JP6628677B2 - Cutting insert, tip holder, cutting tool set - Google Patents

Cutting insert, tip holder, cutting tool set Download PDF

Info

Publication number
JP6628677B2
JP6628677B2 JP2016082799A JP2016082799A JP6628677B2 JP 6628677 B2 JP6628677 B2 JP 6628677B2 JP 2016082799 A JP2016082799 A JP 2016082799A JP 2016082799 A JP2016082799 A JP 2016082799A JP 6628677 B2 JP6628677 B2 JP 6628677B2
Authority
JP
Japan
Prior art keywords
tip
cutting
holder
main body
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016082799A
Other languages
Japanese (ja)
Other versions
JP2017192991A (en
Inventor
裕 道脇
裕 道脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nejilaw Inc
Original Assignee
Nejilaw Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nejilaw Inc filed Critical Nejilaw Inc
Priority to JP2016082799A priority Critical patent/JP6628677B2/en
Priority to PCT/JP2017/015370 priority patent/WO2017183591A1/en
Priority to TW106112870A priority patent/TW201738019A/en
Publication of JP2017192991A publication Critical patent/JP2017192991A/en
Application granted granted Critical
Publication of JP6628677B2 publication Critical patent/JP6628677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/16Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G5/00Thread-cutting tools; Die-heads

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)

Description

本発明は、特に両ねじ体のねじ切り加工用に有効な切削用チップ、チップホルダおよび切削用バイトセットに関する。   The present invention relates to a cutting tip, a tip holder, and a cutting tool set which are particularly effective for thread cutting of a double threaded body.

従来、ねじの切削加工用の切削用チップ(チップ、バイト)としては、特にNC旋盤による大量生産用として、スローアウェイチップ(スローアウェイバイト)が使用されている(特許文献1参照)。   Conventionally, as a cutting tip (tip, bite) for cutting a screw, a throw-away tip (throw-away bite) has been used particularly for mass production by an NC lathe (see Patent Document 1).

図23(A)にねじ切り加工用スローアウェイチップとそのホルダの一例を示す。図23(A)は、ねじ切り加工用スローアウェイチップをホルダに取り付けた状態の上面図である。この場合、スローアウェイチップ130は、チップホルダ120にねじ留めされ、刃先が摩耗したり欠損したりした場合には、再研削せず使い捨てにする。専用のチップホルダ120に固定する場合には、心高を改めて調整する必要が無いため、特にNC旋盤等で大量生産するときに交換が容易であり、効率的である。   FIG. 23 (A) shows an example of a throw-away insert for thread cutting and its holder. FIG. 23A is a top view of a state in which the threading insert for cutting is attached to a holder. In this case, the throw-away tip 130 is screwed to the tip holder 120, and when the cutting edge is worn or broken, the throw-away tip 130 is not reground and is disposable. In the case of fixing to the dedicated chip holder 120, it is not necessary to adjust the center height again. Therefore, the exchange is easy and efficient especially when mass production is performed with an NC lathe or the like.

図23(B)は、スローアウェイチップ130単体の斜視図である。チップの厚みBは通常1cm以下であり、チップホルダ120の外周から刃先を突出して取り付けられる。   FIG. 23B is a perspective view of the throw-away tip 130 alone. The thickness B of the tip is usually 1 cm or less, and the tip is mounted with the cutting edge protruding from the outer periphery of the tip holder 120.

特開平8−257837号公報JP-A-8-257837

しかしながら正確に切削加工するためには、従来よりもさらにびびりが少なく切削のできる切削用チップおよびチップホルダ(バイトホルダ)が必要である。また、例えば、従来のねじ切り切削用チップ等にあっては、切削用チップ全体としての平面視が略三角形状の各頂点部位を刃先とする三箇所刃物構造になっていて、各刃部の根元部分にはV字形切欠状のさらい刃構造が設けられており、切削形成されるねじ山形と寸法は限定され、従って、寸法毎、或いは狙い呼び径毎にチップを交換する必要がある上、切削加工時における刃先の微量の摩耗で形成されるねじ山形等が刻々と変化してしまい、精密なねじ山形状等を持続的切削形成することが出来ないという課題があった。本発明は、斯かる実情に鑑み、刃先の位置決め精度が高く、切削抵抗が高い場合にもびびりが発生しにくい上、一つの切削用チップで対応可能な狙い呼び径や寸法範囲を広げつつ、刻々と摩耗しても持続的に高精度なねじ山形状等を切削加工することが可能な切削用チップ(チップ)およびチップホルダを提供しようとするものである。   However, in order to perform accurate cutting, a cutting tip and a tip holder (bite holder) capable of cutting with less chatter than before are required. Also, for example, in a conventional threading cutting tip or the like, the cutting tip as a whole has a three-point blade structure having a substantially triangular apex portion as a cutting edge in plan view, and a root of each blade portion. The portion is provided with a V-shaped notch-shaped flat blade structure, which limits the shape of the thread to be formed and the dimensions. Therefore, it is necessary to replace the tip for each dimension or for each nominal diameter. There has been a problem that a thread shape or the like formed by a very small amount of wear of the cutting edge at the time of machining changes every moment, and a precise thread shape or the like cannot be continuously cut and formed. In view of such circumstances, the present invention has high positioning accuracy of the cutting edge, is unlikely to generate chatter even when the cutting resistance is high, and while expanding the target nominal diameter and dimensional range that can be supported by one cutting tip, An object of the present invention is to provide a cutting tip (tip) and a tip holder capable of continuously cutting a thread shape and the like with high precision even if worn every moment.

上記課題を解決する本発明は、相対移動する外部ワークに切削加工を行う切削用チップであって、柱状の本体と、上記本体の端部に位置され、刃先を備える刃部と、を有し、上記本体は、上記刃先のすくい面の幅方向の両外側に位置する周面には、それぞれ、上記本体長手方向に平行となる仮想中心軸を有する部分円筒又は円柱状領域が形成され、上記刃先の相対すくい方向の両外側の少なくとも一方に位置する周面には、円弧又は平面に形成される底部を挟んで上記本体長手方向に延びる一対の傾斜面が形成される、ことを特徴とする切削用チップである。
The present invention for solving the above-mentioned problems is a cutting tip for performing a cutting process on an external workpiece that moves relatively, and has a columnar main body, and a blade portion provided at an end of the main body and having a cutting edge, The main body has a partial cylinder or a columnar region having a virtual central axis parallel to the main body longitudinal direction, respectively, on peripheral surfaces located on both outer sides in the width direction of the rake face of the blade edge, A pair of inclined surfaces extending in the longitudinal direction of the main body are formed on a peripheral surface located on at least one of both outer sides in a relative rake direction of the cutting edge with a bottom formed in an arc or a plane interposed therebetween. It is a cutting tip.

上記切削用チップに関連して、本発明は、前記一対の傾斜面は、前記部分円筒又は円柱状領域の前記本体長手方向に直行する断面となる部分円弧の延長線上の円弧軌跡よりも半径方向内側に形成されていることを特徴とする。   In relation to the cutting tip, the present invention is characterized in that the pair of inclined surfaces are more radially than an arc trajectory on an extension of a partial arc that has a cross section orthogonal to the longitudinal direction of the main body of the partial cylinder or columnar region. It is characterized by being formed inside.

上記切削用チップに関連して、本発明は、前記一対の傾斜面は、前記本体長手方向から見た場合に前記刃先の先端から前記相対すくい方向に延びる基準線に対して対称に形成されることを特徴とする。   In relation to the cutting tip, in the present invention, the pair of inclined surfaces are formed symmetrically with respect to a reference line extending in the relative rake direction from the tip of the cutting edge when viewed from the longitudinal direction of the main body. It is characterized by the following.

上記切削用チップに関連して、本発明は、少なくとも一対の前記部分円筒又は円柱状領域の曲率中心が互いに一致することを特徴とする。   In relation to the cutting tip, the present invention is characterized in that the centers of curvature of at least one pair of the partial cylinders or the cylindrical regions coincide with each other.

上記切削用チップに関連して、本発明は、前記刃部は、前記本体長手方向の一方の端部に形成されており、前記本体には、外部部材と上記本体長手方向の一方に係合可能な位置決め面を有することを特徴とする。   The present invention relates to the cutting tip, wherein the blade portion is formed at one end in the longitudinal direction of the main body, and the main body is engaged with an external member and one of the longitudinal direction of the main body. It has a possible positioning surface.

上記切削用チップに関連して、本発明は、前記刃部は、前記本体長手方向の両端にそれぞれ形成されており、前記本体には、外部部材と上記本体長手方向の一方に係合可能な第一位置決め面、及び、該外部部材と上記本体長手方向の他方に係合可能な第二位置決め面と、を有することを特徴とする。   In relation to the cutting tip, in the present invention, the blade portion is formed at each of both ends in the longitudinal direction of the main body, and the main body can be engaged with an external member and one of the longitudinal directions of the main body. It has a first positioning surface, and a second positioning surface that can be engaged with the external member and the other in the longitudinal direction of the main body.

上記切削用チップに関連して、本発明は、前記刃部における前記刃先の先端は、前記相対すくい方向から視た場合に、前記本体長手方向に延びる基準線に対して対称形状となることを特徴とする。   In relation to the cutting tip, the present invention is configured such that, when viewed from the relative rake direction, the tip of the cutting edge in the blade portion has a symmetric shape with respect to a reference line extending in the longitudinal direction of the main body. Features.

上記切削用チップに関連して、本発明は、前記刃先の前逃げ角は、10°以上であることを特徴とする。   In relation to the cutting tip, the present invention is characterized in that a front clearance angle of the cutting edge is 10 ° or more.

上記課題を解決する本発明は、上記の何れかに記載された前記切削用チップと、該切削用チップを保持するチップホルダを組み合わせた切削用バイトセットである。
上記切削用バイトセットに関連して、本発明は、前記チップホルダは、ホルダ本体の先端部に、刃先を露出させた状態で前記切削用チップを収容して保持する収容孔を有することを特徴とする。
上記切削用バイトセットに関連して、本発明は、前記チップホルダは、前記ホルダ本体の外周面に、前記収容孔へ貫通するボルト穴を有し、ボルトによって切削用チップを締め付け固定することを特徴とする。
上記切削用バイトセットに関連して、本発明は、前記チップホルダは、前記ホルダ本体に、前記収容孔の軸と平行方向で前記切削用チップの刃先向きに該切削用チップを押し出すための孔を備えることを特徴とする。
上記切削用バイトセットに関連して、本発明は、前記チップホルダは、前記切削用チップの刃部を受け止める下あご部が、前記収容孔の下面に連続して、かつ、前記ホルダ本体の先端部から前記切削用チップの長手方向に突出して形成されていることを特徴とする。
上記切削用バイトセットに関連して、本発明は、前記チップホルダは、前記ホルダ本体長手方向に対して、前記収容孔の軸方向が直角であることを特徴とする。
上記切削用バイトセットに関連して、本発明は、前記チップホルダは、前記ホルダ本体長手方向に対して、前記収容孔の軸方向が平行であることを特徴とする。
The present invention that solves the above-mentioned problems is a cutting tool set that combines the cutting tip described in any of the above and a tip holder that holds the cutting tip .
In relation to the cutting tool set, the present invention is characterized in that the tip holder has, at a tip end portion of the holder main body, an accommodation hole for accommodating and holding the cutting tip with a cutting edge exposed. And
In relation to the cutting tool set, the present invention provides that the tip holder has a bolt hole penetrating into the accommodation hole on an outer peripheral surface of the holder body, and the cutting tip is tightened and fixed by a bolt. Features.
In relation to the cutting tool set, the present invention provides the tip holder, wherein the holder body has a hole for extruding the cutting tip toward a cutting edge of the cutting tip in a direction parallel to an axis of the accommodation hole. It is characterized by having.
In relation to the cutting tool set, the present invention provides the tip holder, wherein a lower jaw portion receiving a blade portion of the cutting tip is continuous with a lower surface of the accommodation hole, and a tip of the holder body. The cutting tip is formed so as to protrude from the portion in the longitudinal direction of the cutting tip.
In relation to the cutting tool set, the present invention is characterized in that the tip holder has an axial direction of the accommodation hole perpendicular to a longitudinal direction of the holder main body.
In relation to the cutting tool set, the present invention is characterized in that the tip holder has an axial direction of the housing hole parallel to a longitudinal direction of the holder main body.

