JP6632007B1 - Method for evaluating time-dependent expansion or contraction due to curing of curable composition, coating member, method for designing curing conditions of curable composition, and method for designing curable composition - Google Patents

Method for evaluating time-dependent expansion or contraction due to curing of curable composition, coating member, method for designing curing conditions of curable composition, and method for designing curable composition Download PDF

Info

Publication number
JP6632007B1
JP6632007B1 JP2019027395A JP2019027395A JP6632007B1 JP 6632007 B1 JP6632007 B1 JP 6632007B1 JP 2019027395 A JP2019027395 A JP 2019027395A JP 2019027395 A JP2019027395 A JP 2019027395A JP 6632007 B1 JP6632007 B1 JP 6632007B1
Authority
JP
Japan
Prior art keywords
curing
covering member
curable composition
expansion
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019027395A
Other languages
Japanese (ja)
Other versions
JP2020134293A (en
Inventor
憲一 中宗
憲一 中宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACROEDGE CO., LTD.
Original Assignee
ACROEDGE CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACROEDGE CO., LTD. filed Critical ACROEDGE CO., LTD.
Priority to JP2019027395A priority Critical patent/JP6632007B1/en
Application granted granted Critical
Publication of JP6632007B1 publication Critical patent/JP6632007B1/en
Priority to PCT/JP2020/006282 priority patent/WO2020171064A1/en
Publication of JP2020134293A publication Critical patent/JP2020134293A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; rubber; leather

Abstract

【課題】硬化性組成物の硬化による膨張又は収縮を正確に評価することができる方法等を提供する。【解決手段】硬化性組成物11の硬化による経時的な膨張又は収縮を評価する方法であって、収容部材に収容されかつ表面に被覆部材20が配置された硬化性組成物を硬化させると共に、レーザー光源Xから被覆部材に連続的にレーザー光13を照射し、その反射光に基づき被覆部材の位置を連続的に測定する測定工程と、測定工程で測定された位置の推移から、硬化性組成物の硬化による経時的な膨張又は収縮を評価する評価工程と、を含み、被覆部材は、レーザー光に対する反射率が50%以上であり、質量が10mg以下である。【選択図】図1An object of the present invention is to provide a method for accurately evaluating expansion or shrinkage of a curable composition due to curing. Kind Code: A1 A method for evaluating the time-dependent expansion or shrinkage due to curing of a curable composition, comprising curing a curable composition housed in a housing member and having a covering member 20 disposed on a surface thereof, From the measurement step of continuously irradiating the coating member from the laser light source X with the laser beam 13 and continuously measuring the position of the coating member based on the reflected light, and the transition of the position measured in the measurement step, the curable composition An evaluation step of evaluating time-dependent expansion or contraction due to curing of the object, wherein the coating member has a reflectance to laser light of 50% or more and a mass of 10 mg or less. [Selection diagram] Fig. 1

Description

本発明は、硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法と、前述の方法に用いる被覆部材と、前述の方法を用いる硬化性組成物の硬化条件を設計する方法と、前述の方法を用いる硬化性組成物を設計する方法に関する。   The present invention is a method for evaluating the time-dependent expansion or shrinkage due to curing of a curable composition, a coating member used for the above-described method, and a method for designing curing conditions for the curable composition using the above-described method, A method for designing a curable composition using the methods described above.

電子機器等の製造において、電子部品や光学部品等の部材を固定する接着材や部材を保護するコーティング等として、紫外線硬化性組成物が用いられている。紫外線硬化性組成物は簡便な作業で短時間での硬化が可能である。しかしながら、紫外線硬化性組成物は硬化時に収縮するため、設計とのずれが生じるという問題がある。特に、精密な部品や光学部品の固定には、小さな収縮率でも光軸のずれ等が起り電子機器のトラブルの原因となり得る。   2. Description of the Related Art In the manufacture of electronic devices and the like, an ultraviolet-curable composition is used as an adhesive for fixing members such as electronic components and optical components, and as a coating for protecting members. The ultraviolet curable composition can be cured in a short time by a simple operation. However, since the ultraviolet curable composition shrinks during curing, there is a problem that a deviation from the design occurs. In particular, in fixing a precision component or an optical component, even a small shrinkage ratio may cause a shift of an optical axis or the like, which may cause a trouble in an electronic device.

このような問題を解決する技術として、本発明者は、紫外線硬化樹脂からなる接着剤の硬化収縮を測定する方法であって、紫外線を透過させるガラス板上に紫外線硬化樹脂を配置するステップと、前記紫外線硬化樹脂の上部に非接触で距離を測るレーザーセンサーを設けるステップと、前記ガラス板の下部より紫外線を照射して樹脂を硬化させるステップと、前記レーザーセンサーにより、紫外線の照射前後における、ガラス板表面からの前記紫外線硬化樹脂の距離、及び、前記紫外線硬化樹脂の表面積をそれぞれ測定することで、前記紫外線硬化樹脂の収縮状態を数値化するステップとを備える、樹脂硬化収縮測定方法を開発した(特許文献1参照)。この樹脂硬化収縮測定方法によれば、硬化前と硬化後の紫外線硬化性樹脂の収縮率が把握できる。したがって、例えば、製品設計時にそれを加味して設計することにより、所望の製品を製造することができる。   As a technique for solving such a problem, the present inventor is a method for measuring the curing shrinkage of an adhesive made of an ultraviolet-curable resin, and a step of disposing the ultraviolet-curable resin on a glass plate that transmits ultraviolet light, A step of providing a laser sensor for measuring the distance in a non-contact manner on the upper part of the ultraviolet curable resin, a step of irradiating ultraviolet light from a lower part of the glass plate to cure the resin, and the laser sensor, before and after irradiation of ultraviolet light, glass Measuring the distance of the UV-curable resin from the plate surface, and the surface area of the UV-curable resin, respectively, to quantify the shrinkage state of the UV-curable resin. (See Patent Document 1). According to this resin curing shrinkage measuring method, the shrinkage ratio of the ultraviolet curable resin before and after curing can be grasped. Therefore, for example, a desired product can be manufactured by designing it in consideration of the product design.

特許第5848109号Patent No. 5848109

しかしながら、紫外線硬化性組成物の硬化収縮をより高精度に評価するべく、距離の測定精度の改善に対するニーズがある。特に、レーザー光に対する反射率が低い透明な紫外線硬化性組成物は、正確な距離を測定し難く、紫外線硬化性組成物の収縮状態を正確に把握しにくいという問題がある。また、より精密な電子機器を製造するためには紫外線硬化性組成物の収縮をより正確に評価できることが望まれている。そして、紫外線硬化性組成物は硬化により膨張することもある。   However, there is a need for improvement in distance measurement accuracy in order to evaluate curing shrinkage of an ultraviolet curable composition with higher accuracy. In particular, a transparent ultraviolet curable composition having a low reflectance with respect to laser light has a problem that it is difficult to measure an accurate distance and to accurately grasp a contracted state of the ultraviolet curable composition. Further, in order to manufacture more precise electronic equipment, it is desired that shrinkage of the ultraviolet curable composition can be more accurately evaluated. And an ultraviolet curable composition may expand by hardening.

なお、紫外線以外の光により硬化する光硬化性組成物、また、熱により硬化する熱硬化性組成物等の光以外のエネルギーにより硬化する硬化性組成物、さらには湿気により硬化する硬化性組成物等も、紫外線硬化性組成物と同様に上記接着材やコーティング等として用いることができ、紫外線硬化性組成物と同様に硬化時の収縮等の問題が存在する。   Note that a photocurable composition that is cured by light other than ultraviolet light, a curable composition that is cured by energy other than light, such as a thermosetting composition that is cured by heat, and a curable composition that is cured by moisture. And the like can be used as the above-mentioned adhesives and coatings similarly to the ultraviolet curable composition, and there is a problem such as shrinkage at the time of curing similarly to the ultraviolet curable composition.

本発明は、上記の状況に鑑みてなされたものであり、硬化性組成物の硬化による膨張又は収縮を正確に評価することができる方法および手段を提供することを目的とする。
また、本発明は、硬化性組成物を所望に硬化するための硬化条件の設計方法、および所望に硬化する硬化性組成物の設計方法を提供することを、別の目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a method and means capable of accurately evaluating expansion or shrinkage due to curing of a curable composition.
Another object of the present invention is to provide a method for designing curing conditions for curing a curable composition as desired, and a method for designing a curable composition to cure as desired.

本発明者らは、レーザー光に対する反射率が相応に高く質量が相応に低い被覆部材を硬化性組成物の表面に載置した状態で、硬化性組成物を硬化させると共に、被覆部材に連続的にレーザー光を照射し、その反射光に基づき被覆部材の位置を連続的に測定し、測定された位置の推移から硬化性組成物の硬化による経時的な膨張又は収縮を評価することにより、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。   The present inventors cured the curable composition in a state where the coating member having a correspondingly high reflectance to laser light and a correspondingly low mass was placed on the surface of the curable composition, and continuously cured the coating member. By irradiating the laser light, the position of the covering member is continuously measured based on the reflected light, and by evaluating the time-dependent expansion or contraction due to curing of the curable composition from the transition of the measured position, The inventors have found that the problem can be solved, and have completed the present invention. More specifically, the present invention provides the following.

(1) 硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法であって、
収容部材に収容されかつ表面に被覆部材が配置された前記硬化性組成物を硬化させると共に、レーザー光源から前記被覆部材に連続的にレーザー光を照射し、その反射光に基づき前記被覆部材の位置を連続的に測定する測定工程と、
前記測定工程で測定された前記位置の推移から、前記硬化性組成物の硬化による経時的な膨張又は収縮を評価する評価工程と、を含み、
前記被覆部材は、前記レーザー光に対する反射率が50%以上であり、質量が10mg以下である、方法。
(1) A method for evaluating the time-dependent expansion or shrinkage due to curing of a curable composition,
While curing the curable composition contained in the containing member and having the covering member disposed on the surface, continuously irradiating the covering member with a laser beam from a laser light source, the position of the covering member based on the reflected light. A measuring step of continuously measuring
From the transition of the position measured in the measurement step, including an evaluation step of evaluating the expansion or contraction over time due to the curing of the curable composition,
The method, wherein the coating member has a reflectance of 50% or more to the laser light and a mass of 10 mg or less.

(2) 前記被覆部材を、前記収容部材に接触しないように配置する、(1)に記載の方法。   (2) The method according to (1), wherein the covering member is disposed so as not to contact the housing member.

(3) 前記測定工程は、前記被覆部材から放射される赤外線の量を非接触で連続的に測定する赤外線量測定工程を有し、前記評価工程は、前記赤外線量測定工程で測定された前記赤外線量の推移から、前記硬化性組成物の硬化による経時的な温度推移を評価する温度評価工程を含む、(1)又は(2)に記載の方法。   (3) The measuring step includes an infrared ray amount measuring step of continuously measuring the amount of infrared rays emitted from the coating member in a non-contact manner, and the evaluating step includes measuring the infrared ray amount measured in the infrared ray amount measuring step. The method according to (1) or (2), further comprising a temperature evaluation step of evaluating a temperature change over time due to curing of the curable composition from a change in the amount of infrared rays.

(4) 質量10mg以下の剛体膜からなる、(1)〜(3)のいずれか1つに記載の方法に用いられる被覆部材。   (4) A covering member used in the method according to any one of (1) to (3), comprising a rigid film having a mass of 10 mg or less.

