JP6631206B2 - Earthwork management method - Google Patents

Earthwork management method Download PDF

Info

Publication number
JP6631206B2
JP6631206B2 JP2015234530A JP2015234530A JP6631206B2 JP 6631206 B2 JP6631206 B2 JP 6631206B2 JP 2015234530 A JP2015234530 A JP 2015234530A JP 2015234530 A JP2015234530 A JP 2015234530A JP 6631206 B2 JP6631206 B2 JP 6631206B2
Authority
JP
Japan
Prior art keywords
point
known point
data
photographing
altitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015234530A
Other languages
Japanese (ja)
Other versions
JP2017101989A (en
Inventor
平山 浩司
浩司 平山
伸哉 杉浦
伸哉 杉浦
直美 後藤
直美 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2015234530A priority Critical patent/JP6631206B2/en
Publication of JP2017101989A publication Critical patent/JP2017101989A/en
Application granted granted Critical
Publication of JP6631206B2 publication Critical patent/JP6631206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、UAV(無人飛行機)等の飛行体を用いて撮影した撮影画像を用いて盛り土や切り土等の土工管理を行う土工管土工管理方法理方法に関する。   TECHNICAL FIELD The present invention relates to an earthwork pipe and earthwork management method for managing earthwork such as embankment and cutting using an image taken using a flying object such as a UAV (unmanned airplane).

従来、盛り土や切り土等の土工管理を実施するには、場内から出たダンプトラックによる台数管理で大まかな土量を確認し、形状の確認については、現場巡視や写真などで状況を確認していた。そのため、施工量、未掘削量等の正確な把握や、工程通りの出来形ができているのかの正確な判断が困難であった。   Conventionally, in order to manage earthworks such as embankment and cut soil, the approximate amount of soil was checked by controlling the number of dump trucks that came out of the site, and for the shape confirmation, the situation was checked by on-site patrols and photographs. I was Therefore, it has been difficult to accurately grasp the construction amount, the unexcavated amount, and the like, and to accurately determine whether the work is completed according to the process.

そこで、近年では、CIM(Construction Information Modeling)が推進され、土工管理にも3次元モデルが用いられている。地形も含めた3次元モデルを所定期間毎に作成して比較することで、盛り土量や切り土量を算出することが可能になる。3次元モデルの作成には地形測量が必要であり、3次元モデルを所定期間毎に作成するため、1回の地形測量に手間と時間をかけることができない。従って、UAV(無人飛行機)等の飛行体を用いて撮影した複数の撮影画像によって地形測量を行うことが検討されている(例えば、特許文献1参照)。   Therefore, in recent years, CIM (Construction Information Modeling) has been promoted, and a three-dimensional model has been used for earthwork management. By creating and comparing a three-dimensional model including the terrain at predetermined intervals, it is possible to calculate the embankment amount and the cut amount. Terrain surveying is required to create a three-dimensional model, and since a three-dimensional model is created every predetermined period, it is not possible to take time and effort for one terrain survey. Therefore, it has been studied to perform terrain surveying using a plurality of captured images captured using a flying object such as a UAV (unmanned airplane) (for example, see Patent Document 1).

特開2012−242321号公報JP 2012-242321 A

しかしながら、従来技術では、オーバラップした部分で2画像に共通なタイポイントを抽出し、タイポイントを基準として画像合成して地形測量を行っているが、土工管理に必要な精度で3次元計測を行うことができないという問題点があった。   However, in the related art, a tie point common to the two images is extracted in the overlapped portion, and the terrain is surveyed by synthesizing the image based on the tie point, but the three-dimensional measurement is performed with the accuracy required for earthwork management. There was a problem that it could not be performed.

本発明は、このような状況に鑑みてなされたものであり、上述の課題を解消し、精度の高い3次元モデルを短時間で作成することができ、盛り土量や切り土量を正確且つ迅速に算出することができる土工管理方法を提供することにある。   The present invention has been made in view of such a situation, and solves the above-described problems, can create a high-precision three-dimensional model in a short time, and can accurately and quickly determine the embankment amount and the cut amount. It is an object of the present invention to provide an earthwork management method that can be calculated.

