JP6632960B2 - Method for producing starch - Google Patents

Method for producing starch Download PDF

Info

Publication number
JP6632960B2
JP6632960B2 JP2016237325A JP2016237325A JP6632960B2 JP 6632960 B2 JP6632960 B2 JP 6632960B2 JP 2016237325 A JP2016237325 A JP 2016237325A JP 2016237325 A JP2016237325 A JP 2016237325A JP 6632960 B2 JP6632960 B2 JP 6632960B2
Authority
JP
Japan
Prior art keywords
starch
fluidized bed
water
temperature
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016237325A
Other languages
Japanese (ja)
Other versions
JP2018090741A (en
Inventor
洋 長崎
洋 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Food Tech Corp
Original Assignee
Organo Food Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Food Tech Corp filed Critical Organo Food Tech Corp
Priority to JP2016237325A priority Critical patent/JP6632960B2/en
Publication of JP2018090741A publication Critical patent/JP2018090741A/en
Application granted granted Critical
Publication of JP6632960B2 publication Critical patent/JP6632960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、流動性を改善した澱粉の製造方法に関する。   The present invention relates to a method for producing starch with improved fluidity.

澱粉は、食品加工、一般食品等に幅広く使用されている。馬鈴薯、トウモロコシ、小麦等の天然の植物から製造された澱粉(生澱粉)は、水に不溶であり、分子間結合による結晶構造を有するβ澱粉である。β澱粉を水中に分散させて加熱すると、澱粉が水分を吸収して膨潤し、やがて粘度が高くなり糊状の液体又はゲルとなる。この現象を糊化(α化)といい、糊化により結晶構造が消失した澱粉はα澱粉と称される。澱粉を水に加えて加熱すると粘度が高くなるこの性質は、例えば、あんかけの「あん」のとろみづけや、ゲル状の和菓子及び洋菓子等、調理において様々に利用される。しかしながら、天然の植物から製造された粉体状の澱粉は、粒径が数μm〜約100μmと小さいことから、凝集性が高く、流動性が低い。そのため、糊液を調製するために水やスープ等の液体に生澱粉を加える際、塊状の「だま」(継粉)が形成されやすいという問題があった。   Starch is widely used in food processing, general foods, and the like. Starch (raw starch) produced from natural plants such as potato, corn, wheat and the like is β-starch which is insoluble in water and has a crystal structure due to intermolecular bonding. When β-starch is dispersed in water and heated, the starch absorbs moisture and swells, and eventually the viscosity increases to form a paste-like liquid or gel. This phenomenon is called gelatinization (gelatinization), and starch whose crystal structure has disappeared due to gelatinization is called alpha starch. This property of increasing the viscosity when starch is added to water and heated is widely used in cooking, for example, for thickening an ankake "an" and for gel-like Japanese confectionery and Western confectionery. However, powdered starch produced from natural plants has a small particle size of several μm to about 100 μm, and therefore has high cohesiveness and low fluidity. Therefore, when raw starch is added to a liquid such as water or soup to prepare a size liquid, there is a problem that a massive "dama" (joint flour) is easily formed.

そこで、粉体状の澱粉を造粒して顆粒状とすることにより、凝集性を低くして、流動性を向上する方法が知られている。例えば、特許文献1には、澱粉及び/または穀粉、それらの混合物よりなる群から選ばれる原料に水を加え、この加水物を造粒した後、3〜55μの長波長赤外線を照射することにより加熱乾燥する、澱粉を主体とした顆粒状物質の製造方法に関する発明が記載されている。特許文献2には、流動層造粒機を用いて、β澱粉(原料澱粉)を流動化させながら、糊液を噴霧することにより、β澱粉の各粒子を糊液と接触させて流動層造粒後、さらに、β澱粉の糊化温度以上で流動層乾燥させる、澱粉顆粒の製造方法に関する発明が記載されている。   Therefore, a method has been known in which a powdery starch is granulated into granules to reduce cohesiveness and improve fluidity. For example, Patent Document 1 discloses that by adding water to a raw material selected from the group consisting of starch and / or flour, and a mixture thereof, granulating the hydrolyzate, and irradiating a long-wave infrared ray of 3 to 55 μm. There is described an invention relating to a method for producing a starch-based granular substance which is dried by heating. Patent Document 2 discloses that fluidized bed granulation is performed by spraying a paste liquid while fluidizing β-starch (raw material starch) using a fluidized bed granulator, whereby each particle of β-starch is brought into contact with the paste liquid. After the granulation, an invention relating to a method for producing starch granules, which is further subjected to fluidized bed drying at a gelatinization temperature of β-starch or higher, is described.

特公昭61−9961号公報JP-B-61-9961 国際公開第2013/161805号パンフレットWO 2013/161805 pamphlet

澱粉の調理における用途としては、粘度の高い糊液としての利用の他、調理の前処理として、食材に澱粉を直接まぶす用途がある。粉体状の澱粉を食材にまぶす場合、糊液を調製する際と同様、流動性が低いために澱粉が塊状に落下するため、均一な澱粉の層を形成することが困難である。また、特許文献1及び特許文献2等のような粒径の大きな顆粒状澱粉の場合、流動性は改善されているため均等な量を振り掛けることは可能になるが、顆粒が大きいために、食材の表面に薄く均一な層を形成することができない。   As a use in cooking starch, there is a use as a pretreatment for cooking, in which food is directly coated with starch, in addition to a use as a paste liquid having a high viscosity. When powdered starch is sprinkled on food, it is difficult to form a uniform starch layer because the starch falls in a lump due to low fluidity, as in the case of preparing the paste liquid. Further, in the case of granular starch having a large particle size as in Patent Document 1 and Patent Document 2, etc., it is possible to sprinkle an even amount since the fluidity is improved, but since the granules are large, A thin and uniform layer cannot be formed on the surface of food.

本発明の目的は、流動性が改善され、且つ、原料澱粉からの粒径の変化が少ない澱粉を提供することにある。   An object of the present invention is to provide a starch having improved fluidity and a small change in particle size from a raw starch.