(5) 熱伝導率が70Wm−1−1以上である、(4)に記載の被覆部材。 (5) The covering member according to (4), wherein the thermal conductivity is 70 Wm -1 K -1 or more.

(6) 無機質材料からなる、(5)に記載の被覆部材。   (6) The covering member according to (5), comprising an inorganic material.

(7) 主表面の少なくとも一部に黒体を有する、(4)〜(6)のいずれか1つに記載の被覆部材。   (7) The covering member according to any one of (4) to (6), having a black body on at least a part of the main surface.

(8) 厚さが100μm以下である、(4)〜(7)のいずれか1項に記載の被覆部材。   (8) The covering member according to any one of (4) to (7), which has a thickness of 100 µm or less.

(9) (1)〜(3)のいずれか1つに記載の方法で得られる、前記硬化性組成物の硬化による経時的な膨張又は収縮の評価情報に基づき、前記硬化性組成物の硬化条件を設計する方法。   (9) Curing of the curable composition based on evaluation information of expansion or contraction over time due to curing of the curable composition obtained by the method according to any one of (1) to (3). How to design conditions.

(10) (1)〜(3)のいずれか1つに記載の方法で得られる、前記硬化性組成物の硬化による経時的な膨張又は収縮の評価情報に基づき、前記硬化性組成物を設計する方法。   (10) The curable composition is designed based on the evaluation information of the time-dependent expansion or shrinkage due to curing of the curable composition obtained by the method according to any one of (1) to (3). how to.

本発明の硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法によれば、硬化性組成物の硬化による膨張又は収縮を正確に評価することができる。
そして、この方法で得られた評価情報に基づき、硬化性組成物の硬化条件を設計することや、硬化性組成物を設計することができる。
According to the method for evaluating expansion or contraction of a curable composition over time due to curing of the curable composition of the present invention, it is possible to accurately evaluate expansion or contraction of the curable composition due to curing.
Then, based on the evaluation information obtained by this method, the curing conditions of the curable composition can be designed, and the curable composition can be designed.

光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法で用いることができる測定装置の一例を示す模式的断面図である。It is a typical sectional view showing an example of the measuring device which can be used by the method of evaluating expansion or contraction with time by hardening of the photocurable composition. 被覆部材を説明する模式図である。It is a schematic diagram explaining a covering member. 光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法で用いることができる測定装置の他の例を示す模式的断面図である。It is a typical sectional view showing other examples of a measuring device which can be used by the method of evaluating expansion or contraction with time by hardening of a photocurable composition. 熱硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法で用いることができる測定装置の一例を示す図である。It is a figure showing an example of a measuring device which can be used in a method of evaluating expansion or contraction of a thermosetting composition over time due to curing. 実施例1の結果を示す図である。FIG. 7 is a diagram showing the results of Example 1. 比較例1の結果を示す図である。FIG. 9 is a diagram showing the results of Comparative Example 1.

以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described in detail. Note that the present invention is not limited to the following embodiments.

<<硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法>>
本発明の硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法は、収容部材に収容されかつ表面に被覆部材が配置された硬化性組成物を硬化させると共に、レーザー光源から被覆部材に連続的にレーザー光を照射し、その反射光に基づき被覆部材の位置を連続的に測定する測定工程と、測定工程で測定された位置の推移から、硬化性組成物の硬化による経時的な膨張又は収縮を評価する評価工程と、を含み、被覆部材は、レーザー光に対する反射率が50%以上であり、質量が10mg以下である。
<<< Method for evaluating temporal expansion or shrinkage due to curing of curable composition >>>
The method for evaluating the time-dependent expansion or shrinkage due to curing of the curable composition of the present invention is a method for curing a curable composition which is housed in a housing member and has a coating member disposed on the surface, and a coating member from a laser light source. Irradiating the laser beam continuously, and the measuring step of continuously measuring the position of the covering member based on the reflected light, from the transition of the position measured in the measuring step, the temporal change due to curing of the curable composition An evaluation step of evaluating expansion or contraction, wherein the coating member has a reflectance to laser light of 50% or more and a mass of 10 mg or less.

評価する対象である硬化性組成物は、硬化する成分を含むものであれば特に限定されない。典型的には、紫外線等の光により硬化する成分を含む光硬化性組成物、熱により硬化する成分を含む熱硬化性組成物や、光硬化性組成物及び熱硬化性組成物の混合物、空気中の水分と反応して硬化する成分を含む湿気硬化性組成物、2液以上の多液の混合物からなる硬化性組成物(例えば2液型接着剤として使用される硬化性組成物)が挙げられる。以下に、例として、光硬化性組成物を評価する場合、及び、熱硬化性組成物を評価する場合について、それぞれ説明する。   The curable composition to be evaluated is not particularly limited as long as it contains a component to be cured. Typically, a photocurable composition containing a component curable by light such as ultraviolet light, a thermosetting composition containing a component curable by heat, a mixture of a photocurable composition and a thermosetting composition, air A moisture-curable composition containing a component that reacts with moisture in the composition to cure, and a curable composition composed of a mixture of two or more liquids (eg, a curable composition used as a two-part adhesive). Can be Hereinafter, the case where the photocurable composition is evaluated and the case where the thermosetting composition is evaluated will be described as examples.

<光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法>
光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法について、図1及び図2を用いて説明する。図1は、光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法で用いることができる測定装置の一例を示す模式的断面図である。図2は、被覆部材を説明する模式図であり、図2(a)は断面図であり、図2(b)は上面図であり、図2(c)は他の例を示す断面図である。
<Method for evaluating temporal expansion or shrinkage due to curing of photocurable composition>
A method for evaluating the time-dependent expansion or contraction due to curing of the photocurable composition will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view showing an example of a measuring device that can be used in a method of evaluating expansion or contraction of a photocurable composition over time due to curing. 2A and 2B are schematic views illustrating a covering member, FIG. 2A is a cross-sectional view, FIG. 2B is a top view, and FIG. 2C is a cross-sectional view illustrating another example. is there.

図1に示すように、測定装置10は、硬化性組成物としての光硬化性組成物11を載置する測定台12と、測定台12に載置された光硬化性組成物11にレーザー光源Xからレーザー光13を照射し、その反射光を検知することで被覆部材20までの距離a(位置)を連続的に測定する変位計14と、測定台12に載置された光硬化性組成物11に測定台12側から光硬化性組成物11に光15を照射して光硬化性組成物11を硬化させる光照射装置16とを有する。   As shown in FIG. 1, a measuring device 10 includes a measuring table 12 on which a photocurable composition 11 as a curable composition is mounted, and a laser light source provided on the photocurable composition 11 mounted on the measuring table 12. A displacement meter 14 that continuously measures a distance a (position) to a covering member 20 by irradiating a laser beam 13 from X and detecting a reflected light thereof, and a photocurable composition placed on a measurement table 12. A light irradiation device 16 for irradiating the object 11 with the light 15 to the photocurable composition 11 from the measurement table 12 side to cure the photocurable composition 11;

図1において、測定台12は、光15を透過する材質(例えば、ガラス)からなる。また、図1においては、光硬化性組成物11として、紫外線により硬化する成分を含む紫外線硬化性組成物を用い、光照射装置16として紫外線照射装置を用い、光15として紫外線を照射する態様を示している。なお、紫外線とは、10nm以上400nm以下の波長の光をいう。   In FIG. 1, the measurement table 12 is made of a material (for example, glass) that transmits light 15. In FIG. 1, an embodiment in which an ultraviolet curable composition containing a component curable by ultraviolet light is used as the photocurable composition 11, an ultraviolet irradiation device is used as the light irradiation device 16, and ultraviolet light is irradiated as the light 15. Is shown. Note that ultraviolet light refers to light having a wavelength of 10 nm to 400 nm.

光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法においては、このような測定装置10を用いて、まず、硬化性組成物としての光硬化性組成物11を、収容部材17に収容する(収容工程)。なお、収容工程は、本発明の方法における任意の構成要件である。   In the method for evaluating the time-dependent expansion or shrinkage due to curing of the photocurable composition, the photocurable composition 11 as the curable composition is first placed in the housing member 17 using such a measuring device 10. (Accommodation step). The housing step is an optional component of the method of the present invention.

光硬化性組成物11は、光の照射により硬化する光硬化性成分を含んでいればよい。光硬化性成分としては、例えば、(メタ)アクリレートやエポキシ化合物が挙げられ、1種類でも2種類以上でもよい。(メタ)アクリレートは光硬化によりアクリル樹脂となり、エポキシ化合物は光硬化によりエポキシ樹脂となる。なお、本明細書において、「(メタ)アクリル」という用語は、「アクリル及び/又はメタクリル」という意味で使用される。
また、光硬化性組成物11は、通常光硬化性組成物に含まれる添加剤を含んでいてもよい。添加剤としては、例えば、充填剤、触媒、重合開始剤、硬化剤等が挙げられる。
The photo-curable composition 11 only needs to contain a photo-curable component that is cured by light irradiation. Examples of the photocurable component include (meth) acrylates and epoxy compounds, and one type or two or more types may be used. The (meth) acrylate becomes an acrylic resin by light curing, and the epoxy compound becomes an epoxy resin by light curing. In this specification, the term “(meth) acryl” is used to mean “acryl and / or methacryl”.
In addition, the photocurable composition 11 may include an additive usually contained in the photocurable composition. Examples of the additive include a filler, a catalyst, a polymerization initiator, a curing agent, and the like.

収容部材17の形状は、光硬化性組成物11が収容でき光硬化性組成物11にレーザー光13及び光15が照射可能であれば特に限定されないが、任意形態の中空状、例えば、図2(a)及び図2(b)に示すようにリング状の収容部材が挙げられる。また、図2(c)に示すように、光硬化性組成物11の収容部が貫通せず底部19を有する収容部材でもよい。   The shape of the housing member 17 is not particularly limited as long as the photocurable composition 11 can be housed therein and the photocurable composition 11 can be irradiated with the laser light 13 and the light 15. As shown in FIG. 2A and FIG. 2B, a ring-shaped housing member can be used. Alternatively, as shown in FIG. 2C, a housing member having a bottom portion 19 without the housing portion of the photocurable composition 11 penetrating therethrough may be used.

収容部材17の材質は特に限定されないが、光硬化性組成物11が接着し難い材質であることが好ましい。光硬化性組成物11が収容部材17に接着すると、光硬化性組成物11の硬化による膨張又は収縮時に、膨張又は収縮に対応した応力が発生するため、光硬化性組成物11の膨張又は収縮に影響を与えてしまうためである。光硬化性組成物11が接着し難い材質としては、テフロン(登録商標)等のフッ素樹脂が挙げられる。   The material of the housing member 17 is not particularly limited, but is preferably a material to which the photocurable composition 11 is difficult to adhere. When the photocurable composition 11 adheres to the housing member 17, when the photocurable composition 11 expands or contracts due to curing, a stress corresponding to the expansion or contraction is generated, so that the photocurable composition 11 expands or contracts. Is to be affected. Examples of the material to which the photocurable composition 11 is difficult to adhere include a fluororesin such as Teflon (registered trademark).

光硬化性組成物11は、レーザー光13が照射される側の表面が平滑になるように収容部材17に収容されることが好ましい。光硬化性組成物11の表面が平滑であると、その上に平坦な被覆部材20を載置することで、より正確に距離aを測定することができる。ただし、光硬化性組成物11が硬化過程を通じて保形性を維持する場合、表面形状を維持しつつ膨張または収縮が起こるため、上記表面が平滑でなくても問題は小さい。   The photocurable composition 11 is preferably housed in the housing member 17 such that the surface on the side irradiated with the laser light 13 is smooth. When the surface of the photocurable composition 11 is smooth, the distance a can be measured more accurately by placing the flat covering member 20 thereon. However, when the photocurable composition 11 maintains shape retention throughout the curing process, expansion or contraction occurs while maintaining the surface shape, so that the problem is small even if the surface is not smooth.