本発明の土工管理方法は、工管理を行う土工管理領域が平面座標及び標高が予め測定された複数の外周既知点を結んだ閉領域内に含まれるように、複数の前記外周既知点を設定する既知点設定工程と、カメラと当該カメラの撮影位置及び撮影姿勢を測定する撮影情報測定手段とを具備する飛行体を飛行させ、前記カメラによって前記土工管理領域を複数回撮影すると共に、前記撮影情報測定手段によって前記撮影位置及び前記撮影姿勢を撮影情報として測定する撮影工程と、前記撮影工程によって撮影した撮影画像のそれぞれを前記撮影情報に基づいて高度とひずみ補正を行った後に、隣り合う前記撮影画像の中から特徴点をマッチングポイントとして自動抽出して順次結合していき、1枚のオルソ画像を作成するオルソ画像作成工程と、前記オルソ画像作成工程によって作成した前記オルソ画像から3Dデータを生成し、前記外周既知点を用いて補正する3Dデータ生成工程と、前記3Dデータ生成工程によって生成して補正した前記3Dデータと過去分の前記3Dデータとを比較し、その差分から盛り土量もしくは切り土量を算出する土量算出工程とを備え、前記既知点設定工程では、前記土工管理領域の中で最も標高が高いポイントを、平面座標及び標高が予め測定された最高位既知点として設定すると共に、前記土工管理領域の中で最も標高が低いポイントを、平面座標及び標高が予め測定された最低位既知点として設定し、前記3Dデータ生成工程では、前記オルソ画像作成工程によって作成した前記オルソ画像から3Dデータを生成し、前記最高位既知点及び前記最低位既知点を用いて補正することを特徴とする Earthwork management method of the present invention, as earthwork management area for soil Engineering management is included in the closed area obtained by connecting a plurality of outer circumferential known point plane coordinates and altitude are measured in advance, a plurality of the peripheral known point A known point setting step for setting, flying a flying object including a camera and a photographing information measuring means for measuring a photographing position and a photographing posture of the camera, and photographing the earthwork management region a plurality of times by the camera, A photographing step in which the photographing position and the photographing posture are measured as photographing information by photographing information measuring means; and a photographed image photographed in the photographing step is subjected to altitude and distortion correction based on the photographing information, and then adjacent to each other. An ortho-image creating step of automatically extracting feature points from the photographed images as matching points and sequentially combining them to create one ortho-image; A 3D data generating step of generating 3D data from the ortho image created in the ortho image creating step and correcting the 3D data using the known outer circumference point; Comparing the 3D data, and calculating a fill amount or a cut amount from the difference , the known point setting step, the highest elevation point in the earthwork management area, The plane coordinates and the elevation are set as the highest known points measured in advance, and the point with the lowest elevation in the earthwork management area is set as the lowest known point where the plane coordinates and the elevation are measured in advance, and In the 3D data generation step, 3D data is generated from the ortho image created in the ortho image creation step, and the highest known point and the maximum Position and correcting using known point.

本発明によれば、平面座標及び標高が予め測定された外周既知点を、土工管理を行う土工管理領域が外周既知点を結んだ閉領域内に含まれるように設定することで、精度の高い3次元モデルを短時間で作成することができ、盛り土量や切り土量を正確且つ迅速に算出することができるという効果を奏する。   According to the present invention, by setting the perimeter known points whose plane coordinates and altitudes are measured in advance so that the earthwork management area for performing the earthwork management is included in the closed area connecting the perimeter known points, high accuracy is achieved. It is possible to create a three-dimensional model in a short time, and it is possible to calculate the amount of embankment and the amount of cut soil accurately and quickly.

本発明に係る土工管理方法の実施形態を示すフローチャートである。It is a flow chart which shows an embodiment of an earthwork management method concerning the present invention. 既知点の設定例を示す図である。It is a figure showing an example of setting of a known point. 撮影に用いる飛行体の構成を示す図である。It is a figure showing composition of a flight object used for photography. 土量算出装置の構成を示す図である。It is a figure showing composition of a soil quantity calculation device.

次に、本発明を実施するための形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。   Next, embodiments for carrying out the present invention (hereinafter, simply referred to as “embodiments”) will be specifically described with reference to the drawings.

図1及び図2を参照すると、本実施の形態の土工管理方法では、まず、敷地1内に複数の外周既知点2Pと、最高位既知点2Hと、最低位既知点2Lとをそれぞれ設定する(ステップA1)。外周既知点2P、最高位既知点2H及び最低位既知点2Lは、基準点測量やGNSS測位等により平面座標及び標高が予め正確に測定されたポイントである。図2を参照すると、外周既知点2Pは、外周既知点2Pを結んだ閉領域に、敷地1内の土工管理を行う土工管理領域1aが含まれるように設定する。また、最高位既知点2Hは、土工管理領域1aの中で最も標高が高いポイントに設定する。さらに、最低位既知点2Lは、土工管理領域1aの中で最も標高が低いポイントに設定する。なお、図2において、(a)は敷地1の平面図であり、(b)は(a)に示すX−X断面図である。また、外周既知点2P、最高位既知点2H及び最低位既知点2Lには、後述する撮影画像に明瞭に写り込む対空標識を設置しても良く、撮影画像に明瞭に写り込む既存の構造物を外周既知点2P、最高位既知点2H及び最低位既知点2Lとして設定するようにしても良い。   Referring to FIGS. 1 and 2, in the earthwork management method according to the present embodiment, first, a plurality of outer peripheral known points 2P, a highest known point 2H, and a lowest known point 2L are set in the site 1. (Step A1). The outer peripheral known point 2P, the highest known point 2H, and the lowest known point 2L are points whose plane coordinates and altitude are accurately measured in advance by reference point surveying, GNSS positioning, or the like. Referring to FIG. 2, the known outer circumference point 2P is set such that the closed area connecting the known outer circumference point 2P includes the earthwork management area 1a for performing the earthwork management in the site 1. In addition, the highest known point 2H is set to a point having the highest altitude in the earthwork management area 1a. Further, the lowest known point 2L is set to a point having the lowest altitude in the earthwork management area 1a. In addition, in FIG. 2, (a) is a plan view of the site 1, and (b) is an XX cross-sectional view shown in (a). In addition, the outer known point 2P, the highest known point 2H, and the lowest known point 2L may be provided with an anti-aircraft sign that clearly appears in a captured image, which will be described later, and an existing structure that clearly appears in the captured image. May be set as the outer circumference known point 2P, the highest known point 2H, and the lowest known point 2L.

