JP6630750B2 - Walking test system - Google Patents

Walking test system Download PDF

Info

Publication number
JP6630750B2
JP6630750B2 JP2018008158A JP2018008158A JP6630750B2 JP 6630750 B2 JP6630750 B2 JP 6630750B2 JP 2018008158 A JP2018008158 A JP 2018008158A JP 2018008158 A JP2018008158 A JP 2018008158A JP 6630750 B2 JP6630750 B2 JP 6630750B2
Authority
JP
Japan
Prior art keywords
walking
spo
transition
time
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018008158A
Other languages
Japanese (ja)
Other versions
JP2018079360A (en
Inventor
直人 鰤岡
直人 鰤岡
忠雄 下地
忠雄 下地
和也 川田
和也 川田
学 叶
学 叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Tottori University
Original Assignee
Fukuda Denshi Co Ltd
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd, Tottori University filed Critical Fukuda Denshi Co Ltd
Priority to JP2018008158A priority Critical patent/JP6630750B2/en
Publication of JP2018079360A publication Critical patent/JP2018079360A/en
Application granted granted Critical
Publication of JP6630750B2 publication Critical patent/JP6630750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば呼吸リハビリテーションや薬物投与の効果確認テストに用いられる歩行試験システムに関する。   The present invention relates to a walking test system used for, for example, respiratory rehabilitation and a test for confirming the effect of drug administration.

呼吸リハビリテーションの効果を確認するテストとして、6分間歩行試験などの時間内歩行試験がある。時間内歩行試験は、被検者に例えば30mの距離を一定時間に可能な限り往復歩行させ、このときの、歩行距離、SpO(動脈血酸素飽和度)、脈拍を測定する。時間内歩行試験では、途中息切れのために立ち止まることや、壁にもたれて休むことなどは許される。 As a test for confirming the effect of respiratory rehabilitation, there is an in-time walking test such as a 6-minute walking test. In the walking test in time, the subject is allowed to walk back and forth at a distance of, for example, 30 m for a certain period of time as much as possible, and the walking distance, SpO 2 (arterial blood oxygen saturation), and pulse are measured. In the time walking test, it is permissible to stop for shortness of breath and to rest on the wall.

このような呼吸リハビリテーションの効果確認テストに、パルスオキシメータが用いられる。パルスオキシメータは、被検者の所定の生体部位に装着され、当該生体部位に向けて光を出力し、生体部位を透過又は反射した光の光量変化をパルス信号として測定することで、SpOを求める。また、パルスオキシメータは、一般に、SpOに加えて、脈拍も測定できるようになっている(例えば特許文献1参照)。 A pulse oximeter is used for such a respiratory rehabilitation effect confirmation test. The pulse oximeter is attached to a predetermined living body part of a subject, outputs light toward the living body part, and measures a change in the amount of light transmitted or reflected by the living body part as a pulse signal, thereby obtaining SpO 2. Ask for. In addition, a pulse oximeter can generally measure a pulse in addition to SpO 2 (for example, see Patent Document 1).

特開2007−289462号公報JP 2007-289462 A

上述したように従来の呼吸リハビリテーションの効果確認テストでは、被検者に与える運動パラメータ(あるいは負荷パラメータといってもよい)として歩行距離が用いられ、生体情報のパラメータとしてSpO及び脈拍が用いられている。 As described above, in the conventional test for confirming the effect of respiratory rehabilitation, a walking distance is used as a motion parameter (or a load parameter) given to a subject, and SpO 2 and a pulse are used as parameters of biological information. ing.

ところで、被検者は歩行試験中に息苦しくなり休憩してしまうことがしばしばあり、この休憩中にSpO及び脈拍の値は回復してしまう。しかしながら、従来の歩行試験では、運動パラメータとして歩行距離だけを用いており、歩行距離だけからは被検者の状態が回復したのは休憩によるものなのか或いはリハビリテーションや薬物投与の効果によるものなのかを、一目で判断することは困難である。よって、従来の呼吸リハビリテーションや薬物投与の効果確認テストでは、定量的な評価を行う上で未だ不十分であった。 By the way, the subject often becomes suffocated during the walking test and takes a break, and during this break, the values of SpO 2 and the pulse are recovered. However, in the conventional walking test, only the walking distance is used as the exercise parameter, and whether the condition of the subject has recovered from the walking distance alone is due to a break or due to the effects of rehabilitation and drug administration. Is difficult to judge at a glance. Therefore, conventional tests for confirming the effects of respiratory rehabilitation and drug administration are still insufficient for quantitative evaluation.

本発明は、以上の点を考慮してなされたものであり、呼吸リハビリテーションや薬物投与による効果確認をより的確かつ容易に行うことができる歩行試験システムを提供する。   The present invention has been made in view of the above points, and provides a walking test system capable of more accurately and easily confirming the effects of respiratory rehabilitation and drug administration.