光硬化性組成物11を収容した収容部材17は、測定台12の所定の位置に設置され、必要に応じて、位置決め部材18で位置決めされる。   The housing member 17 housing the photocurable composition 11 is installed at a predetermined position on the measuring table 12, and is positioned by a positioning member 18 as needed.

中空(例えばリング)状の収容部材17を用いる場合は、例えば、測定台12上に収容部材17を設定載置した後に収容部材17に光硬化性組成物11を充填する、又は、光15を透過する板状部材上に収容部材17を載置した後に収容部材17に光硬化性組成物11を充填することにより、光硬化性組成物11を収容部材17に収容すればよい。   In the case of using a hollow (for example, a ring) -shaped accommodation member 17, for example, after the accommodation member 17 is set and mounted on the measurement table 12, the accommodation member 17 is filled with the photocurable composition 11, or light 15 is applied. The photocurable composition 11 may be stored in the housing member 17 by placing the housing member 17 on the transparent plate member and then filling the housing member 17 with the photocurable composition 11.

次に、収容部材17に収容された光硬化性組成物11の表面に、被覆部材20を配置する(被覆部材配置工程)。なお、被覆部材配置工程は、本発明の方法における任意の構成要件である。   Next, the covering member 20 is arranged on the surface of the photocurable composition 11 housed in the housing member 17 (covering member arrangement step). The covering member arranging step is an optional component in the method of the present invention.

収容部材17に収容された光硬化性組成物11の表面に配置する被覆部材20は、後段の測定工程で照射するレーザー光13に対する反射率が50%以上であり、質量が10mg以下である。
レーザー光13に対する反射率が不十分な場合は、レーザー光13を吸収が大きく、後段の測定工程において、距離aを正確に測定することができない場合がある。レーザー光に対する反射率の下限は、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、または90%以上であってよい。また、レーザー光に対する反射率の上限は、特に限定されず、100%以下、または95%以下であってよい。
また、被覆部材20の質量が過重だと、自重のため被覆部材20を載置する光硬化性組成物11の表面を押圧し、硬化過程の光硬化性組成物11の粘度次第では、被覆部材20と収容部材17との間から光硬化性組成物11が盛り上がってきてしまい、距離を正確に測定し難くなる。被覆部材の質量は、8.0mg以下が好ましく、6.0mg以下がより好ましく、3.0mg以下がさらに好ましい。被覆部材20の質量の下限は特に限定されず、例えば0.1mg以上、0.5mg以上、または1.0mg以上であってよい。
The covering member 20 disposed on the surface of the photocurable composition 11 accommodated in the accommodating member 17 has a reflectance of 50% or more and a mass of 10 mg or less with respect to the laser light 13 irradiated in the subsequent measurement step.
When the reflectance with respect to the laser light 13 is insufficient, the laser light 13 absorbs a large amount, and the distance a may not be accurately measured in a subsequent measurement step. The lower limit of the reflectance to laser light may be 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, or 90% or more. Moreover, the upper limit of the reflectance with respect to the laser beam is not particularly limited, and may be 100% or less, or 95% or less.
If the mass of the covering member 20 is excessive, the surface of the photocurable composition 11 on which the covering member 20 is placed is pressed due to its own weight, and depending on the viscosity of the photocurable composition 11 during the curing process, The photocurable composition 11 swells from between the housing 20 and the housing member 17, making it difficult to measure the distance accurately. The mass of the covering member is preferably 8.0 mg or less, more preferably 6.0 mg or less, and still more preferably 3.0 mg or less. The lower limit of the mass of the covering member 20 is not particularly limited, and may be, for example, 0.1 mg or more, 0.5 mg or more, or 1.0 mg or more.

被覆部材20は、測定工程においてそれ自体の形状が崩れない、保形性のある剛体であることが好ましい。測定工程中に被覆部材20自体が変形すると、距離aが被覆部材20自体の変形により変わる場合があるが、それ自体が変形しない剛体を用いることにより、正確な距離aを求めることができる。なお、ここでいう変形とは、外部からの力による変形(撓み等)を意図しない。   It is preferable that the covering member 20 is a rigid body having shape retaining properties that does not lose its shape in the measurement step. If the covering member 20 itself deforms during the measurement process, the distance a may change due to the deformation of the covering member 20 itself. However, by using a rigid body that does not deform itself, the accurate distance a can be obtained. Note that the deformation here does not mean a deformation (bending or the like) due to an external force.

被覆部材20の厚さは、100μm以下であることが好ましい。光硬化性組成物11が硬化することにより温度変化が生じ、該温度変化により被覆部材20の厚みが変化する場合があるため、厚みの変化の影響を小さくするために、被覆部材20は、100μm以下と薄いことが好ましい。被覆部材20の厚さは、75μm以下が好ましく、50μm以下がより好ましく、25μm以下がさらに好ましく、15μm以下が特に好ましい。なお、ここでいう厚さは、被覆部材の厚さの平均値である。   It is preferable that the thickness of the covering member 20 is 100 μm or less. When the photocurable composition 11 is cured, a temperature change occurs, and the temperature change may change the thickness of the coating member 20. In order to reduce the influence of the change in thickness, the coating member 20 has a thickness of 100 μm. It is preferable to be as thin as the following. The thickness of the covering member 20 is preferably 75 μm or less, more preferably 50 μm or less, further preferably 25 μm or less, and particularly preferably 15 μm or less. In addition, the thickness here is an average value of the thickness of the covering member.

また、被覆部材20は、硬化性組成物と接触する面が硬化性組成物に対し化学的に安定な素材であることが好ましい。したがって、被覆部材20は、典型的には金属等の無機質材料からなることが好ましい。金属としては、アルミニウム、鉄、シリコン、銅、銀、金等が挙げられる。   Further, it is preferable that the surface of the covering member 20 that is in contact with the curable composition is a material that is chemically stable to the curable composition. Therefore, it is preferable that the covering member 20 is typically made of an inorganic material such as a metal. Examples of the metal include aluminum, iron, silicon, copper, silver, and gold.

被覆部材20は、金属箔であることが好ましい。   The covering member 20 is preferably a metal foil.

被覆部材20は、単一部材からなってもよいし、複数部材(基材とその他部材(例えば後述の黒体)とからなる)からなってもよい。後者の場合、被覆部材20について前述した説明は、基材のみ、および複数部材、の双方についてあてはまる。   The covering member 20 may be composed of a single member, or may be composed of a plurality of members (consisting of a base material and other members (for example, a black body described later)). In the latter case, the above description of the covering member 20 applies to both the base member and the plurality of members.

このような被覆部材20は、収容部材17に接触しないように配置することが好ましい。被覆部材20が収容部材17に接触すると、被覆部材20と収容部材17とに摩擦が生じ、光硬化性組成物11の膨張又は収縮に影響を与えてしまうためである。換言すれば、被覆部材20は、収容部材17の開口と同じ大きさ又はそれよりも小さい。上記接触を簡便に防止する観点では後者が好ましい一方、被覆部材20が小さくなるにつれ、光硬化性組成物11のうち、経時的な膨張又は収縮を評価可能な領域が狭くなる点で不利であり得る。このため、収容部材17の開口面積に対する被覆部材20の断面積の下限は、25%以上、35%以上、45%以上、55%以上、65%以上、75%以上、85%以上、又は90%以上であることが好ましく、上限は99%以下、98%以下、97%以下、96%以下、又は95%以下であることが好ましい。この観点で、被覆部材20の素材は、典型的には、金属(白金、鉄、真鍮、アルミニウム、金、銀、銅)が挙げられるが、有色樹脂組成物等であってもよい。   It is preferable that such a covering member 20 is arranged so as not to contact the housing member 17. This is because when the covering member 20 comes into contact with the housing member 17, friction occurs between the covering member 20 and the housing member 17, which affects the expansion or contraction of the photocurable composition 11. In other words, the covering member 20 is the same size as or smaller than the opening of the housing member 17. The latter is preferable from the viewpoint of simply preventing the contact, while the coating member 20 is disadvantageous in that, as the covering member 20 becomes smaller, the area of the photocurable composition 11 where the temporal expansion or contraction can be evaluated becomes narrower. obtain. For this reason, the lower limit of the sectional area of the covering member 20 with respect to the opening area of the housing member 17 is 25% or more, 35% or more, 45% or more, 55% or more, 65% or more, 75% or more, 85% or more, or 90% or more. % Or less, and the upper limit is preferably 99% or less, 98% or less, 97% or less, 96% or less, or 95% or less. From this viewpoint, the material of the covering member 20 is typically a metal (platinum, iron, brass, aluminum, gold, silver, copper), but may be a colored resin composition or the like.

次に、被覆部材20が配置された光硬化性組成物11に、エネルギーとしての光15を照射して光硬化性組成物11を硬化させると共に、レーザー光源Xから被覆部材20に連続的にレーザー光13を照射し、その反射光に基づき被覆部材20の位置(距離a)を連続的に測定する(測定工程)。   Next, the photocurable composition 11 on which the covering member 20 is disposed is irradiated with light 15 as energy to cure the photocurable composition 11, and a laser beam is continuously applied to the covering member 20 from the laser light source X. The light 13 is irradiated, and the position (distance a) of the covering member 20 is continuously measured based on the reflected light (measuring step).

光硬化性組成物11に光15が照射されると、光硬化性組成物11は、まず膨張しその後硬化が進むと収縮する。なお、反応・硬化が速い光硬化性組成物11は、光15が照射されると、すぐに収縮が始まる場合もある。   When the photocurable composition 11 is irradiated with light 15, the photocurable composition 11 expands first, and then contracts as curing proceeds. In addition, the photocurable composition 11 that reacts and cures quickly may start to contract immediately upon irradiation with the light 15.

このように、光硬化性組成物11は、光15の照射により硬化する際に膨張や収縮が生じるため、光15を照射してから硬化が完了するまでの間に体積が変化する。図1においては、光硬化性組成物11は収容部材17に収容され、断面積が略一定のため、光硬化性組成物11は光15を照射してから硬化が完了するまでの間に厚さが変化する。そして、光硬化性組成物11の厚さの変化と同様に、光硬化性組成物11の表面に載置された被覆部材20の位置が変化するため、光硬化性組成物11の厚さの変化と同様に、被覆部材20までの距離aも変化する。すなわち、光硬化性組成物11の厚さが薄くなれば、薄くなった分だけ距離aが長くなる。なお、求められる精度によっては、収容部材17の膨張および収縮に伴う光硬化性組成物11の断面積の変化を考慮する必要があり、その場合は光硬化性組成物11の断面積も測定し、厚さに加えて断面積も考慮して光硬化性組成物11の体積変化、つまり膨張又は収縮を評価することもできる。   As described above, since the photocurable composition 11 expands and contracts when it is cured by irradiation with the light 15, the volume changes between the irradiation of the light 15 and the completion of the curing. In FIG. 1, the photocurable composition 11 is housed in a housing member 17 and has a substantially constant cross-sectional area. Changes. Then, similarly to the change in the thickness of the photocurable composition 11, the position of the covering member 20 placed on the surface of the photocurable composition 11 changes. Similarly to the change, the distance a to the covering member 20 also changes. That is, when the thickness of the photocurable composition 11 decreases, the distance a increases by an amount corresponding to the decrease. In addition, depending on the required accuracy, it is necessary to consider a change in the cross-sectional area of the photocurable composition 11 due to expansion and contraction of the housing member 17, and in that case, the cross-sectional area of the photocurable composition 11 is also measured. The change in volume of the photocurable composition 11, that is, expansion or contraction, can also be evaluated in consideration of the cross-sectional area in addition to the thickness.