次に、図3に示す飛行体10を用いて土工管理領域1aを撮影する(ステップA2)。飛行体10は、UAV(無人飛行機)であり、飛行情報記憶部11と、カメラ12と、撮影画像記憶部13と、GNSS(Global Navigation Satellite System)14と、気圧高度計15と、ジャイロ16と、撮影情報記憶部17とを備えている。   Next, the earthwork management area 1a is photographed using the flying object 10 shown in FIG. 3 (step A2). The flying object 10 is a UAV (unmanned airplane), and includes a flight information storage unit 11, a camera 12, a captured image storage unit 13, a GNSS (Global Navigation Satellite System) 14, a barometric altimeter 15, a gyro 16, A photographing information storage unit 17;

飛行情報記憶部11は、設定された飛行高度及び撮影エリアが記憶される記憶手段である。飛行体10は、飛行情報記憶部11に記憶された飛行高度及び撮影エリアに到達後、カメラ12によって写真撮影を自動的に行う。   The flight information storage unit 11 is a storage unit that stores the set flight altitude and shooting area. After reaching the flight altitude and the shooting area stored in the flight information storage unit 11, the flying object 10 automatically performs photographing with the camera 12.

カメラ12は、飛行体10の機体に下向きに固定されている。また、本実施形態では、カメラ12としてデジタルカメラを用い、レンズのゆがみに対する出力補正のキャリブレーションが予め行われている。カメラ12による写真撮影は、オーバーラップしながら複数回行い、撮影画像は撮影画像記憶部13に記憶される。ラップ率は撮影写真を合成する時の作業性とデータ量に影響を与え、通常30〜80%で設定する。例えば、飛行高度が150mである場合には、土工管理領域1aに対し、1kmあたり600枚程度の写真撮影を行う。 The camera 12 is fixed to the body of the flying object 10 downward. Further, in the present embodiment, a digital camera is used as the camera 12, and calibration of output correction for lens distortion is performed in advance. The photographing by the camera 12 is performed a plurality of times while overlapping, and the photographed image is stored in the photographed image storage unit 13. The lap ratio affects the workability and data amount when synthesizing the photographed photographs, and is usually set at 30 to 80%. For example, when the flight altitude is 150 m, about 600 photographs are taken per 1 km 2 in the earthwork management area 1a.

GNSS14と、気圧高度計15と、ジャイロ16とは、写真撮影時の位置情報と、高度と、機体姿勢(ロール角ω、ピッチ角φ、ヨー角κ)とをそれぞれ測定する。GNSS14で測定された位置情報と、気圧高度計15で測定された高度と、ジャイロ16で測定された機体姿勢(ロール角ω、ピッチ角φ、ヨー角κ)とは、撮影画像と関連づけされた状態で撮影情報として撮影情報記憶部17に記憶される。上述のように飛行体10に固定されている。従って、GNSS14で測定された位置情報と、気圧高度計15で測定された高度と、ジャイロ16で測定された機体姿勢(ロール角ω、ピッチ角φ、ヨー角κ)とは、それぞれカメラ12の撮影位置と、撮影高度と、撮影姿勢となる。なお、撮影画像記憶部13と撮影情報記憶部17とには、SDカード等の取り外し可能な記憶手段が用いられ、飛行体10の着陸後に、撮影画像記憶部13及び撮影情報記憶部17を飛行体10から取り外して撮影画像と撮影情報とを回収する。   The GNSS 14, the barometric altimeter 15, and the gyro 16 measure position information, altitude, and body attitude (roll angle ω, pitch angle φ, yaw angle κ) at the time of photographing, respectively. The position information measured by the GNSS 14, the altitude measured by the barometric altimeter 15, and the aircraft attitude (roll angle ω, pitch angle φ, yaw angle κ) measured by the gyro 16 are associated with the captured image. Is stored in the shooting information storage unit 17 as shooting information. It is fixed to the flying object 10 as described above. Accordingly, the position information measured by the GNSS 14, the altitude measured by the barometric altimeter 15, and the aircraft attitude (roll angle ω, pitch angle φ, yaw angle κ) measured by the gyro 16 are each captured by the camera 12. The position, the shooting altitude, and the shooting posture. Note that a detachable storage means such as an SD card is used for the photographed image storage unit 13 and the photographing information storage unit 17, and after the flying object 10 lands, the photographed image storage unit 13 and the photographing information storage unit 17 fly. It is detached from the body 10 to collect the photographed image and photographing information.