本発明の歩行試験システムの一つの態様は、
被検者に取り付けられた測定装置から端末装置に、少なくともSpO を含む生体情報データと歩行データとを含む測定データを送信し、前記端末装置が試験時間内での被検者の生体情報と歩行状態との関係を取得する歩行試験システムであり、
前記測定装置は、前記被検者の前記SpO を含む生体情報を測定する生体情報測定部と、前記被検者の秒単位での歩行状態を取得する歩行状態取得部と、を有し、
前記端末装置は、前記測定装置から送信された前記SpO を含む生体情報と前記秒単位での歩行状態とをグラフ表示する表示部を有し、
前記端末装置は、前記SpO を含む生体情報と前記秒単位での歩行状態とをグラフ表示する機能に加えて、当該グラフを含む時間内歩行レポートを作成する機能を有し、
前記端末装置は、前記時間内歩行レポートに、薬物を投与した時間及び又は薬物名を含める。
One embodiment of the walking test system of the present invention is:
The terminal device from the measuring device attached to the subject, the biological information data including at least SpO 2, and transmits the walking data, the measurement data including the terminal apparatus of the subject within the test time vivo It is a walking test system that acquires the relationship between information and the walking state ,
The measurement device has a biological information measurement unit that measures biological information including the SpO 2 of the subject, and a walking state acquisition unit that acquires a walking state of the subject in seconds .
The terminal device has a display unit that graphically displays the biological information including the SpO 2 transmitted from the measurement device and the walking state in seconds .
The terminal device has a function of creating a walking report within time including the graph, in addition to a function of displaying the biological information including the SpO 2 and the walking state in seconds in a graph,
The terminal device includes the time at which the drug was administered and / or the name of the drug in the walking report within time.

本発明によれば、呼吸リハビリテーションや薬物投与による効果の確認をより的確かつ容易に行うことができるようになる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to confirm the effect by respiratory rehabilitation and drug administration more accurately and easily.

実施の形態に係る歩行試験システムの全体構成を示す概略図Schematic diagram showing the overall configuration of a walking test system according to an embodiment パルスオキシメータの要部構成を示すブロック図Block diagram showing the main configuration of the pulse oximeter タブレット端末の要部構成を示すブロック図Block diagram showing the main configuration of a tablet terminal メニュー画面を示す図Diagram showing the menu screen 入力画面を示す図Diagram showing input screen 薬物吸入前の測定結果の表示例Display example of measurement results before inhalation of drug 薬物吸入後の測定結果の表示例Display example of measurement result after inhalation of drug 薬物吸引前に行った歩行試験でのNSPSの推移と、薬物吸引後に行った歩行試験でのNSPSの推移とを、同一グラフ上に表示した例Example in which the transition of NSPS in the walking test performed before the drug inhalation and the transition of NSPS in the walking test performed after the drug inhalation are displayed on the same graph. 時間内歩行試験レポートの例Example of walking test report in time 時間内歩行試験レポートの例Example of walking test report in time

先ず、本発明に至った過程について説明する。   First, the process leading to the present invention will be described.

本発明の発明者らは、歩行試験の被検者のうち、慢性閉塞性肺疾患(COPD)患者や重症患者などは、試験時間内に継続して歩行を続けることができず、呼吸困難等によって試験中に何度か休憩していることに着目した。   The inventors of the present invention have found that among subjects of a walking test, patients with chronic obstructive pulmonary disease (COPD) and severely ill patients cannot continue walking during the test time, and have difficulty breathing. Focused on taking several breaks during the exam.

そして、試験中の休憩時間や患者歩行速度は、結果判定に下記の影響を与えることを見出した。
・酸素不飽和化(SpOの低下)は休憩後に改善されてしまい、休憩するほど実力値よりも良い傾向のデータになってしまう。
・歩行試験は、そもそも被検者が最大限努力して歩行したときの生体情報(SpO及び脈拍)を評価するものであるが、遅く歩行した場合、被検者への負荷が軽い状態となり、正常な評価ができない。
And it was found that the break time and the patient walking speed during the test had the following effects on the result judgment.
-Oxygen desaturation (reduction of SpO 2 ) is improved after a break, and the more the break, the better the data becomes.
The walking test evaluates the biological information (SpO 2 and pulse) when the subject walks with maximum effort, but when walking slowly, the load on the subject is light. , Cannot be evaluated normally.

つまり、発明者らは、評価項目であるSpO及び脈拍は、休憩や歩行速度などに大きな影響を受けるにもかかわらず、従来は休憩や歩行速度と、SpO及び脈拍との関係性が配慮されていなかったため、歩行試験の評価を行う上で不十分であると考えた。 In other words, the inventors consider that the relationship between the break and the walking speed and the SpO 2 and the pulse is conventionally considered, although the evaluation items SpO 2 and the pulse are greatly affected by the rest and the walking speed. Since it was not performed, it was considered that it was insufficient to evaluate the walking test.

そこで、本発明では、歩行試験に、瞬間歩行速度などの時間依存型パラメータを導入する。実際には、単位時間当たりの歩行状態の推移を、SpO及び又は脈拍の推移と共に表示する。これにより、呼吸リハビリテーションや薬物投与による効果の確認をより的確かつ容易に行うことができるようになる。 Therefore, in the present invention, a time-dependent parameter such as an instantaneous walking speed is introduced into the walking test. Actually, the transition of the walking state per unit time is displayed together with the transition of SpO 2 and / or the pulse. This makes it possible to more accurately and easily confirm the effects of respiratory rehabilitation and drug administration.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<全体構成>
図1は、本発明の実施の形態に係る歩行試験システムの全体構成を示す概略図である。歩行試験システム1は、パルスオキシメータ100と、タブレット端末200とから構成されている。パルスオキシメータ100とタブレット端末200は、互いに無線通信可能な機能を有する。本実施の形態の場合には、パルスオキシメータ100とタブレット端末200はBluetooth(登録商標)規格に準拠した近距離通信が可能とされている。パルスオキシメータ100は、測定データを無線によりタブレット端末200に送信する。タブレット端末200は、パルスオキシメータ100から受信した測定データを収集して測定結果を表示するとともに、歩行試験レポートを作成する。
<Overall configuration>
FIG. 1 is a schematic diagram showing an entire configuration of a walking test system according to an embodiment of the present invention. The walking test system 1 includes a pulse oximeter 100 and a tablet terminal 200. The pulse oximeter 100 and the tablet terminal 200 have a function capable of wireless communication with each other. In the case of the present embodiment, the pulse oximeter 100 and the tablet terminal 200 are capable of short-range communication conforming to the Bluetooth (registered trademark) standard. The pulse oximeter 100 wirelessly transmits the measurement data to the tablet terminal 200. The tablet terminal 200 collects the measurement data received from the pulse oximeter 100, displays the measurement result, and creates a walking test report.

