JP2009186426A - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
JP2009186426A
JP2009186426A JP2008029369A JP2008029369A JP2009186426A JP 2009186426 A JP2009186426 A JP 2009186426A JP 2008029369 A JP2008029369 A JP 2008029369A JP 2008029369 A JP2008029369 A JP 2008029369A JP 2009186426 A JP2009186426 A JP 2009186426A
Authority
JP
Japan
Prior art keywords
measuring
resin
force
measurement
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008029369A
Other languages
Japanese (ja)
Inventor
Daisuke Fujita
大介 藤田
Yasushi Ishihara
靖 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2008029369A priority Critical patent/JP2009186426A/en
Publication of JP2009186426A publication Critical patent/JP2009186426A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a measuring device capable of efficiently measuring simultaneously the shrinkage force and shrinking displacement in resin curing. <P>SOLUTION: The molten resin C is arranged on respective opposing sides of a first member A and of a second member B, and the measuring device measures the behavior when the resin C is cured. The second member B is fixed to a load cell 10 which measures the shrinkage force in curing the resin C, and the first member A is attached onto a substrate 8 with a predetermined constraint force. The shrinking displacement in curing the resin C is measured with a laser displacement gauge 20, and the shrinkage force is measured by the load cell 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、測定装置、特に、樹脂が硬化する際の収縮挙動を測定するための測定装置に関する。   The present invention relates to a measuring apparatus, and more particularly to a measuring apparatus for measuring shrinkage behavior when a resin is cured.

レーザダイオードやレンズなどの光学素子やセンサ類など組立て時に高精度な位置決めを要求される部品を樹脂(接着剤)で固定する場合には、樹脂が硬化する際の収縮挙動を評価しておく必要がある。一般的な従来の樹脂の収縮挙動の測定方法は、硬化前後の体積の変化を利用したものである。それゆえ、収縮力の測定ができないばかりか、硬化中の挙動を連続的に測定することはできなかった。   When fixing parts that require high-precision positioning during assembly, such as optical elements such as laser diodes and lenses, and sensors, with resin (adhesive), it is necessary to evaluate the shrinkage behavior when the resin cures There is. A general method for measuring the shrinkage behavior of a conventional resin utilizes a change in volume before and after curing. Therefore, not only the shrinkage force could not be measured, but also the behavior during curing could not be measured continuously.

ところで、デジタル複写機、プリンタに搭載される露光装置や光ピックアップなどの光学系に含まれる光学素子や各種センサの空間的な位置決めには、部品点数の削減や組立て性の向上のために、光学素子を3次元的に調整後、樹脂接着剤で位置を保持する工法が用いられるようになっている。以下、この工法を3次元精密接着工法と称する。   By the way, for spatial positioning of optical elements and various sensors included in optical systems such as exposure devices and optical pickups installed in digital copiers and printers, optical components can be reduced to reduce the number of components and improve assembly. After adjusting the element three-dimensionally, a method of holding the position with a resin adhesive is used. Hereinafter, this method is referred to as a three-dimensional precision bonding method.

3次元精密接着工法では、部品の調整しろを樹脂の厚み方向にも持たせている。よって、2次元的に接着固定していた従来の接着工法に比べ、硬化収縮の影響がでやすい。特に、部品を保持する保持力によって、樹脂の硬化前後の収縮に起因する位置ずれ量に差が生じる。しかし、従来の評価方法では収縮力を測定できなかったため、部品の保持力が位置ずれ量に与える影響を測定できなかった。また、3次元精密接着工法を用いた場合、接着固定構造が樹脂の硬化中あるいは硬化後の位置精度に大きな影響を及ぼす。   In the three-dimensional precision bonding method, a margin for adjusting the parts is also provided in the thickness direction of the resin. Therefore, compared to the conventional bonding method in which two-dimensional bonding is fixed, the influence of curing shrinkage is likely to occur. In particular, there is a difference in the amount of displacement due to the shrinkage before and after the resin is cured depending on the holding force for holding the component. However, since the shrinkage force cannot be measured by the conventional evaluation method, the influence of the component holding force on the amount of displacement cannot be measured. Further, when the three-dimensional precision bonding method is used, the adhesive fixing structure greatly affects the positional accuracy during or after the resin is cured.

このような組立て精度に影響を及ぼす接着固定構造、保持方法や保持する荷重を変化させたときの位置ずれ量、収縮力の測定はできなかった。特に、硬化中の挙動を連続的に測定できないので、硬化反応が完了しているかどうかの判断ができない。よって、従来では、硬化条件を種々に変化させて、それらの接着強度を測定するという代替評価を行わざるを得なかった。   Such an adhesive fixing structure that affects the assembling accuracy, a holding method, a displacement amount when changing a holding load, and a contraction force cannot be measured. In particular, since the behavior during curing cannot be measured continuously, it cannot be determined whether the curing reaction is complete. Therefore, conventionally, an alternative evaluation of measuring the adhesive strength by changing the curing conditions in various ways has been unavoidable.

また、収縮量については、樹脂で固定された部品に対して外部からの拘束力の影響による実際の位置ずれ量と従来での方法で求めた収縮量との間で乖離が生じていた。さらに、従来の方法で求められる収縮率は体積の変化から求めた体積収縮率であるため、樹脂が全ての方向に均等に収縮した場合を想定している。しかし、現実には、部品の保持構造との関連で全ての方向に均等に収縮力が作用するわけではない。従って、保持構造によっては測定された収縮率と部品の位置ずれ量に差が生じることになる。また、部品と樹脂との界面では、樹脂が収縮できないため、樹脂は内部応力を残した状態で部品と結合されている。   As for the amount of shrinkage, there was a divergence between the actual displacement amount due to the influence of the external restraining force and the shrinkage amount obtained by the conventional method with respect to the parts fixed with resin. Furthermore, since the shrinkage rate obtained by the conventional method is the volume shrinkage rate obtained from the change in volume, it is assumed that the resin is uniformly shrunk in all directions. However, in reality, the contraction force does not act equally in all directions in relation to the component holding structure. Therefore, depending on the holding structure, there is a difference between the measured shrinkage rate and the amount of displacement of the component. In addition, since the resin cannot shrink at the interface between the component and the resin, the resin is bonded to the component while leaving an internal stress.