本発明によれば、上記切削用チップを緩み無く固定することの可能なチップホルダと組み合わせることで、びびりが少なく刃先の位置決め精度が高い切削工具が提供できるという優れた効果を奏す。また、本発明の切削用チップ又は切削用バイトによれば、一つの刃部で対応可能な狙い呼び径や寸法範囲を広げつつ、刻々と摩耗しても持続的に高精度なねじ山形状等を切削加工することが可能となるという効果が得られる。   According to the present invention, by combining the cutting tip with a tip holder capable of fixing the cutting tip without loosening, there is an excellent effect that a cutting tool with less chatter and high positioning accuracy of the cutting edge can be provided. In addition, according to the cutting tip or cutting tool of the present invention, while expanding the nominal diameter and the dimensional range that can be handled by one blade portion, the thread shape and the like that are continuously high-precision even if worn every moment. The effect that it becomes possible to perform cutting processing is obtained.

(A)本発明の第一実施形態に係る切削用チップの斜視図である。(B)本発明の第一実施形態に係る切削用チップとチップホルダを組み合わせた状態の断面図である。(A) It is a perspective view of a cutting tip concerning a first embodiment of the present invention. (B) It is sectional drawing of the state which combined the cutting tip and chip holder which concerns on 1st embodiment of this invention. (A)本発明の第一実施形態に係る切削用チップの上面図である。(B)本発明の第一実施形態に係る切削用チップの下面図である。(C)本発明の第一実施形態に係る切削用チップの側面図である。(A) It is a top view of the cutting tip concerning the first embodiment of the present invention. (B) It is a bottom view of the cutting tip concerning a first embodiment of the present invention. (C) It is a side view of the cutting tip concerning the first embodiment of the present invention. (A)本発明の第二実施形態に係るチップホルダの斜視図である。(B)本発明の第二実施形態に係るチップホルダにおいて、先端にある切削チップを収容する収容孔近傍部分の断面図である。(C)本発明の第二実施形態に係るチップホルダの収容孔の拡大図である。(A) It is a perspective view of a tip holder concerning a second embodiment of the present invention. (B) In the tip holder concerning a second embodiment of the present invention, it is a sectional view of a portion near the accommodation hole which accommodates a cutting tip in a tip. (C) It is an enlarged view of an accommodation hole of a tip holder concerning a second embodiment of the present invention. (A)本発明の第二実施形態に係るチップホルダの上面図である。(B)本発明の第二実施形態に係るチップホルダの下面図である。(C)本発明の第二実施形態に係るチップホルダの図4(A)におけるC−C'矢視断面図である。(A) It is a top view of a chip holder concerning a second embodiment of the present invention. (B) It is a bottom view of a tip holder concerning a second embodiment of the present invention. FIG. 4C is a cross-sectional view of the tip holder according to the second embodiment of the present invention, taken along line CC ′ in FIG. (A)本発明の第一実施形態に係る切削用チップをチップホルダに差し込んだ状態の斜視図である。(B)本発明の第一実施形態に係る切削用チップをチップホルダに差し込んだ状態の断面図である。(A) It is a perspective view of the state where the cutting tip concerning a first embodiment of the present invention was inserted in the tip holder. (B) It is sectional drawing in the state where the cutting tip which concerns on 1st embodiment of this invention was inserted in the tip holder. 本発明の第一実施形態に係る切削用チップを、チップホルダから押し出して取り出すときの一連の流れを説明する説明図である。It is an explanatory view explaining a series of flows at the time of pushing out a cutting tip concerning a first embodiment of the present invention from a tip holder, and taking out. (A)雌ねじ切削をする際に切削用チップを固定するための、本発明の第四実施形態に係る、雌ねじ加工用チップホルダの側面図である。(B)雌ねじ加工用チップホルダに切削用チップを収容する収容孔の拡大図である。(C)雌ねじ加工用チップホルダ先端部の図7(A)におけるC−C'矢視断面図である。(A) It is a side view of a chip holder for female screw processing concerning a fourth embodiment of the present invention for fixing a cutting tip at the time of female screw cutting. (B) It is an enlarged view of the accommodation hole which accommodates a chip for cutting in a chip holder for internal thread processing. (C) It is sectional drawing of CC 'arrow in FIG. 7 (A) of the front-end | tip part for female screw processing. (A)本発明の第五実施形態に係る雌ねじ加工用チップホルダに切削用チップを差し込んだ状態の斜視図である。(B)本発明の第五実施形態である切削用バイトセットの図8(A)におけるB−B'矢視断面図である。(A) It is a perspective view of the state where a cutting tip was inserted in a tip holder for female threads concerning a fifth embodiment of the present invention. (B) It is the BB 'arrow sectional drawing in FIG.8 (A) of the cutting tool set which is 5th Embodiment of this invention. 本発明の第五実施形態に係る切削用バイトセットにおいて、切削用チップを、雌ねじ加工用チップホルダから押し出して取り出すときの一連の流れを説明する説明図である。It is an explanatory view explaining a series of flows at the time of pushing out a cutting tip from a female screw processing tip holder in a cutting tool set concerning a fifth embodiment of the present invention, and taking it out. (A)両ねじ体の雄ねじ部の側面図である。(B)雄ねじ体をねじの中心軸垂直方向に見たときのねじ山の説明図である。(A) It is a side view of the male screw part of both screw bodies. (B) It is explanatory drawing of a screw thread when an external thread body is seen in the perpendicular direction of the center axis of a screw. 本実施形態の切削工具で切削される雄ねじ体及び雌ねじ体の締結構造の(A)正面図であり、(B)平面図である。It is (A) front view of the fastening structure of the male screw body and the female screw body cut with the cutting tool of this embodiment, and is a (B) plan view. 同締結構造の(A)正面断面図であり、(B)側面断面図である。It is the (A) front sectional view of the same fastening structure, and is a (B) side sectional view. (A)は同雌ねじ体の正面断面図であり、(B)は同雌ねじ体と螺旋方向が逆となる雌ねじ体の正面断面図である。(A) is a front cross-sectional view of the female screw body, and (B) is a front cross-sectional view of the female screw body in which the spiral direction is opposite to that of the female screw body. 同雄ねじ体の(A)正面図、(B)ねじ山のみの断面図、(C)平面図である。It is (A) front view of the same male screw body, (B) sectional drawing only of a screw thread, (C) top view. 同雄ねじ体の(A)側面図、(B)ねじ山のみの断面図、(C)平面図である。FIG. 3A is a side view of the male screw body, FIG. 3B is a cross-sectional view of only the thread, and FIG. (A)は同雄ねじ体のねじ山の断面形状を拡大して示す断面図であり、(B)は同雌ねじ体のねじ山の断面形状を拡大して示す断面図である。(A) is a sectional view showing an enlarged sectional shape of a thread of the male screw body, and (B) is a sectional view showing an enlarged sectional shape of a thread of the female screw body. (A)は本発明の実施形態に係るねじ設計方法で用いられる検証用雄ねじ体群を示すマトリックスであり、(B)は本発明の実施形態に係るねじ設計方法で用いられる検証用雌ねじ体群を示すマトリックスである。(A) is a matrix showing a male screw body for verification used in the screw designing method according to the embodiment of the present invention, and (B) is a female screw body group for verification used in the screw designing method according to the embodiment of the present invention. FIG. 同検証用雄ねじ体と同検証用雌ねじ体の締結強度試験の態様を示す図である。It is a figure which shows the aspect of the fastening strength test of the male screw for verification and the female screw for verification. 呼び径N16の同検証用雄ねじ体と同検証用雌ねじ体の締結強度試験の結果を示すグラフである。It is a graph which shows the result of the fastening strength test of the same male screw body for verification of the nominal diameter N16, and the same internal thread body for verification. 呼び径N24の同検証用雄ねじ体と同検証用雌ねじ体の締結強度試験の結果を示すグラフである。It is a graph which shows the result of the fastening strength test of the same male screw body for verification of the nominal diameter N24, and the same internal thread body for verification. 呼び径N30の同検証用雄ねじ体と同検証用雌ねじ体の締結強度試験の結果を示すグラフである。It is a graph which shows the result of the fastening strength test of the male screw body for verification of the nominal diameter N30, and the female screw body for verification. 他の例に係る雄ねじ体及び雌ねじ体の締結構造の正面図断面図である。It is a front view sectional view of the conclusion structure of the male screw object and the female screw object concerning other examples. (A)従来のねじ切り用スローアウェイチップ使用態様の概念図である。(B)従来のねじ切り用スローアウェイチップの斜視図である。(A) It is a conceptual diagram of the conventional use form of the throw-away tip for thread cutting. (B) It is a perspective view of the conventional throw-away tip for thread cutting.

以下、本発明の実施の形態を添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1〜図9は発明を実施する形態の一例であって、図中、同一の符号を付した部分は同一物を表わす。なお、本図及び以降の各図において一部の構成を適宜省略して、図面を簡略化する。そして、本図及び以降の各図において、部材の大きさ、形状、厚みなどを適宜誇張して表現する。   1 to 9 show an example of an embodiment of the present invention. In the drawings, portions denoted by the same reference numerals represent the same items. Note that in this drawing and the following drawings, some components are appropriately omitted to simplify the drawings. In this drawing and the following drawings, the size, shape, thickness, and the like of members are appropriately exaggerated.

図1では、本発明の第一実施形態に係る切削用チップ(チップ、バイト)を説明する。本実施形態にかかるチップ1は図1(A)の斜視図に示すように、柱状の本体である本体部3と、上記本体の端部に位置され刃先を備える刃部2L1、2L2で構成される。チップ1の材質としては、硬さと粘りのバランスに優れる超硬合金が好ましい。その他の材質としては高速度鋼やサーメットなどが考えられ、刃部は、例えば、ダイヤモンド、DLC、DIA、DG、TiC、TiN、TiCN、TiAlN、CrN、SiC、等をコーティングしても良い。   FIG. 1 illustrates a cutting tip (tip, cutting tool) according to a first embodiment of the present invention. As shown in the perspective view of FIG. 1A, the tip 1 according to the present embodiment includes a main body 3 which is a columnar main body and blades 2L1 and 2L2 which are located at the ends of the main body and have cutting edges. You. As a material of the chip 1, a cemented carbide having an excellent balance between hardness and stickiness is preferable. Other materials include high-speed steel and cermet, and the blade may be coated with, for example, diamond, DLC, DIA, DG, TiC, TiN, TiCN, TiAlN, CrN, SiC, or the like.