次に、飛行体10の着陸後に回収した撮影画像と撮影情報とを、図4に示す土量算出装置20に入力する(ステップA3)。土量算出装置20は、パーソナルコンピューター等のプログラム制御で動作する情報処理装置であり、撮影画像入力部21と、撮影情報入力部22と、マッチングポイント入力部23と、既知点入力部24と、制御部25と、3Dデータ記憶部26と、出力部27とを備えている。   Next, the captured image and the captured information collected after the landing of the flying object 10 are input to the soil volume calculation device 20 illustrated in FIG. 4 (step A3). The soil volume calculation device 20 is an information processing device that operates under program control such as a personal computer, and includes a captured image input unit 21, a captured information input unit 22, a matching point input unit 23, a known point input unit 24, The control unit 25 includes a control unit 25, a 3D data storage unit 26, and an output unit 27.

撮影画像入力部21と撮影情報入力部22とは、飛行体10から取り外された撮影画像記憶部13及び撮影情報記憶部17がそれぞれ接続されるインターフェースであり、マッチングポイント入力部23及び既知点入力部24は、ユーザーが情報入力を行うキーボードやマウス等の入力手段である。   The photographed image input unit 21 and the photographed information input unit 22 are interfaces to which the photographed image storage unit 13 and the photographed information storage unit 17 detached from the flying object 10 are connected, respectively. The unit 24 is input means such as a keyboard and a mouse for the user to input information.

制御部25は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えたマイクロコンピューター等の情報処理部である。ROMには土量算出装置20の動作制御を行うための制御プログラムが記憶されている。制御部25は、ROMに記憶されている制御プログラムを読み出し、制御プログラムをRAMに展開させることで、オルソ画像作成部251、点群データ抽出部252、メッシュデータ変換部253、土量算出部254として機能する。   The control unit 25 is an information processing unit such as a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The ROM stores a control program for controlling the operation of the soil volume calculation device 20. The control unit 25 reads the control program stored in the ROM, and expands the control program in the RAM, so that the ortho image creation unit 251, the point cloud data extraction unit 252, the mesh data conversion unit 253, and the soil volume calculation unit 254 Function as

オルソ画像作成部251は、撮影画像と撮影情報とを読み込み、撮影情報に基づいて各撮影画像の高度とひずみ補正を行った後に、隣り合う撮影画像の中から特徴点をマッチングポイントとして自動抽出して順次結合していき、1枚のオルソ画像を作成する(ステップA4)。なお、土工管理領域1aがなだらかで変化の少ない場合は、マッチングポイントを正確に自動抽出できないことがあり、この場合、マッチングポイント入力部23からユーザーがマッチングポイントを入力する。また、設定した外周既知点2P、最高位既知点2H及び最低位既知点2Lをマッチングポイントしても良い。   The ortho image creating unit 251 reads the captured image and the captured information, performs altitude correction and distortion correction of each captured image based on the captured information, and then automatically extracts a feature point from a neighboring captured image as a matching point. To form one ortho image (step A4). If the earthwork management area 1a is smooth and has little change, it may not be possible to automatically extract a matching point accurately. In this case, the user inputs a matching point from the matching point input unit 23. Further, the set outer circumference known point 2P, the highest known point 2H, and the lowest known point 2L may be matched points.

点群データ抽出部252は、オルソ画像作成部251によって作成されたオルソ画像から3Dデータである点群データを抽出し、既知点入力部24から入力された既知点情報(外周既知点2P、最高位既知点2H及び最低位既知点2Lの平面座標及び標高)を用いて補正する(ステップA5)。点群データの補正は、各点が三つの変数(平面座標及び標高)を持っていることから、外周既知点2P、最高位既知点2H及び最低位既知点2Lの内の三つの既知点のそれぞれ三つの既知数(平面座標及び標高)を使用して行う。なお、外周既知点2P、最高位既知点2H及び最低位既知点2Lの平面座標及び標高の測量は、飛行体10の撮影後に行うようにしても良い。   The point cloud data extraction unit 252 extracts point cloud data, which is 3D data, from the ortho image created by the ortho image creation unit 251, and outputs the known point information (outer circumference known point 2 P, highest point) input from the known point input unit 24. The correction is performed using the known coordinates 2H and the lowest known point 2L (plane coordinates and altitude) (step A5). The correction of the point cloud data is performed by correcting three known points out of the outer circumference known point 2P, the highest known point 2H, and the lowest known point 2L because each point has three variables (plane coordinates and elevation). This is performed using three known numbers (plane coordinates and elevation). The measurement of the plane coordinates and elevation of the outer periphery known point 2P, the highest known point 2H, and the lowest known point 2L may be performed after the shooting of the flying object 10.