パルスオキシメータ100は、本体部110と、プローブ部120とを有する。本体部110とプローブ部120とはケーブル130を介して接続されている。本体部110は図示しないベルトを用いて被検者の手首付近に装着可能とされており、プローブ部120は被検者の指に装着可能とされている。   The pulse oximeter 100 has a main body 110 and a probe 120. The main body 110 and the probe 120 are connected via a cable 130. The main body unit 110 can be worn near the wrist of the subject using a belt (not shown), and the probe unit 120 can be worn on the finger of the subject.

図2は、パルスオキシメータ100の要部構成を示すブロック図である。パルスオキシメータ100のプローブ部120には、発光部121及び受光部122が設けられている。発光部121は、動脈血酸素飽和度の変化に対する感度が高い赤色光(例えば、波長660[nm])で発光する第1の発光ダイオードと、動脈血酸素飽和度による影響が少ない赤外光(例えば、波長940[nm])で発光する第2の発光ダイオードと、から構成されている。受光部122は、フォトダイオードにより構成されており、指を透過した発光部121の光を検出する。なお、受光部122を、指からの光の透過経路ではなく、指からの光の反射経路に配置し、受光部122によって指からの反射光を検出するようにしてもよい。   FIG. 2 is a block diagram illustrating a main configuration of the pulse oximeter 100. The probe unit 120 of the pulse oximeter 100 includes a light emitting unit 121 and a light receiving unit 122. The light emitting unit 121 includes a first light emitting diode that emits red light (for example, a wavelength of 660 [nm]) having high sensitivity to a change in arterial blood oxygen saturation, and an infrared light (for example, an infrared light that is less affected by arterial blood oxygen saturation). And a second light emitting diode that emits light at a wavelength of 940 [nm]. The light receiving unit 122 is configured by a photodiode, and detects light of the light emitting unit 121 transmitted through the finger. Note that the light receiving unit 122 may be arranged on the reflection path of light from the finger instead of the transmission path of light from the finger, and the light reception unit 122 may detect reflected light from the finger.

本体部110は、プローブ部120によって得られた検出光に基づいて、被検者のSpO及び脈拍を求める。具体的に説明する。発光回路111は、発光部121の第1の発光ダイオード及び第2の発光ダイオードを所定の間隔で交互に発光させる。そのときの指からの透過光又は反射光が受光部122によって検出され、光電変換されて受光回路112に入力される。受光回路112は、プローブ部120の受光部122から入力された電流信号を電圧信号に変換する。また、受光回路112は、変換した電圧信号を、上述した赤色光及び赤外光の波長に対応する各成分に分離して2つの観測信号を復調する。また、受光回路112は、復調した観測信号に対して増幅やアナログディジタル変換などの処理を施し、処理後の観測信号をCPU113に出力する。 The main body 110 obtains SpO 2 and the pulse of the subject based on the detection light obtained by the probe 120. This will be specifically described. The light emitting circuit 111 causes the first light emitting diode and the second light emitting diode of the light emitting section 121 to emit light alternately at predetermined intervals. The transmitted light or reflected light from the finger at that time is detected by the light receiving unit 122, photoelectrically converted, and input to the light receiving circuit 112. The light receiving circuit 112 converts a current signal input from the light receiving unit 122 of the probe unit 120 into a voltage signal. The light receiving circuit 112 separates the converted voltage signal into components corresponding to the wavelengths of the red light and the infrared light, and demodulates two observation signals. Further, the light receiving circuit 112 performs processing such as amplification and analog-to-digital conversion on the demodulated observation signal, and outputs the processed observation signal to the CPU 113.

CPU113は、所定のプログラムを実行することで、観測信号からSpO及び脈拍を算出する。この算出方法については、例えば特許文献1にも記載されているように既知の技術なので、ここでの説明は省略する。また、CPU113は、パルスオキシメータ100の各部の制御を行う。具体的には、CPU113は、操作部117から入力される操作信号に基づいて、各種の設定を行う。また、CPU113は、発光回路111の動作制御、表示部115の表示制御、通信部116の通信制御などを行う。 CPU113, by executing a predetermined program, to calculate the SpO 2 and pulse rate from the observed signal. Since this calculation method is a known technique as described in, for example, Patent Document 1, its description is omitted here. Further, the CPU 113 controls each part of the pulse oximeter 100. Specifically, the CPU 113 performs various settings based on an operation signal input from the operation unit 117. Further, the CPU 113 performs operation control of the light emitting circuit 111, display control of the display unit 115, communication control of the communication unit 116, and the like.

