JP6631469B2 - Adsorption amount estimation device - Google Patents

Adsorption amount estimation device Download PDF

Info

Publication number
JP6631469B2
JP6631469B2 JP2016214528A JP2016214528A JP6631469B2 JP 6631469 B2 JP6631469 B2 JP 6631469B2 JP 2016214528 A JP2016214528 A JP 2016214528A JP 2016214528 A JP2016214528 A JP 2016214528A JP 6631469 B2 JP6631469 B2 JP 6631469B2
Authority
JP
Japan
Prior art keywords
amount
change
adsorption
time
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016214528A
Other languages
Japanese (ja)
Other versions
JP2018071482A (en
Inventor
紘章 梅田
紘章 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016214528A priority Critical patent/JP6631469B2/en
Priority to DE102017121417.8A priority patent/DE102017121417A1/en
Publication of JP2018071482A publication Critical patent/JP2018071482A/en
Application granted granted Critical
Publication of JP6631469B2 publication Critical patent/JP6631469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1614NOx amount trapped in catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、浄化装置への還元剤の吸着量を推定する吸着量推定装置に関する。   The present invention relates to an adsorption amount estimating device for estimating the amount of a reducing agent adsorbed on a purification device.

内燃機関の排気通路に配置された浄化装置と、排気通路のうち浄化装置の上流側に還元剤を添加する添加弁とを備え、浄化装置が有する触媒上にて排気中のNOxを還元剤で還元して浄化する浄化システムが従来より知られている(特許文献1参照)。添加された還元剤の多くは触媒に吸着され、その後、排気中のNOxと触媒上で化学反応してNOxを還元させる。   A purification device disposed in an exhaust passage of the internal combustion engine; and an addition valve for adding a reducing agent upstream of the purification device in the exhaust passage, wherein NOx in the exhaust gas is reduced by a reducing agent on a catalyst of the purification device. 2. Description of the Related Art A purification system for reducing and purifying has been conventionally known (see Patent Document 1). Most of the added reducing agent is adsorbed on the catalyst, and then chemically reacts with NOx in the exhaust gas on the catalyst to reduce NOx.

浄化装置へのNOx流入量に対して還元剤の吸着量が過少であれば、還元されずに浄化装置を通過するNOxの量(NOxスリップ量)が増加する。一方、還元剤の吸着量が過多であれば、浄化装置から流出する還元剤の量(還元剤スリップ量)が増加する。これらのスリップ量を低減させるには、還元剤の吸着量が適正範囲になるように還元剤の供給量を制御することが要求される。   If the amount of adsorption of the reducing agent is too small relative to the amount of NOx flowing into the purification device, the amount of NOx that passes through the purification device without being reduced (NOx slip amount) increases. On the other hand, if the adsorption amount of the reducing agent is excessive, the amount of the reducing agent flowing out of the purification device (the amount of the reducing agent slip) increases. In order to reduce these slip amounts, it is necessary to control the supply amount of the reducing agent so that the amount of adsorption of the reducing agent is in an appropriate range.

この要求に対し、内燃機関の運転状態の履歴から吸着量を推定し、推定した吸着量が適正範囲になるように還元剤の添加量を制御すれば良いが、この制御を長時間実行していくと推定誤差が累積されていき、十分な推定精度を確保できなくなる。この問題に対し、特許文献1に記載の吸着量推定装置では、還元剤の添加を強制的に停止させることで、実際の吸着量を既知の量(ゼロ)に一致させて推定誤差をリセットする、といったキャリブレーション制御を定期的に実行している。   In response to this request, the amount of adsorption may be estimated from the history of the operating state of the internal combustion engine, and the amount of addition of the reducing agent may be controlled so that the estimated amount of adsorption falls within an appropriate range. Then, the estimation errors are accumulated, and it becomes impossible to secure sufficient estimation accuracy. To cope with this problem, the adsorption amount estimating apparatus described in Patent Document 1 resets the estimation error by forcibly stopping the addition of the reducing agent so that the actual adsorption amount matches a known amount (zero). , Etc. are periodically executed.

米国特許出願公開第2005/0282285号明細書US Patent Application Publication No. 2005/0282285

しかしながら、上述したキャリブレーション制御の実行期間では、吸着量が過少またはゼロになるので、NOxスリップ量が増加する。   However, during the execution period of the above-described calibration control, the adsorption amount becomes too small or zero, so that the NOx slip amount increases.

本発明は、上記問題を鑑みてなされたもので、その目的は、還元剤の吸着量を強制的にゼロにする制御を不要にしつつ吸着量を高精度で推定できるようにした吸着量推定装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an adsorption amount estimating apparatus capable of estimating the adsorption amount with high accuracy while eliminating the need to forcibly reduce the adsorption amount of the reducing agent to zero. Is to provide.

ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。   The invention disclosed herein employs the following technical means to achieve the above object. The reference numerals in the claims and parentheses in this section indicate the correspondence with specific means described in the embodiments described later, and do not limit the technical scope of the invention. .

開示される発明は、
内燃機関(10)の排気に含まれるNOxを還元して浄化する触媒を有した浄化装置(30)と、内燃機関の排気通路(11a)のうち浄化装置の上流側に還元剤を添加する添加弁(20)と、排気通路のうち浄化装置の下流側に配置されNOx量および還元剤量の少なくとも一方を検出する検出装置(50)と、を備える浄化システムに適用され、浄化装置への還元剤の吸着量を推定する吸着量推定装置において、
還元剤の添加量を徐々に変化させていくように添加弁の作動を制御する徐変制御を実行する徐変制御部(S7)と、
浄化装置による浄化性能を表す指標を浄化指標とし、徐変制御により添加量を徐々に変化させる毎に生じる浄化指標の変化量(ΔR)が所定量以上変化した時の浄化指標を変化時指標(R2y、R3y)とし、検出装置による検出値に基づき変化時指標を検出する変化時指標検出部(S8)と、
変化時指標検出部により検出された変化時指標に基づき、変化時指標が検出された時点での吸着量である変化時吸着量(M2x、M3x)を推定する変化時吸着量推定部(S9)と、
を備える吸着量推定装置である。
The disclosed invention is
A purifying device (30) having a catalyst for reducing and purifying NOx contained in the exhaust gas of the internal combustion engine (10), and an addition for adding a reducing agent to an exhaust passage (11a) of the internal combustion engine upstream of the purifying device. The present invention is applied to a purification system including a valve (20) and a detection device (50) that is disposed downstream of the purification device in the exhaust passage and detects at least one of the NOx amount and the reducing agent amount. In the adsorption amount estimating device for estimating the adsorption amount of the agent,
A gradual change control unit (S7) for performing gradual change control for controlling the operation of the addition valve so as to gradually change the addition amount of the reducing agent;
An index indicating the purification performance of the purification device is defined as a purification index, and a purification index when the amount of change (ΔR) of the purification index that changes every time the addition amount is gradually changed by the gradual change control changes by a predetermined amount or more is a change index ( R2y, R3y), a change index detection unit (S8) for detecting a change index based on a value detected by the detection device;
A change-time adsorption amount estimating unit (S9) for estimating a change-time adsorption amount (M2x, M3x) that is an adsorption amount at the time when the change-time index is detected based on the change-time index detected by the change-time index detection unit. When,
It is an adsorption amount estimating device provided with:

ここで、吸着量と浄化指標との関係を表わす図4に例示される実線を特性線と呼ぶ場合において、徐変制御による添加量の変化に伴い生じる浄化指標の変化量が所定量以上変化した時の指標(変化時指標)は、実際の特性線との相関が高い。そのため、変化時指標を把握できればその時の吸着量(変化時吸着量)を高精度で把握できる。この点に着目し、上記発明では、徐変制御を実行して変化時指標を検出し、検出された変化時指標に基づき変化時吸着量を推定するので、変化時吸着量を高精度で推定できるようになる。しかも、上記推定に用いる変化時指標は、添加量を徐々に変化させることで算出可能になるので、吸着量を強制的にゼロ(既知量)にする制御を不要にしつつ、変化時吸着量(既知量)の推定を実現できる。   Here, when the solid line illustrated in FIG. 4 representing the relationship between the adsorption amount and the purification index is called a characteristic line, the amount of change in the purification index caused by the change in the addition amount by the gradual change control has changed by a predetermined amount or more. The index of time (index of change) has a high correlation with the actual characteristic line. Therefore, if the index at the time of change can be grasped, the amount of adsorption at that time (the amount of adsorption at the time of change) can be grasped with high accuracy. Focusing on this point, in the above-described invention, the change-time index is detected by executing the gradual change control, and the change-time adsorption amount is estimated based on the detected change-time index. become able to. Moreover, since the change index used for the estimation can be calculated by gradually changing the addition amount, it is unnecessary to control to force the adsorption amount to zero (known amount), and the change adsorption amount ( (Known amount) can be realized.

本発明の第1実施形態に係る吸着量推定装置が適用される浄化システムの概略図。1 is a schematic diagram of a purification system to which an adsorption amount estimation device according to a first embodiment of the present invention is applied. NOxスリップが生じている場合の、NOx浄化装置の内部状態を示す模式図。FIG. 4 is a schematic diagram showing an internal state of the NOx purification device when a NOx slip has occurred. 還元剤スリップが生じている場合の、NOx浄化装置の内部状態を示す模式図。FIG. 3 is a schematic diagram showing an internal state of the NOx purification device when a reducing agent slip has occurred. 吸着量と浄化率との関係を表わす特性線を示す図。The figure which shows the characteristic line showing the relationship between the adsorption amount and the purification rate. 吸着量と浄化率との関係を表わす特性線の、状態変化の一例を示す図。The figure which shows an example of a state change of the characteristic line showing the relationship between the adsorption amount and the purification rate. 第1実施形態に係る吸着量推定装置のプロセッサが実行する処理の手順を示すフローチャート。5 is a flowchart illustrating a procedure of a process executed by a processor of the adsorption amount estimation device according to the first embodiment. 図6に示す徐変制御の処理手順を示すフローチャート。7 is a flowchart showing a processing procedure of the gradual change control shown in FIG. 6. 吸着量と浄化率との関係を表わす特性線を示す図であって、本発明の第2実施形態に係る徐変制御の概要を説明する図。FIG. 7 is a diagram illustrating a characteristic line representing a relationship between an adsorption amount and a purification rate, and is a diagram illustrating an outline of a gradual change control according to a second embodiment of the present invention. 第2実施形態に係る吸着量推定装置のプロセッサが実行する処理の手順を示すフローチャート。9 is a flowchart illustrating a procedure of a process executed by a processor of the adsorption amount estimation device according to the second embodiment.

以下、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。   Hereinafter, a plurality of embodiments for carrying out the invention will be described with reference to the drawings. In each embodiment, portions corresponding to the items described in the preceding embodiment are denoted by the same reference numerals, and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other part of the configuration can be applied with reference to the other embodiments described earlier.

(第1実施形態)
図1に示す内燃機関10は車両に搭載されたものであり、この車両には、排気を浄化する浄化システムが搭載されている。浄化システムは、内燃機関10の排気管11に取り付けられた添加弁20、NOx浄化装置30、酸化装置40およびNOxセンサ50を備える。
(1st Embodiment)
The internal combustion engine 10 shown in FIG. 1 is mounted on a vehicle, and the vehicle has a purification system for purifying exhaust gas. The purification system includes an addition valve 20, a NOx purification device 30, an oxidation device 40, and a NOx sensor 50 attached to an exhaust pipe 11 of the internal combustion engine 10.

NOx浄化装置30は、選択還元型の還元触媒を有する担体31と、その担体31を内部に保持して排気管11に接続されるケースと、を備える。この還元触媒は、還元剤がNOxを還元させる反応を促進させる還元機能、および還元剤を吸着する吸着機能を有し、還元触媒の具体例としてゼオライトが挙げられる。   The NOx purifying device 30 includes a carrier 31 having a selective reduction type reduction catalyst, and a case that holds the carrier 31 inside and is connected to the exhaust pipe 11. This reduction catalyst has a reduction function of accelerating a reaction of the reducing agent to reduce NOx and an adsorption function of adsorbing the reducing agent, and specific examples of the reduction catalyst include zeolite.

添加弁20は、排気通路11aのうちNOx浄化装置30の上流側に尿素水を添加する。車両に搭載された尿素水タンク20tに貯留されている尿素水は、尿素水ポンプ20pにより添加弁20へ供給される。添加弁20は、噴孔を開閉する弁体21と、通電により電磁力を発生させる電磁コイル22と、を有する。電磁力は、弁体21へ開弁力として付与される。したがって、電磁コイル22への通電を開始すると弁体21が開弁作動し、噴孔から尿素水が噴射されて排気通路11aへ尿素水が添加される。また、電磁コイル22への通電を終了すると弁体21が閉弁作動し、排気通路11aへの尿素水の添加が終了する。   The addition valve 20 adds urea water to the exhaust passage 11a on the upstream side of the NOx purification device 30. The urea water stored in the urea water tank 20t mounted on the vehicle is supplied to the addition valve 20 by the urea water pump 20p. The addition valve 20 includes a valve body 21 that opens and closes an injection hole, and an electromagnetic coil 22 that generates an electromagnetic force when energized. The electromagnetic force is applied to the valve body 21 as a valve opening force. Therefore, when the energization of the electromagnetic coil 22 is started, the valve body 21 operates to open the valve, urea water is injected from the injection hole, and urea water is added to the exhaust passage 11a. When the energization of the electromagnetic coil 22 ends, the valve body 21 operates to close the valve, and the addition of the urea water to the exhaust passage 11a ends.

排気通路11aへ添加された尿素水は、排気通路11aのうち添加弁20から還元触媒に至るまでの経路で加熱されて加水分解する。この加水分解により、還元剤としてのアンモニアが生成されてNOx浄化装置30へ供給される。供給されたアンモニアの多くは、図2および図3に示すように、担体31が有する還元触媒に吸着される。その後、排気に含まれるNOxと還元触媒上で化学反応してNOxを還元する(図2参照)。また、供給されたアンモニアの一部は、還元触媒に吸着されることなく還元触媒上でNOxを還元する。   The urea water added to the exhaust passage 11a is heated and hydrolyzed in a path from the addition valve 20 to the reduction catalyst in the exhaust passage 11a. By this hydrolysis, ammonia as a reducing agent is generated and supplied to the NOx purification device 30. Most of the supplied ammonia is adsorbed on the reduction catalyst of the carrier 31, as shown in FIGS. Thereafter, NOx contained in the exhaust gas is chemically reacted with NOx on the reduction catalyst to reduce NOx (see FIG. 2). Further, a part of the supplied ammonia reduces NOx on the reduction catalyst without being adsorbed by the reduction catalyst.