そこで、樹脂による部品の接着固定では、このような種々の問題点を有するため、現実の保持構造のモデルを作製して外部から所定の保持力が加わった状態で樹脂を硬化させ、硬化する際の挙動を連続的に測定することが必要になる。   Therefore, since there are various problems in bonding and fixing parts with resin, when creating a model of an actual holding structure and curing the resin with a predetermined holding force applied from the outside, It is necessary to continuously measure the behavior of

特許文献1には、二つの容器と圧力計で構成した硬化収縮率の測定装置、及び、硬化前後の比重の変化を利用し、硬化前後の圧力計の測定値の変化から容積の変化を求め、収縮率を求める収縮率測定方法が記載されている。しかし、この装置及び方法では、収縮力を測定することはできない。   Patent Document 1 uses a measuring device for curing shrinkage composed of two containers and a pressure gauge, and a change in specific gravity before and after curing, and obtains a change in volume from a change in measured value of the pressure gauge before and after curing. The shrinkage rate measuring method for obtaining the shrinkage rate is described. However, this device and method cannot measure contractile force.

特許文献2には、振動を利用した硬化挙動観測装置、及び、接着剤硬化中の板状部材のソリ量を連続的に挙動観察する方法が記載されている。しかし、この装置及び方法では、収縮力を測定することはできない。   Patent Document 2 describes a curing behavior observation apparatus using vibration and a method for continuously observing the behavior of the warpage of a plate-shaped member during adhesive curing. However, this device and method cannot measure contractile force.

非特許文献1には、ストレインゲージを用いて接着剤の収縮力を測定し、ノギスで接着剤の収縮量を測定する測定方法が記載されている。しかし、収縮率と収縮量を同時に測定することはないので、非効率的である。
特開平7−333034号公報 特開2004−340810号公報 日本建築学会構造系論文集第583号17−22頁
Non-Patent Document 1 describes a measurement method in which a shrinkage force of an adhesive is measured using a strain gauge and a shrinkage amount of the adhesive is measured with a caliper. However, since the shrinkage rate and the shrinkage amount are not measured at the same time, it is inefficient.
JP 7-333034 A JP 2004-340810 A Architectural Institute of Japan, 583, pp. 17-22

そこで、本発明の目的は、樹脂の硬化時における収縮力及び収縮変位を同時に効率よく測定可能な測定装置を提供することにある。   Accordingly, an object of the present invention is to provide a measuring apparatus that can efficiently and simultaneously measure the contraction force and contraction displacement during curing of a resin.

以上の目的を達成するため、本発明に係る測定装置は、
第1の部材と第2の部材のそれぞれの対向面に溶融状態の樹脂を配置し、該樹脂が硬化する際の挙動を測定する測定装置であって、
前記樹脂が硬化する際の収縮力を測定する力測定手段と、
前記樹脂が硬化する際の収縮による変位を測定する変位測定手段と、
を備えたことを特徴とする。
In order to achieve the above object, a measuring apparatus according to the present invention provides:
A measuring device that arranges a molten resin on each of the opposing surfaces of the first member and the second member, and measures the behavior when the resin is cured,
Force measuring means for measuring the contraction force when the resin is cured;
Displacement measuring means for measuring displacement due to shrinkage when the resin is cured;
It is provided with.

本発明に係る測定装置においては、樹脂で接着固定するためのモデルとして用意された第1及び第2の部材を用いて、力測定手段と変位測定手段にて収縮力及び収縮量を同時に測定することができる。測定結果は部品の設計にフィードバックされることになり、樹脂の硬化収縮による部品の組立て精度誤差を極めて小さくできる。   In the measuring apparatus according to the present invention, the first and second members prepared as models for bonding and fixing with resin are used to simultaneously measure the contraction force and the amount of contraction by the force measurement unit and the displacement measurement unit. be able to. The measurement result is fed back to the design of the component, and the assembly accuracy error of the component due to the curing shrinkage of the resin can be extremely reduced.

本発明に係る測定装置にあっては、第1の部材は基板に固定され、第2の部材は前記力測定手段に固定され、第1の部材と第2の部材はそれぞれ1以上の略平行に対向する対向面を有し、かつ、第1の部材と第2の部材とは互いに接触していないことが好ましい。対向面の隙間に所定厚みの樹脂膜が形成され、対向面の間隔を調整することで、樹脂の厚みを変化させて測定ができる。   In the measuring apparatus according to the present invention, the first member is fixed to the substrate, the second member is fixed to the force measuring means, and each of the first member and the second member is one or more substantially parallel. It is preferable that the first member and the second member are not in contact with each other. A resin film having a predetermined thickness is formed in the gap between the opposing surfaces, and the measurement can be performed by changing the thickness of the resin by adjusting the interval between the opposing surfaces.

前記力測定手段は1以上の測定方向を有し、その測定方向の少なくとも1方向は前記対向面の法線方向と略平行又は略垂直であってもよい。樹脂の膜厚方向の収縮力又は膜厚と垂直な方向の収縮力を測定できる。   The force measuring means may have one or more measuring directions, and at least one of the measuring directions may be substantially parallel or substantially perpendicular to the normal direction of the facing surface. The shrinkage force in the film thickness direction of the resin or the shrinkage force in the direction perpendicular to the film thickness can be measured.

前記変位測定手段は1以上の測定方向を有し、その測定方向の少なくとも1方向は前記対向面の法線方向と略平行又は略垂直であってもよい。樹脂の膜厚方向の収縮量・位置ずれ量又は膜厚と垂直な方向の収縮量・位置ずれ量を測定できる。   The displacement measuring means may have one or more measuring directions, and at least one of the measuring directions may be substantially parallel or substantially perpendicular to the normal direction of the facing surface. It is possible to measure the shrinkage amount / position shift amount in the film thickness direction of the resin or the shrinkage amount / position shift amount in the direction perpendicular to the film thickness.

また、前記基板は第1の部材を拘束する拘束手段を備え、該拘束手段は第1の部材の拘束力を可変であることが好ましい。拘束力を変化させたときの収縮挙動を測定できる。   Further, it is preferable that the substrate includes a restraining means for restraining the first member, and the restraining means can change the restraining force of the first member. The contraction behavior when the restraining force is changed can be measured.