したがって、測定工程において、光15を照射して光硬化性組成物11を硬化させる際に、レーザー光源Xから被覆部材20に連続的にレーザー光13を照射し、その反射光に基づき被覆部材20の位置(距離a)を連続的に測定することで、光15を照射してから硬化が完了するまでの間の光硬化性組成物11の厚さの変化情報(すなわち推移情報)を得ることができる。なお、光15を照射してから硬化が完了するまでの間の全期間に亘って距離aを測定してもよいが、測定期間は厚さの変化情報を知りたい期間に合わせて任意に選択すればよい。   Therefore, in the measurement process, when the photocurable composition 11 is cured by irradiating the light 15, the laser light source X continuously irradiates the coating member 20 with the laser light 13, and based on the reflected light, the coating member 20 is irradiated. Is obtained by continuously measuring the position (distance a) of the photocurable composition 11 from the irradiation of the light 15 to the completion of the curing (that is, transition information). Can be. Note that the distance a may be measured over the entire period from the irradiation of the light 15 to the completion of the curing, but the measurement period is arbitrarily selected according to the period for which the thickness change information is to be known. do it.

ここで、被覆部材20を用いず、変位計14から光硬化性組成物11の表面までの距離を測定しようとする場合、透明な光硬化性組成物等、光硬化性組成物のレーザー光13に対する反射率が低い場合は、正確な距離を測定し難く、光硬化性組成物の収縮や膨張状態を正確に把握できない場合があるという問題がある。
しかしながら、本発明においては、光硬化性組成物11の表面に被覆部材20を配置し、この被覆部材20は、レーザー光13に対する反射率が50%以上であるため、被覆部材20の位置(距離a)を正確に測定することができる。なお、被覆部材20を載置することにより、光15が被覆部材20により反射されて光硬化性組成物11の硬化が効率的に進み、測定感度が高くなるという効果もある。
Here, when the distance from the displacement meter 14 to the surface of the photocurable composition 11 is to be measured without using the covering member 20, the laser light 13 of the photocurable composition such as a transparent photocurable composition is used. When the reflectance with respect to is low, it is difficult to measure an accurate distance, and there is a problem that the shrinkage or expansion state of the photocurable composition may not be accurately grasped.
However, in the present invention, the covering member 20 is disposed on the surface of the photocurable composition 11, and since the covering member 20 has a reflectance of 50% or more with respect to the laser beam 13, the position (distance) of the covering member 20 a) can be measured accurately. In addition, by placing the covering member 20, the light 15 is reflected by the covering member 20, the curing of the photocurable composition 11 proceeds efficiently, and the measurement sensitivity is increased.

照射するレーザー光13は特に限定されないが、例えば500nm以上700nm以下の波長の光である。   The laser beam 13 to be irradiated is not particularly limited, but is, for example, light having a wavelength of 500 nm or more and 700 nm or less.

なお、レーザー光源Xからの被覆部材20へのレーザー光13の連続的な照射は、間欠的でも、照射し続けてもよい。   The continuous irradiation of the laser beam 13 from the laser light source X to the covering member 20 may be intermittent or continuous.

次いで、測定工程で測定された距離aの推移から、光硬化性組成物11の硬化による経時的な膨張又は収縮を評価する(評価工程)。   Next, from the transition of the distance a measured in the measurement step, the time-dependent expansion or contraction due to the curing of the photocurable composition 11 is evaluated (evaluation step).

例えば、測定工程においてレーザー光源Xを含む変位計14と測定台12の相対位置を固定し、被覆部材20の厚さbと、変位計14と測定台12の表面との距離cと、測定工程で測定された距離aの推移情報を用いて、光硬化性組成物11の厚さTを求め、下記式(1)で硬化収縮率を求める。
A(t)=(T−T(t))/T×100(%)・・・(1)
A(t):任意の硬化条件による、時刻tにおける硬化収縮率(%)
t:硬化開始後の経過時間
:t=0(硬化開始時)における初期膜厚
T(t):任意の硬化条件による、時刻tにおける膜厚
For example, in the measurement process, the relative positions of the displacement meter 14 including the laser light source X and the measurement table 12 are fixed, the thickness b of the covering member 20, the distance c between the displacement meter 14 and the surface of the measurement table 12, and the measurement process. The thickness T of the photocurable composition 11 is determined using the transition information of the distance a measured in the above, and the curing shrinkage is determined by the following equation (1).
A (t) = (T 0 -T (t)) / T 0 × 100 (%) ··· (1)
A (t): Curing shrinkage rate (%) at time t under arbitrary curing conditions
t: elapsed time T 0 after the start of curing: initial film thickness at t = 0 (at the start of curing) T (t): film thickness at time t under arbitrary curing conditions

このように任意の時刻tにおける硬化収縮率Aを求めることで、光硬化性組成物11の硬化による経時的な膨張又は収縮を評価(把握)することができる。例えば、時刻t(秒)における硬化収縮率と時刻t+300(秒)における硬化収縮率の差が極めて小さくなった場合に、t+300(秒)を硬化が完了するまでに要する時間だと判断することができる。   By determining the curing shrinkage ratio A at an arbitrary time t in this manner, the expansion or shrinkage of the photocurable composition 11 over time due to curing can be evaluated (understood). For example, when the difference between the curing shrinkage at time t (second) and the curing shrinkage at time t + 300 (second) becomes extremely small, it may be determined that t + 300 (second) is the time required for completing the curing. it can.

なお、上記式(1)では、硬化開始時を基準としたが、硬化開始時の代わりに、照射開始時を基準とし、例えば下記式(2)で硬化収縮率を求めてもよい。
A(t’)=(T’−T(t’))/T’×100(%)・・・(2)
A(t’):任意の硬化条件による、時刻t’における硬化収縮率(%)
t’:照射後の経過時間
’:t’=0(照射開始時)における初期膜厚
T(t’):任意の硬化条件による、時刻t’における膜厚
In the above equation (1), the curing start time is used as a reference. However, instead of the curing start time, the irradiation start time may be used as a reference, and for example, the curing shrinkage may be obtained by the following equation (2).
A (t ′) = (T 0 ′ −T (t ′)) / T 0 ′ × 100 (%) (2)
A (t '): Curing shrinkage rate (%) at time t' under arbitrary curing conditions
t ′: elapsed time after irradiation T 0 ′: initial film thickness at t ′ = 0 (at the start of irradiation) T (t ′): film thickness at time t ′ under arbitrary curing conditions

また、上記では、厚さTに基づき硬化収縮率を求めて、光硬化性組成物11の硬化による経時的な膨張又は収縮を評価する例を示したが、距離aは、光硬化性組成物11の厚さTと相関があるため、距離aで光硬化性組成物の硬化による経時的な膨張又は収縮を評価してもよい。   Further, in the above description, an example in which the curing shrinkage rate is obtained based on the thickness T to evaluate the expansion or shrinkage of the photocurable composition 11 over time due to curing is shown. Since there is a correlation with the thickness T of No. 11, expansion or shrinkage over time due to curing of the photocurable composition may be evaluated at the distance a.

また、上記光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法において、測定工程は、被覆部材から放射される赤外線の量を非接触で連続的に測定する赤外線量測定工程を有し、評価工程は、赤外線量測定工程で測定された赤外線量の推移から、硬化性組成物の硬化による経時的な温度推移を評価する温度評価工程を含んでいてもよい。このように測定工程が赤外線量測定工程を有し、評価工程が温度評価工程を有する態様について、図3を用いて説明する。図3は、光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法で用いることができる測定装置の他の例を示す模式的断面図である。図3において、図1と同じ部材には同じ符号を付し、重複する説明は省略してある。図3に示すように、測定装置30は、図1の測定装置10において、赤外線量測定装置31を設けた測定装置である。   Further, in the method for evaluating the time-dependent expansion or contraction due to curing of the photocurable composition, the measuring step includes an infrared amount measuring step of continuously measuring the amount of infrared radiation emitted from the coating member in a non-contact manner. The evaluation step may include a temperature evaluation step of evaluating a change in temperature over time due to curing of the curable composition from a change in the amount of infrared light measured in the step of measuring the amount of infrared light. An embodiment in which the measurement step includes the infrared ray amount measurement step and the evaluation step includes the temperature evaluation step will be described with reference to FIG. FIG. 3 is a schematic cross-sectional view showing another example of a measuring device that can be used in a method of evaluating expansion or contraction of a photocurable composition over time due to curing. In FIG. 3, the same members as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. As shown in FIG. 3, the measuring device 30 is a measuring device provided with an infrared ray measuring device 31 in the measuring device 10 of FIG.

詳述すると、測定装置30は、被覆部材20から放射される赤外線32の量を測定する赤外線量測定装置31を有する。赤外線量測定装置31で、被覆部材20から放射される赤外線32の量を測定し、被覆部材20の熱放射率(既知)を考慮することで、非接触で被覆部材20の温度を求めることができる。   More specifically, the measuring device 30 includes an infrared light amount measuring device 31 that measures the amount of infrared light 32 emitted from the covering member 20. It is possible to measure the temperature of the coating member 20 in a non-contact manner by measuring the amount of the infrared light 32 radiated from the coating member 20 with the infrared ray measuring device 31 and considering the thermal emissivity (known) of the coating member 20. it can.

そして、図3の測定装置30を用いて、測定工程において、被覆部材20から放射される赤外線32の量を非接触で連続的に測定し(赤外線量測定工程)、評価工程において、赤外線量測定工程で測定された赤外線量の推移から、光硬化性組成物の硬化による経時的な温度推移を評価する(温度評価工程)。   Then, in the measuring step, the amount of infrared rays 32 emitted from the covering member 20 is continuously measured in a non-contact manner using the measuring device 30 of FIG. 3 (infrared ray measuring step), and in the evaluating step, the amount of infrared ray is measured. From the change in the amount of infrared rays measured in the step, the temperature change over time due to the curing of the photocurable composition is evaluated (temperature evaluation step).

ここで、光硬化性組成物11に光15が照射されると、光硬化性組成物11が硬化する。光硬化性組成物11が硬化することにより、光硬化性組成物11の温度が変化する。そして、被覆部材20は光硬化性組成物11の表面に配置されている。すなわち、光硬化性組成物11と被覆部材20は接触している。したがって、光硬化性組成物11の熱は被覆部材20に伝導するため、光硬化性組成物11の温度変化にともない、被覆部材20の温度も変化する。   Here, when the photocurable composition 11 is irradiated with the light 15, the photocurable composition 11 is cured. As the photocurable composition 11 cures, the temperature of the photocurable composition 11 changes. Then, the covering member 20 is disposed on the surface of the photocurable composition 11. That is, the photocurable composition 11 and the covering member 20 are in contact with each other. Therefore, since the heat of the photocurable composition 11 is conducted to the coating member 20, the temperature of the coating member 20 changes with the temperature change of the photocurable composition 11.