かかる構成に加えて、パルスオキシメータ100の本体部110には、加速度センサ118が設けられている。CPU113は、加速度センサ118の出力に基づいて、被検者の歩数を測定する。つまり、加速度センサ118及びCPU113は、被検者が歩いた歩数を測定する歩数測定部として機能する。   In addition to this configuration, an acceleration sensor 118 is provided in the main body 110 of the pulse oximeter 100. The CPU 113 measures the number of steps of the subject based on the output of the acceleration sensor 118. That is, the acceleration sensor 118 and the CPU 113 function as a step count measurement unit that measures the number of steps taken by the subject.

パルスオキシメータ100は、測定したSpO、脈拍及び歩数を、通信部116によってタブレット端末200にリアルタイムで送信する。 The pulse oximeter 100 transmits the measured SpO 2 , pulse, and step count to the tablet terminal 200 by the communication unit 116 in real time.

図3に示すように、タブレット端末200は、タッチパネル付き液晶表示器からなる表示部210を有すると共に、パルスオキシメータ100から送信された測定データを無線受信する通信部211を有する。タブレット端末200は、パルスオキシメータ100から受信した情報のうち、歩数を歩行状態算出部212に入力する。   As shown in FIG. 3, the tablet terminal 200 includes a display unit 210 including a liquid crystal display with a touch panel, and includes a communication unit 211 that wirelessly receives measurement data transmitted from the pulse oximeter 100. The tablet terminal 200 inputs the number of steps from the information received from the pulse oximeter 100 to the walking state calculation unit 212.

歩行状態算出部212は、入力した歩数に基づいて、単位時間当たりの歩行状態を算出する。単位時間当たりの歩行状態とは、例えば1秒当たりの歩数(以下、この指標をNSPS(the Number of Steps walked Per Second)と呼ぶ)、単位時間当たりの歩行速度などである。本実施の形態の場合、歩行状態算出部212は、NSPSを算出する。また、本実施の形態の場合、NSPS(歩数/秒)は、5秒間の歩数を秒数つまり5で割ることで算出した。つまり、5秒ごとにNSPSを算出した。このNSPSを算出する間隔は、5秒に限らないが、あまり長い間隔だと休憩したか否かが分からなくなってしまうので、10秒以下の間隔で算出することが好ましい。   The walking state calculation unit 212 calculates a walking state per unit time based on the input number of steps. The walking state per unit time is, for example, the number of steps per second (hereinafter, this index is called NSPS (the Number of Steps walked Per Second)), the walking speed per unit time, and the like. In the case of the present embodiment, walking state calculation section 212 calculates NSPS. In the case of the present embodiment, NSPS (steps / second) was calculated by dividing the number of steps for 5 seconds by the number of seconds, that is, 5. That is, NSPS was calculated every 5 seconds. The interval at which this NSPS is calculated is not limited to 5 seconds, but if it is too long, it will not be possible to know whether or not a break has taken place, so it is preferable to calculate at intervals of 10 seconds or less.

CPU213は、記憶部214に格納された歩行試験を行うためのアプリケーションプログラムに従って、表示部210への測定結果の表示及びレポートの作成を行うようになっている。   The CPU 213 displays a measurement result on the display unit 210 and creates a report according to an application program for performing a walking test stored in the storage unit 214.

なお、歩行状態算出部212で行う単位時間当たりの歩行状態の算出処理を、CPU213で行うように構成してもよい。   The calculation process of the walking state per unit time performed by the walking state calculation unit 212 may be configured to be performed by the CPU 213.

また、単位時間当たりの歩行状態を取得する構成は、上述したような加速度センサ118及び歩行状態算出部212によって取得する構成に限らない。例えば、タブレット端末200に、医療従事者によって目視にてカウントされた単位時間当たりの歩数を入力するモードを設けることで、単位時間当たりの歩行状態を取得するようにしてもよい。このようにすれば、加速度センサ118及び歩行状態算出部212を省略できる。ただし、実施の形態のように加速度センサ118及び歩行状態算出部212によって単位時間当たりの歩行状態を取得すれば、単位時間当たりの歩行状態を容易に取得できるようになる。   Further, the configuration for obtaining the walking state per unit time is not limited to the configuration obtained by the acceleration sensor 118 and the walking state calculation unit 212 as described above. For example, by providing the tablet terminal 200 with a mode for inputting the number of steps per unit time visually counted by a medical worker, a walking state per unit time may be acquired. By doing so, the acceleration sensor 118 and the walking state calculation unit 212 can be omitted. However, if the walking state per unit time is acquired by the acceleration sensor 118 and the walking state calculating unit 212 as in the embodiment, the walking state per unit time can be easily acquired.

<測定結果の表示、及び、歩行試験レポートの作成>
次に、本実施の形態の歩行試験システムによる測定結果の表示及び歩行試験レポートの作成について説明する。
<Display of measurement results and creation of walking test report>
Next, display of a measurement result and creation of a walking test report by the walking test system of the present embodiment will be described.

図4は、タブレット端末200の表示部210に表示される時間内歩行試験のメニュー画面を示す。このメニュー画面は、タブレット端末200のアプリケーション起動時に表示される。図4の例の場合、メニューとして、「入力」、「測定」、「結果」、「設定」の項目が表示され、ユーザ(検査員)によってタップされた項目の処理が実行される。   FIG. 4 shows a menu screen of a walking test within time displayed on the display unit 210 of the tablet terminal 200. This menu screen is displayed when the application of the tablet terminal 200 is started. In the case of the example of FIG. 4, items of “input”, “measurement”, “result”, and “setting” are displayed as a menu, and processing of the item tapped by the user (inspector) is executed.