酸化装置40は、酸化触媒を有する担体と、その担体を内部に保持して排気管11に接続されるケースと、を備える。NOx浄化装置30へ供給されたアンモニアのうちNOxと反応することなくNOx浄化装置30から流出したアンモニアは、酸化触媒上で酸化する。   The oxidation device 40 includes a carrier having an oxidation catalyst, and a case that holds the carrier inside and is connected to the exhaust pipe 11. Among the ammonia supplied to the NOx purification device 30, the ammonia flowing out of the NOx purification device 30 without reacting with NOx is oxidized on the oxidation catalyst.

NOxセンサ50は、排気通路11aのうちNOx浄化装置30の下流側に配置され、排気に含まれるNOx量およびアンモニア量を検出する。具体的には、NOxセンサ50は、排気中のNOx濃度に応じた電圧値の信号を、電子制御装置(ECU60)へ出力する。また、このNOxセンサ50は、排気中のアンモニアにも反応して信号を出力するものであり、アンモニア量(還元剤量)およびNOx量のいずれについても検出する。なお、NOxセンサ50は、特許請求の範囲に記載の検出装置に相当する。   The NOx sensor 50 is disposed downstream of the NOx purification device 30 in the exhaust passage 11a, and detects the amount of NOx and the amount of ammonia contained in the exhaust gas. Specifically, the NOx sensor 50 outputs a signal of a voltage value corresponding to the NOx concentration in the exhaust to the electronic control unit (ECU 60). The NOx sensor 50 also outputs a signal in response to the ammonia in the exhaust gas, and detects both the ammonia amount (reducing agent amount) and the NOx amount. Note that the NOx sensor 50 corresponds to a detection device described in the claims.

ECU60は、プロセッサ61aおよびメモリ61bを有するマイクロコンピュータ(マイコン61)、図示しない入力処理回路および出力処理回路等を備える。プロセッサ61aは、メモリ61bに記憶された各種のプログラムにしたがって演算処理を実行することで、各種の算出、推定、設定、指令等を実行する。   The ECU 60 includes a microcomputer (microcomputer 61) having a processor 61a and a memory 61b, an input processing circuit and an output processing circuit (not shown), and the like. The processor 61a executes various calculations, estimations, settings, commands, and the like by executing arithmetic processing according to various programs stored in the memory 61b.

ECU60には、NOxセンサ50から出力された上記信号、つまりNOxセンサ50により検出されたNOxまたはアンモニアの検出値を情報として含む信号が入力される。さらにECU60には、内燃機関10の出力軸の回転速度、内燃機関10の負荷、排気温度等、内燃機関10の運転状態を表した情報を含む信号が入力される。ECU60は、これらの信号に基づき電磁コイル22への通電状態を制御することで、弁体21の開閉作動を制御して尿素水の添加量を制御する。具体的には、単位時間当たりに排気通路11aへ添加される尿素水の質量を、上記添加量として制御する。そして、尿素水の添加量を制御することで、還元触媒に吸着されているアンモニアの量(以下、吸着量と記載)を制御する。   The above signal output from the NOx sensor 50, that is, a signal including the detected value of NOx or ammonia detected by the NOx sensor 50 as information is input to the ECU 60. Further, a signal including information indicating an operation state of the internal combustion engine 10, such as a rotation speed of an output shaft of the internal combustion engine 10, a load of the internal combustion engine 10, an exhaust temperature, and the like, is input to the ECU 60. The ECU 60 controls the energization state of the electromagnetic coil 22 based on these signals, thereby controlling the opening and closing operation of the valve body 21 to control the amount of urea water added. Specifically, the mass of urea water added to the exhaust passage 11a per unit time is controlled as the above-mentioned addition amount. Then, by controlling the amount of urea water added, the amount of ammonia adsorbed on the reduction catalyst (hereinafter referred to as the adsorbed amount) is controlled.

尿素水添加量の制御について、以下、より詳細に説明する。以下の説明では、添加量の目標値を目標添加量とし、吸着量の目標値を目標吸着量とし、現状の吸着量の推定値を推定吸着量とし、浄化装置30へ流入するNOx量をNOx流入量とし、還元触媒の温度を触媒温度とする。NOx流入量は、先述した回転速度および負荷等に基づきマイコン61により推定される。触媒温度は、先述した排気温度等に基づきマイコン61により推定される。目標吸着量および推定吸着量の算出手法については、図6を用いて後に詳述する。   Control of the urea water addition amount will be described in more detail below. In the following description, the target value of the addition amount is the target addition amount, the target value of the adsorption amount is the target adsorption amount, the estimated value of the current adsorption amount is the estimated adsorption amount, and the NOx amount flowing into the purification device 30 is NOx. The temperature of the reduction catalyst is defined as the catalyst temperature. The NOx inflow amount is estimated by the microcomputer 61 based on the above-described rotation speed, load, and the like. The catalyst temperature is estimated by the microcomputer 61 based on the above-described exhaust gas temperature and the like. The method of calculating the target adsorption amount and the estimated adsorption amount will be described later in detail with reference to FIG.

マイコン61は、NOx流入量、触媒温度、目標吸着量および推定吸着量に基づき目標添加量を設定する。さらにマイコン61は、設定した目標添加量、および添加弁20へ供給される尿素水の圧力に基づき、電磁コイル22への通電時間を制御することで、添加量が目標添加量となるように添加弁20の作動を制御する。   The microcomputer 61 sets a target addition amount based on the NOx inflow amount, the catalyst temperature, the target adsorption amount, and the estimated adsorption amount. Further, the microcomputer 61 controls the energization time to the electromagnetic coil 22 based on the set target addition amount and the pressure of the urea water supplied to the addition valve 20, so that the addition amount becomes the target addition amount. The operation of the valve 20 is controlled.

ここで、NOx流入量に対するアンモニア(還元剤)の吸着量が過少であれば、還元されずにNOx浄化装置30を通過するNOx量、つまり図2の符号Aに示すNOxスリップ量が増加する。一方、現状の吸着量に対する還元剤の添加量が過多であれば、吸着されずにNOx浄化装置30を通過する還元剤の量、つまり図3の符号Bに示す還元剤スリップ量が増加する。したがって、還元剤の吸着量が適正範囲W1(図4参照)になるように還元剤の供給量を制御することが要求される。   Here, if the adsorption amount of ammonia (reducing agent) with respect to the NOx inflow amount is too small, the NOx amount that passes through the NOx purification device 30 without being reduced, that is, the NOx slip amount indicated by the symbol A in FIG. 2 increases. On the other hand, if the amount of the reducing agent added to the current amount of adsorption is excessive, the amount of the reducing agent that passes through the NOx purification device 30 without being adsorbed, that is, the amount of the reducing agent slip indicated by reference symbol B in FIG. 3 increases. Therefore, it is required to control the supply amount of the reducing agent so that the amount of the adsorbed reducing agent falls within the appropriate range W1 (see FIG. 4).

図4の横軸は吸着量を示し縦軸は浄化率を示す。ここで言う浄化率とは、NOx流入量に対するNOxセンサ50の検出値の割合のことであり、NOx浄化装置30による浄化性能を表す浄化指標に相当する。先述した通り、NOxセンサ50は、NOx量および還元剤量のいずれに対しても検出する。したがって、NOxスリップ量が多いほど浄化率は低くなり、還元剤スリップ量が多いほど浄化率は低くなる。つまり、NOxスリップ量および還元剤スリップ量のいずれもが少なくなると、図4の縦軸に示す浄化率は高くなる。   The horizontal axis in FIG. 4 indicates the amount of adsorption, and the vertical axis indicates the purification rate. The purification rate referred to here is a ratio of the detection value of the NOx sensor 50 to the NOx inflow amount, and corresponds to a purification index indicating the purification performance of the NOx purification device 30. As described above, the NOx sensor 50 detects both the NOx amount and the reducing agent amount. Therefore, the purification rate decreases as the NOx slip amount increases, and the purification rate decreases as the reducing agent slip amount increases. That is, when both the NOx slip amount and the reducing agent slip amount decrease, the purification rate shown on the vertical axis in FIG. 4 increases.

NOxセンサ50の検出値に基づき還元触媒への還元剤の吸着量を推定することに比べれば、NOxセンサ50の検出値に基づき浄化率を推定することの方が精度良く推定できる。そして、図4に示すように浄化率と吸着量とは相関を有する。この点に着目し、ECU60には、吸着量と浄化率との関係を表わす特性線Ma(図4参照)を表した情報が相関情報として記憶されている。例えば、浄化率に対する吸着量の値を示す特性マップM(図4参照)や、浄化率を変数とした吸着量を表わす数式が、上記相関情報の具体例として挙げられる。図4の例では、特性線Maと特性マップMの値が一致している。   Estimating the purification rate based on the detection value of the NOx sensor 50 can be more accurately estimated than estimating the adsorption amount of the reducing agent to the reduction catalyst based on the detection value of the NOx sensor 50. Then, as shown in FIG. 4, the purification rate and the amount of adsorption have a correlation. Focusing on this point, the ECU 60 stores information representing a characteristic line Ma (see FIG. 4) representing the relationship between the amount of adsorption and the purification rate as correlation information. For example, a specific example of the correlation information is a characteristic map M (see FIG. 4) indicating the value of the adsorption amount with respect to the purification rate, or a mathematical expression representing the adsorption amount with the purification rate as a variable. In the example of FIG. 4, the value of the characteristic line Ma matches the value of the characteristic map M.

特性線Maに示されるように、例えば、吸着量を所定量ΔM変化させると浄化率も変化する。但し、吸着量の領域によっては、吸着量の変化に対する浄化率の変化は小さい。このように、吸着量の変化に伴い生じる浄化率の変化が所定未満となる吸着量の範囲を適正範囲W1と呼ぶ。また、適正範囲W1よりも少ない側の吸着量の範囲を過少範囲W2と呼び、適正範囲W1よりも多い側の吸着量の範囲を過多範囲W3と呼ぶ。過少範囲W2では、吸着量の増大に伴い浄化率も増大し、過多範囲W3では、吸着率の増大に伴い浄化率は減少する。また、図4に例示される特性線Maの適正範囲W1では、吸着量の増大に伴い浄化率も増大する。   As shown by the characteristic line Ma, for example, when the adsorption amount is changed by a predetermined amount ΔM, the purification rate also changes. However, depending on the area of the adsorption amount, the change in the purification rate with respect to the change in the adsorption amount is small. The range of the amount of adsorption in which the change in the purification rate resulting from the change in the amount of adsorption is less than the predetermined value is referred to as an appropriate range W1. Further, the range of the amount of adsorption on the side smaller than the appropriate range W1 is called an underrange W2, and the range of the amount of adsorption on the side larger than the appropriate range W1 is called an excess range W3. In the underrange W2, the purification rate also increases with an increase in the amount of adsorption, and in the excessive range W3, the purification rate decreases with an increase in the adsorption rate. Further, in the appropriate range W1 of the characteristic line Ma illustrated in FIG. 4, the purification rate increases as the amount of adsorption increases.

ECU60は、先述したようにNOxセンサ50の検出値に基づき浄化率を算出し、その推定した浄化率に対応する吸着量を、特性マップMから算出する。このように、ECU60は、吸着量を推定する吸着量推定装置として機能する。なお、適正範囲W1と過少範囲W2との境界に位置する特性線Maの変化点を過少側変化点R2と呼び、適正範囲W1と過多範囲W3との境界に位置する特性線Maの変化点を過多側変化点R3と呼ぶ。また、これらの変化点での浄化率は変化時指標に相当する。   The ECU 60 calculates the purification rate based on the detection value of the NOx sensor 50 as described above, and calculates the adsorption amount corresponding to the estimated purification rate from the characteristic map M. Thus, the ECU 60 functions as an adsorption amount estimating device that estimates the adsorption amount. The change point of the characteristic line Ma located at the boundary between the appropriate range W1 and the underrange W2 is called an underside change point R2, and the change point of the characteristic line Ma located at the boundary between the appropriate range W1 and the underrange W3 is referred to as the change point. This is referred to as an excessive change point R3. Further, the purification rates at these change points correspond to the change time index.

吸着量と浄化率との相関関係、つまり上記特性線Maは、NOx浄化装置30の経年劣化や還元触媒の被毒状態等に応じて変化する。そのため、図5に示す一点鎖線のように還元触媒の初期状態時の特性線に従って特性マップMを設定しておいても、実際の特性線Maは実線に示すように変化して、特性マップMと特性線Maが一致しなくなり、ひいては吸着量の推定精度が悪くなる。そこで本実施形態では、以下に説明する図6の制御を実行することで、ECU60に記憶されている特性マップMを、実際の特性線Maに近づけるように補正している。   The correlation between the adsorption amount and the purification rate, that is, the characteristic line Ma changes according to the aging of the NOx purification device 30, the poisoning state of the reduction catalyst, and the like. Therefore, even if the characteristic map M is set according to the characteristic line in the initial state of the reduction catalyst as shown by the one-dot chain line in FIG. 5, the actual characteristic line Ma changes as shown by the solid line, and the characteristic map M And the characteristic line Ma do not coincide with each other, and the accuracy of estimating the amount of adsorption decreases. Therefore, in the present embodiment, the characteristic map M stored in the ECU 60 is corrected so as to be closer to the actual characteristic line Ma by executing the control of FIG. 6 described below.

図6に示すフローチャートは、内燃機関10の作動期間中に、プロセッサ61aにより所定周期で繰り返し実行される処理である。所定周期の具体例としては、プロセッサ61aの演算周期や、内燃機関10の出力軸が所定角度回転する毎の周期が挙げられる。   The flowchart shown in FIG. 6 is a process repeatedly executed by the processor 61a at a predetermined cycle during the operation period of the internal combustion engine 10. Specific examples of the predetermined cycle include a calculation cycle of the processor 61a and a cycle each time the output shaft of the internal combustion engine 10 rotates by a predetermined angle.

先ず、図6のステップS1では、還元触媒に吸着されている還元剤の量(以下、吸着量と呼ぶ)を次のように推定する。ステップS1の処理を実行している時のプロセッサ61aは、特許請求の範囲に記載の吸着量推定部に相当する。この推定処理では、先ず、以下に説明する吸着速度、脱離速度、酸化速度および還元速度を演算する。   First, in step S1 of FIG. 6, the amount of the reducing agent adsorbed on the reduction catalyst (hereinafter referred to as the adsorbed amount) is estimated as follows. The processor 61a when executing the process of step S1 corresponds to an adsorption amount estimating unit described in the claims. In this estimation process, first, an adsorption speed, a desorption speed, an oxidation speed, and a reduction speed described below are calculated.

吸着速度は、還元剤が還元触媒に吸着されることにより生じる吸着量の増量速度のことであり、尿素水添加量の前回値、加水分解割合、触媒温度および排気流量をパラメータとして算出される。これらのパラメータの値が大きいほど、概ね、吸着速度は大きい値に算出される。例えば、これらのパラメータに対応する吸着速度をマップ化して予め記憶させておき、これらのパラメータに基づきマップを参照して吸着速度を算出する。   The adsorption speed is a rate at which the amount of adsorption generated by the reduction agent being adsorbed by the reduction catalyst is increased, and is calculated using the previous value of the amount of urea water added, the hydrolysis ratio, the catalyst temperature, and the exhaust gas flow rate as parameters. In general, the larger the values of these parameters, the larger the adsorption speed is calculated. For example, a suction speed corresponding to these parameters is mapped and stored in advance, and the suction speed is calculated by referring to the map based on these parameters.