本体部3における刃先2Bのすくい面2Aの幅方向Xの両外側に位置する周面には、それぞれ、チップ本体長手方向Yに平行となる仮想中心軸を有する部分円筒領域3Aが形成され(図1(B)参照)、チップ本体における、上記刃先2Bの相対すくい方向Xの両外側の少なくとも一方に位置する周面には、チップ本体長手方向Yに延びる一対の傾斜面4が形成される。上記一対の部分円筒領域3Aの曲率中心Cが互いに一致する。   Partial cylindrical regions 3A each having an imaginary central axis parallel to the chip body longitudinal direction Y are formed on peripheral surfaces located on both outer sides in the width direction X of the rake face 2A of the cutting edge 2B of the main body 3 (FIG. 1 (B)), a pair of inclined surfaces 4 extending in the longitudinal direction Y of the chip main body are formed on the peripheral surface of the chip main body located on at least one of both outer sides in the relative rake direction X of the cutting edge 2B. The centers of curvature C of the pair of partial cylindrical regions 3A coincide with each other.

図1(B)にチップ1と、チップを収容するホルダを組み合わせた状態の断面図を示す。チップ本体部3には、相対すくい方向Zと反対方向に上記一対の傾斜面4が形成されている。一対の傾斜面4は、上記の部分円筒領域3Aのチップ本体長手方向Yに直行する断面となる部分円弧の延長線上の円弧軌跡3Bよりも半径方向内側に形成されているので、いわゆる市販の完成バイトの丸バイトを研削することで容易に本実施形態にかかるチップ1を作成できる。図1(B)の断面図には、便宜上、チップ1の外側に、チップホルダのチップ収容孔を示しているが、チップ収容孔の内周とチップ1の外周は略同一の形状であり、後述のようにチップ収容孔が有するチップホルダの傾斜面(図示省略)とチップ1の有する傾斜面4が当接することで、チップ1の刃先2Bの位置がホルダ5に対して精度良く定まる。   FIG. 1B shows a cross-sectional view of a state in which the chip 1 and a holder for housing the chip are combined. The pair of inclined surfaces 4 are formed in the chip main body 3 in a direction opposite to the relative rake direction Z. Since the pair of inclined surfaces 4 are formed radially inward of the arc trajectory 3B on the extension of the partial arc that has a cross section orthogonal to the chip body longitudinal direction Y of the partial cylindrical region 3A, a so-called commercially available completed surface is formed. The chip 1 according to the present embodiment can be easily formed by grinding a round bit. In the cross-sectional view of FIG. 1B, for convenience, a chip receiving hole of the chip holder is shown outside the chip 1, but the inner periphery of the chip receiving hole and the outer periphery of the chip 1 have substantially the same shape. As described below, the position of the cutting edge 2B of the chip 1 is accurately determined with respect to the holder 5 by the contact between the inclined surface (not shown) of the chip holder of the chip housing hole and the inclined surface 4 of the chip 1.

図2(A)には、本発明の実施例に係るチップ1の上面図、図2(B)には、チップ1の下面図、図2(C)には、チップ1の側面図を示す。チップ1には、チップ本体長手方向Lの両端にそれぞれ刃部2L1、2L2が形成されている。刃部2L1,2L2の刃先2Bの先端形状は、相対すくい方向Zから視た場合に、チップ本体長手方向Yに延びる基準線に対して対称なV字形状である。勿論、特に限定される訳ではないが、ここでは、刃先2Bは二つの主切り刃2D1,2D2を対称に備える。   2A shows a top view of the chip 1 according to the embodiment of the present invention, FIG. 2B shows a bottom view of the chip 1, and FIG. 2C shows a side view of the chip 1. . The tip 1 has blade portions 2L1, 2L2 formed at both ends in the longitudinal direction L of the tip body. The tip shape of the cutting edge 2B of the blade portions 2L1 and 2L2 is a V-shape that is symmetric with respect to a reference line extending in the longitudinal direction Y of the chip body when viewed from the relative rake direction Z. Of course, although not particularly limited, the cutting edge 2B here has two main cutting blades 2D1, 2D2 symmetrically.

また図2(A)においては、刃部2L1、2L2のすくい面2Aには特に構造を設けていないが、旋削加工においてワークを削っている際、発生する切屑を処理するために、溝や突起構造を設けてチップブレーカとしても良い。また本体部3の上面には、図2(A)において何ら構造を設けていないが、チップ本体長手方向Yに延びる水平面を形成し、チップ1上部からの締め付け固定時に、鉛直下向きの力が伝達されやすいようにして、さらにびびり等の原因を排除するように構成しても良い。   In FIG. 2 (A), the rake face 2A of the blade portions 2L1 and 2L2 is not particularly provided with a structure. However, in order to treat chips generated when the work is cut in the turning process, grooves and projections are formed. A structure may be provided to provide a chip breaker. Although no structure is provided on the upper surface of the main body 3 in FIG. 2A, a horizontal plane extending in the longitudinal direction Y of the chip main body is formed, and a vertically downward force is transmitted when the chip 1 is tightened and fixed from above. It is also possible to adopt a configuration in which the cause of chattering and the like is further eliminated so as to be easily performed.

図2(B)の下面図に示すように、一対の傾斜面4の間には、底部6が設けられる。底部6の断面は上記部分円弧の延長線上の円弧軌跡3B(図1(B)参照)として形成される。従って、チップ1は、底部6によって本体長手方向Lに案内されながらホルダのチップ収容孔35に差し込まれ、一対の傾斜面4とチップホルダ5の傾斜面により、切削加工装置の回転主軸に対して直交する方向(ここではすくい面2Aの幅方向X及び相対すくい方向Z)に刃部2L1、2L2が精度良く位置決めされる。なお底面6については、チップ本体長手方向Yに延びる平面を形成してもよい。   As shown in the bottom view of FIG. 2B, a bottom 6 is provided between the pair of inclined surfaces 4. The cross section of the bottom 6 is formed as an arc locus 3B (see FIG. 1B) on an extension of the partial arc. Therefore, the chip 1 is inserted into the chip accommodating hole 35 of the holder while being guided in the longitudinal direction L of the main body by the bottom portion 6, and is formed by the pair of inclined surfaces 4 and the inclined surfaces of the chip holder 5 with respect to the rotating spindle of the cutting device. The blade portions 2L1 and 2L2 are accurately positioned in orthogonal directions (here, the width direction X of the rake face 2A and the relative rake direction Z). The bottom surface 6 may have a plane extending in the longitudinal direction Y of the chip body.

図2(C)に示すように、刃先2Bと本体部3の間には、外部部材(具体的にはチップホルダ)とチップ本体長手方向Yの一方に係合可能な第一位置決め面15L1、及び、外部部材と本体長手方向Yの他方に係合可能な第二位置決め面15L2が形成される。後述するチップホルダ25のチップ収容孔35内に設けられたホルダ側位置決め面60と、位置決め面15L1、15L2が当接することにより、切削抵抗の背分力によるチップ1のチップ本体長手方向Yにおけるワークと逆向きへのずれを防ぐことができる。   As shown in FIG. 2C, between the cutting edge 2B and the main body 3, a first positioning surface 15L1, which can be engaged with an external member (specifically, a chip holder) and one of the chip main body longitudinal directions Y, And the 2nd positioning surface 15L2 which can be engaged with an external member and the other of the main body longitudinal direction Y is formed. When the positioning surfaces 15L1 and 15L2 abut on the holder-side positioning surface 60 provided in the chip housing hole 35 of the chip holder 25, which will be described later, the work of the chip 1 in the chip body longitudinal direction Y due to the back force of the cutting resistance. And the displacement in the opposite direction can be prevented.

また刃先2Bの前逃げ角Aは、後述する雌ねじ穴加工時においてワークとの干渉を防ぐために、10°以上に設定される。なお、位置決め面15L1、15L2の高さ(ここでの高さは、相対すくい方向Zに沿っているが、位置決め面15L1、15L2が形成される位置によってその高さ方向は適宜異なる)は、本体部3の同高さ方向の最大外寸の40%以下に設定されることが好ましく、より望ましくは25%以下に設定される。同様に、位置決め面15L1、15L2の高さは、刃部2L1、2L2の同方向高さの最大外寸の50%以下に設定されることが好ましく、より望ましくは30%以下に設定される。いずれにしろ、位置決め面15L1、15L2の高さを小さく設定することで、刃部2L1、2L2の同方向高さを大きく確保することが可能となり、刃部2L1、2L2の剛性を大幅に高めることができる。   In addition, the front clearance angle A of the cutting edge 2B is set to 10 ° or more in order to prevent interference with a workpiece when a female screw hole described later is formed. The height of the positioning surfaces 15L1 and 15L2 (the height here is along the relative rake direction Z, but the height direction differs depending on the position where the positioning surfaces 15L1 and 15L2 are formed) is determined by the main body. It is preferably set to 40% or less of the maximum outer dimension of the portion 3 in the same height direction, and more preferably to 25% or less. Similarly, the height of the positioning surfaces 15L1, 15L2 is preferably set to 50% or less of the maximum outer dimension of the height of the blade portions 2L1, 2L2 in the same direction, and more preferably, to 30% or less. In any case, by setting the height of the positioning surfaces 15L1 and 15L2 small, it is possible to secure a large height in the same direction of the blades 2L1 and 2L2, and to greatly increase the rigidity of the blades 2L1 and 2L2. Can be.

図3では、本発明の第二実施形態に係るチップホルダ(バイトホルダ)を説明する。   FIG. 3 illustrates a tip holder (bite holder) according to a second embodiment of the present invention.

図3(A)は、本発明の第二実施形態に係るチップホルダ25の斜視図を示す。
チップホルダ25は、主に柱状のシャンク部27と、シャンク部27の端部のチップ収容孔35及びその下部に備えられた下あご部40と、締め付けボルトのボルト孔30等から構成される。チップ収容孔35の内部に、本発明の第一実施形態にかかるチップ1を差し込み固定することで切削用バイトセットを構成する。このとき、図4(C)に示すように、チップ1の刃先2Bの下部2Cを、下あご部40の支持面40Aの突端40Bが支持する。この支持構造により、切削抵抗の鉛直下向き分力である主分力によるチップ1のぶれを抑えることができる。なお、下あご部40の支持面40Aは、チップ収容孔35の下面から軸方向Lに連続して、かつ、シャンク部27から更に突出するようにして形成される。
FIG. 3A is a perspective view of a tip holder 25 according to the second embodiment of the present invention.
The tip holder 25 mainly includes a pillar-shaped shank 27, a tip receiving hole 35 at an end of the shank 27, a lower jaw 40 provided below the tip receiving hole 35, a bolt hole 30 for a fastening bolt, and the like. The cutting tool set is configured by inserting and fixing the chip 1 according to the first embodiment of the present invention into the chip housing hole 35. At this time, as shown in FIG. 4C, the lower end 2C of the cutting edge 2B of the tip 1 is supported by the protruding end 40B of the support surface 40A of the lower jaw 40. With this support structure, the tip 1 can be prevented from being displaced by the main component, which is the vertical component of the cutting resistance. The support surface 40 </ b> A of the lower jaw 40 is formed continuously from the lower surface of the chip receiving hole 35 in the axial direction L and further projects from the shank 27.