ユーザが「入力」の項目をタップすると、図5に示すような入力画面が表示される。図5の入力画面を用いて被検者情報の入力を行うことができる。被検者情報の入力は、図5の画面表示時にタブレット端末200がパルスオキシメータ100と通信し、パルスオキシメータ100の記憶部114に保持されている被検者情報(被検者ID、氏名、生年月日、性別、身長、体重)及び設定情報(試験を行う歩行時間、リカバリー(回復)時間、歩行検出レベル(つまり加速度センサの出力から歩数を求めるときの感度))を取得することで行われる。タブレット端末200は、身長及び体重よりBMIを計算する。タブレット端末200は、図5の入力画面において、「登録」の項目がタップされると、現在表示されている被検者情報及び設定情報を登録する。「メニューに戻る」の項目がタップされると、図4のメニュー画面に移行する。   When the user taps the item of “input”, an input screen as shown in FIG. 5 is displayed. The subject information can be input using the input screen of FIG. The input of the subject information is performed when the tablet terminal 200 communicates with the pulse oximeter 100 when the screen of FIG. 5 is displayed, and the subject information (subject ID, name) stored in the storage unit 114 of the pulse oximeter 100. , Date of birth, gender, height, weight) and setting information (walking time for testing, recovery (recovery) time, walking detection level (that is, sensitivity when calculating the number of steps from the output of the acceleration sensor)) Done. The tablet terminal 200 calculates the BMI from the height and the weight. When the “registration” item is tapped on the input screen in FIG. 5, the tablet terminal 200 registers the subject information and the setting information that are currently displayed. When the item of "return to menu" is tapped, the screen shifts to the menu screen of FIG.

図6、図7及び図8に、本実施の形態による表示例を示す。図6−図8の例は、COPD患者に6分間歩行試験を行った場合の測定結果の表示例である。図6及び図7に示すように、本実施の形態においては、SpO及び脈拍の推移と、NSPSの推移とを、同一グラフ上に表示するようになっている。これにより、SpOや脈拍の値が回復した原因が、休憩(図中の「停止」)や歩行速度を遅くしたことによるものなのか、或いはリハビリテーションや薬物の効果によるものなのかを、一目で判断することができるようになる。因みに、図6は気管支拡張剤などの薬物を吸入前の測定結果であり、図7は薬物を吸入後の測定結果である。 6, 7 and 8 show display examples according to the present embodiment. The examples of FIGS. 6 to 8 are display examples of measurement results when a walking test is performed on a COPD patient for 6 minutes. As shown in FIGS. 6 and 7, in the present embodiment, the transition of SpO 2 and pulse and the transition of NSPS are displayed on the same graph. As a result, it is possible to determine at a glance whether SpO 2 and pulse values have been recovered due to a break (“stop” in the figure) or a decrease in walking speed, or due to rehabilitation or drug effects. You will be able to judge. FIG. 6 shows a measurement result before inhaling a drug such as a bronchodilator, and FIG. 7 shows a measurement result after inhaling the drug.

図6及び図7のような表示画像を見れば、医療従事者は、NSPSの値から被検者がいつ歩行を停止していたかを認識できる。そして、NSPSの推移とSpOの推移を見比べることで、歩行停止直後にSpOの値が上昇(改善)しているのであれば、それは休憩(図中の「停止」)によって上昇したものであり、リハビリテーションや薬物の効果によって上昇(改善)したのではないと評価できる。 Looking at the display images as shown in FIGS. 6 and 7, the medical worker can recognize when the subject has stopped walking from the value of NSPS. By comparing the transition of NSPS with the transition of SpO 2 , if the value of SpO 2 is increasing (improving) immediately after stopping walking, it is increasing by a break (“stop” in the figure). Yes, it can be evaluated that it did not increase (improve) due to rehabilitation or drug effects.

また、図8に示したように、薬物吸引前に行った歩行試験でのNSPS1の推移と、薬物吸引後に行った歩行試験でのNSPS2の推移とを、同一グラフ上に表示すれば、薬物による効果を評価することができるようになる。図8の例では、薬物吸引後のNSPS2の方が、薬物吸引前のNSPS1よりも値0、すなわち歩行を停止した時間(休憩した時間)が短いことが分かるので、薬物による効果があったと評価できる。また、薬物吸引後では、歩行を開始してから患者が最初に歩行停止するまでの期間(値0になるまでの期間)が伸びている。これにより、薬物の治療効果として、患者の運動耐容能が向上していると判断できる。   Further, as shown in FIG. 8, if the transition of NSPS1 in the walking test performed before the drug inhalation and the transition of NSPS2 in the walking test performed after the drug inhalation are displayed on the same graph, Effectiveness can be evaluated. In the example of FIG. 8, it can be seen that NSPS2 after drug inhalation has a value of 0, that is, the time during which walking is stopped (rest time) is shorter than NSPS1 before drug inhalation, so that it was evaluated that there was an effect by the drug. it can. Further, after the drug is aspirated, the period from the start of walking until the patient first stops walking (the period until the value becomes 0) is extended. As a result, it can be determined that the exercise tolerance of the patient is improved as a therapeutic effect of the drug.