本発明は、流動層造粒機を用いて、加熱した空気を流動層に供給しながら、流動層に液体を噴霧して、流動層内の原料のβ澱粉を加熱処理する加熱処理工程と、加熱処理されたβ澱粉を乾燥する乾燥工程と、を含み、液体が水を含み、且つ、水以外の添加剤を含まず、メジアン径が20μm以上80μm以下であり、流動性が向上した澱粉を製造する方法であって、前記メジアン径が前記原料のβ澱粉のメジアン径に対して1.5倍以下である、澱粉の製造方法に関する。 The present invention uses a fluidized bed granulator, while supplying heated air to the fluidized bed, spraying the liquid to the fluidized bed, a heat treatment step of heating the β-starch raw material in the fluidized bed, A drying step of drying the heat-treated β-starch, wherein the liquid contains water, and does not contain any additives other than water, and has a median diameter of 20 μm or more and 80 μm or less, and has improved fluidity. a method of manufacturing, the median diameter is Ru der 1.5 times or less with respect to a median diameter of β starch of the raw material, a method for producing starch.

流動性が改善され、なお且つ、原料澱粉からの粒径の変化が少ない澱粉を製造できる。   It is possible to produce a starch with improved fluidity and little change in particle size from the raw starch.

本発明の実施形態に係る製造方法に用いる流動層造粒機の概略構成図である。It is a schematic structure figure of a fluidized-bed granulator used for a manufacturing method concerning an embodiment of the present invention.

以下、本発明の実施形態に係る流動性が向上した澱粉の製造方法について、図面を参照しながら説明する。   Hereinafter, a method for producing starch with improved fluidity according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る製造方法の特徴は、加熱した空気を流動層に供給しながら、流動層に液体を噴霧して、流動層内のβ澱粉を加熱処理する加熱処理工程と、加熱処理されたβ澱粉を乾燥する乾燥工程との両工程において、流動層造粒機を用いる点にある。   The feature of the production method according to the present embodiment is that, while supplying heated air to the fluidized bed, a liquid is sprayed on the fluidized bed, and a heat treatment step of heat-treating β-starch in the fluidized bed is performed. In both the drying step of drying the β-starch and the drying step, a fluidized bed granulator is used.

図1に、本実施形態に係る製造方法に用いる流動層造粒機10の一例の概略構成を示す。流動層造粒機10は、静置式の分散板(スクリーン)12、流動層容器13、噴霧ノズル16、配管18及びバグフィルタ20を備える。噴霧ノズル16及び配管18は、流動層容器13内の流動層14に向かって噴霧液を噴霧するように下向きに配置されている。バグフィルタ20は、流動層14の上方に配置されている。図1中、矢印は加熱した流動化空気の流れを示す。なお、本実施形態に係る製造方法に使用される流動層造粒機は、図1に示す流動層造粒機10に制限されず、噴霧液を流動層14に向かって噴霧しながら粉体の流動層造粒及び乾燥を行うことができる装置であれば、いずれも使用可能である。   FIG. 1 shows a schematic configuration of an example of a fluidized bed granulator 10 used in the production method according to the present embodiment. The fluidized bed granulator 10 includes a stationary dispersion plate (screen) 12, a fluidized bed container 13, a spray nozzle 16, a pipe 18, and a bag filter 20. The spray nozzle 16 and the pipe 18 are arranged downward so as to spray the spray liquid toward the fluidized bed 14 in the fluidized bed container 13. The bag filter 20 is arranged above the fluidized bed 14. In FIG. 1, arrows indicate the flow of heated fluidized air. The fluidized bed granulator used in the production method according to the present embodiment is not limited to the fluidized bed granulator 10 shown in FIG. Any device that can perform fluidized bed granulation and drying can be used.

流動層造粒機10を用いた一般的な流動層造粒法の原理を説明する。流動層造粒機10において、流動層14内部に対象物である紛体が投入される。分散板12の下方から加熱した流動化空気が送り込まれることにより流動層14内部に収容された紛体物に噴流が発生し、紛体が流動化する。同時に、配管18と接続される噴霧ノズル16から噴霧液が噴霧される。流動層14内部を流れる流動化空気の噴流は、バグフィルタ20により紛体と分離された後、排出される。   The principle of a general fluidized-bed granulation method using the fluidized-bed granulator 10 will be described. In the fluidized bed granulator 10, a powder as an object is put into the fluidized bed 14. When the fluidized air heated from below the dispersing plate 12 is sent in, a jet is generated in the powder material contained in the fluidized bed 14, and the powder is fluidized. At the same time, the spray liquid is sprayed from the spray nozzle 16 connected to the pipe 18. The jet of the fluidizing air flowing inside the fluidized bed 14 is separated from the powder by the bag filter 20 and then discharged.

流動層14内部に噴霧液を添加することにより、噴霧液が紛体に付着して紛体同士が凝集し、また同時に、加熱した流動化空気の噴流によって噴霧液及び紛体の水分が蒸発する。ここで、通常、噴霧液として結合剤の溶液/分散液が用いられるか、又は、予め紛体と結合剤とが混合されているので、紛体同士が凝集すると、結合剤で構成される架橋が形成される。この噴霧液の付着と加熱した流動化空気による水分の蒸発との繰り返しにより、紛体がより粒径の大きな二次粒子となり、紛体の造粒物が形成される。   By adding the spray liquid to the inside of the fluidized bed 14, the spray liquid adheres to the powder and the powders aggregate, and at the same time, the spray liquid and the water in the powder evaporate due to the jet of the heated fluidized air. Here, usually, a solution / dispersion solution of a binder is used as a spray liquid, or since the powder and the binder are mixed in advance, when the powders agglomerate, a cross-link composed of the binder is formed. Is done. By repeating the adhesion of the spray liquid and the evaporation of water by the heated fluidized air, the powder becomes secondary particles having a larger particle size, and a granulated product of the powder is formed.

一方、本実施形態に係る製造方法では、流動層造粒機10の噴霧ノズル16から噴霧される噴霧液として水のみを使用し、噴霧液が水以外の添加剤、例えば結合剤等を含まないことを特徴とする。流動層14に投入するβ澱粉にも結合剤等の添加剤は添加されない。   On the other hand, in the production method according to the present embodiment, only water is used as the spray liquid sprayed from the spray nozzle 16 of the fluidized-bed granulator 10, and the spray liquid does not include additives other than water, such as a binder. It is characterized by the following. No additive such as a binder is added to the β-starch introduced into the fluidized bed 14.