前記対向面で形成される隙間に配置された樹脂に光を照射する手段を備えていてもよい。紫外線などの光硬化型の樹脂を測定の対象とすることができる。また、前記対向面で形成される隙間に配置された樹脂に熱を加える手段を備えていてもよい。熱硬化型の樹脂を測定の対象とすることができる。   You may provide the means to irradiate light to resin arrange | positioned at the clearance gap formed in the said opposing surface. A photo-curing resin such as an ultraviolet ray can be measured. Moreover, you may provide the means to apply heat to resin arrange | positioned at the clearance gap formed in the said opposing surface. A thermosetting resin can be the object of measurement.

前記力測定手段は第2の部材をその自重と釣り合う鉛直方向の力を発生させるものであることが好ましい。自重の影響を排除した収縮挙動の測定が可能となる。   The force measuring means preferably generates a vertical force that balances the second member with its own weight. It is possible to measure the contraction behavior without the influence of its own weight.

前記力測定手段及び前記変位測定手段の少なくとも一方は測定値を連続して出力できることが好ましい。硬化中の測定値を連続的にモニタすることができ、硬化度の判定を容易に行うことができる。   It is preferable that at least one of the force measuring unit and the displacement measuring unit can continuously output a measurement value. The measured value during curing can be continuously monitored, and the degree of curing can be easily determined.

また、第1の部材は前記基板上に着脱可能なスペーサを介して拘束されていてもよい。スペーサを取り去ることで、第1の部材を基板と接触しない状態にでき、第1の部材に対する拘束力を排除したときの収縮力及び収縮変位を測定できる。   The first member may be constrained via a detachable spacer on the substrate. By removing the spacer, the first member can be kept out of contact with the substrate, and the contraction force and contraction displacement when the restraining force on the first member is eliminated can be measured.

前記力測定手段はストレインゲージを用いたロードセルであってもよい。静的荷重を測定するときのドリフトがなく、速度の遅い収縮でも正確に測定できる。また、前記変位測定手段は非接触式のセンサであってもよい。非接触式であれば、樹脂部分に余分な力が加わることはなく、変位測定誤差を減らすことができる。   The force measuring means may be a load cell using a strain gauge. There is no drift when measuring a static load, and even a slow contraction can be measured accurately. Further, the displacement measuring means may be a non-contact type sensor. If it is a non-contact type, an excessive force will not be added to a resin part and a displacement measurement error can be reduced.

第1の部材及び第2の部材の少なくとも一方は線膨脹係数が20×10-6/℃以下であることが好ましい。熱による変形が抑えられ、測定誤差を減らすことができる。また、第1の部材及び第2の部材の少なくとも一方はヤング率が150GPa以上であることが好ましい。収縮力による変形が抑えられ、測定誤差を減らすことができる。 At least one of the first member and the second member preferably has a linear expansion coefficient of 20 × 10 −6 / ° C. or less. Deformation due to heat is suppressed, and measurement errors can be reduced. Moreover, it is preferable that at least one of the first member and the second member has a Young's modulus of 150 GPa or more. Deformation due to contraction force is suppressed, and measurement errors can be reduced.

以下、本発明に係る測定装置の実施例について、添付図面を参照して説明する。なお、各図面において、同一の部材、部分に対しては共通した符号を付し、重複する説明は省略する。   Embodiments of a measuring apparatus according to the present invention will be described below with reference to the accompanying drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same member and part, and the overlapping description is abbreviate | omitted.

図1に本発明の一実施例である測定装置の模式的な構成と測定回路を示す。この測定装置は、樹脂で固定するためのモデルとして用意された第1の部材Aと第2の部材Bとの対向面間に溶融状態の紫外線硬化型の樹脂Cを配置し、樹脂Cが硬化する際の挙動を測定するものであり、樹脂Cが硬化する際の収縮力を測定する力測定手段としてロードセル10、樹脂Cが硬化する際の収縮による変位を測定する変位測定手段としてレーザ変位計20を備えている。ロードセル10及びレーザ変位計20はいずれもよく知られたものである。   FIG. 1 shows a schematic configuration of a measuring apparatus according to an embodiment of the present invention and a measuring circuit. In this measuring apparatus, a melted ultraviolet curable resin C is disposed between opposing surfaces of a first member A and a second member B prepared as a model for fixing with a resin, and the resin C is cured. The load cell 10 is a force measuring means for measuring the contraction force when the resin C is cured, and the laser displacement meter is a displacement measuring means for measuring the displacement due to the contraction when the resin C is cured. 20 is provided. Both the load cell 10 and the laser displacement meter 20 are well known.

測定装置は、さらに、樹脂Cを硬化させるために紫外線を照射する紫外線照射器30とそのコントローラ31を備えている。紫外線硬化型の樹脂としては、例えば、アクリル系あるいはエポキシ系のものが使用される。   The measuring device further includes an ultraviolet irradiator 30 that irradiates ultraviolet rays to cure the resin C and a controller 31 thereof. As the ultraviolet curable resin, for example, an acrylic or epoxy resin is used.

図2に示すように、第1の部材Aはベース部1と垂直部2と該垂直部2から水平方向に突出した突部3とから構成されている。第2の部材Bは前記突部3よりも一回り大きい凹部5を有している。第1の部材Aは、測定装置の基板8上にねじ11によって位置を決められ、かつ、基板8上に設けたねじ11に巻回したコイルばね12にて拘束力が設定される。第2の部材Bは基板8上に取り付けたロードセル10に固定されている。第1及び第2の部材A,Bに関しては、基板8上にセットすることで、突部と凹部とで平行な4面が構成される。   As shown in FIG. 2, the first member A includes a base portion 1, a vertical portion 2, and a protrusion 3 protruding in the horizontal direction from the vertical portion 2. The second member B has a recess 5 that is slightly larger than the protrusion 3. The position of the first member A is determined by a screw 11 on the substrate 8 of the measuring apparatus, and a binding force is set by a coil spring 12 wound around the screw 11 provided on the substrate 8. The second member B is fixed to the load cell 10 attached on the substrate 8. Regarding the first and second members A and B, by setting the first and second members A and B on the substrate 8, four parallel surfaces are formed by the protrusion and the recess.