尿素水添加量の前回値は、添加弁20への通電時間、および添加弁20へ供給される尿素水の圧力に基づき算出される。加水分解割合は、添加された尿素水のうち加水分解されてアンモニア(還元剤)が生成された割合のことであり、排気温度に基づき算出される。排気温度は、図示しない排気温度センサで検出してもよいし、内燃機関の運転状態に基づき推定してもよい。触媒温度は、排気温度に基づき推定される。上記排気流量は、浄化装置30に流入する排気流量を触媒容積で除算した値であり、単位容積当りの排気流入量のことである。このように定義される排気流量は、内燃機関の運転状態に基づき推定される。   The previous value of the urea water addition amount is calculated based on the energization time to the addition valve 20 and the pressure of the urea water supplied to the addition valve 20. The hydrolysis ratio is a ratio of ammonia (a reducing agent) generated by hydrolysis of the added urea water, and is calculated based on the exhaust gas temperature. The exhaust gas temperature may be detected by an unillustrated exhaust gas temperature sensor or may be estimated based on the operating state of the internal combustion engine. The catalyst temperature is estimated based on the exhaust gas temperature. The exhaust flow rate is a value obtained by dividing the exhaust flow rate flowing into the purification device 30 by the catalyst volume, and is the exhaust flow rate per unit volume. The exhaust flow rate defined in this way is estimated based on the operating state of the internal combustion engine.

脱離速度は、還元触媒に吸着されている還元剤が還元触媒から脱離することにより生じる吸着量の減量速度のことであり、推定吸着量の前回値および触媒温度をパラメータとして算出される。これらのパラメータの値が大きいほど、概ね、脱離速度は大きい値に算出される。例えば、これらのパラメータに対応する脱離速度をマップ化して予め記憶させておき、これらのパラメータに基づきマップを参照して脱離速度を算出する。   The desorption speed is a rate of decrease in the amount of adsorption caused by the desorption of the reducing agent adsorbed on the reduction catalyst from the reduction catalyst, and is calculated using the previous value of the estimated adsorption amount and the catalyst temperature as parameters. The desorption speed is generally calculated to be a larger value as the values of these parameters are larger. For example, desorption velocities corresponding to these parameters are mapped and stored in advance, and the desorption velocities are calculated with reference to the map based on these parameters.

酸化速度は、還元触媒に吸着されている還元剤が、NOxを還元させることなく排気中の酸素により酸化されることにより生じる吸着量の減量速度のことであり、推定吸着量の前回値、触媒温度および上記排気流量をパラメータとして算出される。これらのパラメータの値が大きいほど、概ね、酸化速度は大きい値に算出される。例えば、これらのパラメータに対応する酸化速度をマップ化して予め記憶させておき、これらのパラメータに基づきマップを参照して酸化速度を算出する。   The oxidation rate is a rate at which the reducing agent adsorbed on the reduction catalyst is oxidized by oxygen in the exhaust gas without reducing NOx, and the amount of adsorption is reduced. The temperature and the exhaust flow rate are calculated as parameters. Generally, the larger the values of these parameters, the larger the oxidation rate is calculated. For example, the oxidation rate corresponding to these parameters is mapped and stored in advance, and the oxidation rate is calculated based on these parameters with reference to the map.

還元速度は、還元触媒に吸着されている還元剤がNOxを還元させることにより生じる吸着量の減量速度のことであり、推定吸着量の前回値、触媒温度、上記排気流量、浄化装置30へのNOx流入量、およびNO/NO比率をパラメータとして算出される。NOx流入量およびNO/NO比率は、内燃機関の運転状態に基づき推定される。これらのパラメータの値が大きいほど、概ね、還元速度は大きい値に算出される。例えば、これらのパラメータに対応する還元速度をマップ化して予め記憶させておき、これらのパラメータに基づきマップを参照して還元速度を算出する。 The reduction rate is a rate at which the amount of adsorption is reduced by the reduction agent adsorbed on the reduction catalyst reducing NOx, and is the previous value of the estimated amount of adsorption, the catalyst temperature, the exhaust gas flow rate, NOx inflow, and is calculated NO 2 / NO ratio as a parameter. NOx inflow amount and NO 2 / NO ratio is estimated based on the operating state of the internal combustion engine. In general, the larger the values of these parameters, the larger the reduction rate is calculated. For example, the reduction speed corresponding to these parameters is mapped and stored in advance, and the reduction speed is calculated by referring to the map based on these parameters.

そして、脱離速度、酸化速度および還元速度を吸着速度から減算した値に、図6の処理が実行される所定周期の長さを乗算した値を、単位時間当りの吸着量として算出する。この単位時間当りの吸着量を、ステップS1の処理が実行される毎に加算していき、その累積値を推定吸着量として演算する。したがって、吸着速度が速いほど推定吸着量は多くなり、脱離速度、酸化速度および還元速度が速いほど推定吸着量は少なくなる。   Then, a value obtained by multiplying a value obtained by subtracting the desorption speed, the oxidation speed, and the reduction speed from the adsorption speed by the length of a predetermined cycle in which the processing in FIG. 6 is executed is calculated as the adsorption amount per unit time. The suction amount per unit time is added each time the processing in step S1 is executed, and the accumulated value is calculated as the estimated suction amount. Therefore, the estimated adsorption amount increases as the adsorption speed increases, and the estimated adsorption amount decreases as the desorption speed, oxidation speed, and reduction speed increase.

続くステップS2では、ステップS1で推定された推定吸着量が目標吸着量となるように添加弁20の作動を制御する。具体的には、目標吸着量に対する推定吸着量の偏差に応じて電磁コイル22への通電時間を制御することで、弁体21の開弁時間、つまり添加弁20からの尿素水の添加量を制御する。目標吸着量は、適正範囲W1の中央値A1に設定されている。適正範囲W1または中央値A1は、特性マップMの初期値、または後述するステップS10により補正された値に設定される。   In the following step S2, the operation of the addition valve 20 is controlled such that the estimated amount of adsorption estimated in step S1 becomes the target amount of adsorption. Specifically, by controlling the energization time to the electromagnetic coil 22 in accordance with the deviation of the estimated adsorption amount from the target adsorption amount, the valve opening time of the valve body 21, that is, the amount of urea water added from the addition valve 20 is reduced. Control. The target suction amount is set to the median A1 of the appropriate range W1. The appropriate range W1 or the median A1 is set to an initial value of the characteristic map M or a value corrected in step S10 described later.

続くステップS3では、ステップS1で推定された推定吸着量が目標吸着量に一致しているか否かを判定する。一致していないと判定された場合には、ステップS1の処理に戻り、一致するまでステップS2の添加弁制御が継続される。一致していると判定された場合には、ステップS4の処理へ進む。   In the following step S3, it is determined whether or not the estimated amount of adsorption estimated in step S1 matches the target amount of adsorption. If it is determined that they do not match, the process returns to step S1, and the addition valve control in step S2 is continued until the values match. If it is determined that they match, the process proceeds to step S4.

次のステップS4では、図4で説明した浄化率をNOxセンサ50の検出値に基づき算出し、検出された浄化率が目標浄化率未満になっているか否かを判定する。浄化率は次のように算出される。すなわち、浄化装置30へのNOx流入量から、NOxセンサ50で検出されたNOxスリップ量を減算してNOx浄化量を算出する。そして、NOx流入量に対するNOx浄化量の割合を浄化率として算出する。なお、NOxセンサ50が還元剤スリップ量を検出している場合にも、NOxスリップ量を還元剤スリップ量に置き換えて同様に浄化率を算出する。   In the next step S4, the purification rate described with reference to FIG. 4 is calculated based on the detection value of the NOx sensor 50, and it is determined whether or not the detected purification rate is less than the target purification rate. The purification rate is calculated as follows. That is, the NOx purification amount is calculated by subtracting the NOx slip amount detected by the NOx sensor 50 from the NOx inflow amount into the purification device 30. Then, the ratio of the NOx purification amount to the NOx inflow amount is calculated as the purification ratio. In addition, even when the NOx sensor 50 detects the reducing agent slip amount, the NOx slip amount is replaced with the reducing agent slip amount, and the purification rate is similarly calculated.

ここで、実吸着量を直接検出することは困難であるため、ステップS1で演算した推定吸着量の実吸着量に対する誤差を直接チェックすることは困難である。そこでステップS4では、推定吸着量の実吸着量に対する誤差を浄化率でチェックしている。つまり、図4の特性線Maに示すように、実吸着量が目標吸着量に一致していれば十分な浄化率が得られる蓋然性が高い。よって、推定吸着量が目標吸着量に一致しているにも拘らず浄化率が目標浄化率未満になっていない場合には、推定吸着量の推定誤差が大きいとみなすことができる。そこで、検出された浄化率が目標浄化率未満になっていなければ、ステップS1での推定誤差が許容範囲を超えているとみなす。そして、ステップS4において検出された浄化率が目標浄化率未満になっていないと判定されれば、目標浄化率未満になるまでステップS1〜S3の処理を継続させ、目標浄化率未満になっていると判定された場合には、ステップS5の処理へ進む。   Here, since it is difficult to directly detect the actual adsorption amount, it is difficult to directly check the error of the estimated adsorption amount calculated in step S1 with respect to the actual adsorption amount. Therefore, in step S4, the error of the estimated amount of adsorption with respect to the actual amount of adsorption is checked by the purification rate. That is, as shown by the characteristic line Ma in FIG. 4, if the actual amount of adsorption matches the target amount of adsorption, there is a high probability that a sufficient purification rate can be obtained. Therefore, when the purification rate is not less than the target purification rate even though the estimated adsorption amount matches the target adsorption amount, it can be considered that the estimation error of the estimated adsorption amount is large. Therefore, if the detected purification rate is not less than the target purification rate, it is considered that the estimation error in step S1 exceeds the allowable range. If it is determined in step S4 that the detected purification rate is not less than the target purification rate, the processes in steps S1 to S3 are continued until the purification rate becomes less than the target purification rate, and the processing is less than the target purification rate. If the determination is made, the process proceeds to step S5.

次のステップS5では、現状の吸着量が、適正範囲W1、過少範囲W2および過多範囲W3のいずれに該当する量であるかを識別する。具体的には、ステップS2で設定されていた目標吸着量に対して所定量だけ添加量を増量させ、その後、所定量だけ添加量を減量させるように添加弁20の作動を制御(ディザ制御)する。これらの増量および減量は所定時間(例えば数秒)実行される。そして、ディザ制御を実行して吸着量を変化させることにより生じるNOxセンサ50の検出値の変化に基づき、上記識別を行う。なお、ステップS5の処理を実行している時のプロセッサ61aは、特許請求の範囲に記載の範囲識別部に相当する。   In the next step S5, it is determined whether the current adsorption amount falls into any of the appropriate range W1, the underrange W2, and the overrange W3. Specifically, the operation of the addition valve 20 is controlled such that the addition amount is increased by a predetermined amount with respect to the target adsorption amount set in step S2, and then the addition amount is reduced by a predetermined amount (dither control). I do. These increase and decrease are performed for a predetermined time (for example, several seconds). Then, the above identification is performed based on a change in the detection value of the NOx sensor 50 caused by changing the adsorption amount by executing the dither control. Note that the processor 61a when executing the processing of step S5 corresponds to a range identification unit described in the claims.

例えば、ディザ制御の実行開始時点において、実際の特性線Maの適正範囲W1の中央値に実吸着量が一致している場合には、NOxセンサ50の検出値による浄化率は殆ど変化しない筈である。また、過少範囲W2に実吸着量が存在する場合には、ディザ制御に係る減量に伴い浄化率が低下し、増量によっては浄化率が変化しない筈である。また、過多範囲W3に実吸着量が存在する場合には、ディザ制御に係る増量に伴い浄化率が低下し、減量によっては浄化率が変化しない筈である。このように、ディザ制御の実行に伴い浄化率がどのように変化したかを検出することで上記識別を行う。   For example, when the actual adsorption amount matches the median value of the appropriate range W1 of the actual characteristic line Ma at the start of the execution of the dither control, the purification rate based on the detection value of the NOx sensor 50 should hardly change. is there. Further, when the actual adsorption amount exists in the under-range W2, the purification rate should decrease with the decrease in dither control, and should not change depending on the increase. If the actual adsorption amount exists in the excessive range W3, the purification rate should decrease with the increase in the dither control, and the purification rate should not change depending on the decrease. As described above, the above-described identification is performed by detecting how the purification rate changes with the execution of the dither control.

続くステップS6では、触媒温度および排気流量が共に定常状態であるか否かを判定する。具体的には、触媒温度の単位時間当たりの変化量が所定の閾値未満であれば、触媒温度が定常状態であるとみなす。また、排気流量の単位時間当たりの変化量が所定の閾値未満であれば、排気流量が定常状態であるとみなす。また、定常状態でないと判定された場合には、ステップS7以降の処理を実行することなく図6の処理を終了させる。定常状態であると判定された場合には、ステップS7の処理へ進む。   In the following step S6, it is determined whether or not both the catalyst temperature and the exhaust flow rate are in a steady state. Specifically, if the amount of change in the catalyst temperature per unit time is less than a predetermined threshold, the catalyst temperature is considered to be in a steady state. If the amount of change in the exhaust flow per unit time is less than a predetermined threshold, the exhaust flow is considered to be in a steady state. When it is determined that the state is not the steady state, the processing in FIG. 6 is terminated without executing the processing in step S7 and subsequent steps. If it is determined that the vehicle is in the steady state, the process proceeds to step S7.

次のステップS7では、図7に示すサブルーチン処理を実行することで、還元剤の添加量を徐々に変化させるように添加弁20の作動を制御(徐変制御)する。続くステップS8では、徐変制御による添加量の変化に伴い生じる浄化率の変化量が所定量以上変化した時の浄化率である変化時浄化率R2y、R3y(図5参照)を、NOxセンサ50による検出値に基づき検出する。上記ステップS7の処理を実行している時のプロセッサ61aは徐変制御部に相当し、上記ステップS8の処理を実行している時のプロセッサ61aは変化時指標検出部に相当する。   In the next step S7, the operation of the addition valve 20 is controlled (gradual change control) so as to gradually change the addition amount of the reducing agent by executing a subroutine process shown in FIG. In the subsequent step S8, the change-time purification rates R2y and R3y (see FIG. 5), which are the purification rates when the amount of change in the purification rate caused by the change in the addition amount due to the gradual change control changes by a predetermined amount or more, are determined by the NOx sensor 50. Is detected based on the detection value of The processor 61a when executing the process of step S7 corresponds to a gradual change control unit, and the processor 61a when executing the process of step S8 corresponds to a change index detecting unit.