β澱粉は水に不溶であり、β澱粉の粘度が上昇する糊化が生じるには加水と加温とを要するため、流動化の向上を図る目的等で澱粉の造粒物を形成する場合に結合剤を用いることが主流であった。特に、流動層造粒機10を用いた流動層造粒法では、原料紛体は常に空気の噴流にさらされているために噴霧液が供給されるのと同時に水分の蒸発も起こることを鑑みると、結合剤等の添加剤を使用しない場合、β澱粉の造粒物の形成は困難とも考えられる。それを示すように、特許文献2では、流動層造粒機を用いて、噴霧液としてβ澱粉を水分散媒中で加熱分散処理して得られる糊液を使用することにより、β澱粉の造粒物を製造している。   β-starch is insoluble in water, and the viscosity of β-starch increases, and gelatinization requires water and warming to occur. Therefore, when forming starch granules for the purpose of improving fluidization, etc. The use of binders was the mainstream. In particular, in the fluidized-bed granulation method using the fluidized-bed granulator 10, considering that the raw material powder is constantly exposed to the jet of air, the spray liquid is supplied and the moisture is simultaneously evaporated. If additives such as a binder are not used, it may be difficult to form granules of β-starch. As shown therein, Patent Document 2 discloses a method of producing β-starch by using a fluidized-bed granulator and using a paste liquid obtained by heating and dispersing β-starch in an aqueous dispersion medium as a spray liquid. We manufacture granules.

それに対して、本発明者らは、流動層造粒機10を用いる流動層造粒法に従い、β澱粉の加熱処理工程を行う際に、水のみからなり、添加剤を含有しない噴霧液を流動層14に噴霧した場合、意外にも、原料澱粉からの粒径の変化が少なく、なお且つ、流動性が改善された澱粉が得られることを見出した。   On the other hand, the present inventors conducted a fluidized-bed granulation method using a fluidized-bed granulator 10 and carried out a heat treatment step of β-starch by flowing a spray liquid comprising only water and containing no additive. Surprisingly, it has been found that when sprayed on the layer 14, a starch having a small change in particle size from the raw starch and having improved fluidity can be obtained.

本実施形態に係る流動性が向上した澱粉の製造方法について、より詳細に説明する。本明細書において、本実施形態に係る製造方法に供する前のβ澱粉を「原料澱粉」ともいい、本実施形態に係る製造方法により製造された流動性が向上した澱粉を「処理澱粉」ともいう。   The method for producing starch with improved fluidity according to the present embodiment will be described in more detail. In the present specification, β starch before being subjected to the production method according to the present embodiment is also referred to as “raw material starch”, and starch having improved fluidity produced by the production method according to the present embodiment is also referred to as “treated starch”. .

本実施形態に係る製造方法において、原料澱粉として使用されるβ澱粉(生澱粉)の種類は特に制限されないが、例えば、馬鈴薯澱粉、タピオカ澱粉、トウモロコシ澱粉、コムギ澱粉、コメ澱粉及びカンショ澱粉等が挙げられる。   In the production method according to the present embodiment, the kind of β starch (raw starch) used as a raw material starch is not particularly limited. No.

本実施形態に係る製造方法に用いる原料澱粉の粒径は、特に制限されず、例えば、そのメジアン径が1μm以上100μm以下であればよく、5μm以上50μm以下であることが好ましい。原料澱粉及び処理澱粉を含む澱粉の粒径は、レーザー回析式粒度分布計により測定される。   The particle size of the raw starch used in the production method according to the present embodiment is not particularly limited. For example, the median diameter may be 1 μm or more and 100 μm or less, and is preferably 5 μm or more and 50 μm or less. The particle size of the starch containing the raw starch and the treated starch is measured by a laser diffraction type particle size distribution meter.

原料澱粉の水分含有量は、澱粉を生成する植物によって異なり、例えば、乾量基準で10質量%以上20質量%以下であればよく、12質量%以上20質量%以下であることが好ましい。   The water content of the raw starch varies depending on the plant that produces the starch, and may be, for example, 10% by mass or more and 20% by mass or less on a dry basis, and is preferably 12% by mass or more and 20% by mass or less.

澱粉の糊化温度は、澱粉を常温(例えば25℃)の水に添加して分散液とし、次いで攪拌しながら分散液を加温した際に、分散液の粘度が急に上昇する温度である。澱粉の糊化温度は種類によって異なるが、およそ55℃以上80℃以下の範囲にある。馬鈴薯澱粉の糊化温度はおよそ55℃以上65℃以下の範囲にあり、トウモロコシ澱粉の糊化温度はおよそ60℃以上75℃以下の範囲にある。例えば、示唆走査熱量計(DSC)を用いた各種澱粉の糊化特性の解析において、水分含量が50%である各種澱粉の糊化開始温度が、小麦デンプンでは50.1℃、馬鈴薯デンプンでは57.7℃、米デンプンでは57.8℃であったと報告されている(三浦芳助、「広島女学院大学論集」、2003年12月、第53集、79−87頁)。   The gelatinization temperature of the starch is a temperature at which the viscosity of the dispersion suddenly increases when the starch is added to water at normal temperature (for example, 25 ° C.) to form a dispersion, and then the dispersion is heated with stirring. . The gelatinization temperature of the starch varies depending on the type, but is in the range of about 55 ° C. to 80 ° C. The gelatinization temperature of potato starch is in the range of about 55 ° C to 65 ° C, and the gelatinization temperature of corn starch is in the range of about 60 ° C to 75 ° C. For example, in the analysis of the gelatinization characteristics of various starches using a differential scanning calorimeter (DSC), the gelatinization start temperature of various starches having a water content of 50% is 50.1 ° C. for wheat starch and 57 ° C. for potato starch. The temperature was reported to be 0.7 ° C and 57.8 ° C for starch in the United States (Yoshisuke Miura, Hiroshima Jogakuin University Review, December 2003, Vol. 53, pp. 79-87).

澱粉のα化度(糊化度)は、常法であるグルコアミラーゼ法(二國二郎編、「澱粉科学ハンドブック」、朝倉書店、1977年、p.242)による測定値である。具体的には、下記の方法に従って測定したものである。   The degree of gelatinization (degree of gelatinization) of the starch is a value measured by a glucoamylase method (edited by Jiro Fukukoku, “Starch Science Handbook”, Asakura Shoten, 1977, p. 242), which is a conventional method. Specifically, it is measured according to the following method.