図3(B)は、本発明の第二実施形態に係るチップホルダ25先端部のチップホルダ本体軸方向Lと直交する方向の断面図を示す。チップ収容孔35の拡大図を図3(C)に示す。チップ収容孔35には、チップが挿入された場合を仮定した際に、当該チップの仮想すくい面の幅方向Xの両側に位置する内周面に、部分円筒領域42Aが形成される。この部分円筒領域42Aの曲率中心は、このチップ収容孔35の軸方向に平行となる仮想中心軸Cと一致する。相対すくい方向Hの両側の少なくとも一方に位置する内周面には、チップ収容孔35の仮想中心軸Cと平行に延びる一対の傾斜面45が形成される。この一対の傾斜面45は、チップ収容孔35の内周に形成された部分円筒領域42Aの仮想中心軸に直交する断面において、部分円筒領域42Aの延長線上となる部分円弧軌跡42Bよりも半径方向内側に形成される。チップホルダの傾斜面45は、チップ収容孔35の仮想中心軸に対して対称に形成され、また一対の部分円筒領域42Aの曲率中心は互いに仮想中心軸Cと一致する。また本第二実施形態に係るチップホルダ25は、チップ収容孔35の傾斜面45に対向する場所において、シャンク部27の外周面からチップ収容孔35へ貫通するボルト孔30を有している。このボルト孔30に対して、外部から、締め付けねじ70を螺合させてチップ収容孔35内に突出させることによってチップ1を締め付け固定する。   FIG. 3B is a cross-sectional view of a tip end portion of the tip holder 25 according to the second embodiment of the present invention in a direction orthogonal to the axial direction L of the tip holder main body. An enlarged view of the chip receiving hole 35 is shown in FIG. Assuming that a chip is inserted into the chip receiving hole 35, a partial cylindrical region 42A is formed on the inner peripheral surface located on both sides in the width direction X of the virtual rake surface of the chip. The center of curvature of the partial cylindrical region 42A coincides with the virtual center axis C that is parallel to the axial direction of the chip receiving hole 35. A pair of inclined surfaces 45 extending parallel to the virtual center axis C of the chip receiving hole 35 are formed on the inner peripheral surface located on at least one of both sides in the relative rake direction H. The pair of inclined surfaces 45 are, in a cross section orthogonal to the virtual center axis of the partial cylindrical region 42A formed on the inner periphery of the chip receiving hole 35, more radially than the partial arc trajectory 42B which is an extension of the partial cylindrical region 42A. Formed inside. The inclined surface 45 of the chip holder is formed symmetrically with respect to the virtual center axis of the chip receiving hole 35, and the centers of curvature of the pair of partial cylindrical regions 42A coincide with the virtual center axis C. Further, the chip holder 25 according to the second embodiment has a bolt hole 30 penetrating from the outer peripheral surface of the shank portion 27 to the chip receiving hole 35 at a position facing the inclined surface 45 of the chip receiving hole 35. The chip 1 is tightened and fixed by screwing a tightening screw 70 from the outside into the bolt hole 30 and projecting into the chip housing hole 35.

図4(A)は、本発明の第二実施形態に係るチップホルダ25の上面図を示す。シャンク部27の軸方向の端部には、下あご部40が突出するように設けられる。この下あご部40は、チップ1の刃先2Bの下部2Cを、ワークに対する刃先2Bの進行方向に向かって支持する。また、シャンク部27の軸方向の端部近傍には、ボルト孔30と、チップの押し出し孔50が備えられている。なお、押し出し孔50は、横断面円形状の孔の他、横断面多角形状の孔であってもよく、或いは、ねじ孔としてもよい。図4(A)のC−C'断面図を図4(C)に示す。チップ収容孔35の内部にはホルダ側位置決め面60が設けられ、チップ収容孔35に差し込まれたチップ1の位置決め面15L1または15L2と当接することで、チップ1の刃先2Bが、チップ1の長手方向Yに位置決めされる。   FIG. 4A shows a top view of the tip holder 25 according to the second embodiment of the present invention. At the axial end of the shank 27, a lower jaw 40 is provided so as to protrude. The lower jaw 40 supports the lower portion 2C of the cutting edge 2B of the tip 1 in the direction in which the cutting edge 2B moves with respect to the workpiece. In the vicinity of the axial end of the shank 27, a bolt hole 30 and a tip extrusion hole 50 are provided. Note that the extrusion hole 50 may be a hole having a polygonal cross section, or a screw hole, other than a hole having a circular cross section. FIG. 4C is a cross-sectional view taken along the line CC ′ of FIG. A holder-side positioning surface 60 is provided inside the chip receiving hole 35, and by contacting the positioning surface 15 L 1 or 15 L 2 of the chip 1 inserted into the chip receiving hole 35, the cutting edge 2 B of the chip 1 becomes longer in the longitudinal direction of the chip 1. It is positioned in the direction Y.

図5(A)は、本発明の第三実施形態に係る、チップ1とチップホルダ25の組み合わせからなる切削用バイトセットの先端近傍を示す斜視図である。チップ1はチップホルダ25のチップ収容孔35に差し込まれ、刃先2Bの下部2Cが下あご部40で鉛直上向き(相対すくい方向H)に支持された状態で、締め付けねじ70により固定締め付けされる。チップホルダ25は、ねじ切り加工をおこなう装置の刃物台(図示省略)に固定され、切削加工が可能になる。チップ1が欠損、摩耗したときは交換される。   FIG. 5A is a perspective view showing the vicinity of the tip of a cutting tool set including a combination of the tip 1 and the tip holder 25 according to the third embodiment of the present invention. The tip 1 is inserted into the tip accommodating hole 35 of the tip holder 25, and is fixedly fastened by the fastening screw 70 in a state where the lower portion 2C of the cutting edge 2B is supported vertically upward (relative rake direction H) by the lower jaw portion 40. The tip holder 25 is fixed to a tool rest (not shown) of a device for performing a thread cutting process, and a cutting process is enabled. When the chip 1 is missing or worn, it is replaced.

図5(B)に、切削用バイトセットの断面図を示す。チップ1の位置決め面15L1と、チップホルダ25のホルダ側位置決め面60が当接することで、チップ1がチップ1の長手方向Lについて位置決めされる。ボルト孔30と、締め付けねじ70により、チップ1が固定される。なお図5(B)ではチップ1の刃先2Bの前逃げ角Aと、チップホルダ25先端部の下あご部40の稜線40Cの逃げ角は等しいが、異なっても良い。ただし刃先のびびりを防ぐためには、チップ1の刃先2Bの下部2Cは、下部2Cと同じようにV字状に突出する下あご部40により鉛直上向きに支持されることが望ましい。チップホルダ25先端の横逃げ角についても、チップ1の横逃げ角と同じであることが望ましいが、異なっていても良い。   FIG. 5B is a sectional view of a cutting tool set. When the positioning surface 15L1 of the chip 1 and the holder-side positioning surface 60 of the chip holder 25 are in contact with each other, the chip 1 is positioned in the longitudinal direction L of the chip 1. The chip 1 is fixed by the bolt holes 30 and the fastening screws 70. In FIG. 5B, the front clearance angle A of the cutting edge 2B of the tip 1 and the clearance angle of the ridge 40C of the lower jaw 40 at the tip of the tip holder 25 are equal, but may be different. However, in order to prevent chattering of the cutting edge, the lower portion 2C of the cutting edge 2B of the tip 1 is desirably supported vertically upward by a V-shaped lower jaw portion 40, like the lower portion 2C. The lateral clearance angle at the tip of the tip holder 25 is desirably the same as the lateral clearance angle of the chip 1, but may be different.

チップホルダ25の本体には、押し出し孔50が前記収容孔の軸Lと平行方向で切削用チップの刃先向きに備えられる。ただし必ずしも平行である必要は無く、チップを押し出せれば良い。   In the main body of the tip holder 25, an extrusion hole 50 is provided in the direction parallel to the axis L of the accommodation hole and facing the cutting edge of the cutting tip. However, they need not necessarily be parallel, and it is only necessary that the chips can be pushed out.

次に、上記した第三実施形態におけるチップ1のチップホルダ25からの取り出しの作動を説明する。   Next, the operation of removing the chip 1 from the chip holder 25 in the third embodiment will be described.

図6は、チップ1を、チップホルダ25から押し出して取り出すときの一連の流れを説明する説明図である。図6(A)のようにチップ1がチップホルダ25のチップ収容孔35に収容されている状態において、締め付けねじ70の締め付けを緩めた上で、押し出し孔50から押し出し棒80を差し込み押し出し棒80の一方の端部をハンマー75で打撃する。すると図6(B)の矢印方向にチップ1が押し出されて行き、図6(C)のように、チップ1がチップ収容孔35から取り出されることになる。   FIG. 6 is an explanatory diagram illustrating a series of flows when the chip 1 is pushed out of the chip holder 25 and taken out. In the state where the chip 1 is housed in the chip housing hole 35 of the chip holder 25 as shown in FIG. 6 (A), after tightening the tightening screw 70, the push rod 80 is inserted through the push hole 50, and the push rod 80 is inserted. Is hit with a hammer 75 at one end. Then, the chip 1 is pushed out in the direction of the arrow in FIG. 6B, and the chip 1 is taken out from the chip housing hole 35 as shown in FIG. 6C.

図7では、本発明の第四実施形態に係る雌ねじ加工用チップホルダ(バイトホルダ)87を説明する。このチップホルダ87は、チップ1を雌ねじ加工する際に用いる。図7(A)は、チップホルダ87の側面図を示す。チップホルダ87の端部には、チップホルダ87の本体長手方向Lと直交する方向にチップ収容孔85が備えられ、チップ収容孔85の下部に連続するようにして、かつ、チップホルダ87の本体長手方向Lの側壁から幅方向外側に突出するようにして下あご部90が設けられている。   FIG. 7 illustrates a tip holder (bite holder) 87 for processing internal threads according to a fourth embodiment of the present invention. The tip holder 87 is used when the tip 1 is internally threaded. FIG. 7A shows a side view of the tip holder 87. At the end of the chip holder 87, a chip receiving hole 85 is provided in a direction orthogonal to the longitudinal direction L of the main body of the chip holder 87 so as to be continuous with the lower part of the chip receiving hole 85. The lower jaw portion 90 is provided so as to protrude outward in the width direction from the side wall in the longitudinal direction L.

図7(B)は、チップを収容するチップ収容孔85の軸方向(チップホルダ87の幅方向W)に直行する断面の拡大図である。チップ収容孔85には、そこに収容されるチップの仮想幅方向X(これは本体長手方向Lと一致する)の両側に位置する内周面に、チップ収容孔85の軸方向Wに平行となる仮想中心軸Cを有する部分円筒領域92Aが形成される。またチップ収容孔85には、相対すくい方向Hの両側の少なくとも一方に位置する内周面に、チップ収容孔85の軸方向Wと平行な方向に伸びる一対の傾斜面95が形成される。この一対の傾斜面95は、チップ収容孔85の内周に形成された部分円筒領域92Aの仮想中心軸Cに直交する断面において、部分円筒領域42Aの延長線上となる部分円弧軌跡92Bよりも半径方向内側に形成される。雌ねじ加工用チップホルダ87の傾斜面95は、チップ収容孔85の仮想中心軸Cに対して対称に形成され、また上記一対の部分円筒領域92Aの曲率中心がこの仮想中心軸Cに一致する。また本第四実施形態に係る雌ねじ加工用チップホルダ87は、傾斜面95に対向するシャンク部88の外周面に、チップ収容孔85へ貫通するボルト孔100を有し、ボルトによってチップ1を締め付け固定する。   FIG. 7B is an enlarged view of a cross section orthogonal to the axial direction of the chip housing hole 85 for housing the chip (the width direction W of the chip holder 87). The chip accommodation hole 85 has an inner peripheral surface located on both sides in a virtual width direction X (which coincides with the longitudinal direction L of the main body) of the chip accommodated therein, which is parallel to the axial direction W of the chip accommodation hole 85. A partial cylindrical region 92A having the virtual center axis C is formed. A pair of inclined surfaces 95 extending in a direction parallel to the axial direction W of the chip accommodation hole 85 are formed on the inner peripheral surface of at least one of both sides in the relative rake direction H of the chip accommodation hole 85. The pair of inclined surfaces 95 has a radius larger than a partial arc trajectory 92B which is an extension of the partial cylindrical region 42A in a cross section orthogonal to the virtual center axis C of the partial cylindrical region 92A formed on the inner periphery of the chip housing hole 85. It is formed inside the direction. The inclined surface 95 of the female screw processing chip holder 87 is formed symmetrically with respect to the virtual center axis C of the chip accommodation hole 85, and the center of curvature of the pair of partial cylindrical regions 92A coincides with the virtual center axis C. The female screw processing tip holder 87 according to the fourth embodiment has a bolt hole 100 that penetrates into the chip receiving hole 85 on the outer peripheral surface of the shank portion 88 facing the inclined surface 95, and fastens the chip 1 with a bolt. Fix it.