よって、測定工程において、光15を照射して光硬化性組成物11を硬化させる際に、被覆部材20から放射される赤外線32の量を非接触で連続的に測定することで、光15を照射してから硬化が完了するまでの間の光硬化性組成物11の温度の変化情報(すなわち推移情報)を得ることができる。なお、光15を照射してから硬化が完了するまでの間の全期間に亘って赤外線32の量を測定してもよいが、測定期間は温度の変化情報を知りたい期間に合わせて任意に選択すればよい。   Therefore, in the measurement step, when the photocurable composition 11 is cured by irradiating the light 15, the amount of the infrared light 32 radiated from the covering member 20 is continuously measured in a non-contact manner, so that the light 15 is Temperature change information (that is, transition information) of the temperature of the photocurable composition 11 from irradiation to completion of curing can be obtained. In addition, the amount of the infrared rays 32 may be measured over the entire period from the irradiation of the light 15 to the completion of the curing, but the measurement period is arbitrarily set in accordance with the period in which the temperature change information is to be known. Just select.

光硬化性組成物11の温度は、反応過程で生じる化学エネルギー等により急変する場合があり、外部温度の監視だけでは十分にコントロールできない場合がある。そして、光硬化性組成物11の温度は、硬化性成分の揮発性(実際の製造環境に悪影響を与え得る)、触媒成分の活性(活性の大小だけでなく、失活等の劣化にも影響)等の指標であるため、その推移を把握することは重要である。   The temperature of the photocurable composition 11 may change abruptly due to chemical energy or the like generated in the reaction process, and may not be sufficiently controlled only by monitoring the external temperature. The temperature of the photocurable composition 11 affects the volatility of the curable component (which may adversely affect the actual production environment) and the activity of the catalyst component (not only the magnitude of the activity but also deterioration such as deactivation). ), It is important to grasp the transition.

被覆部材20は、熱伝導率が70Wm−1−1以上であることが好ましい。熱伝導率が70Wm−1−1以上であると、光硬化性組成物11の熱が被覆部材20に伝わりやすいため、より正確に光硬化性組成物11の温度変化情報を評価することができる。熱伝導率の下限は特に限定されず、72Wm−1−1以上(例えば白金)、80Wm−1−1以上(例えば鉄)、90Wm−1−1以上(例えばニッケル)、100Wm−1−1以上(例えば真鍮)、150Wm−1−1以上(例えばシリコン)、200Wm−1−1以上、又は230Wm−1−1以上(例えばアルミニウム、金、銅、銀)であることが好ましい。 The covering member 20 preferably has a thermal conductivity of 70 Wm −1 K −1 or more. When the thermal conductivity is 70 Wm −1 K −1 or more, since the heat of the photocurable composition 11 is easily transmitted to the coating member 20, it is possible to more accurately evaluate the temperature change information of the photocurable composition 11. it can. The lower limit of the thermal conductivity is not particularly limited, 72Wm -1 K -1 or higher (e.g. platinum), 80Wm -1 K -1 or higher (e.g. iron), 90Wm -1 K -1 or higher (for example, nickel), 100Wm -1 K -1 or higher (e.g. brass), 150 Wm -1 K -1 or higher (e.g., silicon), 200 Wm -1 K -1 or higher, or 230Wm -1 K -1 or higher (e.g. aluminum, gold, copper, silver) that is Is preferred.

また、被覆部材20は、主表面の少なくとも一部に黒体を有することが好ましい。主表面とは、赤外線32の量が測定される側の面である。黒体の熱放射率が高く、被覆部材20の温度変化に対する赤外線変化量が大きくなるため、より正確に被覆部材20の温度を測定することができる。   Preferably, the covering member 20 has a black body on at least a part of the main surface. The main surface is a surface on which the amount of the infrared light 32 is measured. Since the thermal emissivity of the black body is high and the amount of change in infrared rays with respect to the temperature change of the covering member 20 is large, the temperature of the covering member 20 can be measured more accurately.

黒体としては、例えば黒鉛が挙げられる。黒体を被覆部材20に設ける方法は特に限定されず、例えば黒体を塗布すればよい。   Examples of the black body include graphite. The method for providing the black body on the covering member 20 is not particularly limited, and for example, a black body may be applied.

このようにして得られた、光硬化性組成物の硬化による経時的な膨張又は収縮の評価情報に基づき、光硬化性組成物の硬化条件、例えば、光硬化性組成物への光の供給条件を設計することができる。
具体的には、光硬化性組成物の硬化による経時的な膨張又は収縮の評価情報を踏まえ、光の供給履歴(供給する量、タイミング、総時間)が適切だったか否かを判断することができ、所望の硬化を実現することができる。例えば、最終的な膨張又は収縮が許容を越えていた場合、光の供給する量または総時間を低下させるのが適切であり得る。また、途中での膨張又は収縮の速度が高すぎていた場合、そのタイミングでの光の供給量を減らす(つまり光の供給速度を穏やかにする)のが適切であり得る。
Based on the evaluation information of the expansion or shrinkage of the photocurable composition over time obtained by curing the photocurable composition, curing conditions for the photocurable composition, for example, conditions for supplying light to the photocurable composition Can be designed.
Specifically, it is possible to determine whether or not the light supply history (supply amount, timing, total time) is appropriate based on the evaluation information of the time-dependent expansion or contraction due to curing of the photocurable composition. And a desired curing can be achieved. For example, if the final expansion or contraction was unacceptable, it may be appropriate to reduce the amount of light delivered or the total time. Further, when the speed of expansion or contraction in the middle is too high, it may be appropriate to reduce the light supply amount at that timing (that is, make the light supply speed gentle).

また、光硬化性組成物の温度推移を評価した場合、その情報を踏まえ、光の供給履歴(供給する量、タイミング、総時間)が適切だったか否かを判断することができ、所望の硬化や硬化環境を実現することができる。例えば、途中での温度が高すぎていた場合、そのタイミングでの光の供給量を減らす(つまり光の供給速度を穏やかにする)のが適切であり得る。   In addition, when the temperature change of the photocurable composition is evaluated, it is possible to determine whether or not the light supply history (supply amount, timing, total time) is appropriate based on the information, and to determine the desired curing. And a hardening environment can be realized. For example, when the temperature in the middle is too high, it may be appropriate to reduce the light supply amount at that timing (that is, make the light supply speed moderate).

また、このようにして得られた、光硬化性組成物の硬化による経時的な膨張又は収縮の評価情報に基づき、光硬化性組成物を設計することができる。
具体的には、光硬化性組成物の硬化による経時的な膨張又は収縮の評価情報を踏まえ、光硬化性組成物の組成(例えば、重合開始剤の種や量、重合禁止剤の種や量、フィラーの種、粒度や量等)が適切だったか否かを判断することができ、所望の硬化を実現することができる。例えば、膨張又は収縮が許容を下回っていた場合、重合開始剤の種をより反応性に優れる種に変更したり、量を増やしたり、あるいは重合禁止剤の種をより禁止性能の低い種に変更したり、量を減らしたり、フィラーの量を減らしたりすることができる。膨張又は収縮が許容を上回っていた場合は、重合開始剤の種をより反応性の低い種に変更したり、量を減らしたり、あるいは重合禁止剤の種をより禁止性能の高い種に変更したり、量を増やしたり、フィラーの量を増やしたりすることができる。
Further, the photocurable composition can be designed based on the thus obtained evaluation information of the time-dependent expansion or shrinkage due to the curing of the photocurable composition.
Specifically, the composition of the photocurable composition (for example, the type and amount of polymerization initiator, the type and amount of polymerization inhibitor, , Filler type, particle size, amount, etc.) can be determined, and desired curing can be realized. For example, if the expansion or shrinkage is below the allowable limit, change the polymerization initiator species to more reactive species, increase the amount, or change the polymerization inhibitor species to lower inhibition performance species Or reduce the amount, or reduce the amount of filler. If the swelling or shrinking is unacceptable, change the polymerization initiator species to a less reactive species, reduce the amount, or change the polymerization inhibitor species to a more forbidden species. Or the amount of filler or the amount of filler can be increased.

また、光硬化性組成物の温度推移を評価した場合、その情報を踏まえ、光硬化性組成物の組成(例えば、重合開始剤の種や量、重合禁止剤の種や量、フィラーの種、粒度や量等)が適切だったか否かを判断することができ、所望の硬化や硬化環境を実現することができる。例えば、途中での温度が高すぎていた場合、揮発温度が高いモノマーを採用したり、高温耐久性のある触媒を使ったりすることができる。   In addition, when evaluating the temperature change of the photocurable composition, based on the information, the composition of the photocurable composition (for example, the type and amount of the polymerization initiator, the type and amount of the polymerization inhibitor, the type of the filler, (E.g., particle size and amount) can be determined, and a desired curing or curing environment can be realized. For example, if the temperature in the middle is too high, a monomer having a high volatilization temperature can be employed, or a catalyst having high temperature durability can be used.

<熱硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法>
熱硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法について、図4を用いて説明する。図4は、熱硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法で用いることができる測定装置の一例を示す模式的断面図である。図4において、図1と同じ部材には同じ符号を付し、重複する説明は省略してある。図4に示すように、測定装置40は、熱硬化性組成物41を測定する装置であり、図1の測定装置10において、光照射装置16の代わりに、加熱・冷却装置42を設け、測定台12の代わりに測定台43を用いた測定装置である。
<Method of evaluating temporal expansion or contraction due to curing of thermosetting composition>
A method of evaluating expansion or shrinkage over time due to curing of the thermosetting composition will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view showing an example of a measuring device that can be used in a method of evaluating expansion or contraction over time due to curing of a thermosetting composition. 4, the same members as those in FIG. 1 are denoted by the same reference numerals, and overlapping description is omitted. As shown in FIG. 4, the measuring device 40 is a device for measuring the thermosetting composition 41. In the measuring device 10 of FIG. 1, a heating / cooling device 42 is provided instead of the light irradiation device 16, and the measurement is performed. This is a measuring device using a measuring table 43 instead of the table 12.

詳述すると、測定装置40は、収容部材17に収容された熱硬化性組成物41を加熱や冷却することで、熱硬化性組成物41を硬化する加熱・冷却装置42を有する。また、測定装置40が有する測定台43は、加熱・冷却装置42により温度が調整できる材質である。   More specifically, the measuring device 40 has a heating / cooling device 42 for curing the thermosetting composition 41 by heating or cooling the thermosetting composition 41 stored in the storage member 17. The measuring table 43 of the measuring device 40 is made of a material whose temperature can be adjusted by the heating / cooling device 42.

熱硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法においては、このような測定装置40を用いて、まず、硬化性組成物としての熱硬化性組成物41を、収容部材17に収容する(収容工程)。なお、収容工程は、本発明の方法における任意の構成要件である。   In the method for evaluating the expansion or shrinkage of the thermosetting composition over time due to curing, the thermosetting composition 41 as the curable composition is first placed in the housing member 17 using such a measuring device 40. (Accommodation step). The housing step is an optional component of the method of the present invention.

熱硬化性組成物41は、熱により硬化する熱硬化性成分を含んでいればよい。熱硬化性成分としては、例えば、(メタ)アクリレートやエポキシ化合物が挙げられ、1種類でも2種類以上でもよい。なお、(メタ)アクリレートは熱硬化によりアクリル樹脂を生成し、エポキシ化合物は熱硬化によりエポキシ樹脂を生成する。
また、熱硬化性組成物41は、通常熱硬化性組成物に含まれる添加剤を含んでいてもよい。添加剤としては、例えば、充填剤、触媒、重合開始剤、硬化剤等が挙げられる。
The thermosetting composition 41 may include a thermosetting component that is cured by heat. Examples of the thermosetting component include (meth) acrylates and epoxy compounds, and one type or two or more types may be used. The (meth) acrylate generates an acrylic resin by thermosetting, and the epoxy compound generates an epoxy resin by thermosetting.
In addition, the thermosetting composition 41 may include an additive usually contained in the thermosetting composition. Examples of the additive include a filler, a catalyst, a polymerization initiator, a curing agent, and the like.