1gのグルコアミラーゼを100mLの水に溶解させ、その上澄み液を酵素液とする。試料100mg(無水換算)に水8mLを加え、懸濁液を調製する。懸濁液を2本の試験管に2mLずつ分注し、被検液と完全α化検液とする。被検液には2mol/L酢酸緩衝液(pH4.8)を1.6mL、水0.4mL、酵素液1mLを加える。完全α化検液には10N−NaOHを0.2mL、2mol/L酢酸1.6mL、水0.2mL、酵素液1mLを加える。これらの検液を37℃で60分間反応させる。それぞれの反応液0.5mLに25mmol/LのHCl10mLを加え反応を終了させる。上澄み液を0.5mL採取し、水0.5mL、Somogyi試薬1.0mLを加える。この液を沸騰水中で10分間加熱した後、冷却する。Nelson試薬1mLを加え、3分後、精製水で全量10mLとし、波長660nmでの吸光度を測定する。α化度は以下の式により求めた。
α化度=[(Aa−Ao)/(Ab−Ao)]×100
式中、Aaは、被検液の吸光度であり、Abは、完全α化検液の吸光度であり、Aoは、ブランクの吸光度である。
1 g of glucoamylase is dissolved in 100 mL of water, and the supernatant is used as an enzyme solution. 8 mL of water is added to 100 mg (in terms of anhydrous) of the sample to prepare a suspension. The suspension is dispensed into two test tubes at a volume of 2 mL each to obtain a test solution and a fully pregelatinized test solution. 1.6 mL of 2 mol / L acetate buffer (pH 4.8), 0.4 mL of water, and 1 mL of enzyme solution are added to the test solution. 0.2 mL of 10N-NaOH, 1.6 mL of 2 mol / L acetic acid, 0.2 mL of water, and 1 mL of the enzyme solution are added to the complete pregelatinized test solution. These test solutions are reacted at 37 ° C. for 60 minutes. 10 mL of 25 mmol / L HCl is added to 0.5 mL of each reaction solution to terminate the reaction. 0.5 mL of the supernatant is collected, and 0.5 mL of water and 1.0 mL of Somogyi reagent are added. This liquid is heated in boiling water for 10 minutes and then cooled. 1 mL of Nelson's reagent is added, and 3 minutes later, the total volume is made up to 10 mL with purified water, and the absorbance at a wavelength of 660 nm is measured. The degree of α-formation was determined by the following equation.
α degree = [(Aa−Ao) / (Ab−Ao)] × 100
In the formula, Aa is the absorbance of the test solution, Ab is the absorbance of the fully pregelatinized test solution, and Ao is the absorbance of the blank.

本実施形態に係る製造方法は、加熱処理工程と、乾燥工程とを含む。加熱処理工程では、加熱した空気を流動層14に供給しながら、流動層14に液体を噴霧して、流動層14内部のβ澱粉を加熱処理する。   The manufacturing method according to the present embodiment includes a heat treatment step and a drying step. In the heat treatment step, while supplying the heated air to the fluidized bed 14, the liquid is sprayed on the fluidized bed 14 to heat-treat the β-starch inside the fluidized bed 14.

加熱処理工程において供給される流動化空気の温度は、例えば、50℃以上100℃以下の範囲に設定され、55℃以上80℃以下の範囲に設定されることが好ましい。加熱処理工程において、流動化空気の温度が高すぎるとβ澱粉の変質を伴うおそれがある。流動化空気の温度が低すぎると、原料澱粉に付着した噴霧液の蒸発速度が低下して流動層14内部の水分量が過多になり、原料澱粉の凝集が促進されるおそれがある。   The temperature of the fluidizing air supplied in the heat treatment step is set, for example, in the range of 50 ° C to 100 ° C, and preferably in the range of 55 ° C to 80 ° C. In the heat treatment step, if the temperature of the fluidizing air is too high, the β-starch may be altered. If the temperature of the fluidizing air is too low, the evaporation rate of the spray liquid adhering to the raw starch decreases, and the amount of water in the fluidized bed 14 becomes excessive, which may promote the aggregation of the raw starch.

加熱処理工程における流動化空気の風量(供給量)は、原料澱粉の流動化が生じるように、流動層造粒機10の流動層14の容量及び原料澱粉の投入量に応じて適宜設定すればよい。また、加熱処理工程が進み、原料澱粉に付着する水分量の増加するのに従って、流動化空気の風量を徐々に増加させてもよい。   The flow rate (supply rate) of the fluidized air in the heat treatment step is appropriately set according to the capacity of the fluidized bed 14 of the fluidized bed granulator 10 and the input amount of the raw starch so that the raw starch is fluidized. Good. Further, as the heat treatment step proceeds and the amount of water adhering to the raw starch increases, the air volume of the fluidized air may be gradually increased.

本実施形態に係る製造方法では、加熱処理工程で噴霧ノズル16から噴霧する噴霧液が水であり、添加剤を含有しない。噴霧液として使用する水としては、水道水、井戸水又はこれらの精製水等から適宜選択すればよい。なお「添加剤」には、これらの水に予め含有されているミネラル等の微量成分及び残留塩素等は含まれない。   In the manufacturing method according to the present embodiment, the spray liquid sprayed from the spray nozzle 16 in the heat treatment step is water and does not contain an additive. The water used as the spray liquid may be appropriately selected from tap water, well water, or purified water thereof. The “additive” does not include trace components such as minerals, residual chlorine and the like which are contained in the water in advance.

噴霧液の供給速度は、例えば、原料澱粉に対する噴霧液の割合が0.2質量%/分以上5質量%/分以下とすればよく、0.5質量%/分以上3質量%/分以下であることが好ましい。噴霧液の供給速度が多すぎると処理澱粉の粒径が大きくなることがあり、噴霧液の供給速度が少なすぎると処理時間が多くなり過ぎることがある。   The supply rate of the spray liquid may be, for example, a ratio of the spray liquid to the raw starch of 0.2% by mass / min to 5% by mass / min, and 0.5% by mass / min to 3% by mass / min. It is preferred that If the supply rate of the spray liquid is too high, the particle size of the treated starch may be large, and if the supply rate of the spray liquid is too low, the processing time may be too long.

加熱処理工程において噴霧する噴霧液の合計量は、噴霧条件、流動化条件によって異なるが、例えば、原料澱粉100質量部に対して10質量部以上40質量部以下であり、好ましくは15質量部以上25質量部以下である。噴霧液の合計量が多すぎると処理澱粉の粒径が大きくなることがあり、噴霧液の合計量が少なすぎると歩留りが低下する。   The total amount of the sprayed liquid to be sprayed in the heat treatment step varies depending on the spraying conditions and fluidization conditions, but is, for example, 10 parts by mass or more and 40 parts by mass or less, preferably 15 parts by mass or more based on 100 parts by mass of the raw starch. 25 parts by mass or less. If the total amount of the spray liquid is too large, the particle size of the treated starch may increase, and if the total amount of the spray liquid is too small, the yield decreases.