図7(C)は、雌ねじ加工用チップホルダ87の先端部のチップホルダ本体長手方向Lと直交する面の断面図である。雌ねじ加工用チップホルダ87の軸直角方向断面の外周輪郭はほぼ円形ではあるが、この外周面に対して、下あご部90が幅方向W(半径方向)外側に突出して形成される。この下あご部90は、同じく外周面から突出するチップ1の刃先2Bの下部2Cを鉛直上向き(相対すくい方向Hの上向き)に支持する構造となっている。下あご部90はチップ収容孔85の下部延長上に設けられる。後述するように、チップ1は、チップ収容孔85に収容され、チップ1の位置決め面15L1は、チップ収容孔85内のホルダ側位置決め面105に当接され、チップ1の長手方向の位置決めが精度良く行われる。   FIG. 7C is a cross-sectional view of the tip of the female screw processing tip holder 87 taken along a plane orthogonal to the chip holder main body longitudinal direction L. Although the outer peripheral profile of the cross section in the direction perpendicular to the axis of the female screw processing tip holder 87 is substantially circular, the lower jaw portion 90 is formed to protrude outward in the width direction W (radial direction) with respect to this outer peripheral surface. The lower jaw portion 90 has a structure for supporting the lower portion 2C of the cutting edge 2B of the tip 1 projecting from the outer peripheral surface in a vertically upward direction (upward in the relative rake direction H). The lower jaw portion 90 is provided on a lower extension of the chip receiving hole 85. As described later, the chip 1 is housed in the chip housing hole 85, and the positioning surface 15L1 of the chip 1 is brought into contact with the holder-side positioning surface 105 in the chip housing hole 85, so that the positioning of the chip 1 in the longitudinal direction is accurate. Well done.

図8(A)は、本発明の第五実施形態である、雌ねじ加工用チップホルダ87にチップ1を差し込んだ切削用バイトセットの先端近傍を表した斜視図を示す。雌ねじ加工用チップホルダ87の先端部には、チップ収容孔85が設けられ、その中にチップ1が差し込まれている。チップ1の刃先2Bの下部2Cは、雌ねじ加工用チップホルダ87外周面に設けられた下あご部90により鉛直上向きに支持されている。   FIG. 8A is a perspective view showing the vicinity of the tip end of a cutting tool set in which the tip 1 is inserted into the tip holder 87 for internal thread machining according to the fifth embodiment of the present invention. A tip accommodation hole 85 is provided at the tip of the tip holder 87 for internal thread processing, into which the tip 1 is inserted. The lower portion 2C of the cutting edge 2B of the tip 1 is supported vertically upward by a lower jaw 90 provided on the outer peripheral surface of the tip holder 87 for female screw machining.

図8(B)に示すように、チップ1の位置決め面15L1はチップ収容孔85内のホルダ側位置決め面105に当接されることで、チップ1の刃先の突出方向の位置が精度良く定まり、加工中においても、同突出方向に位置ずれが生じにくい。すなわちホルダ側位置決め面105は、切削抵抗の背分力によるチップ1のずれを防ぐことができる。また、締め付けねじ110により、チップ1の傾斜面4がチップホルダ87の傾斜面95と当接し、刃先の幅方向の位置が精度良く定まる。また、刃先2Bの下部2Cが下あご部90で支持されることで、びびりやずれを最小限に押さえ込むことができる。   As shown in FIG. 8 (B), the positioning surface 15L1 of the chip 1 is brought into contact with the holder-side positioning surface 105 in the chip housing hole 85, so that the position of the cutting edge of the chip 1 in the projecting direction is accurately determined, Even during processing, displacement is unlikely to occur in the same protruding direction. That is, the holder-side positioning surface 105 can prevent the tip 1 from shifting due to the back force of the cutting resistance. In addition, the inclined surface 4 of the tip 1 comes into contact with the inclined surface 95 of the tip holder 87 by the tightening screw 110, and the position of the cutting edge in the width direction is accurately determined. Further, since the lower portion 2C of the cutting edge 2B is supported by the lower jaw portion 90, chatter and displacement can be suppressed to a minimum.

図9は、雌ねじ加工用チップホルダ87からチップ1を取り出す一連の流れを説明する説明図である。   FIG. 9 is an explanatory diagram illustrating a series of flows for taking out the chip 1 from the chip holder 87 for internal thread processing.

図9(A)のようにチップ1が雌ねじ加工用チップホルダ87のチップ収容孔85に収容されている状態において、締め付けねじ110の締め付けを緩めた上で、チップ収容孔85を介して、切削していない側(下あご部90と反対側)の刃部2L1、2L2の下の逃げ面を、下あご部90側に押す。結果、図9(B)の矢印方向にチップ1が押し出されて行き、図9(C)のように、チップ1がチップ収容孔85から取り出される。なお本実施形態では、雌ねじ加工用チップホルダ87にチップ1の専用押し出し孔を設けていないが、チップ収容孔85を貫通させずに、小径の専用押し出し穴を設けて、雄ねじ加工用のチップホルダ25における図6と同様に、押し出し棒80を使用してチップ1を押し出すようにしても良い。この場合、チップ収容孔85の貫通孔の切削側でない開口部から切屑が入り込む不具合が解消される。   As shown in FIG. 9A, in a state where the chip 1 is housed in the chip housing hole 85 of the female screw processing chip holder 87, the tightening of the tightening screw 110 is loosened, and the cutting is performed through the chip housing hole 85. The flank below the blade portions 2L1 and 2L2 on the side that is not formed (the side opposite to the lower jaw portion 90) is pushed toward the lower jaw portion 90. As a result, the chip 1 is pushed out in the direction of the arrow in FIG. 9B, and the chip 1 is taken out from the chip housing hole 85 as shown in FIG. 9C. In the present embodiment, the female screw processing chip holder 87 is not provided with a dedicated extrusion hole for the chip 1, but is provided with a small-diameter dedicated extrusion hole without penetrating the chip housing hole 85, and is provided with a male screw processing chip holder. As in FIG. 6 at 25, the tip 1 may be pushed out using a push rod 80. In this case, the problem that chips enter from the opening of the through hole of the chip receiving hole 85 which is not on the cutting side is eliminated.

次に本第一実施形態から第五実施形態の切削用チップ、チップホルダ、バイトセットで加工される締結構造の一つとして、ボルト等のいわゆる雄ねじ体と、ナット等のいわゆる雌ねじ体を用いるものを紹介しておく。   Next, as one of the fastening structures processed by the cutting tip, the tip holder, and the bite set of the first to fifth embodiments, a so-called male screw body such as a bolt and a so-called female screw body such as a nut are used. I will introduce.

このねじ体による締結構造に関して、一つの雄ねじ体に対して、リード角及び/又はリード方向が相異なる二種類の螺旋溝(例えば右雄ねじ部と左雄ねじ部)を形成し、この二種類の螺旋溝に対して、ダブルナットのごとく、二種類の雌ねじ体(例えば右雌ねじ体と左雌ねじ体)を別々に螺合させるものがある。何らかの係合手段により、二種類の雌ねじ体の相対回転を抑止すれば、リード角及び/又はリード方向が相異なることによる軸方向干渉作用又は軸方向離反作用により、雄ねじとの間で機械的な緩み止め効果を提供できる。   With regard to the fastening structure using this screw body, two types of spiral grooves (for example, a right male screw part and a left male screw part) having different lead angles and / or lead directions are formed for one male screw body, and these two types of spirals are formed. There is a type in which two types of female screw bodies (for example, a right female screw body and a left female screw body) are separately screwed into a groove like a double nut. If the relative rotation of the two types of female screw bodies is suppressed by some kind of engagement means, mechanical interference between the male screw and the male screw is caused by an axial interference action or an axial separation action caused by different lead angles and / or lead directions. It can provide a locking effect.

図10(A)は、両ねじ体であり、一つの雄ねじ体に対して、リード方向が相異なる二種類の螺旋溝(右雄ねじ部と左雄ねじ部)を形成したものである。   FIG. 10A shows a double threaded body in which two types of spiral grooves (right male thread and left male thread) having different lead directions are formed in one male thread.

雄ねじ体140は、基部側から軸端に向かって、雄ねじ螺旋構造が形成された雄ねじ部153が設けられる。この例では、この雄ねじ部153に、対応した右ねじとして成る雌ねじ状の螺旋条を螺合可能に構成される右ねじと成る第一雄ねじ螺旋構造154と、対応した左ねじとして成る雌ねじ状の螺旋条を螺合可能に構成される左ねじと成る第二雄ねじ螺旋構造155との二種類の雄ねじ螺旋構造が同一領域上に重複して形成される。雄ねじ部153には、図10(B)に示すように、軸心(ねじ軸)Cに垂直となる面方向において周方向に延びる略三日月状のねじ山153aが、雄ねじ部153の一方側(図の左側)及び他方側(図の右側)に交互に設けられる。ねじ山153aをこのように構成することで、右回りに旋回する螺旋構造及び左回りに旋回する螺旋構造の二種類の螺旋溝を、ねじ山53aの間に形成することが出来る。   The male screw body 140 is provided with a male screw part 153 having a male screw spiral structure formed from the base side toward the shaft end. In this example, the male screw portion 153 has a first male screw spiral structure 154 serving as a right screw configured to be capable of being screwed with a corresponding female screw spiral thread serving as a corresponding right screw, and a female screw shaped screw member serving as a corresponding left screw. Two types of male screw helical structures including a second male screw helical structure 155 serving as a left-handed screw configured to be capable of screwing a helical thread are formed overlapping on the same region. As shown in FIG. 10 (B), a substantially crescent-shaped screw thread 153a extending in the circumferential direction in a plane direction perpendicular to the axis (screw axis) C is provided on the male screw part 153 on one side of the male screw part 153. It is provided alternately on the left side in the figure) and on the other side (right side in the figure). By configuring the thread 153a in this way, two types of spiral grooves, a spiral structure that rotates clockwise and a spiral structure that rotates counterclockwise, can be formed between the threads 53a.

このようにすることで、第一雄ねじ螺旋構造154及び第二雄ねじ螺旋構造155の二種類の雄ねじ螺旋構造を、雄ねじ体140に形成している。従って、雄ねじ体140は、右ねじ及び左ねじの何れの雌ねじ体とも螺合することが可能となる。   In this way, two types of male screw spiral structures, the first male screw spiral structure 154 and the second male screw spiral structure 155, are formed in the male screw body 140. Therefore, the male screw body 140 can be screwed with any of the female screw bodies of the right-hand thread and the left-hand thread.

このような二重螺旋構造(両ねじ体)を用いて、緩みのない締結構造を実用的な強度で実現するためには、本願発明者の鋭意研究の成果である特許第4663813号公報等に記載された、軸に直行する断面が略楕円形であるような特殊なねじ山が効果的である(図10(B)参照)。   In order to realize a fastening structure without looseness with practical strength by using such a double helix structure (both screw bodies), Japanese Patent No. 4663813 and the like, which are the result of earnest research by the present inventors, have been proposed. The special thread described, whose cross section perpendicular to the axis is substantially elliptical, is effective (see FIG. 10B).