図7に示す徐変制御の処理では、先ずステップS20において、ステップS5のディザ制御による識別結果を取得する。過少範囲W2と識別されている場合には、ステップS21において、現状の吸着量を所定量ΔM2(図4参照)だけ増量させるよう添加弁20の作動を制御し、この制御を所定時間(例えば数秒)だけ継続させる。上記増量させる所定量ΔM2は、ステップS6で取得した触媒温度および排気流量に応じて可変設定される。具体的には、触媒温度が高いほど、また、排気流量が多いほど、増量させる所定量ΔM2を減らす。   In the process of the gradual change control shown in FIG. 7, first, in step S20, the identification result by the dither control in step S5 is obtained. If it is determined that the range is too small, in step S21, the operation of the addition valve 20 is controlled to increase the current adsorption amount by a predetermined amount ΔM2 (see FIG. 4), and this control is performed for a predetermined time (for example, several seconds). ) Only continue. The predetermined amount ΔM2 to be increased is variably set according to the catalyst temperature and the exhaust gas flow rate acquired in step S6. Specifically, as the catalyst temperature is higher and the exhaust gas flow rate is higher, the predetermined amount ΔM2 to be increased is reduced.

過多範囲W3と識別されている場合には、ステップS22において、現状の吸着量を所定量ΔM3(図4参照)だけ減量させるよう添加弁20の作動を制御し、この制御を所定時間(例えば数秒)だけ継続させる。上記減量させる所定量ΔM3は、ステップS6で取得した触媒温度および排気流量に応じて可変設定される。具体的には、触媒温度が高いほど、また、排気流量が多いほど、減量させる所定量ΔM3を減らす。   If it is determined that the excess range W3 is detected, in step S22, the operation of the addition valve 20 is controlled so that the current adsorption amount is reduced by a predetermined amount ΔM3 (see FIG. 4), and this control is performed for a predetermined time (for example, several seconds). ) Only continue. The predetermined amount ΔM3 to be reduced is variably set according to the catalyst temperature and the exhaust gas flow rate acquired in step S6. Specifically, the higher the catalyst temperature and the larger the exhaust flow rate, the smaller the predetermined amount ΔM3 to be reduced.

続くステップS23では、過少側変化点R2または過多側変化点R3を適正範囲W1側へ吸着量が超えたか否かを判定する。変化点R2、R3を超えた場合には、検出値の変化量に相当する浄化率変化量ΔR(図4参照)が、前回の浄化率変化量ΔRに比べて急激に小さくなる筈である。そのため、浄化率変化量ΔRが前回値に対して所定量以上変化した場合に、適正範囲W1側へ変化点R2、R3を超えたとみなすことができる。   In the following step S23, it is determined whether or not the amount of adsorption has exceeded the underside change point R2 or the overside change point R3 toward the appropriate range W1. When the change points R2 and R3 are exceeded, the purification rate change amount ΔR (see FIG. 4) corresponding to the change amount of the detection value should be sharply smaller than the previous purification rate change amount ΔR. Therefore, when the purification rate change amount ΔR has changed by a predetermined amount or more from the previous value, it can be considered that the change points R2 and R3 have been exceeded toward the appropriate range W1.

この点を鑑み、ステップS23では、ステップS21による増量またはステップS22による減量を実施したことに伴い生じるNOxセンサ50の検出値の変化量が、所定量以上変化したか否かを判定する。具体的には、浄化率変化量ΔRが所定値未満であるか否かを判定する。上記増量または減量後の吸着量が、継続して過少範囲W2または過多範囲W3の量である場合には、浄化率変化量ΔRが所定値以上となり、適正範囲W1の量に変化した場合には、浄化率変化量ΔRが所定値未満となるよう、上記所定値は設定されている。   In consideration of this point, in step S23, it is determined whether or not the amount of change in the detection value of the NOx sensor 50 caused by performing the increase in amount in step S21 or the decrease in amount in step S22 has changed by a predetermined amount or more. Specifically, it is determined whether or not the purification rate change amount ΔR is less than a predetermined value. When the adsorption amount after the increase or decrease is continuously the amount in the under range W2 or the over range W3, the purification rate change amount ΔR becomes equal to or more than a predetermined value, and when the amount changes in the appropriate range W1. The predetermined value is set so that the purification rate change amount ΔR is less than the predetermined value.

ステップS23において浄化率変化量ΔRが所定値未満でないと判定された場合、上記増量後の吸着量が継続して過少範囲W2であるとみなし、または減量後の吸着量が継続して過多範囲W3であるとみなし、ステップS20の処理に戻る。そのため、現状の吸着量をさらに増量または減量させることとなる。そして、ステップS23において浄化率変化量ΔRが所定値未満であると判定された場合、図7の徐変制御を終了させる。   If it is determined in step S23 that the purification rate change amount ΔR is not less than the predetermined value, the adsorption amount after the increase is considered to be continuously in the under-range W2, or the adsorption amount after the decrease is continued to be in the excessive range W3. And the process returns to step S20. Therefore, the current adsorption amount is further increased or decreased. If it is determined in step S23 that the purification rate change amount ΔR is less than the predetermined value, the gradual change control in FIG. 7 is ended.

一方、ステップS20の判定において、適正範囲W1と識別されていると判定された場合には、ステップS24において、現状の吸着量を所定量だけ増量または減量させるよう添加弁20の作動を制御し、この制御を所定時間(例えば数秒)だけ継続させる。   On the other hand, if it is determined in step S20 that it is identified as the appropriate range W1, in step S24, the operation of the addition valve 20 is controlled to increase or decrease the current adsorption amount by a predetermined amount, This control is continued for a predetermined time (for example, several seconds).

続くステップS25では、過少側変化点R2または過多側変化点R3を適正範囲W1側から吸着量が超えたか否かを判定する。変化点R2、R3を超えた場合には、浄化率変化量ΔRが、前回の浄化率変化量ΔRに比べて急激に大きくなる筈である。そのため、浄化率変化量ΔRが前回値に対して所定量以上変化した場合に、適正範囲W1側から変化点R2、R3を超えたとみなすことができる。   In the following step S25, it is determined whether or not the amount of adsorption has exceeded the underside change point R2 or the overside change point R3 from the appropriate range W1 side. When the change points R2 and R3 are exceeded, the purification rate change amount ΔR should be sharply larger than the previous purification rate change amount ΔR. Therefore, when the purification rate change amount ΔR has changed by a predetermined amount or more from the previous value, it can be considered that the change points R2 and R3 have been exceeded from the appropriate range W1 side.

この点を鑑み、ステップS25では、ステップS24による増量または減量を実施したことに伴い生じるNOxセンサ50の検出値の変化量が所定量以上変化したか否かを判定する。具体的には、浄化率変化量ΔRが所定値以上であるか否かを判定する。ステップS24で減量させた場合において、減量後の吸着量が継続して適正範囲W1の量である場合には、浄化率変化量が所定値未満となり、過少範囲W2の量に変化した場合には、浄化率変化量が所定値以上となるよう、上記所定値は設定されている。また、ステップS24で増量させた場合において、増量後の吸着量が継続して適正範囲W1の量である場合には、浄化率変化量が所定値未満となり、過多範囲W3の量に変化した場合には、浄化率変化量が所定値以上となるよう、上記所定値は設定されている。なお、ステップS23の判定に用いられる所定値は、ステップS25の判定に用いられる所定値と同じ値に設定されている。   In view of this point, in step S25, it is determined whether or not the amount of change in the detection value of the NOx sensor 50 caused by performing the increase or decrease in step S24 has changed by a predetermined amount or more. Specifically, it is determined whether or not the purification rate change amount ΔR is equal to or greater than a predetermined value. When the amount of adsorption is reduced in step S24 and the amount of adsorption after the amount of reduction continues to be in the appropriate range W1, the change in the purification rate becomes less than the predetermined value, and The predetermined value is set so that the amount of change in the purification rate is equal to or more than the predetermined value. Further, when the amount of adsorption is increased in step S24 and the amount of adsorption after the amount of increase continues to be in the appropriate range W1, the amount of change in the purification rate becomes less than the predetermined value, and the amount of change in the purification rate changes to the amount of the excessive range W3. The predetermined value is set so that the amount of change in the purification rate is equal to or more than the predetermined value. The predetermined value used for the determination in step S23 is set to the same value as the predetermined value used for the determination in step S25.

ステップS25において浄化率変化量が所定値以上でないと判定された場合、上記減量または増量後の吸着量が継続して適正範囲W1であるとみなし、または減量後の吸着量が継続して過多範囲W3であるとみなし、ステップS20の処理に戻る。そのため、現状の吸着量をさらに増量または減量させることとなる。そして、ステップS23において浄化率変化量が所定値以上であると判定された場合、図7の徐変制御を終了させる。   If it is determined in step S25 that the amount of change in the purification rate is not equal to or more than the predetermined value, the adsorption amount after the decrease or increase is considered to be continuously within the appropriate range W1, or the adsorption amount after the decrease continues to be in the excessive range. It is assumed that it is W3, and the process returns to step S20. Therefore, the current adsorption amount is further increased or decreased. If it is determined in step S23 that the purification rate change amount is equal to or more than the predetermined value, the gradual change control in FIG. 7 is terminated.

図6の説明に戻り、ステップS7の徐変制御を実行した後、ステップS8において、先述した変化時浄化率R2y、R3yを検出する。すなわち、特性線Maの傾きが大きく変化する変化点R2、R3のうち、適正範囲W1と過少範囲W2との境界に位置する変化点を過少側変化点R2と呼び、適正範囲W1と過多範囲W3との境界に位置する変化点を過多側変化点R3と呼ぶ。そして、過少側変化点R2での浄化率を過少側の変化時浄化率R2yとして検出し、過多側変化点R3での浄化率を過多側の浄化率R3yとして検出する。   Returning to the description of FIG. 6, after performing the gradual change control in step S7, in step S8, the above-described change-time purification rates R2y and R3y are detected. That is, of the change points R2 and R3 at which the slope of the characteristic line Ma changes greatly, the change point located at the boundary between the appropriate range W1 and the underrange W2 is called the underside change point R2, and the appropriate range W1 and the overrange W3 The change point located at the boundary with is referred to as an excessive change point R3. Then, the purification rate at the underside change point R2 is detected as the underside change-time purification rate R2y, and the purification rate at the excessive side change point R3 is detected as the excess side purification rate R3y.

具体的には、ステップS7での徐変制御が終了した時点、つまりステップS23、S25で肯定判定された時点での浄化率を、NOxセンサ50の検出値に基づき算出する。そして、徐変制御において、ステップS21で吸着量を増量させた場合、またはステップS24で吸着量を減量させた場合には、ステップS8で検出した浄化率を、過少側変化点R2での変化時浄化率R2yとする。要するに、過少範囲W2にある吸着量が、ステップS21での増量を繰り返すことで徐々に過少側変化点R2に近づき、過少側変化点R2を超えた時点で、浄化率の傾きが所定値以上から所定値未満に変化する。また、適正範囲W1にある吸着量が、ステップS24での減量を繰り返すことで過少側変化点R2を超えた時点で、浄化率の傾きが所定値未満から所定値以上に変化する。この時点での浄化率を、過少側変化点R2での変化時浄化率R2yとみなして検出する。   Specifically, the purification rate at the time when the gradual change control in step S7 ends, that is, when the affirmative determination is made in steps S23 and S25 is calculated based on the detection value of the NOx sensor 50. In the gradual change control, when the amount of adsorption is increased in step S21 or when the amount of adsorption is decreased in step S24, the purification rate detected in step S8 is changed at the time of the change at the underside change point R2. The purification rate is R2y. In short, the amount of adsorption in the under range W2 gradually approaches the underside change point R2 by repeating the increase in step S21, and when the amount of adsorption exceeds the underside change point R2, the slope of the purification rate becomes greater than or equal to the predetermined value. It changes below a predetermined value. Further, when the amount of adsorption in the appropriate range W1 exceeds the underside change point R2 by repeating the reduction in step S24, the gradient of the purification rate changes from less than the predetermined value to more than the predetermined value. The purification rate at this point is detected as the change-time purification rate R2y at the under-change point R2.

また、徐変制御において、ステップS22で吸着量を減量させた場合、またはステップS24で吸着量を増量させた場合には、ステップS8で検出した浄化率を、過多側変化点R3での変化時浄化率R3yとする。要するに、過多範囲W3にある吸着量が、ステップS22での減量を繰り返すことで過多側変化点R3を超えた時点で、浄化率の傾きの絶対値が所定値以上から所定値未満に変化する。また、適正範囲W1にある吸着量が、ステップS24での増量を繰り返すことで徐々に過多側変化点R3に近づき、過多側変化点R3を超えた時点で、浄化率の傾きの絶対値が所定値未満から所定値以上に変化する。この時点での浄化率を、過多側変化点R3での変化時浄化率R3yとみなして検出する。   Further, in the gradual change control, when the adsorption amount is decreased in step S22 or when the adsorption amount is increased in step S24, the purification rate detected in step S8 is changed at the time of the change at the excessive side change point R3. The purification rate is R3y. In short, when the amount of adsorption in the excess range W3 exceeds the excess-side change point R3 by repeating the reduction in step S22, the absolute value of the gradient of the purification rate changes from a predetermined value or more to less than the predetermined value. Further, the amount of adsorption in the appropriate range W1 gradually approaches the excessive side change point R3 by repeating the increase in step S24, and when the amount exceeds the excessive side change point R3, the absolute value of the gradient of the purification rate becomes a predetermined value. It changes from less than the value to more than the predetermined value. The purification rate at this point is detected as a change-time purification rate R3y at the excessive change point R3.

図5を用いて先述したように、特性線Maの形状は、還元触媒の経時劣化により変化する。この変化の態様には所定の傾向があるため、変化時浄化率R2y、R3yが分かれば、特性線Maがどのような形状になるのかを劣化の進行度合に応じて予測できる、との知見を本発明者は得ている。   As described above with reference to FIG. 5, the shape of the characteristic line Ma changes due to the aging of the reduction catalyst. Since there is a predetermined tendency in the mode of this change, it has been found that if the change-time purification rates R2y and R3y are known, the shape of the characteristic line Ma can be predicted in accordance with the degree of progress of the deterioration. The inventor has gained.