噴霧液の温度は、特に制限されないが、噴霧液が付着した原料澱粉の糊化を抑制するため、原料澱粉の糊化温度未満の温度範囲、例えば、噴霧液の温度は10℃以上55℃以下の範囲内であることが好ましい。本実施形態に係る製造方法では、水道水又は井戸水等の原水を加温せずに噴霧液として使用できるため、噴霧液の加温装置を要しない点で好ましい。   The temperature of the spray liquid is not particularly limited, but in order to suppress the gelatinization of the raw starch to which the spray liquid adheres, a temperature range lower than the gelatinization temperature of the raw starch, for example, the temperature of the spray liquid is 10 ° C or higher and 55 ° C or lower. Is preferably within the range. In the production method according to the present embodiment, since raw water such as tap water or well water can be used as a spray liquid without heating, it is preferable in that a spray liquid heating device is not required.

噴霧液の全量を噴霧し、加熱処理工程が終了した時点での澱粉の水分含有量は、例えば、乾量基準で20質量%以下であることが好ましい。澱粉の水分含有量が最大になると考えられる加熱処理工程の終了時における水分含有量が上記の範囲にあれば、澱粉の糊化による粒径の増大が抑制されるためである。   The total amount of the spray liquid is sprayed, and the water content of the starch at the time when the heat treatment step is completed is preferably, for example, 20% by mass or less on a dry basis. This is because if the water content at the end of the heat treatment step, at which the water content of the starch is considered to be maximized, is within the above range, an increase in particle size due to gelatinization of the starch is suppressed.

乾燥工程では、加熱処理工程に引き続き加熱した流動化空気の供給を継続して、加熱処理工程において加熱処理された原料澱粉の乾燥を行う。   In the drying step, the supply of the heated fluidized air is continued after the heat treatment step, and the raw starch heat-treated in the heat treatment step is dried.

乾燥工程における流動化空気の温度は、例えば、50℃以上100℃以下の範囲に設定され、55℃以上80℃以下の範囲に設定されることが好ましい。乾燥工程において、流動化空気の温度が高すぎると原料澱粉が変質するおそれがあり、流動化空気の温度が低すぎると乾燥効率が低下する。乾燥工程における流動化空気の風量は、加熱処理工程における流動化空気の風量と同程度であればよい。   The temperature of the fluidized air in the drying step is set, for example, in the range of 50 ° C to 100 ° C, and preferably in the range of 55 ° C to 80 ° C. In the drying step, if the temperature of the fluidizing air is too high, the starting starch may be degraded, and if the temperature of the fluidizing air is too low, the drying efficiency decreases. The air volume of the fluidizing air in the drying process may be approximately the same as the air volume of the fluidizing air in the heat treatment process.

乾燥工程において、流動層14内部の温度を原料澱粉の糊化温度よりも低くすることが好ましい。流動層14内部の温度が当該糊化温度以上であると、水分が付着した原料澱粉表面が糊化して処理澱粉の粒径が大きくなるおそれがあるためである。原料澱粉の種類により異なるが、例えば、流動層14内部の温度は60℃以下が好ましく、50℃以下がより好ましい。なお、乾燥工程において供給される流動化空気の温度が原料澱粉の糊化温度を超えていても、原料澱粉に付着した水分の蒸発に伴う気化熱により、流動層14内部の温度は原料澱粉の糊化温度を下回ることがある。   In the drying step, the temperature inside the fluidized bed 14 is preferably set lower than the gelatinization temperature of the raw starch. If the temperature inside the fluidized bed 14 is equal to or higher than the gelatinization temperature, the surface of the raw starch to which water has adhered is gelatinized, and the particle size of the treated starch may increase. For example, the temperature inside the fluidized bed 14 is preferably 60 ° C. or lower, and more preferably 50 ° C. or lower, although it depends on the type of the raw material starch. Even if the temperature of the fluidized air supplied in the drying step exceeds the gelatinization temperature of the raw starch, the temperature inside the fluidized bed 14 is reduced by the heat of vaporization accompanying the evaporation of the moisture attached to the raw starch. May be below the gelatinization temperature.

流動層14内部の温度は、公知の温度測定手段を用いて直接測定すればよい。また、流動層造粒機10から排出される排気の温度は、流動層14内部から殆ど変化しないことから、当該排気の温度を流動層14内部の温度として取り扱ってもよい。即ち、乾燥工程において流動層造粒機10から排出される排気の温度は、60℃以下が好ましく、50℃以下がより好ましい。   The temperature inside the fluidized bed 14 may be directly measured using a known temperature measuring means. In addition, since the temperature of the exhaust gas discharged from the fluidized bed granulator 10 hardly changes from the inside of the fluidized bed 14, the temperature of the exhaust gas may be treated as the temperature inside the fluidized bed 14. That is, the temperature of the exhaust gas discharged from the fluidized bed granulator 10 in the drying step is preferably 60 ° C. or lower, more preferably 50 ° C. or lower.

本実施形態に係る製造方法では、加熱処理工程の前に、予備加熱工程を行ってもよい。予備加熱工程では、例えば、温度50℃以上100℃以下の加熱した流動化空気を流動層造粒機10の流動層14内部に供給すればよい。製品の温度履歴を一定にする観点から、予備加熱工程を行うことは好ましい。   In the manufacturing method according to the present embodiment, a preliminary heating step may be performed before the heat treatment step. In the preheating step, for example, heated fluidized air having a temperature of 50 ° C. or more and 100 ° C. or less may be supplied into the fluidized bed 14 of the fluidized bed granulator 10. It is preferable to perform the preheating step from the viewpoint of keeping the temperature history of the product constant.

本実施形態に係る製造方法では、流動層造粒機10を用いて原料澱粉に対して上記の加熱処理工程及び乾燥工程を実施することによって、流動性が向上していながら、原料澱粉からの粒径変化が小さい澱粉(処理澱粉)を製造できる。   In the production method according to the present embodiment, the above-mentioned heat treatment step and drying step are performed on the raw starch using the fluidized bed granulator 10 to improve the fluidity of the raw starch and improve the granularity of the raw starch. Starch with small diameter change (treated starch) can be produced.