本発明の第一実施形態に係る切削用チップ1の刃部2L1、2L2が、前述のように図2(A)における相対すくい方向Zから視た場合に、チップ本体長手方向Yに延びる基準線に対して対称、即ち刃先から見て二つの主切り刃2D1、2D2を対称に備えることは、リード方向が異なる2つの螺旋条を形成するときに、送り方向のみ逆転させてねじの切削加工を可能にするために好ましい。具体的には本形状により、ラジアルインフィードで仕上げることを可能にする。ただしインフィードの方法は、ラジアルインフィードに限られないので、二つの主切り刃の角度は、必ずしも同じでなくて良い。   The reference line extending in the longitudinal direction Y of the chip main body when the blade portions 2L1 and 2L2 of the cutting tip 1 according to the first embodiment of the present invention are viewed from the relative rake direction Z in FIG. Symmetrical, that is, providing two main cutting blades 2D1 and 2D2 symmetrically when viewed from the cutting edge means that when two spiral strips having different lead directions are formed, only the feed direction is reversed to cut the screw. Preferred to allow. Specifically, this shape enables finishing with radial infeed. However, since the method of infeed is not limited to radial infeed, the angles of the two main cutting edges need not necessarily be the same.

以上、本発明に係る切削用チップおよびチップホルダにおける実施形態について説明したが、本発明は説明した実施形態に限定されるものではなく、各請求項に記載した範囲において各種の変形を行うことが可能である。例えば、図4(B)等において、チップホルダ25の本体に対して、チップ収容孔35は、チップホルダ25本体長手方向Lに平行方向に設けているように表現したが、鉛直方向に傾斜していてもよい。また雌ねじ加工用チップホルダ87のチップ収容孔85は、雌ねじ加工用チップホルダ87本体長手方向Lと直交する向きに設けているように図7(A)では表現したが、これに限られない。   As described above, the embodiments of the cutting tip and the tip holder according to the present invention have been described. However, the present invention is not limited to the described embodiments, and various modifications can be made within the scope described in each claim. It is possible. For example, in FIG. 4 (B) and the like, the chip housing hole 35 is expressed as being provided in a direction parallel to the longitudinal direction L of the chip holder 25 main body with respect to the main body of the chip holder 25, but is inclined in the vertical direction. May be. Further, although the tip housing hole 85 of the female screw processing tip holder 87 is shown in FIG. 7A as being provided in a direction orthogonal to the longitudinal direction L of the female screw processing chip holder 87 main body, the present invention is not limited to this.

次に、ねじ体を切削する際に適用される上記チップ1の刃先2Bの角度について説明する。なお、この刃先2Bの角度は、ねじ体のねじ山角によって決まることから、ここでは、ねじ体のねじ山角について説明する。   Next, the angle of the cutting edge 2B of the tip 1 applied when cutting a screw body will be described. Since the angle of the cutting edge 2B is determined by the thread angle of the screw body, the thread angle of the screw body will be described here.

<雄ねじ体及び雌ねじ体>
図11及び図12に示すように、被加工物となる雄ねじ体1010及び雌ねじ体1100の締結構造1001は、雌ねじ体1100を雄ねじ体1010に螺合させることによって構成される。
<Male and female threads>
As shown in FIGS. 11 and 12, the fastening structure 1001 of the male screw body 1010 and the female screw body 1100 to be processed is formed by screwing the female screw body 1100 to the male screw body 1010.

図14及び図15に示すように、雄ねじ体1010は、軸部1012における基部側から軸端に向かって、雄ねじ螺旋溝が形成された雄ねじ部1013が設けられる。本実施形態では、この雄ねじ部1013に、対応した右ねじとして成る雌ねじ状の螺旋条を螺合可能に構成される右ねじと成る第一螺旋溝1014と、対応した左ねじとして成る雌ねじ状の螺旋条を螺合可能に構成される左ねじと成る第二螺旋溝1015との二種類の雄ねじ螺旋溝が、雄ねじ体1010の軸方向における同一領域上に重複して形成される。なお、当該重複部分以外に、一方の向きの螺旋溝が形成されて成る片螺旋溝領域を設けてもよい。   As shown in FIGS. 14 and 15, the male screw body 1010 is provided with a male screw part 1013 in which a male screw spiral groove is formed from the base side of the shaft part 1012 toward the shaft end. In the present embodiment, the male screw portion 1013 is provided with a first screw groove 1014 serving as a right screw configured to be capable of being screwed with a corresponding female screw spiral thread serving as a right-hand screw, and a female screw-shaped screw driver serving as a corresponding left screw. Two types of male screw spiral grooves, such as a left spiral screw 1015 which is a left-hand screw configured to be able to screw a spiral strip, are formed so as to overlap on the same region in the axial direction of the male screw body 1010. In addition to the overlapping portion, a single spiral groove region in which a spiral groove in one direction is formed may be provided.

第一螺旋溝1014は、これに対応する雌ねじ体1100の右ねじとして成る雌ねじ状の螺旋条と螺合可能であり、第二螺旋溝1015は、これに対応する雌ねじ体1100(これは、上記右ねじを有する雌ねじ体と別体の場合を含む)の左ねじとして成る雌ねじ状の螺旋条と螺合可能となる。   The first helical groove 1014 can be screwed with a corresponding female threaded helical thread serving as the right-hand thread of the corresponding female screw body 1100, and the second helical groove 1015 can be screwed with the corresponding female screw body 1100 (which is (Including a female screw body having a right-hand thread and a separate screw) (see FIG. 1).

雄ねじ部1013には、図14(C)及び図15(C)に示すように、軸心(ねじ軸)Cに垂直となる面方向において周方向に延びる略三日月状の条状を成すねじ山Gが、雄ねじ部1013の直径方向における一方側(図の左側)及び他方側(図の右側)に交互に設けられる。即ち、このねじ山Gは、その稜線が軸に対して垂直に延びており、ねじ山Gの高さは、周方向中央が高くなり、周方向両端が次第に低くなるように変化する。ねじ山Gをこのように構成することで、右回りに旋回する仮想的な螺旋溝構造(図14(A)の矢印1014参照)及び左回りに旋回する仮想的な螺旋溝構造(図14(A)の矢印15参照)の二種類の螺旋溝を、ねじ山Gの間に形成することが出来る。   As shown in FIGS. 14C and 15C, the male screw portion 1013 has a substantially crescent-shaped thread extending in the circumferential direction in a plane perpendicular to the axis (screw axis) C. The ridges G are provided alternately on one side (the left side in the drawing) and the other side (the right side in the drawing) in the diametric direction of the male screw portion 1013. That is, the thread G has its ridge line extending perpendicular to the axis, and the height of the thread G changes so that the center in the circumferential direction is higher and both ends in the circumferential direction are gradually lower. By configuring the thread G in this manner, a virtual spiral groove structure that turns clockwise (see an arrow 1014 in FIG. 14A) and a virtual spiral groove structure that turns counterclockwise (see FIG. Two types of spiral grooves (see arrow 15 in A)) can be formed between the threads G.

本実施形態では、このようにすることで、第一螺旋溝1014及び第二螺旋溝1015の二種類の雄ねじ螺旋溝を、雄ねじ部1013に重畳形成している。従って、雄ねじ部1013は、右ねじ及び左ねじの何れの雌ねじ体とも螺合することが可能となる。なお、二種類の雄ねじ螺旋溝が形成された雄ねじ部1013の詳細については、本願の発明者に係る特許第4663813号公報を参照されたい。   In the present embodiment, in this manner, two types of male screw spiral grooves, the first spiral groove 1014 and the second spiral groove 1015, are formed so as to overlap the male screw portion 1013. Therefore, the male screw portion 1013 can be screwed with any of the right-handed screw and the left-handed screw. For details of the male screw portion 1013 in which two types of male screw spiral grooves are formed, refer to Japanese Patent No. 4663813 according to the inventor of the present application.

図13(A)に示すように、雌ねじ体1100は、筒状部材1106で構成される。筒状部材1106は、所謂六角ナット状を成しており、中心に貫通孔部1106aを有する。勿論、雌ねじ体1100の概形は、六角ナット状に限らず、円筒状、周面にローレットを有する形状、四角形状、星型形状など任意に適宜設定可能である。貫通孔部1106aには、右ねじとしての第一雌ねじ螺旋条1114が形成される。即ち、筒状部材1106の第一雌ねじ螺旋条1114は、雄ねじ体1010の雄ねじ部1013における第一螺旋溝1014と螺合する。   As shown in FIG. 13A, the female screw body 1100 includes a tubular member 1106. The cylindrical member 1106 has a so-called hexagonal nut shape, and has a through hole 1106a at the center. Of course, the general shape of the female screw body 1100 is not limited to a hexagonal nut shape, but can be arbitrarily set as appropriate, such as a cylindrical shape, a shape having knurls on the peripheral surface, a square shape, and a star shape. A first female screw spiral thread 1114 as a right-hand thread is formed in the through hole 1106a. That is, the first female screw spiral strip 1114 of the tubular member 1106 is screwed with the first spiral groove 1014 of the male screw portion 1013 of the male screw body 1010.

なお、図13(B)に示すように、雌ねじ体1101として、貫通孔部1106aに左ねじとしての第二雌ねじ螺旋条1115が形成されるようにしても良い。この場合は、第二雌ねじ螺旋条1115は、雄ねじ体1010の雄ねじ部13における第二螺旋溝1015と螺合する。   As shown in FIG. 13B, as the female screw 1101, a second female screw spiral strip 1115 as a left-hand thread may be formed in the through hole 1106a. In this case, the second female screw spiral strip 1115 is screwed with the second spiral groove 1015 in the male screw portion 13 of the male screw body 1010.

次に、図16(A)を参照して、雄ねじ体1010における雄ねじ部1013に形成されるねじ山Gの軸方向に沿う断面を軸直交方向視する際の形状について説明する。   Next, with reference to FIG. 16 (A), a description will be given of a shape of a cross section along the axial direction of a thread G formed in the male screw portion 1013 of the male screw body 1010 when viewed in the direction perpendicular to the axis.

また、図16(B)に示す、雌ねじ体1100の第一雌ねじ螺旋条1114及び/又は雌ねじ体1101の第二雌ねじ螺旋条1115のねじ山Pの形状は、雄ねじ体1010のねじ山Gの形状に基づいて相対設定されるものであることから、ここでの詳細な説明を省略する。   Further, the shape of the thread P of the first female screw spiral strip 1114 of the female screw body 1100 and / or the shape of the thread P of the second female screw spiral strip 1115 of the female screw body 1101 shown in FIG. Since they are set relative to each other, a detailed description is omitted here.

更にまた、本実施形態の雄ねじ体1010の呼び径については、頭文字にNを付けて呼ぶことにする。例えば、N16の雄ねじ体1010の場合は、ねじ山Gの頂点Gtにおける直径Fが16mmであることを意味し、N16の雌ねじ体1100の場合は、ねじ山の谷の径が16mmであることを意味する。   Furthermore, the nominal diameter of the male screw body 1010 of the present embodiment will be referred to by adding N to the initials. For example, in the case of the male screw body 1010 of N16, the diameter F at the vertex Gt of the thread G is 16 mm, and in the case of the female screw body 1100 of N16, the diameter of the root of the thread is 16 mm. means.