具体的には、還元触媒の経時劣化が進行するほど、過少側変化点R2での浄化率が低下し、かつ、その過少側変化点R2での吸着量は増加する傾向がある。したがって、過少側変化点R2での浄化率(変化時浄化率R2y)を検出すれば、その検出値から過少側変化点R2での吸着量(変化時吸着量M2x)を推定できるので、過少側変化点R2の座標を推定できる。また、還元触媒の経時劣化が進行するほど、過多側変化点R3での浄化率が低下し、かつ、その過多側変化点R3での吸着量は減少する傾向がある。したがって、過多側変化点R3での浄化率(変化時浄化率R3y)を検出すれば、その検出値から過多側変化点R3での吸着量(変化時吸着量M3x)を推定できるので、過多側変化点R3の座標を推定できる。   Specifically, as the time-dependent deterioration of the reduction catalyst progresses, the purification rate at the lower change point R2 tends to decrease, and the amount of adsorption at the lower change point R2 tends to increase. Accordingly, by detecting the purification rate at the underside change point R2 (purification rate at change R2y), the adsorption amount at the underside change point R2 (adsorption amount at change M2x) can be estimated from the detected value. The coordinates of the change point R2 can be estimated. Further, as the deterioration of the reduction catalyst with time progresses, the purification rate at the excess side change point R3 tends to decrease, and the amount of adsorption at the excess side change point R3 tends to decrease. Therefore, if the purification rate at the excessive change point R3 (the purification rate R3y at the time of change) is detected, the adsorption amount at the excessive change point R3 (the adsorption amount at the change M3x) can be estimated from the detected value. The coordinates of the change point R3 can be estimated.

さらに、過少側変化点R2と過多側変化点R3とは相関が高いため、上述の如く推定した過少側変化点R2の座標から過多側変化点R3の座標を推定することができ、逆に、過多側変化点R3から過少側変化点R2を推定することもできる。したがって、過少側変化点R2および過多側変化点R3のいずれかが推定できれば、特性線Ma全体の形状も推定できる。つまり、過少側変化点R2での浄化率(変化時浄化率R2y)および過多側変化点R3での浄化率(変化時浄化率R3y)の少なくとも一方の検出値に基づき、実際の特性線Ma形状を推定できる。   Further, since the underside change point R2 and the excessive side change point R3 have a high correlation, the coordinates of the excessive side change point R3 can be estimated from the coordinates of the underside change point R2 estimated as described above. It is also possible to estimate the underside change point R2 from the excessive side change point R3. Therefore, if either the underside change point R2 or the overside change point R3 can be estimated, the shape of the entire characteristic line Ma can also be estimated. In other words, the actual characteristic line Ma shape is obtained based on at least one of the detected values of the purification rate at the underside change point R2 (purification rate at change R2y) and the purification rate at the excessive side change point R3 (purification rate at change R3y). Can be estimated.

上記知見に基づき、ステップS9では、ステップS1で推定された推定吸着量を以下に説明するように補正する。すなわち、過少側変化点R2での変化時浄化率R2yに対応する過少側用の特性マップMと、過多側変化点R3での変化時浄化率R3yに対応する過多側用の特性マップMとを、ECU60が有するメモリに予め記憶させておく。これらの特性マップMの値は、触媒温度および排気流量に応じて異なる値に設定されている。具体的には、触媒温度が高いほど、浄化率に対応する吸着量が少なく設定されている。また、排気流量が多いほど、浄化率に対応する吸着量が少なく設定されている。   Based on the above knowledge, in step S9, the estimated amount of adsorption estimated in step S1 is corrected as described below. That is, the characteristic map M for the underside corresponding to the purifying rate R2y at the time of the change at the excessive side change point R2 and the characteristic map M for the excessive side corresponding to the purifying rate R3y at the time of the change at the excessive side change point R3. Are stored in a memory of the ECU 60 in advance. The values of these characteristic maps M are set to different values according to the catalyst temperature and the exhaust flow rate. Specifically, the higher the catalyst temperature, the smaller the adsorption amount corresponding to the purification rate is set. Further, the larger the exhaust flow rate, the smaller the amount of adsorption corresponding to the purification rate is set.

そして、ステップS8で検出した浄化率が過少側の変化時浄化率R2yであった場合、その浄化率に対応する過少側用の特性マップMをメモリから取得する。一方、ステップS8で検出した浄化率が過多側の変化時浄化率R3yであった場合、その浄化率に対応する過多側用の特性マップMをメモリから取得する。そして、取得した特性マップMを参照して、ステップS8で検出された変化時浄化率R2y、R3yに基づき変化時吸着量M2x、M3xを算出する。つまり、特性マップMのうち変化時浄化率R2y、R3yに対応する変化時吸着量M2x、M3xを推定する。さらに、このようにして推定された変化時吸着量M2x、M3xに、ステップS1で推定された推定吸着量を置き換えて補正する。   Then, when the purification rate detected in step S8 is the purification rate R2y at the time of change on the underside, the characteristic map M for the underside corresponding to the purification rate is acquired from the memory. On the other hand, when the purification rate detected in step S8 is the excess-time change-time purification rate R3y, the excess-side characteristic map M corresponding to the purification rate is acquired from the memory. Then, referring to the acquired characteristic map M, the change-time adsorption amounts M2x and M3x are calculated based on the change-time purification rates R2y and R3y detected in step S8. That is, the change-time adsorption amounts M2x and M3x corresponding to the change-time purification rates R2y and R3y in the characteristic map M are estimated. Further, the change-time adsorption amounts M2x and M3x estimated in this way are corrected by replacing the estimated adsorption amounts estimated in step S1.

したがって、次回のステップS1では、ステップS9で補正された推定吸着量に、単位時間当りの吸着量を加算して推定吸着量を更新していく。単位時間当りの吸着量は、先に説明した通り、脱離速度、酸化速度および還元速度を吸着速度から減算した値に、所定周期の長さを乗算して算出される。要するに、徐変制御を実行して変化時浄化率R2y、R3yを検出することで、特性マップMに基づいた変化時吸着量M2x、M3xを高精度で推定できる。さらに、ステップS1で推定される推定吸着量を変化時吸着量M2x、M3xに補正することで、推定吸着量の推定誤差の累積分をリセットする。   Accordingly, in the next step S1, the estimated adsorption amount is updated by adding the adsorption amount per unit time to the estimated adsorption amount corrected in step S9. As described above, the adsorption amount per unit time is calculated by multiplying the value obtained by subtracting the desorption rate, oxidation rate, and reduction rate from the adsorption rate by the length of a predetermined cycle. In short, by detecting the change-time purification rates R2y and R3y by executing the gradual change control, the change-time adsorption amounts M2x and M3x based on the characteristic map M can be estimated with high accuracy. Further, the accumulated amount of estimation error of the estimated adsorption amount is reset by correcting the estimated adsorption amount estimated in step S1 to the change-time adsorption amounts M2x and M3x.

さらにステップS9では、上述の如く取得した特性マップMを現状の特性マップMとして置き換える。なお、ステップS9の処理を実行している時のプロセッサ61aは、特許請求の範囲に記載の変化時吸着量推定部に相当するとともに、ステップS1(吸着量推定部)により推定される吸着量を補正する補正部としても機能する。   Further, in step S9, the characteristic map M obtained as described above is replaced with the current characteristic map M. The processor 61a when executing the process of step S9 corresponds to the change-time adsorption amount estimating unit described in the claims, and calculates the adsorption amount estimated by step S1 (adsorption amount estimating unit). It also functions as a correction unit for correcting.

続くステップS10では、ステップS2における添加弁制御に用いる目標吸着量を、ステップS8で検出された浄化率に基づき補正する。具体的には、検出された浄化率が小さいほど目標吸着量を減量する。或いは、補正後の特性マップMにおける適正範囲W1の中央値A1を目標吸着量に設定する。また、触媒温度が高いほど目標吸着量を減量する。続くステップS11では、ステップS4での判定に用いる目標浄化率を、ステップS8で検出された浄化率に基づき補正する。具体的には、検出された浄化率が小さいほど目標浄化率を減量する。   In the following step S10, the target adsorption amount used for the addition valve control in step S2 is corrected based on the purification rate detected in step S8. Specifically, the smaller the detected purification rate, the smaller the target adsorption amount. Alternatively, the central value A1 of the appropriate range W1 in the corrected characteristic map M is set to the target suction amount. Also, the higher the catalyst temperature, the smaller the target adsorption amount. In the following step S11, the target purification rate used for the determination in step S4 is corrected based on the purification rate detected in step S8. Specifically, the target purification rate is reduced as the detected purification rate is smaller.

続くステップS12では、ステップS9での推定吸着量に対する補正量の累積値、もしくはステップS11での目標浄化率に対する補正量の累積値を劣化度合として算出する。そして、上記累積値が所定値以上であるか否かを判定し、所定値未満であれば図6の処理を終了し、所定値以上であると判定された場合には、続くステップS13にて警告フラグをオンに設定する。警告フラグがオンに設定されている場合には、硫黄被毒等による還元触媒の浄化性能低下が許容を超えて進行しているとみなし、その旨を、警告表示や警告音等により車両ユーザへ報知する。   In the following step S12, the cumulative value of the correction amount for the estimated adsorption amount in step S9 or the cumulative value of the correction amount for the target purification rate in step S11 is calculated as the degree of deterioration. Then, it is determined whether or not the accumulated value is equal to or more than a predetermined value. If the accumulated value is less than the predetermined value, the process of FIG. 6 is terminated. Set the warning flag on. When the warning flag is set to ON, it is considered that the reduction performance of the reduction catalyst due to sulfur poisoning or the like is progressing beyond the allowable range, and the fact is notified to the vehicle user by a warning display or a warning sound. Notify.

浄化装置30が新品に交換されたり、既存の浄化装置30の被毒成分が除去されたりして還元触媒の劣化が回復した場合には、警告フラグをオフにするとともに、ステップS12の判定に用いる劣化指標浄化率の現状値を初期値にリセットする。なお、ステップS12の処理を実行している時のプロセッサ61aは、特許請求の範囲に記載の異常判定部に相当する。   When the purification device 30 is replaced with a new one or the poisoning component of the existing purification device 30 is removed and the deterioration of the reduction catalyst is recovered, the warning flag is turned off and used for the determination in step S12. Reset the current value of the degradation index purification rate to the initial value. Note that the processor 61a when executing the processing of step S12 corresponds to the abnormality determination unit described in the claims.

以上により、本実施形態によれば、ステップS7による徐変制御部と、ステップS8による変化時指標検出部と、ステップS9による変化時吸着量推定部と、を備える。徐変制御部は、還元剤の添加量を徐々に変化させるように添加弁20の作動を制御する。変化時指標検出部は、徐変制御による添加量の変化に伴い生じる浄化指標の変化量が所定量以上変化した時の浄化指標である変化時指標、つまり変化時浄化率R2y、R3yを、NOxセンサ50(検出装置)による検出値に基づき検出する。変化時吸着量推定部は、変化時指標検出部により検出された変化時浄化率R2y、R3yに基づき、変化時吸着量M2x、M3xを推定する。   As described above, according to the present embodiment, the gradual change control unit in step S7, the change index detection unit in step S8, and the change adsorption amount estimation unit in step S9 are provided. The gradual change control unit controls the operation of the addition valve 20 so as to gradually change the addition amount of the reducing agent. The change-time index detector detects the change-time index that is a purification index when the change amount of the purification index caused by the change of the addition amount by the gradual change control changes by a predetermined amount or more, that is, the change-time purification rates R2y and R3y, Detection is performed based on the detection value of the sensor 50 (detection device). The change-time adsorption amount estimation unit estimates the change-time adsorption amounts M2x and M3x based on the change-time purification rates R2y and R3y detected by the change-time index detection unit.

ここで、変化時浄化率R2y、R3yは実際の特性線Maとの相関が高い。そのため、変化時浄化率R2y、R3yを把握できればその時の吸着量(変化時吸着量)を高精度で把握できる。この点に着目した本実施形態では、徐変制御を実行して変化時浄化率R2y、R3yを検出し、検出された変化時浄化率R2y、R3yに基づき変化時吸着量M2x、M3xを推定する。   Here, the change-time purification rates R2y and R3y have a high correlation with the actual characteristic line Ma. Therefore, if the change-time purification rates R2y and R3y can be grasped, the adsorption amount at that time (change-time adsorption amount) can be grasped with high accuracy. In this embodiment focusing on this point, the gradual change control is executed to detect the change-time purification rates R2y and R3y, and the change-time adsorption amounts M2x and M3x are estimated based on the detected change-time purification rates R2y and R3y. .

そのため、変化時吸着量M2x、M3xを高精度で推定できるようになる。特に、浄化装置30が経年劣化することに伴い特性線Maが変化した場合であっても、変化時吸着量M2x、M3xを高精度で推定できる。しかも、上記補正に用いる変化時浄化率R2y、R3yは、添加量を徐々に変化させることで算出可能になるので、吸着量を強制的にゼロ(既知量)にする制御を不要にしつつ、変化時吸着量M2x、M3x(既知量)の推定を実現できる。   Therefore, the change-time adsorption amounts M2x and M3x can be estimated with high accuracy. In particular, even when the characteristic line Ma changes due to the aging of the purification device 30, the change-time adsorption amounts M2x and M3x can be estimated with high accuracy. In addition, the change-time purification rates R2y and R3y used for the correction can be calculated by gradually changing the addition amount, so that the control for forcibly reducing the amount of adsorption to zero (known amount) is not required, and the change is not required. It is possible to realize estimation of the time adsorption amounts M2x and M3x (known amounts).

さらに本実施形態では、ステップS1による吸着量推定部を備える。吸着量推定部は、添加弁20からの還元剤の添加量、触媒温度、および変化時吸着量M2x、M3xに基づき、徐変制御の実行停止期間における吸着量を推定する。具体的には、逐次の推定では、変化時吸着量M2x、M3xを用いることなく還元剤添加量および触媒温度等に基づき吸着量を推定し、徐変制御実行の条件を満たす毎に、変化時吸着量M2x、M3xである既知の吸着量に推定吸着量を補正する。ここで、本実施形態に反して、変化時吸着量M2x、M3xを用いることなく還元剤の添加量および触媒温度から吸着量を推定した場合には、推定誤差が累積されていき、十分な推定精度を確保できなくなることが懸念される。これに対し本実施形態では、添加量および触媒温度に加えて変化時吸着量M2x、M3xを用いて吸着量を推定するので、上記懸念を抑制できる。   Further, in the present embodiment, an adsorption amount estimating unit in step S1 is provided. The adsorption amount estimating unit estimates the adsorption amount during the execution stop period of the gradual change control, based on the addition amount of the reducing agent from the addition valve 20, the catalyst temperature, and the change-time adsorption amounts M2x and M3x. Specifically, in the successive estimation, the amount of adsorption is estimated based on the amount of the reducing agent added and the catalyst temperature without using the amounts of adsorption M2x and M3x at the time of change. The estimated adsorption amount is corrected to a known adsorption amount that is the adsorption amounts M2x and M3x. Here, contrary to the present embodiment, when the adsorption amount is estimated from the addition amount of the reducing agent and the catalyst temperature without using the change adsorption amounts M2x and M3x, estimation errors are accumulated and sufficient estimation is performed. There is a concern that accuracy cannot be ensured. On the other hand, in the present embodiment, since the adsorption amount is estimated using the change-time adsorption amounts M2x and M3x in addition to the addition amount and the catalyst temperature, the above concern can be suppressed.