外周既知点2Pは、外周既知点2Pを結んだ閉領域に土工管理領域1aが含まれるように設定されているため、管理の対象となる土工管理領域1aの点群データのいずれの点も、いずれか三つの外周既知点2Pの平面座標で形成される三角形内に入ることになる。従って、点群データの補正に際し、補正する点を含む三角形を平面座標で形成する三つの外周既知点2Pをそれぞれ選択することで、土工管理領域1aの点群データにおける各点の平面座標(二つの変数)は、大きな誤差を生じることなく、点群データにおける平面座標の精度を向上させることができる。   Since the outer circumference known point 2P is set so that the closed area connecting the outer circumference known point 2P includes the earthwork management area 1a, any point of the point group data of the earthwork management area 1a to be managed is Any of the three known outer peripheral points 2P will fall within the triangle formed by the plane coordinates. Therefore, in the correction of the point cloud data, by selecting each of the three known outer peripheral points 2P forming the triangle including the point to be corrected by the plane coordinates, the plane coordinates (2D) of each point in the point cloud data of the earthwork management area 1a are selected. The two variables) can improve the accuracy of the plane coordinates in the point cloud data without causing a large error.

さらに、三つの既知点の内、最高位既知点2Hと最低位既知点2Lといずれか若しくは両方を選択すると、管理の対象となる土工管理領域1aの点群データのいずれの点も、いずれか三つの既知点の平面座標で形成される三角形内に入ることになると共に、管理の対象となる土工管理領域1aの点群データの大半の点が、側面視でいずれか三つの既知点で形成される三角形内に入ることになる。従って、点群データの補正に際し、補正する点を含む三角形を平面座標及び側面視で形成する三つの既知点(最高位既知点2Hと最低位既知点2Lといずれか若しくは両方を含む)をそれぞれ選択することで、土工管理領域1aの点群データにおける各点の平面座標及び標高(三つの変数)は、大きな誤差を生じることなく、点群データにおける平面座標及び標高の精度を向上させることができる。なお、側面視で三角形内に入らない土工管理領域1aの点群の点については、補正が終わった点を既知点として新しい三角係を形成して補正を行い、これを土工管理領域1aの点群の点全体の補正が完了するまで繰り返して行えば良い。   Further, when either or both of the highest known point 2H and the lowest known point 2L are selected from the three known points, any point of the point group data of the earthwork management area 1a to be managed is also selected. In addition to being within the triangle formed by the plane coordinates of the three known points, most points of the point group data of the earthwork management area 1a to be managed are formed by any three known points in side view. Will fall within the triangle. Therefore, when correcting the point cloud data, three known points (including one or both of the highest known point 2H and the lowest known point 2L) that form a triangle including the point to be corrected in planar coordinates and side view are respectively provided. By making the selection, the plane coordinates and elevation (three variables) of each point in the point cloud data of the earthwork management area 1a can improve the accuracy of the plane coordinates and elevation in the point cloud data without causing a large error. it can. For points in the point group of the earthwork management area 1a that do not fall within the triangle when viewed from the side, correction is performed by forming a new triangular relation with the corrected point as a known point, and this is corrected to a point in the earthwork management area 1a. It may be repeated until the correction of all the points of the group is completed.

メッシュデータ変換部253は、点群データ抽出部252によって抽出された点群データをメッシュデータに変換し(ステップA6)、3Dデータ記憶部26に記憶させる。メッシュデータは、CADで使用可能な3Dデータである。   The mesh data conversion unit 253 converts the point cloud data extracted by the point cloud data extraction unit 252 into mesh data (step A6) and stores the mesh data in the 3D data storage unit 26. The mesh data is 3D data that can be used in CAD.