なお、SpO、脈拍、NSPSの各波形は、色分けされて同一グラフ上に表示される。加えて、SpO、脈拍、NSPSの各波形の色と、各波形のスケール表示の色とが対応付けられて表示される。例えば、NSPSの波形とそのスケール表示である「0、0.5、1、1.5、2」は黒色で表示し、SpOの波形とそのスケール表示である「90、91、………、99、100」は赤色で表示し、脈拍の波形とそのスケール表示である「0、20、………、100、120」は青色で表示する。これにより、同一グラフ上に異なるパラメータを表示したときの視認性が向上されている。 Note that the respective waveforms of SpO 2 , pulse, and NSPS are color-coded and displayed on the same graph. In addition, the color of each waveform of SpO 2 , pulse, and NSPS is displayed in association with the color of the scale display of each waveform. For example, the NSPS waveform and its scale display “0, 0.5, 1, 1.5, 2 ” are displayed in black, and the SpO 2 waveform and its scale display “90, 91,. , 99, 100 "are displayed in red, and the pulse waveform and its scale display," 0, 20,..., 100, 120 ", are displayed in blue. Thereby, visibility when different parameters are displayed on the same graph is improved.

図9及び図10は、タブレット端末200によって作成され表示される時間内歩行試験レポートの例を示す。   9 and 10 show examples of the walking test report within time created and displayed by the tablet terminal 200. FIG.

図9に示すレポートは、薬物吸入後の歩行試験のグラフ(図中上側のグラフ)と、薬物吸入前の歩行試験のグラフ(図中下側のグラフ)とを表示した例である。各グラフには、SpO及び脈拍(PR)の推移に加えて、NSPSの推移が同一グラフ上に表示されている。また、各歩行試験における総歩行距離も表示される。図の例では、薬物吸入後の歩行試験の総歩行距離は188[m]であり、薬物吸入前の歩行試験の総歩行距離は125[m]である。 The report shown in FIG. 9 is an example in which a graph of a walking test after inhalation of a drug (upper graph in the figure) and a graph of a walking test before inhalation of the drug (lower graph in the figure) are displayed. In each graph, the transition of NSPS is displayed on the same graph in addition to the transition of SpO 2 and the pulse (PR). The total walking distance in each walking test is also displayed. In the example of the figure, the total walking distance of the walking test after inhaling the drug is 188 [m], and the total walking distance of the walking test before inhaling the drug is 125 [m].

図10に示すレポートは、薬物吸引前に行った歩行試験でのNSPS1の推移と、薬物吸引後に行った歩行試験でのNSPS2の推移とを、同一グラフ上に表示した例である。また、各歩行試験における、総歩行距離、歩数、NSPSの平均、停止時間、Δボルグスケール、最小SpO、SpO平均の値も表示され、それらの値がレーダーチャートにプロットされて表示されている。さらに、吸入薬物の名前も表示される。図の例では、「気管支拡張剤」と表示されているが、薬物の具体的な名前を表示してもよい。 The report shown in FIG. 10 is an example in which the transition of NSPS1 in the walking test performed before inhaling the drug and the transition of NSPS2 in the walking test performed after inhaling the drug are displayed on the same graph. In addition, the total walking distance, the number of steps, the average of NSPS, the stop time, the ΔBorg scale, the minimum SpO 2 , and the average of SpO 2 in each walking test are also displayed, and the values are plotted and displayed on a radar chart. I have. In addition, the name of the inhaled drug is also displayed. In the example of the figure, “bronchodilator” is displayed, but a specific name of the drug may be displayed.

なお、タブレット端末200に表示される図6−図10の画像は、タブレット端末200に有線又は無線により接続されたプリンタによって印刷することもできる。   6 to 10 displayed on the tablet terminal 200 can also be printed by a printer connected to the tablet terminal 200 by wire or wirelessly.

以上説明したように、本実施の形態の歩行試験システムによれば、SpO及び脈拍の推移と、単位時間当たりの歩数の推移とを、同一グラフ上に表示したことにより、SpO及び又は脈拍に大きな影響を与える単位時間当たりの歩数と、SpO及び脈拍との関係性を明確に把握できるようになるため、呼吸リハビリテーションや薬物投与による効果の確認をより的確かつ容易に行うことができるようになる。 As described above, according to the walking test system of the present embodiment, the transition of SpO 2 and the pulse and the transition of the number of steps per unit time are displayed on the same graph, so that the SpO 2 and / or the pulse The number of steps per unit time, which has a large effect on the blood pressure, and the relationship between SpO 2 and pulse, so that the effect of respiratory rehabilitation and drug administration can be confirmed more accurately and easily. become.

また、図8に示したように、同一被検者に対する薬物投与前と薬物投与後の各歩行試験で得られた単位時間当たりの歩行状態の推移を、同一グラフ上に表示したことにより、薬物投与の効果を的確かつ容易に確認できるようになる。同様に、同一被検者に対するリハビリテーション前とリハビリテーション後の各歩行試験で得られた単位時間当たりの歩行状態の推移を、同一グラフ上に表示すれば、リハビリテーションの効果を的確かつ容易に確認できるようになる。つまり、同一被検者に対する異なる歩行試験で取得された単位時間当たりの歩行状態の推移を、同一グラフ上に表示すればよい。   In addition, as shown in FIG. 8, the transition of the walking state per unit time obtained in each walking test before and after drug administration to the same subject is displayed on the same graph, The effect of administration can be accurately and easily confirmed. Similarly, if the transition of the walking state per unit time obtained in each walking test before and after rehabilitation for the same subject is displayed on the same graph, the effect of rehabilitation can be confirmed accurately and easily. become. That is, the transition of the walking state per unit time acquired in different walking tests on the same subject may be displayed on the same graph.