収容部材17は、熱により変形し難い材質であることが好ましいこと以外は、光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法において用いるものと同様である。   The housing member 17 is the same as that used in the method for evaluating the time-dependent expansion or shrinkage due to curing of the photocurable composition, except that it is preferably a material that is not easily deformed by heat.

熱硬化性組成物41を収容した収容部材17は、測定台12の所定の位置に設置され、必要に応じて、位置決め部材18で位置決めされる。   The housing member 17 housing the thermosetting composition 41 is installed at a predetermined position on the measuring table 12, and is positioned by the positioning member 18 as necessary.

中空(例えばリング状)の収容部材17を用いる場合は、例えば、測定台12上に収容部材17を設定載置した後に収容部材17に熱硬化性組成物41を充填する、又は、板状部材上に収容部材17を載置した後に収容部材17に熱硬化性組成物41を充填することにより、熱硬化性組成物41を収容部材17に収容すればよい。   When a hollow (for example, ring-shaped) housing member 17 is used, for example, after the housing member 17 is set and mounted on the measurement table 12, the housing member 17 is filled with the thermosetting composition 41, or a plate-shaped member. The thermosetting composition 41 may be stored in the housing member 17 by filling the housing member 17 with the thermosetting composition 41 after placing the housing member 17 thereon.

次に、収容部材17に収容された熱硬化性組成物41の表面に、被覆部材20を配置する(被覆部材配置工程)。なお、被覆部材配置工程は、本発明の方法における任意の構成要件である。   Next, the covering member 20 is arranged on the surface of the thermosetting composition 41 housed in the housing member 17 (covering member arranging step). The covering member arranging step is an optional component in the method of the present invention.

収容部材17に収容された熱硬化性組成物41の表面に配置する被覆部材20は、光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法において用いるものと同様である。   The covering member 20 disposed on the surface of the thermosetting composition 41 accommodated in the accommodating member 17 is the same as that used in the method for evaluating the temporal expansion or shrinkage due to the curing of the photocurable composition.

このような被覆部材20は、収容部材17に接触しないように配置することが好ましい。被覆部材20が収容部材17に接触すると、被覆部材20と収容部材17とに摩擦が生じ、熱硬化性組成物の膨張又は収縮に影響を与えてしまうためである。   It is preferable that such a covering member 20 is arranged so as not to contact the housing member 17. This is because, when the covering member 20 comes into contact with the housing member 17, friction occurs between the covering member 20 and the housing member 17, which affects the expansion or contraction of the thermosetting composition.

次に、被覆部材20が配置された熱硬化性組成物41に、エネルギーとしての熱を供給する、すなわち加熱して、熱硬化性組成物41を硬化させると共に、レーザー光源Xから被覆部材20に連続的にレーザー光13を照射し、その反射光に基づき変位計14から被覆部材20までの距離a(被覆部材20の位置)を連続的に測定する(測定工程)。   Next, heat as energy is supplied to the thermosetting composition 41 in which the covering member 20 is disposed, that is, the thermosetting composition 41 is heated to cure the thermosetting composition 41 and from the laser light source X to the covering member 20. The laser beam 13 is continuously irradiated, and the distance a (the position of the covering member 20) from the displacement meter 14 to the covering member 20 is continuously measured based on the reflected light (measuring step).

熱硬化性組成物41が加熱されると、熱硬化性組成物41は、温度上昇中は膨張し、硬化温度に達し硬化が始まると収縮を始め、常温に戻るまで収縮が続く。   When the thermosetting composition 41 is heated, the thermosetting composition 41 expands during the temperature rise, starts to contract when the curing temperature is reached and curing starts, and continues to contract until returning to room temperature.

このように、熱硬化性組成物41は、加熱により硬化する際に膨張や収縮が生じるため、加熱してから硬化が完了するまでの間に体積が変化する。図4においては、熱硬化性組成物41は収容部材17に収容されているため、熱硬化性組成物41は加熱してから硬化が完了するまでの間に厚さが変化する。そして、熱硬化性組成物41の厚さの変化と同様に、熱硬化性組成物41の表面に載置された被覆部材20の位置が変化するため、熱硬化性組成物41の厚さの変化と同様に、被覆部材20までの距離aも変化する。すなわち、熱硬化性組成物41の厚さが薄くなれば、薄くなった分だけ距離aが長くなる。   As described above, since the thermosetting composition 41 expands and contracts when it is cured by heating, the volume changes between the time of heating and the time of completion of curing. In FIG. 4, since the thermosetting composition 41 is contained in the containing member 17, the thickness of the thermosetting composition 41 changes from heating to completion of curing. Then, similarly to the change in the thickness of the thermosetting composition 41, the position of the covering member 20 placed on the surface of the thermosetting composition 41 changes, so that the thickness of the thermosetting composition 41 decreases. Similarly to the change, the distance a to the covering member 20 also changes. That is, when the thickness of the thermosetting composition 41 is reduced, the distance a is increased by the reduced thickness.

したがって、測定工程において、加熱して熱硬化性組成物41を硬化させる際に、レーザー光源Xから被覆部材20に連続的にレーザー光13を照射し、その反射光に基づき被覆部材20の位置(距離a)を連続的に測定することで、加熱してから硬化が完了するまでの間の熱硬化性組成物41の厚さの変化情報(すなわち推移情報)を得ることができる。なお、加熱してから硬化が完了するまでの間の全期間に亘って距離aを測定してもよいが、測定期間は厚さの変化情報を知りたい期間に合わせて任意に選択すればよい。   Therefore, in the measurement step, when the thermosetting composition 41 is cured by heating, the laser light source X continuously irradiates the coating member 20 with the laser light 13 and the position of the coating member 20 (based on the reflected light). By continuously measuring the distance a), it is possible to obtain change information (that is, transition information) of the thickness of the thermosetting composition 41 during the period from heating to completion of curing. Note that the distance a may be measured over the entire period from heating to completion of curing, but the measurement period may be arbitrarily selected according to the period for which thickness change information is to be known. .

ここで、被覆部材20を用いず、変位計14から熱硬化性組成物41の表面までの距離を測定しようとする場合、透明な熱硬化性組成物等、熱硬化性組成物のレーザー光13に対する反射率が低い場合は、正確な距離を測定し難く、熱硬化性組成物41の収縮や膨張状態を正確に把握できない場合があるという問題がある。
しかしながら、本発明においては、熱硬化性組成物41の表面に被覆部材20を配置し、この被覆部材20は、レーザー光13に対する反射率が50%以上であるため、被覆部材20の位置(距離a)を正確に測定することができる。なお、被覆部材20を載置することにより、熱が逃げにくくなるため熱硬化性組成物41の硬化が効率的に進み、測定感度が高くなるという効果もある。
Here, when the distance from the displacement meter 14 to the surface of the thermosetting composition 41 is to be measured without using the covering member 20, the laser light 13 of the thermosetting composition such as a transparent thermosetting composition is used. If the reflectance with respect to the thermosetting composition 41 is low, it is difficult to measure an accurate distance, and there is a problem that the contraction or expansion state of the thermosetting composition 41 may not be accurately grasped.
However, in the present invention, the covering member 20 is disposed on the surface of the thermosetting composition 41, and since the covering member 20 has a reflectance of 50% or more with respect to the laser beam 13, the position (distance) of the covering member 20 a) can be measured accurately. In addition, since the placement of the covering member 20 makes it difficult for heat to escape, the curing of the thermosetting composition 41 proceeds efficiently, and there is also an effect that the measurement sensitivity is increased.

照射するレーザー光13は、光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法において用いるものと同様である。   The laser beam 13 to be applied is the same as that used in the method for evaluating the time-dependent expansion or contraction due to the curing of the photocurable composition.

なお、レーザー光源Xからの被覆部材20へのレーザー光13の連続的な照射は、間欠的でも、照射し続けてもよい。   The continuous irradiation of the laser beam 13 from the laser light source X to the covering member 20 may be intermittent or continuous.

次いで、測定工程で測定された距離aの推移から、熱硬化性組成物41の硬化による経時的な膨張又は収縮を評価する(評価工程)。評価工程については、光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法における評価工程と同様である。   Next, from the transition of the distance a measured in the measurement step, the expansion or contraction of the thermosetting composition 41 over time due to curing is evaluated (evaluation step). The evaluation step is the same as the evaluation step in the method for evaluating the time-dependent expansion or contraction due to curing of the photocurable composition.

また、測定工程は、被覆部材から放射される赤外線の量を非接触で連続的に測定する赤外線量測定工程を有し、評価工程は、赤外線量測定工程で測定された赤外線量の推移から、硬化性組成物の硬化による経時的な温度推移を評価する温度評価工程を含んでいてもよい。このように測定工程が赤外線量測定工程を有し、評価工程が温度評価工程を有する場合は、図4における測定装置40に、図3における赤外線量測定装置31を設けた測定装置を用いればよい。   In addition, the measuring step includes an infrared amount measuring step of continuously measuring the amount of infrared radiation emitted from the covering member in a non-contact manner, and the evaluation step is based on a change in the amount of infrared light measured in the infrared amount measuring step. The method may include a temperature evaluation step of evaluating a temperature change over time due to curing of the curable composition. When the measuring step includes the infrared ray measuring step and the evaluating step includes the temperature evaluating step, a measuring apparatus provided with the infrared measuring apparatus 31 in FIG. 3 for the measuring apparatus 40 in FIG. 4 may be used. .

そして、図4における測定装置40に、図3における赤外線量測定装置31を設けた測定装置を用いて、測定工程において、被覆部材20から放射される赤外線32の量を非接触で連続的に測定し(赤外線量測定工程)、評価工程において、赤外線量測定工程で測定された赤外線量の推移から、熱硬化性組成物の硬化による経時的な温度推移を評価する(温度評価工程)。   Then, the amount of the infrared rays 32 radiated from the covering member 20 is continuously measured in a non-contact manner in the measuring step by using a measuring device provided with the infrared ray measuring device 31 in FIG. 3 as the measuring device 40 in FIG. Then, in the evaluation step, the change in the temperature over time due to the curing of the thermosetting composition is evaluated from the change in the amount of infrared light measured in the step of measuring the amount of infrared light in the evaluation step (temperature evaluation step).

ここで、熱硬化性組成物41が加熱されると、加熱及び硬化反応に応じて熱硬化性組成物41の温度が変化する。そして、被覆部材20は熱硬化性組成物41の表面に配置されている。すなわち、熱硬化性組成物41と被覆部材20は接触している。したがって、熱硬化性組成物41の熱は被覆部材20に伝導するため、熱硬化性組成物41の温度変化にともない、被覆部材20の温度も変化する。   Here, when the thermosetting composition 41 is heated, the temperature of the thermosetting composition 41 changes according to the heating and curing reaction. The covering member 20 is disposed on the surface of the thermosetting composition 41. That is, the thermosetting composition 41 and the covering member 20 are in contact with each other. Therefore, since the heat of the thermosetting composition 41 is conducted to the coating member 20, the temperature of the coating member 20 changes with the temperature change of the thermosetting composition 41.