土量算出部254は、メッシュデータ変換部253によつて変換されたメッシュデータと、3Dデータ記憶部26に記憶されている過去分のメッシュデータとを比較し、その差分から盛り土量もしくは切り土量を算出し(ステップA7)、算出した土量をディスプレイやプリンタからなる出力部27によって出力する(ステップA8)。なお、本実施形態では、点群データをメッシュデータに変換して、メッシュデータの差分をとることで土量を算出するように構成したが、点群データの差分をとる点群差分法によって土量を算出するようにしても良い。この場合には、点群データ抽出部252によって抽出され、補正された点群データを3Dデータ記憶部26に記憶させ、土量算出部254は、点群データ抽出部252によって抽出され、補正された点群データと、3Dデータ記憶部26に記憶されている過去分の点群データとを比較し、その差分から盛り土量もしくは切り土量を算出する。また、平均断面法やサーフェス差分によって土量を算出するように構成することもできる。   The soil volume calculation unit 254 compares the mesh data converted by the mesh data conversion unit 253 with the past mesh data stored in the 3D data storage unit 26, and determines the embankment amount or cut volume from the difference. The amount is calculated (step A7), and the calculated soil amount is output by the output unit 27 including a display and a printer (step A8). In this embodiment, the point cloud data is converted to mesh data, and the difference between the mesh data is calculated to calculate the soil volume. However, the point cloud data is calculated by the point cloud difference method. The amount may be calculated. In this case, the point cloud data extracted and corrected by the point cloud data extraction unit 252 is stored in the 3D data storage unit 26, and the soil volume calculation unit 254 is extracted and corrected by the point cloud data extraction unit 252. The obtained point cloud data is compared with the past point cloud data stored in the 3D data storage unit 26, and the embankment amount or cut volume is calculated from the difference. Further, it is also possible to configure so that the soil volume is calculated by the average section method or the surface difference.

以上説明したように、本実施形態は、平面座標及び標高が予め測定された外周既知点2Pを、土工管理を行う土工管理領域1aが外周既知点2Pを結んだ閉領域内に含まれるように設定する既知点設定工程と、カメラ12と撮影位置及び撮影姿勢を測定する撮影情報測定手段(GNSS14、ジャイロ16)とを具備する飛行体10を飛行させ、カメラ12によって土工管理領域1aを複数回撮影すると共に、撮影情報測定手段によって撮影位置及び撮影姿勢を撮影情報として測定する撮影工程と、撮影工程によって撮影した撮影画像のそれぞれを撮影情報に基づいて高度とひずみ補正を行った後に、隣り合う撮影画像の中から特徴点をマッチングポイントとして自動抽出して順次結合していき、1枚のオルソ画像を作成するオルソ画像作成工程と、オルソ画像作成工程によって作成したオルソ画像から3Dデータ(点群データもしくはメッシュデータ)を生成し、外周既知点2Pを用いて補正する3Dデータ生成工程と、3Dデータ生成工程によって生成して補正した3Dデータと過去分の3Dデータとを比較し、その差分から盛り土量もしくは切り土量を算出する土量算出工程とを備える。
この構成により、平面座標及び標高が予め測定された外周既知点2Pを、土工管理を行う土工管理領域1aが外周既知点2Pを結んだ閉領域内に含まれるように設定することで、精度の高い3次元モデルを短時間で作成することができ、盛り土量や切り土量を正確且つ迅速に算出することができる。外周既知点2Pを用いて点群データを補正することで、点群データにおける平面座標の精度を向上させることができる。
As described above, the present embodiment is configured such that the outer circumference known point 2P whose plane coordinates and elevation are measured in advance is included in the closed area connecting the outer circumference known point 2P with the earthwork management area 1a for performing the earthwork management. A flying object 10 having a known point setting step to be set and a camera 12 and photographing information measuring means (GNSS 14 and gyro 16) for measuring a photographing position and a photographing attitude is caused to fly, and the earthwork management area 1a is moved by the camera 12 a plurality of times. A photographing step of photographing and measuring a photographing position and a photographing posture as photographing information by photographing information measuring means, and a photographed image photographed in the photographing step are subjected to altitude and distortion correction based on the photographing information, and then adjacent to each other. Ortho image creation that automatically extracts feature points from captured images as matching points and sequentially combines them to create one ortho image 3D data (point group data or mesh data) generated from the ortho image created in the ortho image creation step, and corrected using the outer circumference known point 2P, and generated in the 3D data creation step. Comparing the corrected 3D data with the past 3D data, and calculating an embankment amount or a cut amount from the difference.
With this configuration, the accuracy of the accuracy can be improved by setting the known outer circumference point 2P whose plane coordinates and altitude are measured in advance so that the earthwork management area 1a for performing the earthwork management is included in the closed area connecting the outer circumference known point 2P. A high three-dimensional model can be created in a short time, and the embankment amount and cut amount can be calculated accurately and quickly. By correcting the point cloud data using the outer circumference known point 2P, the accuracy of the plane coordinates in the point cloud data can be improved.

さらに、本実施形態において、既知点設定工程では、土工管理領域1aの中で最も標高が高いポイントを、平面座標及び標高が予め測定された最高位既知点2Hとして設定すると共に、土工管理領域1aの中で最も標高が低いポイントを、平面座標及び標高が予め測定された最低位既知点2Lとして設定し、3Dデータ生成工程では、オルソ画像作成工程によって作成したオルソ画像から3Dデータを生成し、最高位既知点2H及び最低位既知点2Lを用いて補正する。
この構成により、最高位既知点2Hと最低位既知点2Lとを用いて点群データを補正することで、点群データにおける標高の精度を向上させることができる。
Further, in the present embodiment, in the known point setting step, the point having the highest elevation in the earthwork management area 1a is set as the highest known point 2H whose plane coordinates and elevation are measured in advance, and the earthwork management area 1a is set. Among the points having the lowest elevation are set as the lowest known points 2L whose plane coordinates and elevation are measured in advance, and in the 3D data generation step, 3D data is generated from the ortho image created in the ortho image creation step, The correction is performed using the highest known point 2H and the lowest known point 2L.
With this configuration, the accuracy of the elevation in the point cloud data can be improved by correcting the point cloud data using the highest known point 2H and the lowest known point 2L.