原料澱粉及び処理澱粉の流動性は安息角によって評価し得る。本実施形態において、澱粉の安息角は注入法(注入角法)に基づいて測定される。注入法に基づく安息角の測定方法は、JIS9301−2−2に記載されている。原料澱粉の安息角は、澱粉の種類によっても異なるが、47°を超え60°以下程度である。それに対して、本実施形態に係る製造方法により、安息角が47°以下、より好ましくは35°以上45°以下である処理澱粉を製造することができる。これは、噴霧液として糊液を用いた流動層造粒法により得られた澱粉顆粒に匹敵する流動性を示すものである。   The fluidity of the raw starch and the treated starch can be evaluated by the angle of repose. In the present embodiment, the angle of repose of starch is measured based on an injection method (injection angle method). A method of measuring the angle of repose based on the injection method is described in JIS9301-2-2. The angle of repose of the raw starch varies depending on the type of starch, but is more than 47 ° and about 60 ° or less. In contrast, the production method according to the present embodiment can produce a treated starch having a repose angle of 47 ° or less, more preferably 35 ° or more and 45 ° or less. This shows fluidity comparable to starch granules obtained by a fluidized bed granulation method using a paste liquid as a spray liquid.

さらに、本実施形態に係る製造方法では、メジアン径が好ましくは20μm以上80μm以下、より好ましくは30μm以上50μm以下である処理澱粉を製造できる。また、本実施形態に係る製造方法では、原料澱粉のメジアン径に対して好ましくは1.5倍以下、より好ましくは1.3倍以下のメジアン径を有する処理澱粉を製造できる。本実施形態に係る製造方法によって製造される処理澱粉は、流動性が改善されているため「だま」の形成を抑制し、なお且つ、原料澱粉からの粒径の変化が少ないため、食材表面に処理澱粉の薄く均一な層を形成することができる。よって、本実施形態に係る製造方法は、汎用性及び利便性に優れる澱粉製品を提供することができる。   Furthermore, in the production method according to the present embodiment, a treated starch having a median diameter of preferably 20 μm or more and 80 μm or less, more preferably 30 μm or more and 50 μm or less can be produced. In the production method according to the present embodiment, a treated starch having a median diameter of preferably 1.5 times or less, more preferably 1.3 times or less with respect to the median diameter of the raw starch can be produced. The treated starch produced by the production method according to the present embodiment suppresses the formation of “dama” because of improved fluidity, and has a small change in the particle size from the raw starch, so that the surface of the food material is reduced. A thin, uniform layer of the treated starch can be formed. Therefore, the manufacturing method according to the present embodiment can provide a starch product having excellent versatility and convenience.

処理澱粉の水分含有量は、特に制限されないが、例えば、10質量%以上25質量%以下が好ましく、10質量%以上18質量%以下が好ましい。また、処理澱粉の水分含有量が、原料澱粉の水分含有量に対して−20質量%以上20質量%以下であることが好ましい。処理澱粉の水分含有量が多すぎると流動性が低下するおそれがある。また、処理澱粉の水分含有量が少なすぎると歩留りが低下する。   Although the water content of the treated starch is not particularly limited, it is, for example, preferably from 10% by mass to 25% by mass, and more preferably from 10% by mass to 18% by mass. Further, it is preferable that the moisture content of the treated starch is -20% by mass or more and 20% by mass or less with respect to the moisture content of the raw starch. If the water content of the treated starch is too large, the fluidity may be reduced. On the other hand, if the water content of the treated starch is too small, the yield will be reduced.

本実施形態に係る製造方法により得られる処理澱粉は、水に加えた際の分散性の観点から、α化度(糊化度)が10%未満であることが好ましく、7%未満であることがより好ましい。   The treated starch obtained by the production method according to the present embodiment preferably has a degree of gelatinization (degree of gelatinization) of less than 10% and less than 7% from the viewpoint of dispersibility when added to water. Is more preferred.

以下、実施例に基づいて本実施形態に係る製造方法をより具体的に説明する。原料澱粉及び処理澱粉のメジアン径、水分含有量及び安息角は上記の方法により測定した。   Hereinafter, the manufacturing method according to the present embodiment will be described more specifically based on examples. The median diameter, water content and angle of repose of the raw starch and the treated starch were measured by the methods described above.

<実施例1>
図1に示す構成を有する流動層造粒機10(株式会社パウレック製、FD−BF−200T型)を使用した。流動層14の容量は670Lであり、噴霧ノズル16の高さは600mmであった。加熱処理工程を行う前に、温度100℃の加熱した流動化空気を風量40m/分で分散板12から流動層14内部に供給する予備加熱工程を行った。
<Example 1>
A fluidized-bed granulator 10 (FD-BF-200T, manufactured by Powrex Corporation) having the configuration shown in FIG. 1 was used. The capacity of the fluidized bed 14 was 670 L, and the height of the spray nozzle 16 was 600 mm. Before performing the heat treatment step, a preliminary heating step of supplying heated fluidized air at a temperature of 100 ° C. from the dispersion plate 12 to the inside of the fluidized bed 14 at a flow rate of 40 m 3 / min was performed.

[加熱処理工程]
加熱した流動化空気について風量を40m/分に維持しつつ温度を60℃に変更した後、原料澱粉200kgを流動層14に投入した。原料澱粉としては、β澱粉である馬鈴薯澱粉(水分含有量17.0%)を用いた。次いで、噴霧液として、16℃の水(水道水)を2000g/分の供給速度で、噴霧ノズル16から流動層14に噴霧した。噴霧液の噴霧時間は20分間であり、噴霧液の総量は40kgであった。また、加熱処理工程開始時及び終了時の排気温度は、それぞれ38.0℃及び36.7℃であり、原料澱粉の糊化温度を大きく下回っていた。
[Heat treatment step]
After the temperature of the heated fluidized air was changed to 60 ° C. while maintaining the air volume at 40 m 3 / min, 200 kg of the raw starch was charged into the fluidized bed 14. Potato starch (water content: 17.0%), which is β-starch, was used as the raw material starch. Next, as a spray liquid, water (tap water) at 16 ° C. was sprayed onto the fluidized bed 14 from the spray nozzle 16 at a supply rate of 2000 g / min. The spray time of the spray liquid was 20 minutes, and the total amount of the spray liquid was 40 kg. The exhaust temperatures at the start and end of the heat treatment step were 38.0 ° C. and 36.7 ° C., respectively, which were much lower than the gelatinization temperature of the raw starch.