溶融状態の樹脂Cは第1の部材Aの突部3上の位置Dに所定量が塗布され、突部3を第2の部材Bの凹部5に挿入することにより、第1及び第2の部材A,Bの対向面に配置される。第1及び第2の部材A,Bには樹脂Cを硬化させるための紫外線を照射するための穴4,6が形成され、該穴4,6を通じて紫外線が樹脂Cに照射される。なお、対向面は両側にも開放されており、両側から紫外線を照射することもできる。   A predetermined amount of the resin C in the molten state is applied to the position D on the protrusion 3 of the first member A, and the protrusion 3 is inserted into the recess 5 of the second member B. It arrange | positions on the opposing surface of the members A and B. FIG. Holes 4 and 6 for irradiating ultraviolet rays for curing the resin C are formed in the first and second members A and B, and ultraviolet rays are irradiated to the resin C through the holes 4 and 6. In addition, the opposing surface is open | released also on both sides, and can also irradiate an ultraviolet-ray from both sides.

また、第1の部材Aと第2の部材Bとは互いに接触していない。対向面の隙間に所定厚みの樹脂Cが塗布され、対向面の間隔を調整することで、樹脂Cの厚みを変化させて収縮力及び収縮変位を測定することができる。   Further, the first member A and the second member B are not in contact with each other. The resin C having a predetermined thickness is applied to the gap between the opposing surfaces, and the contraction force and the contraction displacement can be measured by changing the thickness of the resin C by adjusting the interval between the opposing surfaces.

本測定装置においては、紫外線の照射による樹脂Cの硬化に起因する第1の部材Aの変位をレーザ変位計20で連続的に測定するとともに、第2の部材Bを通じてロードセル10で収縮力を連続的に測定する。この測定結果は部品の設計にフィードバックされることになり、樹脂の硬化収縮による部品の組立て精度誤差を極めて小さくできる。   In this measuring apparatus, the displacement of the first member A caused by the curing of the resin C by the irradiation of ultraviolet rays is continuously measured by the laser displacement meter 20 and the contraction force is continuously applied by the load cell 10 through the second member B. Measure automatically. This measurement result is fed back to the design of the component, and the assembly accuracy error of the component due to the curing shrinkage of the resin can be extremely reduced.

測定回路40は、レーザ変位計20の検出データが入力されるセンサアンプ41と、ロードセル10の検出データが入力される歪アンプ42と、それぞれのデータをモニタ及び記録するデータロガー43とで構成されている。なお、データの記録には、データロガー43に代えて、A/D変換ボードを介してパーソナルコンピュータに取り込むようにしてもよい。あるいは、デジタルストレージオシロスコープを用いてもよい。さらには、A/D変換器、処理回路を設けて測定データをメモリに取り込んでもよい。   The measurement circuit 40 includes a sensor amplifier 41 to which detection data of the laser displacement meter 20 is input, a distortion amplifier 42 to which detection data of the load cell 10 is input, and a data logger 43 that monitors and records each data. ing. For data recording, the data logger 43 may be replaced with a personal computer via an A / D conversion board. Alternatively, a digital storage oscilloscope may be used. Furthermore, an A / D converter and a processing circuit may be provided to take measurement data into the memory.

レーザ変位計20及びロードセル10は検出データを連続して出力する。それゆえ、硬化中の測定値を連続的にモニタすることができ、硬化度の判定を容易に行うことができる。   The laser displacement meter 20 and the load cell 10 continuously output detection data. Therefore, the measured value during curing can be continuously monitored, and the degree of curing can be easily determined.

試料となる樹脂は、前述のアクリル系、エポキシ系などの光(紫外線)硬化型以外に熱硬化型であったり、瞬間接着剤であってもよい。熱硬化型であれば、紫外線照射器30に代えて加熱手段を設けることになる。   The resin used as the sample may be a thermosetting type or an instantaneous adhesive other than the above-described acrylic (eg, epoxy) light (ultraviolet) type. If it is a thermosetting type, it will replace with the ultraviolet irradiation device 30, and will provide a heating means.

第1及び第2の部材A,Bに関しては、樹脂の硬化時に発熱したり加熱される場合もあるので、線膨脹係数が低いほうが好ましく、具体的には20×10-6/℃以下であることが好ましい。熱による変形が抑えられ、測定誤差を減らすことができる。また、樹脂の収縮力による変形を抑えるために、第1の部材A及び第2の部材Bはヤング率が高いほうが好ましく、具体的には150GPa以上であることが好ましい。収縮力による変形が抑えられ、測定誤差を減らすことができる。本実施例では、第1及び第2の部材A,Bとして、SUS304を用いた。SUS304の線膨脹係数は17.3×10-6/℃、ヤング率は197GPaである。 Since the first and second members A and B may generate heat or be heated when the resin is cured, the coefficient of linear expansion is preferably low, specifically 20 × 10 −6 / ° C. or less. It is preferable. Deformation due to heat is suppressed, and measurement errors can be reduced. Moreover, in order to suppress the deformation | transformation by the shrinkage force of resin, it is preferable that the 1st member A and the 2nd member B have a high Young's modulus, and it is preferable that it is specifically 150 GPa or more. Deformation due to contraction force is suppressed, and measurement errors can be reduced. In the present embodiment, SUS304 is used as the first and second members A and B. SUS304 has a linear expansion coefficient of 17.3 × 10 −6 / ° C. and a Young's modulus of 197 GPa.

第1の部材Aに対する拘束力に関しては、ねじ11を基板8に対して進退させることでコイルばね12のばね力を変化させ調整することができる。コイルばね12自体をばね定数の異なるものと交換してもよい。本実施例においては、コイルばね12を用いた拘束手段によって、拘束力を異ならせた場合の樹脂の収縮挙動を測定できる。拘束手段としては、コイルばね12以外に、錘を用いてもよく、あるいは、エアシリンダ、油圧シリンダ、電動モータで荷重を付与するようにしてもよい。   Regarding the restraining force with respect to the first member A, the spring force of the coil spring 12 can be changed and adjusted by moving the screw 11 back and forth with respect to the substrate 8. The coil spring 12 itself may be replaced with one having a different spring constant. In the present embodiment, the shrinkage behavior of the resin when the restraining force is varied can be measured by the restraining means using the coil spring 12. As the restraining means, in addition to the coil spring 12, a weight may be used, or a load may be applied by an air cylinder, a hydraulic cylinder, or an electric motor.