ねじ山Gの山角度T(山角度は、ねじ山Gの頂部から谷に向かって延在する一対の斜面の成す角度を意味する)は、61°以上且つ75°以下の範囲に設定され、より好ましくは65°以上且つ73°以下の範囲に設定され、更に好ましくは、67°以上且つ73°以下に設定され、より具体的には70°に設定される。また、ねじ山Gの谷径D(即ち、雄ねじ体1010の軸部1012においてねじ山Gを省略する場合の外径)は、N16の場合は13.5mm以上且つ14.3mm以下に設定されることが好ましい。N16の場合の谷径Dは13.5mm以上且つ14.3mm以下に設定されることが好ましい。N24の場合の谷径Dは19.6mm以上且つ20.5mm以下に設定されることが好ましい。N30の場合の谷径Dは25.8mm以上且つ26.7mm以下に設定されることが好ましい。なお、ここで言う谷径とは従来のメートルねじでいうところの有効径ではなく、谷底部分の直径に相当する。   The ridge angle T of the thread G (the ridge angle means an angle formed by a pair of slopes extending from the top of the thread G toward the valley) is set to a range of 61 ° or more and 75 ° or less, More preferably, it is set in the range of 65 ° or more and 73 ° or less, more preferably, it is set in the range of 67 ° or more and 73 ° or less, and more specifically, it is set in the range of 70 °. In addition, the root diameter D of the thread G (that is, the outer diameter when the thread G is omitted in the shaft portion 1012 of the male screw body 1010) is set to 13.5 mm or more and 14.3 mm or less in the case of N16. Is preferred. The valley diameter D in the case of N16 is preferably set to 13.5 mm or more and 14.3 mm or less. It is preferable that the valley diameter D in the case of N24 is set to 19.6 mm or more and 20.5 mm or less. The valley diameter D in the case of N30 is preferably set to 25.8 mm or more and 26.7 mm or less. The valley diameter here is not the effective diameter of a conventional metric screw thread, but corresponds to the diameter of the valley bottom.

従って、図16(B)に示すように、雌ねじ体1100に関しても、ねじ山Pの山角度Qは、61°以上且つ75°以下の範囲に設定され、より好ましくは65°以上且つ73°以下の範囲に設定され、更に好ましくは、67°以上且つ73°以下に設定され、より具体的には70°に設定される。また、ねじ山Pの頂点Ptの山径Eは、N16の場合は13.5mm以上且つ14.3mm以下に設定されることが好ましい。N16の場合の山径Eは13.5mm以上且つ14.3mm以下に設定されることが好ましい。N24の場合の山径Eは19.6mm以上且つ20.5mm以下に設定されることが好ましい。N30の場合の山径Eは25.8mm以上且つ26.7mm以下に設定されることが好ましい。勿論、雌ねじの山径の設定は、雄ねじ体の谷径に比して、同等以上に設定する必要があることは言うまでもない。   Accordingly, as shown in FIG. 16 (B), the thread angle P of the thread P is also set in the range of 61 ° or more and 75 ° or less, and more preferably 65 ° or more and 73 ° or less, with respect to the female screw 1100 as well. And more preferably, it is set to be 67 ° or more and 73 ° or less, and more specifically, set to 70 °. Further, it is preferable that the thread diameter E of the apex Pt of the thread P is set to 13.5 mm or more and 14.3 mm or less in the case of N16. The peak diameter E in the case of N16 is preferably set to 13.5 mm or more and 14.3 mm or less. The peak diameter E in the case of N24 is preferably set to 19.6 mm or more and 20.5 mm or less. The peak diameter E in the case of N30 is preferably set to 25.8 mm or more and 26.7 mm or less. Of course, it is needless to say that the setting of the thread diameter of the female screw needs to be set to be equal to or greater than the root diameter of the male screw body.

<設計手法及び設計根拠>
次に、雄ねじ体1010及び雌ねじ体1100の設計手法及び設計根拠について以下に説明する。なお、ここでは呼び径N16の雄ねじ体10を設計する際の事例を紹介する。
<Design method and design basis>
Next, the design method and design basis of the male screw body 1010 and the female screw body 1100 will be described below. Here, an example of designing the male screw body 10 having the nominal diameter N16 will be introduced.

<雄ねじ体10及び雌ねじ体100のシリーズの準備>
先ず、呼び径N16と成る雄ねじ体10に関して、図17(A)に示すように、相異なる複数の谷径D1,D2,・・・,Dnと、相異なる複数の山角度T1,T2,・・・,Tnから構成されるマトリクス条件の一部又は全部を埋めるように、複数の検証用雄ねじ体10(Tn,Dn)を準備する。
<Preparation of series of male screw body 10 and female screw body 100>
First, regarding the male screw body 10 having the nominal diameter N16, as shown in FIG. 17A, a plurality of different root diameters D1, D2,..., Dn and a plurality of different peak angles T1, T2,. A plurality of male screw bodies for verification 10 (Tn, Dn) are prepared so as to fill a part or all of the matrix condition composed of Tn.

また、この複数の検証用雄ねじ体1010(Tn,Dn)のそれぞれに対応させて、それと螺合可能な検証用雌ねじ体1100を同じ数だけ準備する。即ち、図17(B)に示すように、相異なる複数の山径E1,E2,・・・,Enと、互いの相複数の山角度Q1,Q2,・・・,Qnから構成されるマトリクス条件の全部又は一部を埋めるように、複数の検証用雌ねじ体1100(Qn,En)を準備する。具体的には、検証用雌ねじ体1100(Qn,En)の山径Enは、検証用雄ねじ体1010(Tn,Dn)の谷径Dnに略一致し、山角度Qnは、検証用雄ねじ体1010(Tn,Dn)の山角度Tnと略一致する。結果、図17(A)と図17(B)のマトリクス上の同じ位置に存在する検証用雄ねじ体1010(Tn,Dn)と、検証用雌ねじ体1100(Qn,En)が対となる検証用セットが多数用意される。   In addition, the same number of female screw bodies for verification 1100 that can be screwed with each of the plurality of male screw bodies for verification 1010 (Tn, Dn) are prepared. That is, as shown in FIG. 17B, a matrix composed of a plurality of different peak diameters E1, E2,..., En and a plurality of peak angles Q1, Q2,. A plurality of female screw bodies for verification 1100 (Qn, En) are prepared so as to fill all or some of the conditions. Specifically, the thread diameter En of the female screw body for verification 1100 (Qn, En) substantially matches the root diameter Dn of the male screw body for verification 1010 (Tn, Dn), and the peak angle Qn is equal to the male thread body for verification 1010. It substantially coincides with the peak angle Tn of (Tn, Dn). As a result, the verification male screw body 1010 (Tn, Dn) and the verification female screw body 1100 (Qn, En) which are present at the same position on the matrix in FIG. 17A and FIG. Many sets are prepared.

なお、検証用雌ねじ体1100(Qn,En)の軸方向長さW(これを、軸方向かかり長Wとも呼ぶ。図11参照。)は、呼び径N16における締結強度試験では、全ての試験体に共通して呼び径N16に対する素材固有の所定の比率γ(0<γ<1)としている。即ち、N16の本事例の場合、検証用雌ねじ体100(Qn,En)の軸方向長さWは、16mm×γに設定される。勿論、Wの値は、材料固有値である所定比率のγを呼び径毎にそれぞれ乗じて算出される。   The length W in the axial direction of the female screw body for verification 1100 (Qn, En) (this is also referred to as the axial length W. See FIG. 11) is the same for all the test pieces in the fastening strength test at the nominal diameter N16. And a predetermined ratio γ (0 <γ <1) specific to the material with respect to the nominal diameter N16. That is, in the case of N16, the axial length W of the female screw body for verification 100 (Qn, En) is set to 16 mm × γ. Of course, the value of W is calculated by multiplying each of the nominal diameters by a predetermined ratio of γ, which is a material specific value.

この軸方向かかり長Wは、図18に示すように、概ね、雄ねじ体1010の軸部1012の軸直角断面1012Aが耐え得る引張強度Hと、軸方向かかり長Wにおける、雄ねじ体1010のねじ山Gの基底面GL(図16(A)参照)から構成される周面Jのせん断強度Sが近似し易い値を選定している。引張強度Hは、谷径Dnにおける断面積に係数a1を乗算した値となり、H=π×Dn×a1で表現できる。せん断強度Sは、谷径Dnにおける軸方向かかり長W相当の円筒面積に係数a2を乗算した値となり、S=π×Dn×W×a2で表現できる。 As shown in FIG. 18, the axial hanging length W generally has a tensile strength H that the axial section 1012A of the shaft portion 1012 of the male screw body 1010 can withstand, and a thread of the male threaded body 1010 at the axial hanging length W. A value is selected such that the shear strength S of the peripheral surface J composed of the base surface GL of G (see FIG. 16A) is easily approximated. The tensile strength H is a value obtained by multiplying the sectional area at the valley diameter Dn by the coefficient a1, and can be expressed by H = π × Dn 2 × a1. The shear strength S is a value obtained by multiplying a cylindrical area equivalent to the axial length W at the valley diameter Dn by a coefficient a2, and can be expressed by S = π × Dn × W × a2.

係数a1やa2は、母材の材料等によってそれぞれ異なるが、本発明者の検討によれば、本実施形態では母材にS45CやSCM435等のような汎用の鋼材を選定し、Wを上述の通り設定すると、引張強度Hとせん断強度Sがかなり近い値となることが分かっている。この結果、検証用雌ねじ体1100(Qn,En)と検証用雄ねじ体1010(Tn,Dn)の締結強度は、山角Tや谷径Dが変化することから、実際には、せん断強度S側が微妙に大きくなったり、引張強度H側が微妙に大きくなったりする。どちらが優位になるかは、締結強度試験によって検証すれば良く、せん断強度S優位状態と引張強度H優位状態の境界を、実験によって見出すことが可能となる。   The coefficients a1 and a2 are different depending on the material of the base material and the like, but according to the study of the present inventors, in this embodiment, a general-purpose steel material such as S45C or SCM435 is selected as the base material, and W is set as described above. It has been found that when set as described above, the tensile strength H and the shear strength S are considerably close values. As a result, the fastening strength between the female screw body for verification 1100 (Qn, En) and the male screw body for verification 1010 (Tn, Dn) changes the peak angle T and the root diameter D. Slightly increases or the tensile strength H side slightly increases. Which is superior can be verified by a fastening strength test, and a boundary between the shear strength S superior state and the tensile strength H superior state can be found by an experiment.

なお、ここでは説明の便宜上、図17に示すマトリクスを利用して、谷径Dや山角度T等を変量させる場合を例示したが、実際には、マトリクスの全ての場所を埋めるように検証用雄ねじ体1010(Tn,Dn)と検証用雌ねじ体1100(Qn,En)を用意する必要はなく、また、マトリクス化する必要もない。後述するように、谷径Dと山角Tがある程度の範囲で変動する検証用雄ねじ体と検証用雌ねじ体の組み合わせで、最適値を抽出できる態様であれば良い。   Here, for convenience of explanation, a case where the valley diameter D, the peak angle T, and the like are varied using the matrix shown in FIG. 17 is illustrated. However, in actuality, the verification is performed so as to fill all the locations of the matrix. It is not necessary to prepare the male screw body 1010 (Tn, Dn) and the female screw body for verification 1100 (Qn, En), and it is not necessary to form a matrix. As will be described later, any configuration may be used as long as the optimum value can be extracted by a combination of the male screw body for verification and the female screw body for verification in which the root diameter D and the peak angle T vary within a certain range.