よって、測定工程において、加熱して熱硬化性組成物41を硬化させる際に、被覆部材20から放射される赤外線32の量を非接触で連続的に測定することで、被覆部材20の熱放射率から、加熱してから硬化が完了するまでの間の熱硬化性組成物41の温度の変化情報(すなわち推移情報)を得ることができる。熱硬化性組成物を評価する場合、その温度は硬化反応に対する影響力が大きいため、温度変化を評価する重要性は一層高い。なお、加熱してから硬化が完了するまでの間の全期間に亘って赤外線32の量を測定してもよいが、測定期間は温度の変化情報を知りたい期間に合わせて任意に選択すればよい。   Therefore, in the measurement step, when the thermosetting composition 41 is cured by heating, the amount of the infrared rays 32 radiated from the covering member 20 is continuously measured in a non-contact manner, so that the heat radiation of the covering member 20 is measured. From the rate, it is possible to obtain temperature change information (that is, transition information) of the temperature of the thermosetting composition 41 during the period from heating to completion of curing. When evaluating a thermosetting composition, the temperature has a great influence on the curing reaction, and thus the importance of evaluating the temperature change is even higher. The amount of infrared rays 32 may be measured over the entire period from heating to completion of curing, but the measuring period may be arbitrarily selected in accordance with the period for which information on temperature change is desired. Good.

被覆部材20については、光硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法において用いるものと同様である。   The covering member 20 is the same as that used in the method for evaluating the time-dependent expansion or contraction due to curing of the photocurable composition.

なお、評価する対象である硬化性組成物が、光硬化性組成物及び熱硬化性組成物の混合物の場合は、図1の測定装置10にさらに図4の加熱・冷却装置42を設けた測定装置や、図3の測定装置30においてさらに図4の加熱・冷却装置42を設けた測定装置を用いることにより、硬化性組成物の硬化による経時的な膨張又は収縮を評価することができる。   When the curable composition to be evaluated is a mixture of the photocurable composition and the thermosetting composition, the measurement is performed by further providing the heating / cooling device 42 of FIG. 4 to the measuring device 10 of FIG. By using a device or a measuring device provided with the heating / cooling device 42 of FIG. 4 in the measuring device 30 of FIG. 3, expansion or contraction of the curable composition over time due to curing can be evaluated.

以上の評価方法で得られる情報に基づく、熱硬化性組成物への熱供給条件の設計方法および熱硬化性組成物の設計方法は、光硬化性組成物のそれらと同様(光を熱に置き換えるだけ)であるため、説明を省略する。   The method of designing heat supply conditions to the thermosetting composition and the method of designing the thermosetting composition based on the information obtained by the above evaluation methods are the same as those of the photocurable composition (replace light with heat). ), And the description is omitted.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1)
図1の測定装置10を用いて、以下の条件において、光硬化性組成物11の硬化による経時的な膨張又は収縮を評価した。測定条件は以下である。
<条件>
光硬化性組成物11:アクリル樹脂(商品名:U−1542J、ケミテック社製)
収容部材17:テフロン(登録商標)製、内径10.0mm、外径30mm、厚さ1.0mmのリング状部材
被覆部材20:質量2.5mg、厚さ11μmのアルミ箔
測定台(ステージ)12:ガラス製板状部材
光照射装置(紫外線照射装置)16:UV−LED
紫外線照射条件:波長365nm、照度200mW/cm、照射時間30秒(s)
距離aの測定間隔:1秒
距離aの測定時間:照射開始から120秒
硬化収縮率(収縮率):算出に下記式を使用した。
A(t)=(V−V(t))/V×100(%)
=(T−T(t))/T×100(%)
A(t):任意の硬化条件による,時刻tにおける硬化収縮率(%)
t:硬化開始後の経過時間
:t=0における初期体積,
=T×S
V(t):時刻tにおける体積,
V(t)=T(t)×S
S:試料断面積
:t=0における初期膜厚
T(t):任意の硬化条件による,時刻tにおける膜厚
結果を図5に示す。
(Example 1)
Under the following conditions, expansion or shrinkage of the photocurable composition 11 over time due to curing was evaluated using the measuring apparatus 10 of FIG. The measurement conditions are as follows.
<Condition>
Photocurable composition 11: acrylic resin (trade name: U-1542J, manufactured by Chemitech)
Housing member 17: Ring member made of Teflon (registered trademark) having an inner diameter of 10.0 mm, an outer diameter of 30 mm, and a thickness of 1.0 mm Covering member 20: An aluminum foil having a mass of 2.5 mg and a thickness of 11 μm : Glass plate member Light irradiation device (ultraviolet irradiation device) 16 : UV-LED
UV irradiation conditions: wavelength 365 nm, illuminance 200 mW / cm 2 , irradiation time 30 seconds (s)
Measurement interval of distance a: 1 second Measurement time of distance a: 120 seconds from the start of irradiation Curing shrinkage (shrinkage): The following formula was used for calculation.
A (t) = (V 0 -V (t)) / V 0 × 100 (%)
= (T 0 −T (t)) / T 0 × 100 (%)
A (t): Curing shrinkage rate (%) at time t under arbitrary curing conditions
t: elapsed time after the start of curing V 0 : initial volume at t = 0,
V 0 = T 0 × S
V (t): volume at time t,
V (t) = T (t) × S
S: Sample cross-sectional area T 0 : Initial film thickness at t = 0 T (t): Film thickness at time t under arbitrary curing conditions The results are shown in FIG.

(比較例1)
光硬化性組成物11の表面に被覆部材20を載置しなかった以外は、実施例1と同様の操作を行った。結果を図6に示す。
(Comparative Example 1)
The same operation as in Example 1 was performed except that the covering member 20 was not placed on the surface of the photocurable composition 11. FIG. 6 shows the results.

図5に示すように、光硬化性組成物11の表面に被覆部材20を配置して被覆部材20の位置(距離a)を求めた実施例1では、硬化にともなう収縮を適切に検知できていた。
一方、図6に示すように、光硬化性組成物11の表面に被覆部材20を配置せずに光硬化性組成物11の位置(距離)を求めた比較例1では、実際には収縮していたにも関わらず、収縮率が負の値(すなわち膨張)になり、硬化にともなう収縮を適切に検知できなかった。
As shown in FIG. 5, in Example 1 in which the covering member 20 was disposed on the surface of the photocurable composition 11 and the position (distance a) of the covering member 20 was obtained, shrinkage due to curing could be appropriately detected. Was.
On the other hand, as shown in FIG. 6, in Comparative Example 1 in which the position (distance) of the photocurable composition 11 was obtained without disposing the covering member 20 on the surface of the photocurable composition 11, the composition actually shrunk. Despite this, the shrinkage ratio became a negative value (ie, expansion), and it was not possible to properly detect shrinkage due to curing.

10、30、40 測定装置
11 光硬化性組成物
12、43 測定台
13 レーザー光
14 変位計
15 光
16 光照射装置
17 収容部材
18 位置決め部材
19 底部
20 被覆部材
31 赤外線量測定装置
32 赤外線
41 熱硬化性組成物
42 加熱・冷却装置
X レーザー光源
10, 30, 40 Measuring device 11 Photocurable composition 12, 43 Measuring table 13 Laser beam 14 Displacement meter 15 Light 16 Light irradiation device 17 Housing member 18 Positioning member 19 Bottom 20 Coating member 31 Infrared ray measuring device 32 Infrared 41 Heat Curable composition 42 Heating / cooling device X Laser light source

Claims (19)

硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法であって、
収容部材に収容されかつ表面に被覆部材が配置された前記硬化性組成物を硬化させると共に、レーザー光源から前記被覆部材に連続的にレーザー光を照射し、その反射光に基づき前記被覆部材の位置を連続的に測定する測定工程と、
前記測定工程で測定された前記位置の推移から、前記硬化性組成物の硬化による経時的な膨張又は収縮を評価する評価工程と、を含み、
前記測定工程は、前記被覆部材から放射される赤外線の量を非接触で連続的に測定する赤外線量測定工程を有し、
前記評価工程は、前記赤外線量測定工程で測定された前記赤外線量の推移から、前記硬化性組成物の硬化による経時的な温度推移を評価する温度評価工程を含み、
前記被覆部材は、基材を有し、
前記基材は、前記レーザー光に対する反射率が50%以上であり、
前記被覆部材は、質量が10mg以下であり、
前記収容部材の開口面積に対する前記被覆部材の断面積が、99%以下である、方法。
A method of evaluating expansion or contraction over time due to curing of the curable composition,
While curing the curable composition contained in the containing member and having the covering member disposed on the surface, continuously irradiating the covering member with a laser beam from a laser light source, the position of the covering member based on the reflected light. A measuring step of continuously measuring
From the transition of the position measured in the measurement step, including an evaluation step of evaluating the expansion or contraction over time due to the curing of the curable composition,
The measuring step has an infrared amount measuring step of continuously measuring the amount of infrared radiation emitted from the coating member in a non-contact manner,
The evaluation step includes a temperature evaluation step of evaluating a time-dependent temperature change due to the curing of the curable composition from the transition of the infrared ray amount measured in the infrared ray amount measurement step,
The covering member has a substrate,
The substrate has a reflectance of 50% or more to the laser light,
The covering member, the mass is Ri der less 10 mg,
The method, wherein a cross-sectional area of the covering member with respect to an opening area of the storage member is 99% or less.
硬化性組成物(但し、光硬化性組成物を除く。)の硬化による経時的な膨張又は収縮を評価する方法であって、  A method for evaluating the time-dependent expansion or shrinkage due to curing of a curable composition (however, excluding a photocurable composition),
収容部材に収容されかつ表面に被覆部材が配置された前記硬化性組成物を硬化させると共に、レーザー光源から前記被覆部材に連続的にレーザー光を照射し、その反射光に基づき前記被覆部材の位置を連続的に測定する測定工程と、  While curing the curable composition contained in the containing member and having the covering member disposed on the surface, continuously irradiating the covering member with a laser beam from a laser light source, the position of the covering member based on the reflected light. A measuring step of continuously measuring
前記測定工程で測定された前記位置の推移から、前記硬化性組成物の硬化による経時的な膨張又は収縮を評価する評価工程と、を含み、  From the transition of the position measured in the measurement step, including an evaluation step of evaluating the expansion or contraction over time due to the curing of the curable composition,
前記被覆部材は、基材を有し、  The covering member has a substrate,
前記基材は、前記レーザー光に対する反射率が50%以上であり、  The substrate has a reflectance of 50% or more to the laser light,
前記被覆部材は、質量が10mg以下である、方法。  The method wherein the coating member has a mass of 10 mg or less.
硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法であって、  A method of evaluating expansion or contraction over time due to curing of the curable composition,
収容部材に収容されかつ表面に被覆部材が配置された前記硬化性組成物を硬化させると共に、レーザー光源から前記被覆部材に連続的にレーザー光を照射し、その反射光に基づき前記被覆部材の位置を連続的に測定する測定工程と、  While curing the curable composition contained in the containing member and having the covering member disposed on the surface, continuously irradiating the covering member with a laser beam from a laser light source, the position of the covering member based on the reflected light. A measuring step of continuously measuring
前記測定工程で測定された前記位置の推移から、前記硬化性組成物の硬化による経時的な膨張又は収縮を評価する評価工程と、を含み、  From the transition of the position measured in the measurement step, including an evaluation step of evaluating the expansion or contraction over time due to the curing of the curable composition,
前記被覆部材は、基材を有し、  The covering member has a substrate,
前記基材は、前記レーザー光に対する反射率が50%以上であり、  The substrate has a reflectance of 50% or more to the laser light,
前記被覆部材は、質量10mg以下であり、  The coating member has a mass of 10 mg or less,
前記被覆部材は、厚さが100μm以下であり、  The coating member has a thickness of 100 μm or less,
前記収容部材の開口面積に対する前記被覆部材の断面積が、35%以上である、方法。  The method, wherein a cross-sectional area of the covering member with respect to an opening area of the storage member is 35% or more.
前記被覆部材を、前記収容部材に接触しないように配置する、請求項1〜3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the covering member is arranged so as not to contact the housing member. 前記測定工程は、前記被覆部材から放射される赤外線の量を非接触で連続的に測定する赤外線量測定工程を有し、
前記評価工程は、前記赤外線量測定工程で測定された前記赤外線量の推移から、前記硬化性組成物の硬化による経時的な温度推移を評価する温度評価工程を含む、請求項2又は3に記載の方法。
The measuring step has an infrared amount measuring step of continuously measuring the amount of infrared radiation emitted from the coating member in a non-contact manner,
The said evaluation process includes the temperature evaluation process which evaluates the temperature change with time by hardening of the said curable composition from the transition of the said infrared-ray amount measured in the said infrared-ray amount measurement process, The Claims 2 or 3 . the method of.
前記基材のみからなる、又は、前記基材とその他の部材とからなる、被覆部材であって、
前記基材のみからなる場合は、前記基材が質量10mg以下の剛体膜であり、
前記基材と前記その他の部材とからなる場合は、前記基材と前記その他の部材とからなる複数部材が質量10mg以下の剛体膜である、請求項1〜のいずれか1項に記載の方法に用いられる被覆部材。
It is a coating member consisting of only the base material, or consisting of the base material and other members,
When consisting of only the base material, the base material is a rigid film having a mass of 10 mg or less,
When it consists of the said base material and the said other member, the several members which consist of the said base material and the said other member are rigid films with a mass of 10 mg or less, The Claims any one of Claims 1-5 . Coating member used in the method.
前記基材の熱伝導率が70Wm−1−1以上である、請求項に記載の被覆部材。 The covering member according to claim 6 , wherein the thermal conductivity of the base material is 70 Wm -1 K -1 or more. 前記基材が無機質材料からなる、請求項に記載の被覆部材。 The covering member according to claim 7 , wherein the base material is made of an inorganic material. 前記基材の主表面の少なくとも一部に黒体を有する、請求項6〜8のいずれか1項に記載の被覆部材。 The covering member according to any one of claims 6 to 8 , wherein the covering member has a black body on at least a part of a main surface of the base material . 厚さが100μm以下である、請求項6〜9のいずれか1項に記載の被覆部材。 The covering member according to any one of claims 6 to 9 , wherein the covering member has a thickness of 100 µm or less. 硬化性組成物の硬化による経時的な膨張又は収縮を評価する方法であって、  A method of evaluating expansion or contraction over time due to curing of the curable composition,
収容部材に収容されかつ表面に被覆部材が配置された前記硬化性組成物を硬化させると共に、レーザー光源から前記被覆部材に連続的にレーザー光を照射し、その反射光に基づき前記被覆部材の位置を連続的に測定する測定工程と、  Along with curing the curable composition contained in the containing member and having the covering member disposed on the surface, the covering member is continuously irradiated with laser light from a laser light source, and the position of the covering member is determined based on the reflected light. A measuring step of continuously measuring
前記測定工程で測定された前記位置の推移から、前記硬化性組成物の硬化による経時的な膨張又は収縮を評価する評価工程と、を含み、  From the transition of the position measured in the measurement step, including an evaluation step of evaluating the expansion or contraction over time due to the curing of the curable composition,
前記被覆部材は、基材及び該基材の主表面の少なくとも一部に設けられた黒体を有し、  The coating member has a black body provided on at least a part of the main surface of the base material and the base material,
前記基材は、前記レーザー光に対する反射率が50%以上であり、  The substrate has a reflectance of 50% or more to the laser light,
前記被覆部材は、質量が10mg以下である、方法。  The method wherein the coating member has a mass of 10 mg or less.
前記被覆部材を、前記収容部材に接触しないように配置する、請求項11に記載の方法。  The method according to claim 11, wherein the covering member is arranged so as not to contact the receiving member. 前記測定工程は、前記被覆部材から放射される赤外線の量を非接触で連続的に測定する赤外線量測定工程を有し、  The measuring step has an infrared amount measuring step of continuously measuring the amount of infrared radiation emitted from the coating member in a non-contact manner,
前記評価工程は、前記赤外線量測定工程で測定された前記赤外線量の推移から、前記硬化性組成物の硬化による経時的な温度推移を評価する温度評価工程を含む、請求項11又は12に記載の方法。  The evaluation step includes a temperature evaluation step of evaluating a time-dependent temperature transition due to curing of the curable composition from a transition of the infrared ray amount measured in the infrared ray amount measurement step, according to claim 11 or 12. the method of.
質量10mg以下の剛体膜からなる、請求項11〜13のいずれか1項に記載の方法に用いられる被覆部材。  The covering member used in the method according to any one of claims 11 to 13, comprising a rigid film having a mass of 10 mg or less. 前記基材の熱伝導率が70Wm  The thermal conductivity of the base material is 70 Wm −1-1 K −1-1 以上である、請求項14に記載の被覆部材。The covering member according to claim 14, which is the above. 前記基材が無機質材料からなる、請求項15に記載の被覆部材。  The covering member according to claim 15, wherein the base material is made of an inorganic material. 厚さが100μm以下である、請求項14〜16のいずれか1項に記載の被覆部材。  The covering member according to any one of claims 14 to 16, wherein the thickness is 100 µm or less. 請求項1〜5または11〜13のいずれか1項に記載の方法で得られる、前記硬化性組成物の硬化による経時的な膨張又は収縮の評価情報に基づき、前記硬化性組成物の硬化条件を設計する方法。  14. Curing conditions of the curable composition, based on evaluation information of expansion or shrinkage of the curable composition over time caused by curing of the curable composition obtained by the method according to any one of claims 1 to 5 or 11 to 13. How to design. 請求項1〜5または11〜13のいずれか1項に記載の方法で得られる、前記硬化性組成物の硬化による経時的な膨張又は収縮の評価情報に基づき、前記硬化性組成物を設計する方法。  The curable composition is designed based on the evaluation information of the time-dependent expansion or contraction caused by curing of the curable composition obtained by the method according to any one of claims 1 to 5 or 11 to 13. Method.
JP2019027395A 2019-02-19 2019-02-19 Method for evaluating time-dependent expansion or contraction due to curing of curable composition, coating member, method for designing curing conditions of curable composition, and method for designing curable composition Active JP6632007B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019027395A JP6632007B1 (en) 2019-02-19 2019-02-19 Method for evaluating time-dependent expansion or contraction due to curing of curable composition, coating member, method for designing curing conditions of curable composition, and method for designing curable composition
PCT/JP2020/006282 WO2020171064A1 (en) 2019-02-19 2020-02-18 Method for evaluating expansion or contraction over time of curable composition due to curing, coating member, method for designing curing conditions for curable composition, and method for designing curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027395A JP6632007B1 (en) 2019-02-19 2019-02-19 Method for evaluating time-dependent expansion or contraction due to curing of curable composition, coating member, method for designing curing conditions of curable composition, and method for designing curable composition

Publications (2)

Publication Number Publication Date
JP6632007B1 true JP6632007B1 (en) 2020-01-15
JP2020134293A JP2020134293A (en) 2020-08-31

Family

ID=69146608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027395A Active JP6632007B1 (en) 2019-02-19 2019-02-19 Method for evaluating time-dependent expansion or contraction due to curing of curable composition, coating member, method for designing curing conditions of curable composition, and method for designing curable composition

Country Status (2)

Country Link
JP (1) JP6632007B1 (en)
WO (1) WO2020171064A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720673A (en) * 2022-03-15 2022-07-08 厦门理工学院 Method and device for measuring shrinkage stress of polyurethane in cast polyurethane composite stone

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211303A (en) * 1985-03-18 1986-09-19 Mitsubishi Rayon Co Ltd Control of photo-initiated polymerization
WO2006137448A1 (en) * 2005-06-21 2006-12-28 National University Corporation Hokkaido University Sample expansion/contraction amount measuring system and sample expansion/contraction amount measuring method
JP5216343B2 (en) * 2008-01-30 2013-06-19 クラレノリタケデンタル株式会社 Polymerizable monomer suitable for dental materials
JP2009186426A (en) * 2008-02-08 2009-08-20 Konica Minolta Business Technologies Inc Measuring device
JP5689752B2 (en) * 2011-06-14 2015-03-25 パナソニックIpマネジメント株式会社 Volume measuring apparatus and volume change measuring method
JP5848109B2 (en) * 2011-11-11 2016-01-27 株式会社センテック Resin cure shrinkage measurement method

Also Published As

Publication number Publication date
JP2020134293A (en) 2020-08-31
WO2020171064A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
Terrones et al. Effects of optical attenuation and consumption of a photobleaching initiator on local initiation rates in photopolymerizations
JP5973954B2 (en) Low-cost measurement system for polymerization monitoring of photosensitive resin films.
JP2021525664A (en) Improved stereolithography technology and related systems and methods
JP6632007B1 (en) Method for evaluating time-dependent expansion or contraction due to curing of curable composition, coating member, method for designing curing conditions of curable composition, and method for designing curable composition
JP2007534963A (en) How to monitor polymerization in 3D samples
Garra et al. Monitoring photopolymerization reactions through thermal imaging: A unique tool for the real‐time follow‐up of thick samples, 3D printing, and composites
US20170282419A1 (en) Imprint apparatus, method of imprinting, method for producing article, and mold
JP5848109B2 (en) Resin cure shrinkage measurement method
Kim et al. Measurement of effective cure shrinkage of epoxy‐based molding compound by fiber Bragg grating sensor using two‐stage curing process
JP6654078B2 (en) Stress measurement method
Sekmen et al. Thermal analysis and shrinkage characterization of the photopolymers for DLP additive manufacturing processes
Hudson et al. Optical measurements of shrinkage in UV-cured adhesives
Curras et al. Influence of the fiber coating type on the strain response of proton-irradiated fiber Bragg gratings
JP2005275411A (en) Holographic media fabrication technique
US7399117B2 (en) Thin film calorimeter
Jambhapuram et al. Impact of winding on nanoimprinted surfaces in roll‐to‐roll nanoimprint lithography
Mitrovic et al. Thermal and mechanical characteristics of dual cure self-etching, self-adhesive resin based cement
Mamezaki et al. Development of the transmittance measurement for EUV resist by direct-resist coating on a photodiode
EP2441518B1 (en) Method and device for thermocompression bonding
JP2009186426A (en) Measuring device
Hachicha et al. Functionalization of UV-curing adhesives for surface-integrated micro-polymer optical fibers
JP2009224395A (en) Jointing method and jointing apparatus
JPH11314231A (en) Method and apparatus for producing optical part
JP4219609B2 (en) Method for manufacturing polarization separating element
US20200231713A1 (en) Apparatus for determining the photosensitivity of a stereolithography resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190419

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190729

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191204

R150 Certificate of patent or registration of utility model

Ref document number: 6632007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250