また、第1の部材Aは基板8上に着脱可能なスペーサ13(図3参照)を介して拘束されていてもよい。スペーサ13は前記ねじ11の外周部に嵌合可能な凹部13aを有し、予め基板8と第1の部材Aとの間に挿入しておき、樹脂Cが硬化した後にスペーサ13を取り去ることで、第1の部材Aを基板8と接触しない状態にする。これにて、第1の部材Aに対する拘束力を排除したときの収縮力及び収縮変位を測定できる。   The first member A may be constrained via a spacer 13 (see FIG. 3) that can be attached to and detached from the substrate 8. The spacer 13 has a recess 13a that can be fitted to the outer peripheral portion of the screw 11, and is inserted in advance between the substrate 8 and the first member A, and the spacer 13 is removed after the resin C is cured. The first member A is not brought into contact with the substrate 8. Thus, the contraction force and contraction displacement when the restraining force on the first member A is excluded can be measured.

レーザ変位計20としては、株式会社キーエンス製共焦点スキャン型レーザ変位センサLT−9010を好適に用いることができる。本実施例では、第1及び第2の部材A,Bのそれぞれ上面を同一高さに設定し、レーザ変位計20にて第1及び第2の部材A,Bの上面の変位量を同時に測定している。第2の部材Bは、ロードセル10に完全に固定されて変位をほとんど生じないのであるが、ロードセル10の剛性が有限であるため、第2の部材Bにも微小な変位が生じる。第1の部材Aの変位に対して第2の部材Bの変位が無視できない量であれば、第1及び第2の部材A,Bの変位量の差を求め、第1の部材Aの実質的な変位量とすることが好ましい。なお、熱による変形が問題にならないのであれば、第1の部材Aのみで変位量を求めてもよい。   As the laser displacement meter 20, a confocal scan type laser displacement sensor LT-9010 manufactured by Keyence Corporation can be suitably used. In this embodiment, the upper surfaces of the first and second members A and B are set to the same height, and the displacement amounts of the upper surfaces of the first and second members A and B are simultaneously measured by the laser displacement meter 20. is doing. The second member B is completely fixed to the load cell 10 and hardly generates any displacement. However, since the rigidity of the load cell 10 is finite, the second member B is also slightly displaced. If the displacement of the second member B is not negligible with respect to the displacement of the first member A, the difference between the displacement amounts of the first and second members A and B is obtained, and the substantiality of the first member A is obtained. It is preferable that the amount of displacement be a constant amount. If the deformation due to heat is not a problem, the displacement amount may be obtained using only the first member A.

変位測定手段としては非接触式が好ましい。非接触式であれば、樹脂に余分な力が加わることはなく、変位測定誤差を減らすことができる。前記共焦点方式以外に、三角測量方式、静電容量型変位計などを使用することができる。また、変位測定手段は、測定力が樹脂の収縮力に対して十分小さい場合は、接触式であってもよく、電気マイクロメータ又は差動変圧器などであってもよい。   The displacement measuring means is preferably a non-contact type. If it is a non-contact type, an excessive force will not be added to resin and a displacement measurement error can be reduced. In addition to the confocal method, a triangulation method, a capacitance displacement meter, or the like can be used. Further, the displacement measuring means may be of a contact type when the measuring force is sufficiently small with respect to the contraction force of the resin, or may be an electric micrometer or a differential transformer.

レーザ変位計20による測定位置は、測定結果からアッベ誤差を少なくするため、樹脂Cのなるべく真上に設定することが望ましい。   The measurement position by the laser displacement meter 20 is preferably set as high as possible on the resin C in order to reduce Abbe error from the measurement result.

一方、樹脂Cの種類によって硬化挙動は準静的な現象となる。力測定手段として用いる力センサは、主に、圧電素子式とストレインゲージ式とがある。圧電素子式のものは、準静的な現象を測定した場合、測定中に電荷が放電してしまうため、測定値に誤差が生じる。そのため、ストレインゲージ式のロードセルを使用することが好ましい。ストレインゲージを用いたロードセルでは、静的荷重を測定するときのドリフトがなく、速度の遅い収縮でも正確に測定できる。   On the other hand, the curing behavior becomes a quasi-static phenomenon depending on the type of the resin C. The force sensor used as the force measuring means mainly includes a piezoelectric element type and a strain gauge type. In the piezoelectric element type, when a quasi-static phenomenon is measured, an electric charge is discharged during the measurement, so that an error occurs in the measured value. Therefore, it is preferable to use a strain gauge type load cell. A load cell using a strain gauge has no drift when measuring a static load, and can accurately measure even a slow contraction.

また、ロードセル10の剛性は高いほうが好ましいが、剛性が高くなるにつれて力検出信号のS/N比が悪化する。よって、剛性が高く、必要なS/N比を保障できるセンサを選定する必要がある。歪ゲージ式のロードセル及び力センサとしては、共和電業株式会社製LUR−A−2kNSAI、株式会社ナノコントロール製GS110、GS120、GS200などを好適に用いることができる。   Further, it is preferable that the load cell 10 has high rigidity, but as the rigidity increases, the S / N ratio of the force detection signal deteriorates. Therefore, it is necessary to select a sensor that has high rigidity and can ensure a necessary S / N ratio. As a strain gauge type load cell and force sensor, Kyowa Denki Co., Ltd. LUR-A-2kNSAI, Nano Control Co., Ltd. GS110, GS120, GS200, etc. can be used suitably.

さらに、力測定手段は第2の部材Bをその自重と釣り合う鉛直方向の力を発生する機能を有していることが好ましい。第2の部材Bの自重による影響を排除した収縮挙動の測定が可能となる。   Further, the force measuring means preferably has a function of generating a vertical force that balances the second member B with its own weight. It is possible to measure the contraction behavior excluding the influence of the second member B due to its own weight.

次に、前記測定装置による測定例を図4及び図5のグラフに示す。図4は、レーザ変位計20の検出出力である変位量を示している。第1及び第2の部材A,Bの対向面の隙間を0.7mmとし、協立化学産業株式会社製ワールドロック8840Lを12mg塗布し、紫外線照度70mWで45秒照射して硬化させた。第1の部材Aに対する下方への拘束力はゼロとした。また、紫外線照射器30はウシオ電機社製高圧水銀ランプ式紫外線照射器SP−5を用いた。   Next, an example of measurement by the measurement apparatus is shown in the graphs of FIGS. FIG. 4 shows the amount of displacement that is the detection output of the laser displacement meter 20. The gap between the opposing surfaces of the first and second members A and B was 0.7 mm, and 12 mg of World Rock 8840L manufactured by Kyoritsu Chemical Industry Co., Ltd. was applied and cured by irradiation with an ultraviolet illuminance of 70 mW for 45 seconds. The downward restraining force on the first member A was zero. The ultraviolet irradiator 30 was a high pressure mercury lamp type ultraviolet irradiator SP-5 manufactured by USHIO INC.