さらに本実施形態では、ステップS2による添加弁制御部と、ステップS10による目標吸着量設定部とを備え、添加弁制御部は、吸着量推定部により推定される吸着量が目標吸着量となるよう、添加弁20の作動を制御する。目標吸着量設定部は、適正範囲W1よりも狭い範囲の値に目標吸着量を設定する。   Further, in the present embodiment, an addition valve control unit in step S2 and a target adsorption amount setting unit in step S10 are provided, and the addition valve control unit controls the adsorption amount estimated by the adsorption amount estimation unit to be the target adsorption amount. , The operation of the addition valve 20 is controlled. The target suction amount setting unit sets the target suction amount to a value in a range narrower than the appropriate range W1.

ここで、触媒温度や排気流量が変われば適正範囲W1も変わる。そのため、上記設定に反して、過少範囲W2または過多範囲W3と適正範囲W1との境界の吸着量を目標吸着量に設定した場合には、触媒温度や排気流量が僅かに変わっただけで実吸着量が適正範囲W1から外れることが懸念される。これに対し本実施形態では、上述の如く適正範囲W1よりも狭い範囲の値に目標吸着量を設定するので、上記懸念を抑制できる。特に本実施形態では、適正範囲W1の中央値A1を目標吸着量として設定するので、上記懸念をより一層抑制できる。   Here, if the catalyst temperature or the exhaust flow rate changes, the appropriate range W1 also changes. Therefore, contrary to the above setting, when the adsorption amount at the boundary between the under-range W2 or the over-range W3 and the appropriate range W1 is set to the target adsorption amount, the actual adsorption is performed only by slightly changing the catalyst temperature and the exhaust flow rate. It is feared that the amount deviates from the appropriate range W1. On the other hand, in the present embodiment, since the target amount of adsorption is set to a value in a range narrower than the appropriate range W1 as described above, the above concern can be suppressed. In particular, in the present embodiment, since the median value A1 of the appropriate range W1 is set as the target adsorption amount, the above-mentioned concern can be further suppressed.

さらに本実施形態では、現状の吸着量が適正範囲W1、過少範囲W2および過多範囲W3のいずれであるかを識別する、ステップS5による範囲識別部を備える。そして、ステップS7による徐変制御部は、範囲識別部により過少範囲W2と識別されている場合には、ステップS21により添加量を徐々に増大変化させ、過多範囲W3と識別されている場合には、ステップS22により添加量を徐々に減少変化させる。また、ステップS9による変化時吸着量推定部は、変化時浄化率R2y、R3yとの相関に基づき変化時吸着量M2x、M3xを推定するにあたり、増大変化させた場合と減少変化させた場合とで上記相関を異ならせる。具体的には、増大変化時用と減少変化時用とで異なる特性マップMを用いて変化時吸着量M2x、M3xを推定する。   Further, in the present embodiment, a range identification unit in step S5 is provided for identifying whether the current amount of adsorption is in the appropriate range W1, the underrange W2, or the overrange W3. Then, the gradual change control unit in step S7 gradually increases and changes the addition amount in step S21 when the range identification unit identifies the under-range W2, and determines in the case where the range W3 is identified as the excessive range W3. In step S22, the addition amount is gradually reduced. In addition, the change-time adsorption amount estimating unit in step S9 estimates the change-time adsorption amounts M2x and M3x based on the correlation with the change-time purification rates R2y and R3y. The above correlation is made different. Specifically, the change-time adsorption amounts M2x and M3x are estimated by using different characteristic maps M for the time of increase change and the time of decrease change.

ここで、過少側変化点R2の変化時浄化率R2yが特性線Maと相関があり、過多側変化点R3の変化時浄化率R3yが特性線Maと相関があることは先述した通りである。しかし、特性線Maのうち過少範囲W2の部分は、変化時浄化率R2yの方が変化時浄化率R3yに比べて相関が高い。また、特性線Maのうち過多範囲W3の部分は、変化時浄化率R3yの方が変化時浄化率R2yに比べて相関が高い。この点を鑑みた本実施形態では、上述の如く、増大変化から変化時浄化率R2yを算出した場合と、減少変化から変化時浄化率R3yを算出した場合とで、変化時吸着量M2x、M3xの推定に用いる相関を異ならせる。そのため、2種類の変化時浄化率R2y、R3yのうち相関が高い浄化率を用いて推定することができ、変化時吸着量M2x、M3xの推定精度を向上できる。   Here, as described above, the purification rate R2y at the time of the change in the underside change point R2 has a correlation with the characteristic line Ma, and the purification rate R3y at the time of the change in the excessive side change point R3 has a correlation with the characteristic line Ma as described above. However, in the portion of the characteristic line Ma in the underrange W2, the change-time purification rate R2y has a higher correlation than the change-time purification rate R3y. Further, in the portion of the characteristic line Ma in the excessive range W3, the change-time purification rate R3y has a higher correlation than the change-time purification rate R2y. In the present embodiment in consideration of this point, as described above, the change-time adsorption amounts M2x and M3x are calculated when the change-time purification rate R2y is calculated from the increase change and when the change-time purification rate R3y is calculated from the decrease change. The correlation used for estimating is made different. Therefore, it is possible to estimate using the purification rate having a high correlation among the two types of the purification rates R2y and R3y at the time of change, and it is possible to improve the estimation accuracy of the adsorption amounts M2x and M3x at the time of change.

さらに本実施形態では、ステップS7による徐変制御部は、NOxセンサ50(検出装置)による検出値に基づき検出される浄化指標が目標指標未満であることを条件として徐変制御を実行する。例えば、ステップS4で浄化指標が目標指標未満であると判定されなければ、ステップS7による徐変制御は実行されない。ここで、浄化指標が目標指標以上になっていれば、実際の吸着量を適正範囲W1内に制御できている蓋然性が高く、補正の必要性が低い。この点を鑑みた本実施形態では、浄化指標が目標指標未満であることを条件として徐変制御を実行するので、必要以上に徐変制御が実行されてしまうことを抑制できる。   Further, in the present embodiment, the gradual change control unit in step S7 executes the gradual change control on the condition that the purification index detected based on the value detected by the NOx sensor 50 (detection device) is less than the target index. For example, unless it is determined in step S4 that the purification index is smaller than the target index, the gradual change control in step S7 is not executed. Here, if the purification index is equal to or larger than the target index, it is highly probable that the actual adsorption amount can be controlled within the appropriate range W1, and the necessity of correction is low. In the present embodiment in view of this point, the gradual change control is executed on condition that the purification index is smaller than the target index, so that it is possible to prevent the gradual change control from being executed more than necessary.

さらに本実施形態では、ステップS7による徐変制御部は、触媒温度および排気流量の少なくとも1つについて、単位時間あたりの変化量が所定量未満となっている定常状態であることを条件として徐変制御を実行する。例えば、ステップS6で触媒温度および排気流量が共に定常状態であると判定されなければ、ステップS7による徐変制御は実行されない。ここで、変化時浄化率R2y、R3yと特性線Maとの相関は、触媒温度や排気流量に応じて異なる。そのため、触媒温度や排気流量が変化している過渡時に徐変制御を実行して特性マップMを補正すると、補正精度が悪くなることが懸念される。この点を鑑みた本実施形態では、定常状態であることを条件として徐変制御を実行するので、上記懸念を抑制できる。   Further, in the present embodiment, the gradual change control unit in step S7 performs the gradual change on the condition that at least one of the catalyst temperature and the exhaust flow rate is in a steady state in which the amount of change per unit time is less than a predetermined amount. Execute control. For example, unless it is determined in step S6 that both the catalyst temperature and the exhaust flow rate are in a steady state, the gradual change control in step S7 is not executed. Here, the correlation between the change-time purification rates R2y and R3y and the characteristic line Ma differs depending on the catalyst temperature and the exhaust gas flow rate. Therefore, if the characteristic map M is corrected by executing the gradual change control during a transition in which the catalyst temperature or the exhaust flow rate is changing, there is a concern that the correction accuracy may be deteriorated. In the present embodiment in view of this point, since the gradual change control is executed on condition that the vehicle is in the steady state, the above-mentioned concern can be suppressed.

さらに本実施形態では、触媒温度や排気流量に応じて上記相関が異なることを鑑みて、ステップS9による変化時吸着量推定部は、徐変制御を実行している時の触媒温度および排気流量の少なくとも1つに応じて変化時吸着量M2x、M3xを推定する。よって、変化時吸着量M2x、M3xの推定精度を向上できる。   Further, in the present embodiment, in view of the fact that the correlation varies depending on the catalyst temperature and the exhaust flow rate, the change-time adsorption amount estimating unit in step S9 sets the catalyst temperature and the exhaust flow rate when performing the gradual change control. The change-time adsorption amounts M2x and M3x are estimated according to at least one of them. Therefore, the estimation accuracy of the change-time adsorption amounts M2x and M3x can be improved.

さらに本実施形態では、徐変制御により検出された変化時浄化率R2y、R3yもしくは変化時吸着量M2x、M3xに基づき劣化度合を高精度で推定できる、といった効果が発揮される。これを利用して、浄化能力が異常に低くなっている異常状態であるか否かを判定する。具体的には、変化時浄化率R2y、R3yもしくは変化時吸着量M2x、M3xの初期値に対する現状値の乖離を算出する。そして、算出された乖離の値が所定値以上である場合に、NOx浄化装置30の浄化能力が異常に低くなっている異常状態であると判定する、ステップS12による異常判定部を備える。このように、本実施形態によれば、劣化度合を高精度で推定できるので、その推定結果を用いて、異常状態であるか否かを高精度で判定できる。   Further, in the present embodiment, there is an effect that the degree of deterioration can be estimated with high accuracy based on the change-time purification rates R2y and R3y or the change-time adsorption amounts M2x and M3x detected by the gradual change control. Utilizing this, it is determined whether or not the purifying ability is abnormally low. Specifically, the deviation of the current value from the initial value of the change-time purification rates R2y, R3y or the change-time adsorption amounts M2x, M3x is calculated. Then, when the calculated value of the deviation is equal to or more than a predetermined value, an abnormality determination unit in step S12 is provided for determining that the NOx purification device 30 is in an abnormal state in which the purification capability is abnormally low. As described above, according to the present embodiment, the degree of deterioration can be estimated with high accuracy, and it is possible to determine with high accuracy whether or not an abnormal state is present by using the estimation result.

さらに本実施形態では、徐変制御で吸着量を増量させる所定量ΔM2を、触媒温度および排気流量に応じて可変設定する。具体的には、触媒温度が高く排気流量が多いほど、増量させる所定量ΔM2を減らす。触媒温度が高いほど、また、排気流量が多いほど、過少範囲W2における特性線Maの傾きが大きくなるので、実際の過少側変化点R2を適正範囲W1側に大きく超えた点を過少側変化点として検出してしまうことを、上記所定量ΔM2を減らすことで抑制できる。よって、変化時浄化率R2yの検出精度を向上でき、ひいては変化時吸着量M2xの推定精度を向上できる。   Further, in the present embodiment, the predetermined amount ΔM2 for increasing the adsorption amount by the gradual change control is variably set according to the catalyst temperature and the exhaust gas flow rate. Specifically, as the catalyst temperature increases and the exhaust gas flow rate increases, the predetermined amount ΔM2 to be increased is reduced. As the catalyst temperature increases and the exhaust gas flow rate increases, the slope of the characteristic line Ma in the under-range W2 increases. Therefore, the point at which the actual under-side change point R2 greatly exceeds the appropriate range W1 is determined as the under-side change point. Can be suppressed by reducing the predetermined amount ΔM2. Therefore, the detection accuracy of the change-time purification rate R2y can be improved, and thus the change-time adsorption amount M2x can be estimated more accurately.

さらに本実施形態では、徐変制御で吸着量を減量させる所定量ΔM3を、触媒温度および排気流量に応じて可変設定する。具体的には、触媒温度が高いほど、また、排気流量が多いほど、減量させる所定量ΔM3を減らす。触媒温度が高く排気流量が多いほど、過多範囲W3における特性線Maの傾きの絶対値が大きくなるので、実際の過多側変化点R3を適正範囲W1側に大きく超えた点を過多側変化点として検出してしまうことを、上記所定量ΔM2を減らすことで抑制できる。よって、変化時浄化率R3yの検出精度を向上でき、ひいては変化時吸着量M3xの推定精度を向上できる。   Further, in the present embodiment, the predetermined amount ΔM3 for decreasing the adsorption amount by the gradual change control is variably set according to the catalyst temperature and the exhaust flow rate. Specifically, the higher the catalyst temperature and the larger the exhaust flow rate, the smaller the predetermined amount ΔM3 to be reduced. As the catalyst temperature increases and the exhaust gas flow rate increases, the absolute value of the slope of the characteristic line Ma in the excess range W3 increases, so a point that greatly exceeds the actual excess side change point R3 to the appropriate range W1 side is defined as an excess side change point. Detection can be suppressed by reducing the predetermined amount ΔM2. Therefore, the detection accuracy of the change-time purification rate R3y can be improved, and the estimation accuracy of the change-time adsorption amount M3x can be improved.

(第2実施形態)
上記第1実施形態に係る徐変制御では、吸着量を一方向に変化させていき、浄化指標の変化量が所定量以上変化した時の浄化率を変化時浄化率R2y、R3yとして検出している。これに対し本実施形態では、吸着量を一方向に変化させていき、浄化指標の変化量が所定量以上変化した後、逆方向に吸着量を変化させていき、その変化に伴い浄化指標の変化量が所定量以上変化した時の浄化率を変化時浄化率R2y、R3yとして検出する。
(2nd Embodiment)
In the gradual change control according to the first embodiment, the amount of adsorption is changed in one direction, and the purification rates when the amount of change of the purification index changes by a predetermined amount or more are detected as change-time purification rates R2y and R3y. I have. On the other hand, in the present embodiment, the adsorption amount is changed in one direction, and after the change amount of the purification index changes by a predetermined amount or more, the adsorption amount is changed in the opposite direction, and the purification index is changed in accordance with the change. The purifying rate when the amount of change has changed by a predetermined amount or more is detected as the purifying rates at change R2y and R3y.

