.8質量%以下である請求項1に記載の角型リチウムイオン電池。 2. The prismatic lithium ion battery according to claim 1, wherein the content of residual alkali, which is the sum of Li 2 CO 3 and LiOH in the positive electrode active material, is 0.8% by mass or less. 前記正極活物質が、組成式:Lia(NixCoyMnzb)O2
(式中、0.98≦a≦1.02、x+y+z+b=1、0.8≦x≦0.9、0.05≦y≦0.15、0≦z≦0.1、0≦b≦0.05、MはMg、Al、Zrから選択された少なくとも1種類の元素である)で表される請求項1又は2に記載の角型リチウムイオン電池。
The positive electrode active material has a composition formula: Li a (Ni x Co y Mn z M b ) O 2
(Where, 0.98 ≦ a ≦ 1.02, x + y + z + b = 1, 0.8 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.15, 0 ≦ z ≦ 0.1, 0 ≦ b ≦ The prismatic lithium ion battery according to claim 1 or 2, wherein 0.05 and M are at least one element selected from Mg, Al, and Zr).
組成式:Lia(NixCoyMnzb)O2
(式中、0.98≦a≦1.02、x+y+z+b=1、0.5≦x≦0.9、0.05≦y≦0.3、0≦z≦0.3、0≦b≦0.05、MはMg、Al、Zrから選択された少なくとも1種類の元素である)で表される正極活物質を洗浄する工程と、
前記洗浄後の正極活物質を乾燥する工程と、
前記乾燥後、ICPによって前記正極活物質中のLi以外の金属元素を定量し、且つ、イオンクロマトグラフによって正極活物質中のLiを定量して、Li/(Li以外の金属元素)の比を算出し、Li/(Li以外の金属元素)の比が所定の値となるよう不足分のLi源を前記正極活物質へ添加する工程と、
前記Li源添加後の正極活物質を焼成する工程と、
を備えたリチウムイオン電池用正極活物質の製造方法。
Composition formula: Li a (Ni x Co y Mn z M b) O 2
(Wherein 0.98 ≦ a ≦ 1.02, x + y + z + b = 1, 0.5 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.3, 0 ≦ b ≦ 0.05, M is at least one element selected from Mg, Al, and Zr), and the step of cleaning the positive electrode active material represented by
Drying the positive electrode active material after washing,
After the drying, the metal element other than Li in the positive electrode active material is quantified by ICP, and the Li in the positive electrode active material is quantified by ion chromatography to determine the ratio of Li / (metal element other than Li). Calculating and adding a deficient Li source to the positive electrode active material such that the ratio of Li / (metallic element other than Li) is a predetermined value;
Firing the positive electrode active material after the addition of the Li source;
The manufacturing method of the positive electrode active material for lithium ion batteries provided with.
前記Li源が、硝酸リチウム及び/または水酸化リチウムである請求項4に記載のリチウムイオン電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium ion battery according to claim 4, wherein the Li source is lithium nitrate and / or lithium hydroxide. 前記洗浄を、pH5.5〜7.5、Ca濃度が10ppm以下、且つ、Mg濃度が10ppm以下である洗浄液を使用して行う請求項4又は5に記載のリチウムイオン電池用正極活物質の製造方法。   The positive electrode active material for a lithium ion battery according to claim 4 or 5, wherein the cleaning is performed using a cleaning solution having a pH of 5.5 to 7.5, a Ca concentration of 10 ppm or less, and an Mg concentration of 10 ppm or less. Method.
JP2016064494A 2016-03-28 2016-03-28 Square lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery Pending JP2017182927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064494A JP2017182927A (en) 2016-03-28 2016-03-28 Square lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064494A JP2017182927A (en) 2016-03-28 2016-03-28 Square lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery

Publications (1)

Publication Number Publication Date
JP2017182927A true JP2017182927A (en) 2017-10-05

Family

ID=60007131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064494A Pending JP2017182927A (en) 2016-03-28 2016-03-28 Square lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP2017182927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200086995A (en) 2019-01-10 2020-07-20 주식회사 엘지화학 Preparing method of positive electrode active material for lithium secondary battery, positive electrode active material thereby
CN114423715A (en) * 2019-04-26 2022-04-29 尤米科尔公司 Method for preparing positive electrode material of rechargeable lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266712A (en) * 2008-04-28 2009-11-12 Sakai Chem Ind Co Ltd Positive active material for lithium secondary battery and its manufacturing method
JP2010126422A (en) * 2008-11-28 2010-06-10 Panasonic Corp Method for producing lithium-containing compound oxide and non-aqueous secondary battery
JP2010155775A (en) * 2008-12-04 2010-07-15 Toda Kogyo Corp Powder of lithium complex compound particle, method for producing the same, and nonaqueous electrolyte secondary cell
JP2015018803A (en) * 2013-07-08 2015-01-29 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Cathode active material, method of producing the same, and cathode and lithium secondary battery employing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266712A (en) * 2008-04-28 2009-11-12 Sakai Chem Ind Co Ltd Positive active material for lithium secondary battery and its manufacturing method
JP2010126422A (en) * 2008-11-28 2010-06-10 Panasonic Corp Method for producing lithium-containing compound oxide and non-aqueous secondary battery
JP2010155775A (en) * 2008-12-04 2010-07-15 Toda Kogyo Corp Powder of lithium complex compound particle, method for producing the same, and nonaqueous electrolyte secondary cell
JP2015018803A (en) * 2013-07-08 2015-01-29 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Cathode active material, method of producing the same, and cathode and lithium secondary battery employing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200086995A (en) 2019-01-10 2020-07-20 주식회사 엘지화학 Preparing method of positive electrode active material for lithium secondary battery, positive electrode active material thereby
CN114423715A (en) * 2019-04-26 2022-04-29 尤米科尔公司 Method for preparing positive electrode material of rechargeable lithium ion battery
JP2022530125A (en) * 2019-04-26 2022-06-27 ユミコア How to prepare a positive electrode material for a rechargeable lithium-ion battery
JP7359866B2 (en) 2019-04-26 2023-10-11 ユミコア Method for preparing cathode materials for rechargeable lithium-ion batteries
CN114423715B (en) * 2019-04-26 2024-05-17 尤米科尔公司 Method for preparing positive electrode material of rechargeable lithium ion battery

Similar Documents

Publication Publication Date Title
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
KR102553596B1 (en) Nickel manganese-containing composite hydroxide and method for producing the same
JP4766040B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
KR101403828B1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US9090481B2 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP4000041B2 (en) Positive electrode active material for lithium secondary battery
CN108292749B (en) Positive electrode material for nonaqueous electrolyte secondary battery, method for producing same, positive electrode composite paste, and nonaqueous electrolyte secondary battery
JP6340791B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
KR20160006172A (en) Transition metal composite hydroxide particles, method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
US10483539B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, production process therefor, and non-aqueous electrolyte secondary battery
JP6554780B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing the same
US11127940B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
CN104091943B (en) A kind of high-power lithium ion positive electrode material and its preparation method
US10559823B2 (en) Manganese nickel composite hydroxide and method for producing same, lithium manganese nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
JP2017226576A (en) Lithium-nickel-containing composite oxide and nonaqueous electrolyte secondary battery
CN103022471B (en) Improve the method for nickelic tertiary cathode material chemical property
JP2007299668A (en) Positive electrode active material for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using it
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2012033389A (en) Cathode active material and manufacturing method thereof, and lithium ion secondary battery
JP2015072801A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2011014254A (en) Manufacturing method of nonaqueous electrolyte secondary battery
WO2016103571A1 (en) Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery
JP2005332629A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003