図5のデータは、ロードセル10の検出出力である収縮力を示している。第1及び第2の部材A,Bの対向面の隙間を0.5mmとし、前記同様の樹脂を紫外線照度70mWで45秒照射して硬化させた。第1の部材Aに対する下方への拘束力は100Nとした。   The data in FIG. 5 indicates the contractile force that is the detection output of the load cell 10. The gap between the opposing surfaces of the first and second members A and B was set to 0.5 mm, and the same resin as described above was irradiated and cured for 45 seconds at an ultraviolet illuminance of 70 mW. The downward restraining force for the first member A was 100N.

次に、本発明に係る測定装置による測定の対象となる種々の接着固定構造について図6〜図17を参照して説明する。これらは複写機やプリンタなどの画像露光装置の光源ユニットであり、レーザダイオード71を保持する放熱機能を有するホルダ50,51と集光光学素子72,73を保持するホルダ60,61,62とを樹脂で接着固定する構造である。これらの接着固定構造をモデルとして前記測定装置によって樹脂Cが硬化する際の挙動を測定/評価し、設計にフィードバックすることがきる。   Next, various adhesive fixing structures to be measured by the measuring apparatus according to the present invention will be described with reference to FIGS. These are light source units of an image exposure apparatus such as a copying machine or a printer, and include holders 50 and 51 having a heat radiation function for holding a laser diode 71 and holders 60, 61 and 62 for holding condensing optical elements 72 and 73. It is a structure that is bonded and fixed with resin. Using these adhesive fixing structures as models, the behavior when the resin C is cured can be measured / evaluated by the measuring device and fed back to the design.

図6は、ホルダ50,60を2箇所の樹脂Cで固定した構造である。ホルダ50が第1の部材Aに相当し、ホルダ60が第2の部材Bに相当する。図7は、前記ホルダ50への樹脂Cの配置位置を種々に変更した例を示す。図8に示すように、樹脂Cを連続的に重ねて環状に配置したモデルであってもよい。また、図9に示すように、樹脂Cを上下で非対象に配置したモデルであってもよい。   FIG. 6 shows a structure in which the holders 50 and 60 are fixed with resin C at two locations. The holder 50 corresponds to the first member A, and the holder 60 corresponds to the second member B. FIG. 7 shows examples in which the arrangement position of the resin C on the holder 50 is variously changed. As shown in FIG. 8, a model in which the resin C is continuously stacked and arranged in an annular shape may be used. Moreover, as shown in FIG. 9, the model which has arrange | positioned the resin C non-targeted up and down may be sufficient.

図10〜図15は、レーザダイオード71を取り付けた折曲げ部を有するホルダ51と集光光学素子72を取り付けたホルダ61との接着固定構造を示す。各図において、Xは光軸方向、Yは主走査方向、Zは副走査方向を示している。   10 to 15 show an adhesive fixing structure of a holder 51 having a bent portion to which a laser diode 71 is attached and a holder 61 to which a condensing optical element 72 is attached. In each figure, X indicates the optical axis direction, Y indicates the main scanning direction, and Z indicates the sub-scanning direction.

図10は、ホルダ51の両端折曲げ部51bとホルダ61の両側面61aの隙間に樹脂を配置した接着固定構造である。図11は、ホルダ51の垂直部分51aの下部と上部折曲げ部51c及びホルダ61の端面61bと上面61cの隙間に樹脂Cを配置した接着固定構造である。図12は、ホルダ51の垂直部分51aに2箇所と上下の折曲げ部51c,51d及びホルダ61の端面61bと上下面61c,61dの隙間に樹脂Cを配置した接着固定構造である。図13は、ホルダ61の凹部61eにホルダ51の折曲げ部51c,51dを挿入し、樹脂Cを配置した接着固定構造である。   FIG. 10 shows an adhesive fixing structure in which a resin is disposed in the gap between the both-end bent portion 51 b of the holder 51 and both side surfaces 61 a of the holder 61. FIG. 11 shows an adhesive fixing structure in which a resin C is disposed in the gap between the lower portion and the upper bent portion 51c of the vertical portion 51a of the holder 51 and the end surface 61b and the upper surface 61c of the holder 61. FIG. 12 shows an adhesive fixing structure in which the resin C is disposed in the vertical portion 51a of the holder 51 at two locations, the upper and lower bent portions 51c and 51d, and the gap between the end surface 61b of the holder 61 and the upper and lower surfaces 61c and 61d. FIG. 13 shows an adhesive fixing structure in which the bent portions 51 c and 51 d of the holder 51 are inserted into the concave portion 61 e of the holder 61 and the resin C is arranged.

図14は、ホルダ61の上下面61c,61dに凹部61fを形成し、該凹部61fを含めてホルダ51の上下折曲げ部51c,51dとホルダ61の上下面61c,61dの隙間に樹脂Cを配置した接着固定構造である。図15は、ホルダ61の上下面61c,61dに凸部61gを形成し、該凸部61gとホルダ51の上下折曲げ部51c,51dの間の隙間に樹脂Cを配置した接着固定構造である。   In FIG. 14, recesses 61f are formed in the upper and lower surfaces 61c and 61d of the holder 61, and the resin C is placed in the gap between the upper and lower bent portions 51c and 51d of the holder 51 and the upper and lower surfaces 61c and 61d of the holder 61 including the recesses 61f. This is an arranged adhesive fixing structure. FIG. 15 shows an adhesive fixing structure in which convex portions 61g are formed on the upper and lower surfaces 61c and 61d of the holder 61, and the resin C is disposed in the gap between the convex portions 61g and the upper and lower bent portions 51c and 51d of the holder 51. .

図16は、集光光学素子(コリメータレンズ)73を保持したホルダ62の端面に凸部62aを形成し、該凸部62aとレーザダイオード71を保持したホルダ50との間に樹脂Cを配置した接着固定構造である。図17は、ホルダ50に折曲げ部50aを形成し、該折曲げ部50aと凸部62aとの隙間に樹脂Cを配置した構造である。   In FIG. 16, a convex portion 62 a is formed on the end face of the holder 62 that holds the condensing optical element (collimator lens) 73, and the resin C is disposed between the convex portion 62 a and the holder 50 that holds the laser diode 71. Adhesive fixing structure. FIG. 17 shows a structure in which a bent portion 50a is formed in the holder 50, and the resin C is arranged in the gap between the bent portion 50a and the convex portion 62a.