例えば、ステップS5にて過少範囲W2と識別されている場合には、以下のように徐変制御を実行する。先ず、図8に示すように、過少範囲W2から適正範囲W1へ向けて所定量ΔM21ずつ吸着量を増量させていく制御(第1徐変制御)を実行する。第1徐変制御により適正範囲W1側へ過少側変化点R2を超えたことに伴い浄化率変化量が所定量以上変化した時点で、第1徐変制御を終了する。その後、適正範囲W1から過少範囲W2へ向けて所定量ΔM22ずつ吸着量を減量させていく制御(第2徐変制御)を実行する。   For example, if it is determined in step S5 that the range is the under-range W2, the gradual change control is executed as follows. First, as shown in FIG. 8, a control (first gradual change control) of increasing the adsorption amount by a predetermined amount ΔM21 from the under range W2 to the appropriate range W1 is executed. The first gradual change control ends when the amount of change in the purification rate changes by a predetermined amount or more due to exceeding the underside change point R2 toward the appropriate range W1 by the first gradual change control. Thereafter, a control (second gradual change control) of decreasing the adsorption amount by a predetermined amount ΔM22 from the appropriate range W1 to the underrange W2 is executed.

第2徐変制御により過少範囲W2側へ過少側変化点R2を超えたことに伴い浄化率変化量が所定量以上変化した時点で、第2徐変制御を終了する。そして、第2徐変制御を終了した時点での浄化率を、変化時浄化率R2yとして検出する。なお、第1徐変制御で増量させていく所定量ΔM21は、第2徐変制御で減量させていく所定量ΔM22よりも大きく設定されている。   The second gradual change control is terminated when the amount of change in the purification rate has changed by a predetermined amount or more due to exceeding the underside change point R2 toward the underrange W2 side by the second gradual change control. Then, the purification rate at the time when the second gradual change control is completed is detected as the change-time purification rate R2y. The predetermined amount ΔM21 that is increased by the first gradual change control is set to be larger than the predetermined amount ΔM22 that is reduced by the second gradual change control.

例えば、ステップS5にて過多範囲W3と識別されている場合には、以下のように徐変制御を実行する。先ず、図8に示すように、過多範囲W3から適正範囲W1へ向けて所定量ΔM31ずつ吸着量を減量させていく制御(第1徐変制御)を実行する。第1徐変制御により適正範囲W1側へ過多側変化点R3を超えたことに伴い浄化率変化量が所定量以上変化した時点で、第1徐変制御を終了する。その後、適正範囲W1から過多範囲W3へ向けて所定量ΔM32ずつ吸着量を増量させていく制御(第2徐変制御)を実行する。第2徐変制御により過多範囲W3側へ過多側変化点R3を超えたことに伴い浄化率変化量が所定量以上変化した時点で、第2徐変制御を終了する。そして、第2徐変制御を終了した時点での浄化率を、変化時浄化率R3yとして検出する。なお、第1徐変制御で減量させていく所定量ΔM31は、第2徐変制御で増量させていく所定量ΔM32よりも大きく設定されている。   For example, if it is determined in step S5 that the range is the excessive range W3, the gradual change control is executed as follows. First, as shown in FIG. 8, a control (first gradual change control) of decreasing the adsorption amount by a predetermined amount ΔM31 from the excessive range W3 to the appropriate range W1 is executed. The first gradual change control ends when the purification rate change amount changes by a predetermined amount or more due to exceeding the excessive side change point R3 toward the appropriate range W1 by the first gradual change control. Thereafter, control (second gradual change control) of increasing the adsorption amount by a predetermined amount ΔM32 from the appropriate range W1 to the excess range W3 is executed. The second gradual change control ends when the purification rate change amount changes by a predetermined amount or more due to exceeding the excessive side change point R3 toward the excessive range W3 side by the second gradual change control. Then, the purification rate at the time when the second gradual change control is completed is detected as the change-time purification rate R3y. The predetermined amount ΔM31 that is decreased by the first gradual change control is set to be larger than the predetermined amount ΔM32 that is increased by the second gradual change control.

例えば、ステップS5にて適正範囲W1と識別されている場合には、以下のように徐変制御を実行する。先ず、適正範囲W1から過少範囲W2または過多範囲W3へ向けて所定量ずつ吸着量を変化させていく制御(第1徐変制御)を実行する。第1徐変制御により適正範囲W1側から変化点R2、R3を超えたことに伴い浄化率変化量が所定量以上変化した時点で、第1徐変制御を終了する。その後、過少範囲W2または過多範囲W3から適正範囲W1へ向けて所定量ずつ吸着量を変化させていく制御(第2徐変制御)を実行する。第2徐変制御により変化点R2、R3を超えたことに伴い浄化率変化量が所定量以上変化した時点で、第2徐変制御を終了する。そして、第2徐変制御を終了した時点での浄化率を、変化時浄化率R2y、R3yとして検出する。なお、第1徐変制御で変化させていく所定量は、第2徐変制御で変化させていく所定量よりも大きく設定されている。   For example, if it is determined in step S5 that the range is the appropriate range W1, the gradual change control is executed as follows. First, a control (first gradual change control) of changing the adsorption amount by a predetermined amount from the appropriate range W1 to the under-range W2 or the over-range W3 is executed. The first gradual change control is ended when the amount of change in the purification rate changes by a predetermined amount or more due to exceeding the change points R2 and R3 from the appropriate range W1 side by the first gradual change control. Thereafter, a control (second gradual change control) of changing the adsorption amount by a predetermined amount from the under range W2 or the over range W3 to the appropriate range W1 is executed. The second gradual change control ends when the amount of change in the purification rate changes by a predetermined amount or more due to exceeding the change points R2 and R3 by the second gradual change control. Then, the purification rate at the time when the second gradual change control is completed is detected as the change-time purification rates R2y and R3y. The predetermined amount changed in the first gradual change control is set to be larger than the predetermined amount changed in the second gradual change control.

上述した第1徐変制御および第2徐変制御は、図9に示す処理手順にしたがってプロセッサ61aにより所定周期で繰り返し実行されることにより実現され、図9の処理を実行している時のプロセッサ61aは、特許請求の範囲に記載の徐変制御部に相当する。図9の処理では、第1実施形態に係る図7の処理にステップS26、S27の処理を追加している。   The first gradual change control and the second gradual change control described above are realized by being repeatedly executed at predetermined intervals by the processor 61a according to the processing procedure shown in FIG. 61a corresponds to the gradual change control unit described in the claims. In the process of FIG. 9, steps S26 and S27 are added to the process of FIG. 7 according to the first embodiment.

図9のステップS20〜ステップS25は図7と同様の処理であり、ステップS21、S22、S24により吸着量を所定量ずつ増量または減量させている時の制御が、先述した第1徐変制御に相当する。そして、ステップS23、S25にて肯定判定された時点で第1徐変制御を終了し、続くステップS26において先述の第2徐変制御を実行する。ステップS26では、第1徐変制御での増量または減量を逆転させて、さらに所定量ずつ吸着量を変化させる。   Steps S20 to S25 in FIG. 9 are the same as those in FIG. 7, and the control when the adsorption amount is increased or decreased by a predetermined amount in steps S21, S22, and S24 is replaced with the first gradual change control described above. Equivalent to. Then, the first gradual change control is terminated at the time when the affirmative determination is made in steps S23 and S25, and the aforementioned second gradual change control is executed in the subsequent step S26. In step S26, the increase or decrease in the first gradual change control is reversed, and the adsorption amount is further changed by a predetermined amount.

具体的には、ステップS21で所定量ΔM21ずつ増量させた後に第2徐変制御を実行する場合には、ステップS26では所定量ΔM22ずつ減量させる。ステップS22で所定量ΔM31ずつ減量させた後に第2徐変制御を実行する場合には、ステップS26では所定量ΔM32ずつ増量させる。ステップS24で所定量ずつ増量させた後に第2徐変制御を実行する場合には、ステップS26では所定量ずつ減量させ、ステップS24で所定量ずつ減量させた後に第2徐変制御を実行する場合には、ステップS26では所定量ずつ増量させる。   Specifically, in the case where the second gradual change control is performed after the amount is increased by the predetermined amount ΔM21 in step S21, the amount is decreased by the predetermined amount ΔM22 in step S26. When the second gradual change control is performed after the amount is decreased by the predetermined amount ΔM31 in step S22, the amount is increased by the predetermined amount ΔM32 in step S26. When executing the second gradual change control after increasing the amount by a predetermined amount in step S24, reducing the amount by a predetermined amount in step S26, and executing the second gradual change control after decreasing the amount by a predetermined amount in step S24. In step S26, the amount is increased by a predetermined amount.

以上により、本実施形態によれば、徐変制御部は、浄化指標の変化量が所定量以上変化するまで還元剤の添加量を所定量ずつ増量または減量させていく第1徐変制御を実行する。その後、第1徐変制御での増減を逆転して添加量を所定量ずつ増量または減量させていく第2徐変制御を実行する。そして、変化時指標検出部は、第2徐変制御による添加量の変化に伴い生じる浄化指標の変化量が所定量以上変化した時の浄化指標を、変化時指標として検出する。これによれば、第1徐変制御に加えて、増減方向を異ならせた第2徐変制御を実行するので、変化時指標を検出し損なう懸念を低減でき、変化時指標の検出の確実性を向上できる。   As described above, according to the present embodiment, the gradual change control unit executes the first gradual change control of increasing or decreasing the addition amount of the reducing agent by a predetermined amount until the change amount of the purification index changes by a predetermined amount or more. I do. Thereafter, a second gradual change control is executed in which the increase / decrease in the first gradual change control is reversed to increase or decrease the addition amount by a predetermined amount. Then, the change index detection unit detects, as the change index, a purification index when the amount of change of the purification index caused by the change in the addition amount by the second gradual change control changes by a predetermined amount or more. According to this, in addition to the first gradual change control, the second gradual change control in which the increasing / decreasing direction is made different is executed, so that the concern of failing to detect the change index can be reduced, and the detection of the change index can be reliably performed. Can be improved.

さらに本実施形態では、第1徐変制御で増量または減量させていく所定量ΔM21、ΔM31が、第2徐変制御で増量または減量させていく所定量ΔM22、ΔM32よりも大きく設定されている。そのため、変化時指標を精度良く検出できるとともに、その検出に要する徐変制御を短時間で完了させることができる。   Further, in the present embodiment, the predetermined amounts ΔM21 and ΔM31 to be increased or decreased in the first gradual change control are set to be larger than the predetermined amounts ΔM22 and ΔM32 to be increased or decreased in the second gradual change control. Therefore, the change index can be detected with high accuracy, and the gradual change control required for the detection can be completed in a short time.

(他の実施形態)
以上、発明の好ましい実施形態について説明したが、発明は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(Other embodiments)
As described above, the preferred embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and can be variously modified and implemented as exemplified below. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the embodiments are partially combined without being specified unless there is a particular problem with the combination. Is also possible.

図4に示す徐変制御では、吸着量を徐々に変化させるにあたり、同じ量ずつ増量または減量させている。これに対し、増量させる所定量ΔM2または減量させる所定量ΔM3を徐々に増量または減量させていってもよい。図8に示す徐変制御でも同様にして、増量させる所定量ΔM21、ΔM32または減量させる所定量ΔM22、ΔM31を徐々に増量または減量させていってもよい。   In the gradual change control shown in FIG. 4, when gradually changing the adsorption amount, the amount is increased or decreased by the same amount. On the other hand, the predetermined amount ΔM2 to be increased or the predetermined amount ΔM3 to be decreased may be gradually increased or decreased. Similarly, in the gradual change control shown in FIG. 8, the predetermined amounts ΔM21 and ΔM32 to be increased or the predetermined amounts ΔM22 and ΔM31 to be decreased may be gradually increased or decreased.

図6のステップS12では、ステップS9での補正量の累積値を劣化度合として算出しているが、所定の吸着量に対応する特性マップMでの浄化率を劣化指標浄化率とし、その劣化指標浄化率の現状値と初期値との乖離を劣化度合として算出してもよい。劣化指標浄化率の具体例としては、ステップS9にて補正された特性マップMにおける、過少側変化点R2での浄化率、過多側変化点R3での浄化率、および適正範囲W1の中央値A1での浄化率が挙げられる。   In step S12 of FIG. 6, the cumulative value of the correction amount in step S9 is calculated as the degree of deterioration. The purification rate in the characteristic map M corresponding to the predetermined adsorption amount is set as the deterioration index purification rate, and the deterioration index is calculated. The difference between the current value and the initial value of the purification rate may be calculated as the degree of deterioration. Specific examples of the deterioration index purification rate include, in the characteristic map M corrected in step S9, the purification rate at the excessively small change point R2, the purification rate at the excessively changed point R3, and the median A1 of the appropriate range W1. Purification rate.

図7に示す例では、過少側変化点R2および過多側変化点R3の一方を検出するように徐変制御し、検出された一方の変化点に係る浄化率に基づき推定吸着量を補正している。これに対し、過少側変化点R2および過多側変化点R3の両方を検出するように徐変制御し、検出された両方の変化時浄化率R2y、R3yに基づき推定吸着量を補正してもよい。   In the example shown in FIG. 7, the gradual change control is performed so as to detect one of the underside change point R2 and the overside change point R3, and the estimated adsorption amount is corrected based on the purification rate related to the detected one change point. I have. On the other hand, gradual change control may be performed so as to detect both the underside change point R2 and the overside change point R3, and the estimated adsorption amount may be corrected based on both of the detected change-time purification rates R2y and R3y. .

例えば、過少範囲W2と識別された場合、適正範囲W1側へ向けて吸着量を増量させていき、変化時浄化率R2yを取得した以降も、過多範囲W3側へ向けて吸着量を増量させていき、変化時浄化率R3yも取得する。そして、変化時浄化率R3yに対応する変化時吸着量M3xを、変化時浄化率R2yに基づき補正してもよい。   For example, when it is identified as the under-range W2, the adsorption amount is increased toward the appropriate range W1, and even after the change-time purification rate R2y is obtained, the adsorption amount is increased toward the excessive range W3. Then, the change-time purification rate R3y is also acquired. Then, the change-time adsorption amount M3x corresponding to the change-time purification rate R3y may be corrected based on the change-time purification rate R2y.

例えば、過多範囲W3と識別された場合、適正範囲W1側へ向けて吸着量を減量させていき、変化時浄化率R3yを取得した以降も、過少範囲W2側へ向けて吸着量を減量させていき、変化時浄化率R2yも取得する。そして、変化時浄化率R2yに対応する変化時吸着量M2xを、変化時浄化率R3yに基づき補正してもよい。   For example, when it is identified as the excessive range W3, the adsorption amount is reduced toward the appropriate range W1 side, and after the change-time purification rate R3y is obtained, the adsorption amount is reduced toward the underrange W2 side. Then, the change-time purification rate R2y is also acquired. Then, the change-time adsorption amount M2x corresponding to the change-time purification rate R2y may be corrected based on the change-time purification rate R3y.