[乾燥工程]
加熱処理工程の完了後(噴霧液の噴霧終了後)、引き続き、加熱した流動化空気を供給して、乾燥工程を行った。乾燥工程では、引き続き、流動化空気の温度を60℃に、風量を40m/分に設定した。12分間の乾燥工程を終えた後、処理澱粉A1が得られた。処理澱粉A1のメジアン径は40.3μmであり、安息角は42.2°であった。また、処理澱粉A1のα化度は3.5%であり、水分含有量は14.7質量%であった。
[Drying process]
After the completion of the heat treatment step (after the end of the spraying of the spray liquid), the heated fluidized air was subsequently supplied to perform the drying step. In the drying step, the temperature of the fluidized air was set to 60 ° C. and the air volume was set to 40 m 3 / min. After finishing the drying process for 12 minutes, treated starch A1 was obtained. The median diameter of the treated starch A1 was 40.3 μm, and the angle of repose was 42.2 °. The degree of pregelatinization of the treated starch A1 was 3.5%, and the water content was 14.7% by mass.

<実施例2>
加熱処理工程及び乾燥工程における加熱した流動化空気の温度を100℃にし、乾燥工程における乾燥時間を10分にしたこと以外は実施例1と同様にして、処理澱粉A2を製造した。加熱処理工程開始時及び終了時の排気温度は、それぞれ38.0℃及び37.1℃であり、原料澱粉の糊化温度を下回っていた。処理澱粉A2のメジアン径は39.6μmであり、安息角は43.8°であった。また、処理澱粉A2のα化度は4.5%であり、水分含有量は15.2質量%であった。
<Example 2>
A treated starch A2 was produced in the same manner as in Example 1 except that the temperature of the fluidized air heated in the heat treatment step and the drying step was 100 ° C., and the drying time in the drying step was 10 minutes. The exhaust temperatures at the start and end of the heat treatment step were 38.0 ° C. and 37.1 ° C., respectively, which were lower than the gelatinization temperature of the raw starch. The median diameter of the treated starch A2 was 39.6 μm, and the angle of repose was 43.8 °. The degree of pregelatinization of the treated starch A2 was 4.5%, and the water content was 15.2% by mass.

<実施例3>
加熱処理工程及び乾燥工程における加熱した流動化空気の温度を50℃にしたこと以外は実施例1と同様にして、処理澱粉A3を製造した。加熱処理工程開始時及び終了時の排気温度は、それぞれ35.0℃及び27.5℃であり、原料澱粉の糊化温度を大きく下回っていた。処理澱粉A3のメジアン径は38.6μmであり、安息角は44.5°であった。また、処理澱粉A3のα化度は3.2%であり、水分含有量は16.8質量%であった。
<Example 3>
A treated starch A3 was produced in the same manner as in Example 1, except that the temperature of the fluidized air heated in the heat treatment step and the drying step was set to 50 ° C. The exhaust temperatures at the start and end of the heat treatment step were 35.0 ° C. and 27.5 ° C., respectively, which were much lower than the gelatinization temperature of the raw starch. The median diameter of the treated starch A3 was 38.6 μm, and the angle of repose was 44.5 °. The degree of pregelatinization of the treated starch A3 was 3.2%, and the water content was 16.8% by mass.

<比較例1>
室温の水に馬鈴薯澱粉(水分含有量17.0%)を添加した後、90℃まで加温して、目視により透明になる(均一相が形成される)まで攪拌して、馬鈴薯澱粉の濃度が3質量%である糊液を調製した。供給路の閉塞等による噴霧状態の異変を避けるために50℃に加温した糊液を噴霧液として用いたこと以外は、実施例1と同様にして、処理澱粉B1を製造した。加熱処理工程開始時及び終了時の排気温度は、それぞれ38.0℃及び37.2℃であった。処理澱粉B1のメジアン径は116.5μmであり、安息角は48.0°であった。また、処理澱粉B1のα化度は5.1%であり、水分含有量は16.2質量%であった。
<Comparative Example 1>
After adding potato starch (water content: 17.0%) to room temperature water, the mixture was heated to 90 ° C. and stirred until it became visually transparent (a uniform phase was formed), and the potato starch concentration was increased. Is 3% by mass. A treated starch B1 was produced in the same manner as in Example 1, except that a paste liquid heated to 50 ° C. was used as a spray liquid in order to avoid a change in the spray state due to blockage of the supply path and the like. The exhaust temperatures at the start and end of the heat treatment step were 38.0 ° C. and 37.2 ° C., respectively. The median diameter of the treated starch B1 was 116.5 μm, and the angle of repose was 48.0 °. The degree of pregelatinization of the treated starch B1 was 5.1%, and the water content was 16.2% by mass.

<比較例2>
噴霧液として、カルボキシメチルセルロースを水に添加した結合剤含有液を噴霧液として用いたこと以外は、実施例1と同様にして、処理澱粉B2を製造した。加熱処理工程開始時及び終了時の排気温度は、それぞれ38.0℃及び35.7℃であった。処理澱粉B2のメジアン径は108.9μmであり、安息角は44.5°であった。また、処理澱粉B2のα化度は4.6%であり、水分含有量は15.8質量%であった。
<Comparative Example 2>
A treated starch B2 was produced in the same manner as in Example 1, except that a binder-containing liquid obtained by adding carboxymethyl cellulose to water was used as the spray liquid. The exhaust temperatures at the start and end of the heat treatment step were 38.0 ° C. and 35.7 ° C., respectively. The median diameter of the treated starch B2 was 108.9 μm, and the angle of repose was 44.5 °. The degree of gelatinization of the treated starch B2 was 4.6%, and the water content was 15.8% by mass.

原料澱粉、並びに、各実施例及び各比較例で製造された処理澱粉の特性を表1に示す。
Table 1 shows the properties of the raw starch and the treated starch produced in each of the examples and comparative examples.

実施例1〜3で得られた処理澱粉A1〜A3では、原料澱粉と比較して、安息角が低く流動性が向上しており、なお且つ、メジアン径の拡大が1.5倍以内に抑えられている。そのため、処理澱粉A1〜A3では、計量スプーン等を用いて、或いは、容器やパウチ袋等から直接、食材表面に振りかけた場合であっても、食材表面に「だま」が形成され難く、処理澱粉を均一にまぶすことができる。それに対して、処理澱粉B1及びB2では、原料澱粉と比較して、安息角が低く流動性が向上しているが、メジアン径が約3倍となっている。そのため、処理澱粉B1及びB2が食材表面にまだらに振りかかり、均一な層が形成できないおそれがある。   In the treated starches A1 to A3 obtained in Examples 1 to 3, the angle of repose is lower and the fluidity is improved as compared with the raw starch, and the expansion of the median diameter is suppressed to within 1.5 times. Have been. Therefore, in the treated starches A1 to A3, even when sprinkled on the food material surface using a measuring spoon or the like or directly from a container or a pouch bag, "dama" is hardly formed on the food material surface, Can be evenly applied. On the other hand, in the treated starches B1 and B2, the angle of repose is lower and the fluidity is improved as compared with the raw starch, but the median diameter is about three times as large. For this reason, the treated starches B1 and B2 may sprinkle on the surface of the food material, and a uniform layer may not be formed.