なお上述の実施の形態では、単位時間当たりの歩行状態として、単位時間当たりの歩数(NSPS)を用いた場合について述べたが、これに換えて、例えば単位時間当たりの歩行速度や、単位時間当たりの歩行距離を用いてもよい。   In the above-described embodiment, the case where the number of steps per unit time (NSPS) is used as the walking state per unit time has been described. Alternatively, for example, the walking speed per unit time, the walking speed per unit time, May be used.

また上述の実施の形態では、パルスオキシメータ100から、SpO、脈拍及び歩数の情報を受信し、SpO及び脈拍の推移と、単位時間当たりの歩数の推移とを同一グラフ上に表示する装置として、タブレット端末200を用いた場合について述べたが、本発明は、タブレット端末200に換えて、パソコン等の他の装置により行ってもよい。また、上述の実施の形態では、SpO、脈拍及び歩数の情報を測定する装置としてパルスオキシメータ100を用いた場合について述べたが、パルスオキシメータ100に限らず、要は、SpO、脈拍及び歩数の情報を測定できる生体情報測定装置を用いればよい。さらに、生体情報測定装置によってSpO、脈拍及び歩数のための元データのみを測定し、表示装置側で、SpO、脈拍及び単位時間当たりの歩行状態の最終的な値を計算により求めてもよい。 In the above-described embodiment, the apparatus that receives information on SpO 2 , pulse, and the number of steps from the pulse oximeter 100 and displays the transition of SpO 2 and the pulse and the transition of the number of steps per unit time on the same graph. As described above, the case where the tablet terminal 200 is used has been described, but the present invention may be performed by another device such as a personal computer instead of the tablet terminal 200. Further, in the above embodiment, SpO 2, has dealt with the case of using a pulse oximeter 100 as a device for measuring the information of the pulse and the number of steps is not limited to the pulse oximeter 100, short, SpO 2, pulse rate And a biological information measuring device capable of measuring information on the number of steps. Furthermore, it is also possible to measure only the original data for SpO 2 , pulse and the number of steps by the biological information measuring device, and to calculate the final values of SpO 2 , pulse and the walking state per unit time on the display device side. Good.

また上述の実施の形態では、単位時間当たりの歩行状態の推移と一緒に、SpO及び脈拍を表示した場合について述べたが、SpO又は脈拍の一方のみを表示してもよい。 Further, in the above-described embodiment, the case has been described where SpO 2 and the pulse are displayed together with the transition of the walking state per unit time, but only one of SpO 2 and the pulse may be displayed.

さらに図6及び図7では、SpO及び脈拍の推移と、NSPSの推移とを同一グラフ上に重ねて表示した例を示したが、必ずしも同一グラフ上に表示する必要はなく、要は、SpO及び脈拍の推移と、NSPSの推移とを時間軸を合わせて表示すればよい。例えば、横軸を時間軸にした場合には、横軸の時間軸を合わせて、SpO及び又は脈拍の推移のグラフと、NSPSの推移のグラフとを縦方向(上下方向)に並べて表示してもよい。ただし、図6及び図7に示したように、SpO及び脈拍の推移と、NSPSの推移とを同一グラフ上に重ねて表示すると、SpO及び脈拍の変化と、NSPSの変化との関連性がより分かり易くなる。 Further, FIGS. 6 and 7 show an example in which the transition of SpO 2 and the pulse and the transition of NSPS are superimposed and displayed on the same graph. However, it is not always necessary to display the transition on the same graph. 2, the transition of the pulse and the transition of the NSPS may be displayed together with the time axis. For example, when the horizontal axis is the time axis, the graph of the transition of SpO 2 and / or the pulse and the graph of the transition of NSPS are displayed side by side in the vertical direction (vertical direction) together with the time axis of the horizontal axis. You may. However, as shown in FIGS. 6 and 7, when the transition of SpO 2 and pulse and the transition of NSPS are superimposed on the same graph and displayed, the relationship between the change of SpO 2 and pulse and the change of NSPS is displayed. Becomes easier to understand.

上述の実施の形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   The above-described embodiment is merely an example of a specific embodiment for carrying out the present invention, and the technical scope of the present invention should not be interpreted in a limited manner. That is, the present invention can be implemented in various forms without departing from the gist or the main features thereof.

本発明は、呼吸リハビリテーションや薬物投与の効果確認テストに用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used for respiratory rehabilitation and a test for confirming the effect of drug administration.

1 歩行試験システム
100 パルスオキシメータ
110 本体部
111 発光回路
112 受光回路
113、213 CPU
114、214 記憶部
115、210 表示部
116、211 通信部
117 操作部
118 加速度センサ
120 プローブ部
121 発光部
122 受光部
130 ケーブル
200 タブレット端末
212 歩行状態算出部
NSPS 1秒当たりの歩数
Reference Signs List 1 walking test system 100 pulse oximeter 110 main body 111 light emitting circuit 112 light receiving circuit 113, 213 CPU
114, 214 Storage unit 115, 210 Display unit 116, 211 Communication unit 117 Operation unit 118 Acceleration sensor 120 Probe unit 121 Light emitting unit 122 Light receiving unit 130 Cable 200 Tablet terminal 212 Walking state calculating unit NSPS Steps per second

Claims (2)