図1に示す例では、酸化装置40を備える浄化システムに吸着量推定装置(ECU60)が適用されているが、吸着量推定装置は、酸化装置40を備えていない浄化システムにも適用可能である。また、排気通路11aへ尿素水を添加する浄化システムに限らず、内燃機関10の燃焼に用いる燃料(炭化水素化合物)を排気通路11aへ添加する浄化システムにも、吸着量推定装置は適用可能である。   In the example shown in FIG. 1, the adsorption amount estimation device (ECU 60) is applied to the purification system including the oxidizing device 40, but the adsorption amount estimation device is also applicable to a purification system not including the oxidizing device 40. . Further, the adsorption amount estimating apparatus is applicable not only to a purification system that adds urea water to the exhaust passage 11a but also to a purification system that adds fuel (hydrocarbon compound) used for combustion of the internal combustion engine 10 to the exhaust passage 11a. is there.

図7および図9に示す徐変制御では、適正範囲W1と識別されている場合にも、ステップS24にて吸着量を徐々に変化させて変化時浄化率を検出させている。これに対し、適正範囲W1と識別されている場合には徐変制御を禁止して、過少範囲W2または過多範囲W3と識別されている場合に、吸着量を徐々に変化させて変化時浄化率を検出させるようにしてもよい。   In the gradual change control shown in FIG. 7 and FIG. 9, even when the appropriate range W1 is identified, the amount of adsorption is gradually changed in step S24 to detect the change-time purification rate. On the other hand, when it is identified as the appropriate range W1, the gradual change control is prohibited, and when it is identified as the under range W2 or the over range W3, the adsorption amount is gradually changed to change the purification rate at the time of change. May be detected.

図6に示すステップS1、S2、S3を廃止してもよい。この場合、推定された変化時吸着量M2x、M3xは、逐次推定される吸着量の値を補正することには用いられないものの、ステップS12による異常状態判定に用いられることとなる。   Steps S1, S2, and S3 shown in FIG. 6 may be omitted. In this case, the estimated change-time adsorption amounts M2x and M3x are not used for correcting the sequentially estimated adsorption amount values, but are used for the abnormal state determination in step S12.

ECU60による制御装置が提供する手段および/または機能は、実体的な記憶媒体に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。   The means and / or functions provided by the control device by the ECU 60 can be provided by software recorded on a substantial storage medium and a computer executing the software, only software, only hardware, or a combination thereof. For example, if the control device is provided by electronic circuits that are hardware, it can be provided by digital circuits that include multiple logic circuits, or by analog circuits.

20…添加弁、30…NOx浄化装置、50…NOxセンサ(検出装置)、60…ECU(吸着量推定装置)、M2x、M3x…変化時吸着量、R2y、R3y…変化時浄化率(変化時指標)、S7…徐変制御部、S8…変化時指標検出部、S9…変化時吸着量推定部。   20: addition valve, 30: NOx purification device, 50: NOx sensor (detection device), 60: ECU (adsorption amount estimation device), M2x, M3x: adsorption amount at the time of change, R2y, R3y: purification rate at the time of change (at the time of change) Index), S7: Slow change control section, S8: Change index detection section, S9: Change adsorption amount estimation section.

Claims (10)

内燃機関(10)の排気に含まれるNOxを還元して浄化する触媒を有した浄化装置(30)と、前記内燃機関の排気通路(11a)のうち前記浄化装置の上流側に還元剤を添加する添加弁(20)と、前記排気通路のうち前記浄化装置の下流側に配置されNOx量および還元剤量の少なくとも一方を検出する検出装置(50)と、を備える浄化システムに適用され、前記浄化装置への還元剤の吸着量を推定する吸着量推定装置において、
還元剤の添加量を徐々に変化させていくように前記添加弁の作動を制御する徐変制御を実行する徐変制御部(S7)と、
前記浄化装置による浄化性能を表す指標を浄化指標とし、前記徐変制御により添加量を徐々に変化させる毎に生じる前記浄化指標の変化量(ΔR)が所定量以上変化した時の前記浄化指標を変化時指標(R2y、R3y)とし、前記検出装置による検出値に基づき前記変化時指標を検出する変化時指標検出部(S8)と、
前記変化時指標検出部により検出された前記変化時指標に基づき、前記変化時指標が検出された時点での吸着量である変化時吸着量(M2x、M3x)を推定する変化時吸着量推定部(S9)と、を備える吸着量推定装置。
A purifying device (30) having a catalyst for reducing and purifying NOx contained in the exhaust gas of the internal combustion engine (10), and a reducing agent added to an exhaust passage (11a) of the internal combustion engine upstream of the purifying device. And a detection device (50) disposed downstream of the purification device in the exhaust passage and configured to detect at least one of the NOx amount and the reducing agent amount. In the adsorption amount estimating device for estimating the adsorption amount of the reducing agent to the purification device,
A gradual change control unit (S7) for performing gradual change control for controlling the operation of the addition valve so as to gradually change the addition amount of the reducing agent;
An index indicating the purification performance of the purification device is defined as a purification index, and the purification index when a change amount (ΔR) of the purification index that changes every time the addition amount is gradually changed by the gradual change control is changed by a predetermined amount or more. A change-time index detection unit (S8) that detects the change-time index based on a value detected by the detection device as a change-time index (R2y, R3y)
A change-time adsorption amount estimating unit that estimates a change-time adsorption amount (M2x, M3x), which is an adsorption amount at the time when the change-time index is detected, based on the change-time index detected by the change-time index detection unit. (S9).
前記添加弁からの還元剤の添加量、前記触媒の温度、および変化時吸着量推定部により推定された吸着量に基づき、前記徐変制御の実行停止期間における吸着量を推定する吸着量推定部(S1)を備える請求項1に記載の吸着量推定装置。   An adsorption amount estimating unit for estimating an adsorbed amount in the execution stop period of the gradual change control based on the amount of the reducing agent added from the addition valve, the temperature of the catalyst, and the adsorbed amount estimated by the adsorbing amount estimating unit when changing The adsorption amount estimating device according to claim 1, further comprising (S1). 前記吸着量推定部により推定される吸着量が目標吸着量となるよう、前記添加弁の作動を制御する添加弁制御部(S2)と、
前記変化量が所定未満となる前記吸着量の範囲であって、前記変化時吸着量を上限または下限とする範囲を適正範囲(W1)とし、前記適正範囲よりも狭い範囲の値に前記目標吸着量を設定する目標吸着量設定部(S10)と、
を備える請求項2に記載の吸着量推定装置。
An addition valve control unit (S2) that controls the operation of the addition valve so that the adsorption amount estimated by the adsorption amount estimation unit becomes the target adsorption amount;
A range in which the amount of change is less than a predetermined amount, in which the upper limit or lower limit of the amount of change is set as an appropriate range (W1), and the target amount of suction is set to a value smaller than the appropriate range. A target adsorption amount setting unit (S10) for setting an amount;
The adsorption amount estimating device according to claim 2, comprising:
前記変化量が所定未満となる前記吸着量の範囲であって、前記変化時吸着量を上限または下限とする範囲を適正範囲(W1)とし、前記適正範囲よりも少ない側の前記吸着量の範囲を過少範囲(W2)とし、前記適正範囲よりも多い側の前記吸着量の範囲を過多範囲(W3)とし、現状の前記吸着量が前記適正範囲、前記過少範囲および前記過多範囲のいずれであるかを識別する範囲識別部(S5)を備え、
前記徐変制御部は、前記範囲識別部により前記過少範囲と識別されている場合には前記添加量を徐々に増大変化させ、前記範囲識別部により前記過多範囲と識別されている場合には前記添加量を徐々に減少変化させ、
前記変化時吸着量推定部は、前記変化時指標との相関に基づき前記変化時吸着量を推定するにあたり、前記増大変化させた場合と前記減少変化させた場合とで前記相関を異ならせて推定する請求項2または3に記載の吸着量推定装置。
A range in which the amount of change is less than a predetermined amount, in which the upper limit or lower limit of the amount of change is set as an appropriate range (W1), and a range of the amount of suction that is smaller than the appropriate range. Is defined as an under-range (W2), and the range of the amount of adsorption on the side larger than the appropriate range is defined as an over-range (W3), and the current amount of adsorption is any of the appropriate range, the under-range, and the over-range. A range identification unit (S5) for identifying
The gradual change control unit gradually increases and changes the addition amount when the range identification unit identifies the underrange, and when the range identification unit identifies the excess range, Gradually decrease the amount of addition,
The change-time adsorption amount estimating unit estimates the change-time adsorption amount based on the correlation with the change-time index, by estimating the correlation by making the correlation different between the case of the increase change and the case of the decrease change. The adsorption amount estimating device according to claim 2 or 3, wherein the adsorption amount is estimated.
前記徐変制御部は、前記検出装置による検出値に基づき検出される前記浄化指標が目標指標未満であることを条件として前記徐変制御を実行する請求項1〜4のいずれか1つに記載の吸着量推定装置。   5. The gradual change control unit according to claim 1, wherein the gradual change control is performed on a condition that the purification index detected based on a value detected by the detection device is less than a target index. 6. Adsorption amount estimation device. 前記徐変制御部は、前記触媒の温度および排気流量の少なくとも1つについて、単位時間あたりの変化量が所定量未満となっている定常状態であることを条件として前記徐変制御を実行する請求項1〜5のいずれか1つに記載の吸着量推定装置 The gradual change control unit executes the gradual change control on the condition that at least one of the temperature of the catalyst and the exhaust gas flow rate is in a steady state in which the amount of change per unit time is less than a predetermined amount. Item 6. The adsorption amount estimating apparatus according to any one of Items 1 to 5 . 前記変化時吸着量推定部は、前記徐変制御を実行している時の前記触媒の温度および排気流量の少なくとも1つに応じて前記変化時吸着量を推定する請求項1〜6のいずれか1つに記載の吸着量推定装置。   The change-time adsorption amount estimating unit estimates the change-time adsorption amount according to at least one of the catalyst temperature and the exhaust gas flow rate when the gradual change control is being performed. The adsorption amount estimation device according to one of the above aspects. 前記変化時指標もしくは前記変化時吸着量の初期値に対する現状値の乖離が所定値以上である場合に、前記浄化装置の浄化能力が異常に低くなっている異常状態であると判定する異常判定部(S12)を備える請求項1〜7のいずれか1つに記載の吸着量推定装置。   An abnormality determining unit that determines that the purifying device is in an abnormal state in which the purifying capability is abnormally low when a deviation of a current value from an initial value of the changing index or the initial value of the changing adsorption amount is a predetermined value or more. The adsorption amount estimation device according to any one of claims 1 to 7, further comprising (S12). 前記徐変制御には、前記変化量が所定量以上変化するまで還元剤の添加量を所定量ずつ増量または減量の方向へ変化させていく第1徐変制御と、前記徐変制御の後で前記第1徐変制御とは逆の方向へ添加量を所定量ずつ変化させていく第2徐変制御とが含まれており、
前記変化時指標検出部は、前記第2徐変制御により添加量を徐々に変化させる毎に生じる前記浄化指標の変化量が所定量以上変化した時の前記浄化指標を、前記変化時指標として検出する請求項1〜8のいずれか1つに記載の吸着量推定装置。
The gradual change control includes a first gradual change control in which the amount of the reducing agent added is increased or decreased by a predetermined amount in a direction of increasing or decreasing until the change amount changes by a predetermined amount or more, and after the gradual change control. A second gradual change control in which the amount of addition is changed by a predetermined amount in a direction opposite to the first gradual change control,
The change index detection unit detects the purification index when the amount of change of the purification index that changes every time the addition amount is gradually changed by the second gradual change control is changed by a predetermined amount or more, as the change index. The adsorption amount estimating device according to claim 1.
前記第1徐変制御で増量または減量させていく所定量は、前記第2徐変制御で増量または減量させていく所定量よりも大きく設定されている請求項9に記載の吸着量推定装置。   The adsorption amount estimating device according to claim 9, wherein the predetermined amount to be increased or decreased in the first gradual change control is set to be larger than the predetermined amount to be increased or decreased in the second gradual change control.
JP2016214528A 2016-11-01 2016-11-01 Adsorption amount estimation device Active JP6631469B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016214528A JP6631469B2 (en) 2016-11-01 2016-11-01 Adsorption amount estimation device
DE102017121417.8A DE102017121417A1 (en) 2016-11-01 2017-09-15 Adsorptionsbetragschätzvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016214528A JP6631469B2 (en) 2016-11-01 2016-11-01 Adsorption amount estimation device

Publications (2)

Publication Number Publication Date
JP2018071482A JP2018071482A (en) 2018-05-10
JP6631469B2 true JP6631469B2 (en) 2020-01-15

Family

ID=61912165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016214528A Active JP6631469B2 (en) 2016-11-01 2016-11-01 Adsorption amount estimation device

Country Status (2)

Country Link
JP (1) JP6631469B2 (en)
DE (1) DE102017121417A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4292633B2 (en) * 1999-07-16 2009-07-08 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4114389B2 (en) * 2002-04-22 2008-07-09 三菱ふそうトラック・バス株式会社 Exhaust purification device
US20050282285A1 (en) * 2004-06-21 2005-12-22 Eaton Corporation Strategy for controlling NOx emissions and ammonia slip in an SCR system using a nonselective NOx/NH3
JP4658267B2 (en) * 2008-05-26 2011-03-23 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
DE102017121417A1 (en) 2018-05-03
JP2018071482A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US9068493B2 (en) Exhaust gas purification system abnormality diagnosing device and abnormality diagnosing method, and exhaust gas purification system
JP6037037B2 (en) Sensor abnormality diagnosis device
US8899015B2 (en) Catalyst degradation detection device
JP5120464B2 (en) Exhaust purification device abnormality detection device and exhaust purification device abnormality detection method
US8490384B2 (en) Method for correcting nitrogen oxide emission models
US8938947B2 (en) Catalyst degradation detection apparatus
US20130247543A1 (en) Exhaust gas control apparatus and control method for exhaust gas control apparatus
JP6238564B2 (en) Diagnostic device, exhaust purification device, and diagnostic method
US20190203622A1 (en) Control apparatus and control method for internal combustion engine
JP4941323B2 (en) Control device for internal combustion engine
JP5850177B2 (en) Exhaust purification device failure judgment system
KR100592414B1 (en) Method of Estimating NOX Storage
US9594065B2 (en) Apparatus for detecting deterioration of NOx selective reduction catalyst
US9127585B2 (en) Catalyst temperature estimating device and catalyst temperature estimating method
JP6631469B2 (en) Adsorption amount estimation device
JP2007170337A (en) Exhaust emission control device of internal combustion engine
JP4395000B2 (en) Engine control device
US11536182B2 (en) Method and processing unit for ascertaining a catalytic converter state
US11761364B2 (en) Exhaust gas purification device for internal combustion engine, and vehicle
JP4366976B2 (en) Exhaust gas sensor abnormality detection device
JP5783099B2 (en) Sensor failure determination device
CN113195878A (en) State estimation device
KR20220047175A (en) Method, computer unit and computer program for operating an internal combustion engine
KR101472680B1 (en) Operability Correction Method As Poisoning And Aging Of Oxygen Sensor
JP2015014233A (en) Exhaust emission control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R151 Written notification of patent or utility model registration

Ref document number: 6631469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250