(他の実施例)
なお、本発明に係る測定装置は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更できることは勿論である。
(Other examples)
In addition, the measuring apparatus according to the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist thereof.

本発明の一実施例である測定装置の模式的構成図である。It is a typical block diagram of the measuring apparatus which is one Example of this invention. 被測定モデルである第1及び第2の部材を示す斜視図である。It is a perspective view which shows the 1st and 2nd member which is a to-be-measured model. 拘束力を解除するためのスペーサを示す斜視図である。It is a perspective view which shows the spacer for canceling | restraining force. 前記測定装置による変位量のデータを示すグラフである。It is a graph which shows the data of the displacement amount by the said measuring apparatus. 前記測定装置による収縮力のデータを示すグラフである。It is a graph which shows the data of the contractile force by the said measuring apparatus. 接着固定構造の他の例を示し、(A)は断面図、(B)は正面図である。The other example of an adhesion fixing structure is shown, (A) is sectional drawing, (B) is a front view. (A),(B),(C)はそれぞれ接着固定構造の他の例を示す斜視図である。(A), (B), (C) is a perspective view which shows the other example of an adhesion fixing structure, respectively. (A),(B)はそれぞれ接着固定構造の他の例を示す斜視図である。(A), (B) is a perspective view which shows the other example of the adhesion fixing structure, respectively. (A),(B),(C)はそれぞれ接着固定構造の他の例を示す斜視図である。(A), (B), (C) is a perspective view which shows the other example of an adhesion fixing structure, respectively. 接着固定構造の他の例を示し、(A)は斜視図、(B)は平面図、(C)は正面図である。The other example of an adhesion fixing structure is shown, (A) is a perspective view, (B) is a top view, (C) is a front view. 接着固定構造の他の例を示す正面図である。It is a front view which shows the other example of the adhesion fixing structure. 接着固定構造の他の例を示す正面図である。It is a front view which shows the other example of the adhesion fixing structure. 接着固定構造の他の例を示す正面図である。It is a front view which shows the other example of the adhesion fixing structure. 接着固定構造の他の例を示す正面図である。It is a front view which shows the other example of the adhesion fixing structure. 接着固定構造の他の例を示す正面図である。It is a front view which shows the other example of the adhesion fixing structure. 接着固定構造の他の例を示す斜視図である。It is a perspective view which shows the other example of the adhesion fixing structure. 接着固定構造の他の例を示す斜視図である。It is a perspective view which shows the other example of the adhesion fixing structure.

符号の説明Explanation of symbols

A…第1の部材
B…第2の部材
C…樹脂
8…基板
10…ロードセル(力測定手段)
12…コイルばね(拘束手段)
13…スペーサ
20…レーザ変位計(変位測定手段)
30…紫外線照射器
40…測定回路
A ... 1st member B ... 2nd member C ... Resin 8 ... Board | substrate 10 ... Load cell (force measuring means)
12 ... Coil spring (restraint means)
13 ... Spacer 20 ... Laser displacement meter (displacement measuring means)
30 ... UV irradiator 40 ... Measurement circuit

Claims (16)

第1の部材と第2の部材のそれぞれの対向面に溶融状態の樹脂を配置し、該樹脂が硬化する際の挙動を測定する測定装置であって、
前記樹脂が硬化する際の収縮力を測定する力測定手段と、
前記樹脂が硬化する際の収縮による変位を測定する変位測定手段と、
を備えたことを特徴とする測定装置。
A measuring device that arranges a molten resin on each of the opposing surfaces of the first member and the second member, and measures the behavior when the resin is cured,
Force measuring means for measuring the contraction force when the resin is cured;
Displacement measuring means for measuring displacement due to shrinkage when the resin is cured;
A measuring apparatus comprising:
第1の部材は基板に固定され、第2の部材は前記力測定手段に固定され、第1の部材と第2の部材はそれぞれ1以上の略平行に対向する対向面を有し、かつ、第1の部材と第2の部材とは互いに接触していないこと、を特徴とする請求項1に記載の測定装置。   The first member is fixed to the substrate, the second member is fixed to the force measuring means, the first member and the second member each have one or more substantially parallel facing surfaces; and The measuring apparatus according to claim 1, wherein the first member and the second member are not in contact with each other. 前記力測定手段は1以上の測定方向を有し、その測定方向の少なくとも1方向は前記対向面の法線方向と略平行であること、を特徴とする請求項1又は請求項2に記載の測定装置。   The said force measurement means has one or more measurement directions, At least 1 direction of the measurement direction is substantially parallel to the normal line direction of the said opposing surface, The Claim 1 or Claim 2 characterized by the above-mentioned. measuring device. 前記力測定手段は1以上の測定方向を有し、その測定方向の少なくとも1方向は前記対向面の法線方向と略垂直であること、を特徴とする請求項1又は請求項2に記載の測定装置。   The said force measurement means has one or more measurement directions, At least 1 direction of the measurement direction is substantially perpendicular to the normal line direction of the said opposing surface, The Claim 1 or Claim 2 characterized by the above-mentioned. measuring device. 前記変位測定手段は1以上の測定方向を有し、その測定方向の少なくとも1方向は前記対向面の法線方向と略平行であること、を特徴とする請求項1又は請求項2に記載の測定装置。   The displacement measuring means has one or more measurement directions, and at least one direction of the measurement directions is substantially parallel to a normal direction of the facing surface. measuring device. 前記変位測定手段は1以上の測定方向を有し、その測定方向の少なくとも1方向は前記対向面の法線方向と略垂直であること、を特徴とする請求項1又は請求項2に記載の測定装置。   The displacement measuring means has one or more measurement directions, and at least one direction of the measurement directions is substantially perpendicular to a normal direction of the facing surface. measuring device. 前記基板は第1の部材を拘束する拘束手段を備え、該拘束手段は第1の部材の拘束力を可変であること、を特徴とする請求項2ないし請求項6のいずれかに記載の測定装置。   The measurement according to any one of claims 2 to 6, wherein the substrate includes a restraining means for restraining the first member, and the restraining means can change a restraining force of the first member. apparatus. 前記対向面で形成される隙間に配置された樹脂に光を照射する手段を備えたことを特徴とする請求項1ないし請求項7のいずれかに記載の測定装置。   The measuring apparatus according to claim 1, further comprising means for irradiating light to a resin disposed in a gap formed on the facing surface. 前記対向面で形成される隙間に配置された樹脂に熱を加える手段を備えたことを特徴とする請求項1ないし請求項7のいずれかに記載の測定装置。   8. The measuring apparatus according to claim 1, further comprising means for applying heat to the resin disposed in the gap formed on the facing surface. 前記力測定手段は第2の部材をその自重と釣り合う鉛直方向の力を発生させるものであることを特徴とする請求項1ないし請求項9のいずれかに記載の測定装置。   10. The measuring apparatus according to claim 1, wherein the force measuring means generates a vertical force that balances the second member with its own weight. 前記力測定手段及び前記変位測定手段の少なくとも一方は測定値を連続して出力できることを特徴とする請求項1ないし請求項10のいずれかに記載の測定装置。   The measuring apparatus according to claim 1, wherein at least one of the force measuring unit and the displacement measuring unit can continuously output a measurement value. 第1の部材は前記基板上に着脱可能なスペーサを介して拘束されていることを特徴とする請求項2ないし請求項11のいずれかに記載の測定装置。   12. The measuring apparatus according to claim 2, wherein the first member is constrained via a detachable spacer on the substrate. 前記力測定手段はストレインゲージを用いたロードセルであることを特徴とする請求項1ないし請求項12のいずれかに記載の測定装置。   The measuring apparatus according to claim 1, wherein the force measuring means is a load cell using a strain gauge. 前記変位測定手段は非接触式のセンサであることを特徴とする請求項1ないし請求項13のいずれかに記載の測定装置。   The measuring apparatus according to claim 1, wherein the displacement measuring unit is a non-contact type sensor. 第1の部材及び第2の部材の少なくとも一方は線膨脹係数が20×10-6/℃以下であることを特徴とする請求項1ないし請求項14のいずれかに記載の測定装置。 15. The measuring apparatus according to claim 1, wherein at least one of the first member and the second member has a linear expansion coefficient of 20 × 10 −6 / ° C. or less. 第1の部材及び第2の部材の少なくとも一方はヤング率が150GPa以上であることを特徴とする請求項1ないし請求項15のいずれかに記載の測定装置。   16. The measuring apparatus according to claim 1, wherein at least one of the first member and the second member has a Young's modulus of 150 GPa or more.
JP2008029369A 2008-02-08 2008-02-08 Measuring device Pending JP2009186426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029369A JP2009186426A (en) 2008-02-08 2008-02-08 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029369A JP2009186426A (en) 2008-02-08 2008-02-08 Measuring device