被検者に取り付けられた測定装置から端末装置に、少なくともSpO を含む生体情報データと歩行データとを含む測定データを送信し、前記端末装置が試験時間内での被検者の生体情報と歩行状態との関係を取得する歩行試験システムであり、
前記測定装置は、前記被検者の前記SpO を含む生体情報を測定する生体情報測定部と、前記被検者の秒単位での歩行状態を取得する歩行状態取得部と、を有し、
前記端末装置は、前記測定装置から送信された前記SpO を含む生体情報と前記秒単位での歩行状態とをグラフ表示する表示部を有し、
前記端末装置は、前記SpO を含む生体情報と前記秒単位での歩行状態とをグラフ表示する機能に加えて、当該グラフを含む時間内歩行レポートを作成する機能を有し、
前記端末装置は、前記時間内歩行レポートに、薬物を投与した時間及び又は薬物名を含める、
歩行試験システム。
The terminal device from the measuring device attached to the subject, the biological information data including at least SpO 2, and transmits the walking data, the measurement data including the terminal apparatus of the subject within the test time vivo It is a walking test system that acquires the relationship between information and the walking state ,
The measurement device has a biological information measurement unit that measures biological information including the SpO 2 of the subject, and a walking state acquisition unit that acquires a walking state of the subject in seconds .
The terminal device has a display unit that graphically displays the biological information including the SpO 2 transmitted from the measurement device and the walking state in seconds .
The terminal device has a function of creating a walking report within time including the graph, in addition to a function of displaying the biological information including the SpO 2 and the walking state in seconds in a graph,
The terminal device, the walking report within the time, including the time and or drug name to administer the drug,
Walking test system.
前記端末装置は、
同一の時間内歩行レポートに、薬物投与前の前記SpO を含む生体情報の推移と前記秒単位での歩行状態の推移とを示す第1のグラフと、薬物投与後の前記SpO を含む生体情報の推移と前記秒単位での歩行状態の推移とを示す第2のグラフと、を含める、
請求項1に記載の歩行試験システム。
The terminal device,
A first graph showing the transition of the biological information including the SpO 2 before the administration of the drug and the transition of the walking state in seconds in the same walking report within the same time, and the living body including the SpO 2 after the administration of the drug. A second graph showing the transition of information and the transition of the walking state in seconds .
The walking test system according to claim 1.
JP2018008158A 2018-01-22 2018-01-22 Walking test system Active JP6630750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018008158A JP6630750B2 (en) 2018-01-22 2018-01-22 Walking test system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018008158A JP6630750B2 (en) 2018-01-22 2018-01-22 Walking test system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014077867A Division JP6406854B2 (en) 2014-04-04 2014-04-04 Walking test system

Publications (2)

Publication Number Publication Date
JP2018079360A JP2018079360A (en) 2018-05-24
JP6630750B2 true JP6630750B2 (en) 2020-01-15

Family

ID=62197330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008158A Active JP6630750B2 (en) 2018-01-22 2018-01-22 Walking test system

Country Status (1)

Country Link
JP (1) JP6630750B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050228244A1 (en) * 2004-04-07 2005-10-13 Triage Wireless, Inc. Small-scale, vital-signs monitoring device, system and method
JP2006263054A (en) * 2005-03-23 2006-10-05 Konica Minolta Sensing Inc Acquisition method of respiratory disease related analysis data, oxymeter system, its operation program, oxymeter and oxygen supply system
JP4962195B2 (en) * 2007-08-03 2012-06-27 コニカミノルタオプティクス株式会社 Pulse oximeter
CN102548474B (en) * 2009-09-30 2014-09-03 三菱化学株式会社 Body movement signal information processing method, information processing system and information processing device
WO2011052302A1 (en) * 2009-10-29 2011-05-05 コニカミノルタセンシング株式会社 Biological information measurement device
JP5324493B2 (en) * 2010-02-12 2013-10-23 日本電信電話株式会社 Exercise index measuring method and apparatus
WO2012018029A1 (en) * 2010-08-06 2012-02-09 株式会社オムシー Blood pressure measurement device
JP6130273B2 (en) * 2013-08-30 2017-05-17 フクダ電子株式会社 Walking test system and communication terminal

Also Published As

Publication number Publication date
JP2018079360A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6130273B2 (en) Walking test system and communication terminal
US11096589B2 (en) Bio-information output device, bio-information output method and program
CN106413525B (en) System and method for workflow management
US8126526B2 (en) Pulse wave analyzing device
JP6298278B2 (en) Biological signal measurement system
JP2010518970A (en) System and method of orthostatic detection
JP6406854B2 (en) Walking test system
US20150320327A1 (en) Hemodynamics measurement apparatus and hemodynamics measurement method
JP6378051B2 (en) Measuring system and measuring device
US20180199832A1 (en) Blood pressure analyzing apparatus, blood pressure measuring apparatus, and blood pressure analyzing method
JPH0349686Y2 (en)
US20170100065A1 (en) Physiological parameter measuring apparatus and physiological parameter measuring system
JP6675228B2 (en) Life activity display device, life activity display method, and walking test system
JP6630750B2 (en) Walking test system
JP6391750B2 (en) Mobile device
JP6382799B2 (en) Walking test device
JP6066893B2 (en) Pulse oximeter
JP2013173043A (en) Biological information processing device, exercise electrocardiographic testing system and biological information processing program
JP6013153B2 (en) Respiratory function testing device
US20220167871A1 (en) Information generating apparatus, information generating method, and non-transitory computer-readable medium
JP2015085036A (en) Diagnostic apparatus
JP6975016B2 (en) Condition change discriminator
WO2018066275A1 (en) Lung compliance measurement device
JP7222301B2 (en) Biological information measuring device, biological information analysis system and program
US11963744B2 (en) Bio-information output device, bio-information output method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6630750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250