10 流動層造粒機、12 分散板、13 流動層容器、14 流動層、16 噴霧ノズル、18 配管、20 バグフィルタ。
Reference Signs List 10 fluidized bed granulator, 12 dispersion plate, 13 fluidized bed container, 14 fluidized bed, 16 spray nozzle, 18 piping, 20 bag filter.

Claims (4)

流動層造粒機を用いて、
加熱した空気を流動層に供給しながら、前記流動層に液体を噴霧して、前記流動層内の原料のβ澱粉を加熱処理する加熱処理工程と、
前記加熱処理されたβ澱粉を乾燥する乾燥工程と、を含み、
前記液体が水を含み、且つ、水以外の添加剤を含まず、
メジアン径が20μm以上80μm以下であり、流動性が向上した澱粉を製造する方法であって、
前記メジアン径が前記原料のβ澱粉のメジアン径に対して1.5倍以下であることを特徴とする、澱粉の製造方法。
Using a fluidized bed granulator,
A heat treatment step of spraying a liquid onto the fluidized bed while supplying heated air to the fluidized bed, and heat treating β-starch as a raw material in the fluidized bed,
Drying the heat-treated β-starch,
The liquid contains water, and does not contain additives other than water,
A method for producing a starch having a median diameter of 20 μm or more and 80 μm or less and having improved fluidity ,
The median diameter is characterized der Rukoto 1.5 times or less with respect to a median diameter of β starch of the raw materials, production process of starch.
前記β澱粉が馬鈴薯澱粉である、請求項1に記載の製造方法。   The method according to claim 1, wherein the β-starch is potato starch. 前記加熱処理工程において前記流動層に供給する空気の温度が50℃以上100℃以下である、請求項1又は2に記載の製造方法。   3. The method according to claim 1, wherein a temperature of air supplied to the fluidized bed in the heat treatment step is 50 ° C. or more and 100 ° C. or less. 4. 前記澱粉の注入法により測定される安息角が47°以下である、請求項1〜3のいずれか一項に記載の製造方法。   The method according to any one of claims 1 to 3, wherein a repose angle measured by the starch injection method is 47 ° or less.
JP2016237325A 2016-12-07 2016-12-07 Method for producing starch Active JP6632960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237325A JP6632960B2 (en) 2016-12-07 2016-12-07 Method for producing starch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237325A JP6632960B2 (en) 2016-12-07 2016-12-07 Method for producing starch

Publications (2)

Publication Number Publication Date
JP2018090741A JP2018090741A (en) 2018-06-14
JP6632960B2 true JP6632960B2 (en) 2020-01-22

Family

ID=62564450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237325A Active JP6632960B2 (en) 2016-12-07 2016-12-07 Method for producing starch

Country Status (1)

Country Link
JP (1) JP6632960B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237619A (en) * 1978-12-15 1980-12-09 Cpc International Inc. Fluidized bed apparatus
JPS5820280B2 (en) * 1980-02-04 1983-04-22 東京田辺製薬株式会社 Method for producing amylodextrin fine granules
US5131953A (en) * 1988-09-12 1992-07-21 National Starch And Chemical Investment Holding Corporation Continuous coupled jet-cooking/spray-drying process and novel pregelatinized high amylose starches prepared thereby
EP2261263B1 (en) * 2008-03-31 2022-03-23 Asahi Kasei Kabushiki Kaisha Processed starch powder with excellent disintegration properties and manufacturing method thereof
EP2842986B1 (en) * 2012-04-27 2018-12-26 Japan Corn Starch Co., Ltd. Method for producing starch granules, and orally disintegrating tablet
JP6021721B2 (en) * 2013-04-05 2016-11-09 日清フーズ株式会社 Granulated flour

Also Published As

Publication number Publication date
JP2018090741A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
CN102363636B (en) Method for producing cassava modified starch for wrapping fried foods
KR100803343B1 (en) Binding capacity-enhanced starch powder binder composition and method of producing thereof
JP6021721B2 (en) Granulated flour
CN102134281A (en) Method for producing high-flowability pregelatinized starch
CN105265756A (en) Complex enzyme coated pellet and preparation method thereof
CN102219912A (en) Preparation method for granular type xanthan gum
JP4580397B2 (en) Spray-dried starch hydrolyzate aggregate product and process for producing spray-dried starch hydrolyzate aggregate product
JP6632960B2 (en) Method for producing starch
EP2683745B1 (en) A powdered acid-loaded carrier material
JP5879668B2 (en) Method for producing starch granules and orally disintegrating tablet
JP2004147567A (en) Liquid food thickening agent and method for producing the same
CN108048447A (en) A kind of preparation method of enzyme preparation
CN104131001A (en) Preparation method for granular and solid powdery enzyme preparation
Tang et al. Sulfonated carboxymethyl debranched starch: Preparation, performance and application
Ba et al. Physicochemical characterization of dextrins prepared with amylases from sorghum malt
US2115157A (en) Starch product and method of making same
CN106892987A (en) A kind of method of dry process starch dissolvable in cold water
CN103483464A (en) Method for reducing viscosity of konjac gum and granulating
JP6902813B1 (en) Composition for granulation binder
CN107857821A (en) A kind of first high crosslinking reversible expansion starch that again prepared by high temperature bath processing and method
CN112142865A (en) Modified pregelatinized starch and production method thereof
JP2000185991A (en) Coated granular fertilizer and its production
Xiao et al. Physicochemical properties of porous starches from different botanical origin
JPS5970614A (en) Wet solid pharmaceutical preparation of very small amount of main drug
JP2017088733A (en) Method for producing hydroxypropyl cellulose aqueous solution in which heat-aggregation of hydroxypropyl cellulose is reduced

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191211

R150 Certificate of patent or registration of utility model

Ref document number: 6632960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250