Publications (1)

Publication Number Publication Date
JP2009186426A true JP2009186426A (en) 2009-08-20

Family

ID=41069808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029369A Pending JP2009186426A (en) 2008-02-08 2008-02-08 Measuring device

Country Status (1)

Country Link
JP (1) JP2009186426A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104869A (en) * 2011-11-11 2013-05-30 Sentekku:Kk Resin cure shrinkage measuring instrument
KR101332641B1 (en) * 2013-02-01 2013-11-25 한국기계연구원 System for measuring percentage of contraction for resin and method using the same
KR101604919B1 (en) 2014-08-19 2016-03-21 한국기계연구원 Apparatus for measuring contraction ratio of photocurable resin
WO2020171064A1 (en) * 2019-02-19 2020-08-27 株式会社アクロエッジ Method for evaluating expansion or contraction over time of curable composition due to curing, coating member, method for designing curing conditions for curable composition, and method for designing curable composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104869A (en) * 2011-11-11 2013-05-30 Sentekku:Kk Resin cure shrinkage measuring instrument
KR101332641B1 (en) * 2013-02-01 2013-11-25 한국기계연구원 System for measuring percentage of contraction for resin and method using the same
KR101604919B1 (en) 2014-08-19 2016-03-21 한국기계연구원 Apparatus for measuring contraction ratio of photocurable resin
WO2020171064A1 (en) * 2019-02-19 2020-08-27 株式会社アクロエッジ Method for evaluating expansion or contraction over time of curable composition due to curing, coating member, method for designing curing conditions for curable composition, and method for designing curable composition
JP2020134293A (en) * 2019-02-19 2020-08-31 株式会社アクロエッジ Method for evaluating expansion or contraction over time of curable composition due to curing, coating member, method for designing curing condition of curable composition and method for designing curable composition

Similar Documents

Publication Publication Date Title
US11878467B2 (en) Techniques for producing a flat film surface in additive fabrication and related systems and methods
KR102386005B1 (en) Method and device for aligning substrates
JP5723337B2 (en) Pattern forming method and pattern forming apparatus
JP6294680B2 (en) Imprint apparatus and article manufacturing method
JP5777624B2 (en) Refractive index measuring device and refractive index measuring method
CN110114202B (en) Sensor simulating optical properties of resin
CN104885209B (en) The chuck being notably used in mask aligner
CN1854901A (en) Lithogaphic apparatus and positioning apparatus
JP2016156762A (en) Deformation sensor and method for measuring amount of deformation
JP2009186426A (en) Measuring device
KR101889632B1 (en) Imprint apparatus, imprint method, and article manufacturing method
JP5579024B2 (en) Arrangement apparatus having a ruler fixed to a holding body
US20160320697A1 (en) Imprint apparatus, imprint method, and article manufacturing method
CN102124412B (en) Projection system, lithographic apparatus, method of projecting a beam of radiation onto a target and device manufacturing method
CN104662480A (en) Quantitative reticle distortion measurement system
US20140307246A1 (en) Determining position and curvature information directly from a surface of a patterning device
Miller et al. Thermal expansion as a precision actuator
JP6336275B2 (en) Imprint apparatus and article manufacturing method
TWI719261B (en) Apparatus of additive manufacturing using optical pickup head
CN102736440A (en) Lithographic
KR101679941B1 (en) Imprint device, and device manufacturing method
JP2017138209A (en) Driving apparatus and distortion control method
JP6484704B2 (en) Sensor, object positioning system, lithographic apparatus, and device manufacturing method
JP2013085141A (en) Image sensor unit and image reader using the same
JP6739536B2 (en) Actuator system and lithographic apparatus