以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素の組み合わせ等にいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to the combination of the components, and that such modifications are also within the scope of the present invention.

1 敷地
1a 土工管理領域
10 飛行体
2P 外周既知点
2H 最高位既知点
2L 最低位既知点
11 飛行情報記憶部
12 カメラ
13 撮影画像記憶部
14 GNSS
15 気圧高度計
16 ジャイロ
17 撮影情報記憶部
20 土量算出装置
21 撮影画像入力部
22 撮影情報入力部
23 マッチングポイント入力部
24 既知点入力部
25 制御部
26 3Dデータ記憶部
27 出力部
251 オルソ画像作成部
252 点群データ抽出部
253 メッシュデータ変換部
254 土量算出部
1 Site 1a Earthwork management area 10 Aircraft 2P Outer circumference known point 2H Highest known point 2L Lowest known point 11 Flight information storage unit 12 Camera 13 Photographed image storage unit 14 GNSS
15 barometric altimeter 16 gyro 17 photographic information storage unit 20 soil volume calculation device 21 photographic image input unit 22 photographic information input unit 23 matching point input unit 24 known point input unit 25 control unit 26 3D data storage unit 27 output unit 251 ortho image creation Unit 252 point cloud data extraction unit 253 mesh data conversion unit 254 soil volume calculation unit

Claims (1)

工管理を行う土工管理領域が平面座標及び標高が予め測定された複数の外周既知点を結んだ閉領域内に含まれるように、複数の前記外周既知点を設定する既知点設定工程と、
カメラと当該カメラの撮影位置及び撮影姿勢を測定する撮影情報測定手段とを具備する飛行体を飛行させ、前記カメラによって前記土工管理領域を複数回撮影すると共に、前記撮影情報測定手段によって前記撮影位置及び前記撮影姿勢を撮影情報として測定する撮影工程と、
前記撮影工程によって撮影した撮影画像のそれぞれを前記撮影情報に基づいて高度とひずみ補正を行った後に、隣り合う前記撮影画像の中から特徴点をマッチングポイントとして自動抽出して順次結合していき、1枚のオルソ画像を作成するオルソ画像作成工程と、
前記オルソ画像作成工程によって作成した前記オルソ画像から3Dデータを生成し、前記外周既知点を用いて補正する3Dデータ生成工程と、
前記3Dデータ生成工程によって生成して補正した前記3Dデータと過去分の前記3Dデータとを比較し、その差分から盛り土量もしくは切り土量を算出する土量算出工程とを備え
前記既知点設定工程では、前記土工管理領域の中で最も標高が高いポイントを、平面座標及び標高が予め測定された最高位既知点として設定すると共に、前記土工管理領域の中で最も標高が低いポイントを、平面座標及び標高が予め測定された最低位既知点として設定し、
前記3Dデータ生成工程では、前記オルソ画像作成工程によって作成した前記オルソ画像から3Dデータを生成し、前記最高位既知点及び前記最低位既知点を用いて補正することを特徴とする土工管理方法。
As earthwork management area for soil Engineering management is included in the closed area obtained by connecting a plurality of outer circumferential known point plane coordinates and altitude are measured in advance, and the known point setting step of setting a plurality of the peripheral known point,
Not fly the aircraft comprising an imaging information measuring means for measuring the photographing position and photographing posture of the camera and the camera, as well as capturing a plurality of times the earthwork management area by the camera, the imaging position by the imaging information measuring means And a photographing step of measuring the photographing posture as photographing information,
After performing altitude and distortion correction on each of the photographed images photographed in the photographing process based on the photographing information, feature points are automatically extracted from adjacent photographed images as matching points and sequentially combined, An ortho-image creating step of creating one ortho image,
A 3D data generation step of generating 3D data from the ortho image created in the ortho image creation step and correcting using the outer circumference known point;
Comparing the 3D data generated and corrected in the 3D data generating step with the past 3D data, and calculating a fill amount or a cut amount from the difference ,
In the known point setting step, the point with the highest altitude in the earthwork management area is set as the highest known point whose plane coordinates and altitude are measured in advance, and the altitude is the lowest in the earthwork management area. Set the point as the lowest known point whose plane coordinates and elevation are measured in advance,
The earthwork management method, wherein in the 3D data generation step, 3D data is generated from the orthoimage created in the orthoimage creation step, and the 3D data is corrected using the highest known point and the lowest known point .
JP2015234530A 2015-12-01 2015-12-01 Earthwork management method Active JP6631206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015234530A JP6631206B2 (en) 2015-12-01 2015-12-01 Earthwork management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015234530A JP6631206B2 (en) 2015-12-01 2015-12-01 Earthwork management method

Publications (2)

Publication Number Publication Date
JP2017101989A JP2017101989A (en) 2017-06-08
JP6631206B2 true JP6631206B2 (en) 2020-01-15

Family

ID=59016332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015234530A Active JP6631206B2 (en) 2015-12-01 2015-12-01 Earthwork management method

Country Status (1)

Country Link
JP (1) JP6631206B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019041340A (en) * 2017-08-28 2019-03-14 株式会社Dapリアライズ Multiple video distribution system
CN109579712A (en) * 2018-11-16 2019-04-05 天津大学 Based on the contactless high slope surface displacement monitoring method of unmanned plane and monitoring system
CN109556673A (en) * 2018-11-22 2019-04-02 中铁四局集团有限公司 A kind of earthwork calculation amount method and system based on unmanned plane
CN110285792B (en) * 2019-07-02 2021-06-01 山东省交通规划设计院集团有限公司 Fine grid earthwork metering method for unmanned aerial vehicle oblique photography
JP7044826B2 (en) * 2019-08-30 2022-03-30 楽天グループ株式会社 Controls, systems, and methods
CN111243090B (en) * 2020-01-19 2024-02-09 上海建工四建集团有限公司 Earthwork volume calculating method and system
JP7406435B2 (en) 2020-03-31 2023-12-27 株式会社熊谷組 Pile finished shape inspection method
CN111667569B (en) * 2020-06-02 2023-07-18 重庆数地科技有限公司 Three-dimensional live-action soil visual accurate measurement and calculation method based on Rhino and Grasshopper
CN114413841B (en) * 2022-01-21 2024-02-27 中国科学院西北生态环境资源研究院 Frozen soil zoning drawing method and device, electronic equipment and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001140257A (en) * 1999-11-15 2001-05-22 Jekku:Kk Land formation plan design supporting system and recording medium
JP4651397B2 (en) * 2005-01-18 2011-03-16 独立行政法人土木研究所 Deposition monitoring method, system and computer program
US20110137547A1 (en) * 2009-12-03 2011-06-09 Electronics And Telecommunications Research Institute System and method for generating spatial information
JP5753406B2 (en) * 2011-03-02 2015-07-22 株式会社トプコン Color-coded signs and calibration boxes

Also Published As

Publication number Publication date
JP2017101989A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6631206B2 (en) Earthwork management method
JP4719753B2 (en) Digital photogrammetry method and apparatus using heterogeneous sensor integrated modeling
CN107504957A (en) The method that three-dimensional terrain model structure is quickly carried out using unmanned plane multi-visual angle filming
CN113607135B (en) Unmanned aerial vehicle inclination photogrammetry method for road and bridge construction field
CN102645209B (en) Joint positioning method for spatial points by means of onboard LiDAR point cloud and high resolution images
CN110573834B (en) Construction management device and construction management method
CN105447868B (en) A kind of Small and micro-satellite is taken photo by plane the automatic check methods of data
JP6238101B2 (en) Numerical surface layer model creation method and numerical surface layer model creation device
Themistocleous et al. 3D documentation and BIM modeling of cultural heritage structures using UAVS: the case of the Foinikaria church
JP6635649B2 (en) Data overlay program and data overlay method
JP2012137933A (en) Position specifying method of planimetric features to be photographed, program thereof, display map, photographic position acquiring method, program thereof and photographic position acquiring device
JP2006284224A (en) Method for generating three-dimensional data of geographical features, method for evaluating geographical feature variation, system for evaluating geographical feature variation
JP2017201261A (en) Shape information generating system
CN113032977A (en) Method for measuring and calculating earth and rock volume based on unmanned aerial vehicle inverse modeling technology
CN111121724A (en) Method and device for distance measurement by using unmanned aerial vehicle
JP2007188117A (en) Cave-in area extraction method, device and program
KR20190004086A (en) Method for generating three-dimensional object model
Tumelienė et al. Photogrammetric measurements of heritage objects
JP4523833B2 (en) Photography planning support apparatus and program therefor
KR101585203B1 (en) System for measuring height of building automatically using DEM for 3D model using aerial photograph
CN110940318A (en) Aerial remote sensing real-time imaging method, electronic equipment and storage medium
JP2006024161A (en) Model forming device and model forming method
Buyukdemircioglu et al. Geovisualization of Aerial Photogrammetric Flights for Data Quality Assessment
Zomrawi et al. Accuracy evaluation of digital aerial triangulation
Croce et al. UAV-Based 3D Photogrammetry for Post-Earthquake Studies on Seismic Damaged Cities—A Case Study: Castelluccio Di Norcia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6631206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150