<境界谷径抽出工程>
次に、対となる検証用雄ねじ体1010(Tn,Dn)と、検証用雌ねじ体1100(Qn,En)(以下、検証用ボルトナットセットという)をそれぞれ螺合させて締結強度試験を行う。ここでの締結強度試験は、図18に示すように、検証用雄ねじ体1010(Tn,Dn)と検証用雌ねじ体1100(Qn,En)を、軸方向に離れる方向(矢印A参照)に相対移動させて、締結状態(螺合状態)を強制的に解除させる引張試験を意味するが、特にこれに限定されず、繰り返し雄ねじ体1100(Tn,Dn)と雌ねじ体1100(Qn,En)とを相対離反させる疲労試験の他、ねじ体のトルク・軸力・回転角を検証するための所謂ねじ締付試験等であってもよく、これらの試験結果と引張試験の結果との間に相関性があることが確認されている。全ての検証用ボルトナットセットについて締結強度試験を行い、その結果が、雄ねじ体1100の軸部1012で破断することで締結が解除される軸破断形態となるか、ねじ山Gが変形又は崩れることで締結が解除されるねじ山崩れ形態となるかを判定する。
<Boundary valley diameter extraction process>
Next, a pair of the male screw body for verification 1010 (Tn, Dn) and the female screw body for verification 1100 (Qn, En) (hereinafter, referred to as a verification bolt and nut set) are screwed together to perform a fastening strength test. As shown in FIG. 18, in the fastening strength test, the male screw body for verification 1010 (Tn, Dn) and the female screw body for verification 1100 (Qn, En) are relatively displaced in the axial direction (see arrow A). It means a tensile test in which the fastening state (screwed state) is forcibly released by moving, but is not particularly limited to this, and is repeatedly applied to the male screw body 1100 (Tn, Dn) and the female screw body 1100 (Qn, En). In addition to the fatigue test in which the screw is relatively separated from each other, a so-called screw tightening test for verifying the torque, axial force, and rotation angle of the screw body may be performed. Has been confirmed to be. A tightening strength test is performed on all the verification bolt and nut sets, and the result is that the shaft G is broken at the shaft portion 1012 of the male screw body 1100 to release the fastening, or the thread G is deformed or broken. It is determined whether or not the thread break mode in which the fastening is released.

この判定結果のグラフ例を図19に示す。本グラフでは、横軸を山角度Tn、縦軸を谷径Dnに設定し、軸破断形態となった検証用ボルトナットセットを○、ねじ山崩れ形態となった検証用ボルトナットセットを△で表示している。この結果から判るように、グラフ上は、ねじ山崩れ形態が生じる領域X(ねじ山崩れ領域X)と、軸破断形態が生じる領域Y(軸破断領域Y)に二分され、その境界線Kを明らかにすることができる。この境界線Kは、或る特定の山角度Tkに対応して軸破断形態を生じさせることが可能な最大谷径の値を境界谷径Dkと定義した場合、山角度Tkの変化と境界谷径Dkの変化の相関関係を意味することになる。   FIG. 19 shows a graph example of the determination result. In this graph, the horizontal axis is set to the peak angle Tn, the vertical axis is set to the root diameter Dn, and the verification bolt and nut set in the form of broken shaft is indicated by ○, and the verification bolt and nut set in the form of thread break is indicated by Δ. are doing. As can be seen from the results, the graph is bisected into a region X in which a thread break mode occurs (thread break region X) and a region Y in which a shaft break mode occurs (shaft break region Y), and the boundary line K is clearly shown. can do. When the maximum valley diameter value that can cause the axial fracture mode corresponding to a specific peak angle Tk is defined as the boundary valley diameter Dk, the boundary line K has a change in the peak angle Tk and a boundary valley. This means a correlation between changes in the diameter Dk.

例えば、山角度Tを68°に設定し、軸部の谷径Dを14.1mm以上にする設計思想は、ねじ山崩れ領域Xに属するので、引張試験による締結解除時に軸破断形態は得られ難く、ねじ山崩れ形態が生じる可能性が高いことを意味し、それだけ軸部の強度が無駄になっている設計と考えることができる。一方、山角度Tを68°に設定し、軸部の谷径Dを13.6mmに設定する設計思想は、締結解除時に軸破断形態が得られ易いが、境界谷径Dkは約14.05mmとなることから、その範囲内であれば軸部の谷径Dをもっと大きく設定することができて引張強度を高めることができる点で、非効率な設計であることを意味する。   For example, a design concept in which the peak angle T is set to 68 ° and the root diameter D of the shaft portion is 14.1 mm or more belongs to the thread break region X, and therefore, it is difficult to obtain a shaft break mode when the fastening is released by a tensile test. This means that there is a high possibility that a screw thread collapse form will occur, and this can be considered as a design in which the strength of the shaft is wasted. On the other hand, the design concept in which the peak angle T is set to 68 ° and the valley diameter D of the shaft portion is set to 13.6 mm is easy to obtain a shaft fracture form when the fastening is released, but the boundary valley diameter Dk is about 14.05 mm. Therefore, within this range, the valley diameter D of the shaft portion can be set to be larger and the tensile strength can be increased, which means that the design is inefficient.

逆説すると、この境界線Kからは、境界谷径Dkの変化に対応して、その雄ねじ体を軸破断形態にさせることが可能な境界山角度Tkの許容範囲(これを境界山角度領域Tsと呼ぶ)を決定できることになる。   Paradoxically, from this boundary line K, the allowable range of the boundary peak angle Tk (this is defined as the boundary peak angle area Ts) in which the male screw body can be made into the axially broken form in accordance with the change of the boundary trough diameter Dk. Call).

<軸破断優位ねじ山角選定工程>
境界谷径抽出工程が終了した後、境界線Kの中で、前記境界谷径Dkが最大値と成り得る山角度(以下、軸破断優位山角度Tp)を選定する。図19のグラフでは、境界線Kのピーク値から、軸破断優位山角度Tpは70.5°となる。この軸破断優位山角度Tpは、軸部を極力太くして引張強度を高めたとしても、締結解除に関しては軸破断形態に導き易い山角度、即ち、山G側の剪断強度Sが最も高く成り易い山角度、と説明できる。
<Shaft breaking superior thread angle selection process>
After the boundary valley diameter extracting step is completed, a ridge angle (hereinafter referred to as a shaft break superior ridge angle Tp) at which the boundary valley diameter Dk becomes a maximum value is selected from the boundary line K. In the graph of FIG. 19, from the peak value of the boundary line K, the dominant peak angle Tp at the axis break is 70.5 °. Even when the shaft portion is made as thick as possible to increase the tensile strength, the shaft breaking superior ridge angle Tp is such that the shearing strength S on the ridge G side which is easy to lead to the shaft breaking form with respect to the release of the fastening, that is, the shear strength S on the ridge G side is the highest. It can be described as an easy mountain angle.

<ねじ山角決定工程>
最後に、決定される軸破断優位山角度Tpと近似する山角度を、呼び径N16における実際の雄ねじ体1010及び/又は雌ねじ体1100に適用して設計を行う。例えば、実際の山角度Tを70°に設定すれば、谷径Dを大きく設定することが可能になる。具体的な谷径Dとしては、例えば14.25mm程度が好ましいことになる。
<Thread angle determination process>
Finally, a design is performed by applying the crest angle approximate to the determined shaft break superior crest angle Tp to the actual male screw body 1010 and / or female screw body 1100 at the nominal diameter N16. For example, if the actual peak angle T is set to 70 °, the valley diameter D can be set large. As a specific valley diameter D, for example, about 14.25 mm is preferable.

なお、図19では、呼び径N16の場合の設計手法について説明したが、本発明はこれに限定されず、他の呼び径であっても良い。例えば図20には呼び径N24の場合の検証結果のグラフを示し、図21には、呼び径N30の場合の検証結果のグラフを示す。これらのグラフに共通して言えることは、軸破断優位山角度Tpは65°以上且つ75°以下の範囲内であり、より好ましくは67°以上且つ73°以下の範囲内であり、概ね70°前後となる。つまり、本実施形態の構造を有する雄ねじ体1010の場合、ねじ山の山角度は、従来の常識である60°ではなく、それよりも大きな値が適しており、70°近傍が最適値であることが分かる。   In FIG. 19, the design method in the case of the nominal diameter N16 has been described, but the present invention is not limited to this, and another nominal diameter may be used. For example, FIG. 20 shows a graph of the verification result in the case of the nominal diameter N24, and FIG. 21 shows a graph of the verification result in the case of the nominal diameter N30. What can be said in common to these graphs is that the axial break superior mountain angle Tp is in the range of 65 ° or more and 75 ° or less, more preferably in the range of 67 ° or more and 73 ° or less, and is approximately 70 °. Before and after. That is, in the case of the male screw body 1010 having the structure of the present embodiment, the thread angle of the thread is not 60 ° which is common sense in the related art, but a larger value is suitable, and the optimum value is around 70 °. You can see that.

なお、上記の雄ねじ体1010及び雌ねじ体1100では、第一螺旋溝1014及び雌ねじ螺旋条1114の対と、第二螺旋溝1015及び雌ねじ螺旋条1115の対とが、互いに逆ねじの関係(リード角が同じでリード方向が反対)となっている場合を例示したが、本発明はこれに限定されない。例えば図22に示すように、リード方向(L1、L2)が同じで、リード角が異なる第一螺旋溝1014及び雌ねじ螺旋条1114と、第二螺旋溝1015及び雌ねじ螺旋条1115を採用することもできる。この場合、第一螺旋溝1014に対して、更にリード角の異なる螺旋溝を重畳形成することにより、リードがL1(リード角α1)の第一螺旋溝1014及びリードがL2(リード角がα2)の第二螺旋溝1015が、ねじ方向を揃えて形成される。この場合は、第一螺旋溝1014の第一ねじ山G1と、第二螺旋溝1015の第二ねじ山G2は、共有されずに別々となることから、そのねじ山G1、G2の少なくとも一方に本発明を適用すれば良く、また、双方に適用しても良い。勿論、第一ねじ山G1の山角度と第二ねじ山G2の山角度は、互いに異なっても良い。   In the male screw body 1010 and the female screw body 1100, the pair of the first spiral groove 1014 and the female screw spiral strip 1114 and the pair of the second spiral groove 1015 and the female screw spiral strip 1115 have a reverse screw relationship (lead angle). Are the same and the lead directions are opposite), but the present invention is not limited to this. For example, as shown in FIG. 22, the first spiral groove 1014 and the female screw spiral strip 1114 having the same lead direction (L1, L2) and different lead angles, and the second spiral groove 1015 and the female screw spiral strip 1115 may be employed. it can. In this case, by forming a spiral groove having a different lead angle further on the first spiral groove 1014, the first spiral groove 1014 having the lead L1 (lead angle α1) and the lead L2 (lead angle α2). The second spiral groove 1015 is formed with the screw directions aligned. In this case, since the first thread G1 of the first spiral groove 1014 and the second thread G2 of the second spiral groove 1015 are not shared but are separate, at least one of the threads G1 and G2. The present invention may be applied, or may be applied to both. Of course, the thread angle of the first thread G1 and the thread angle of the second thread G2 may be different from each other.

なお、上記実施形態では、二重らせん構造の雄ねじ体1010の場合を例示したが、本発明はこれに限定されず、一重らせん構造の雄ねじ体1010においても、上記設計手順を適用すれば、最適な山角度を理論的及び/又は実験的に明らかにすることが可能である。   In the above-described embodiment, the case of the male screw body 1010 having the double helix structure is exemplified. However, the present invention is not limited to this, and the male screw body 1010 having the single helix structure can be optimized by applying the above design procedure. Can be determined theoretically and / or experimentally.

以上の結果、上記チップ1の刃先2Bの角度Iや形状は、上記ねじ山を加工できるように設定すれば良く、例えばその角度Iは「ねじ山角度T」と略一致させるか、又は、それよりも小さく設定することが好ましい。チップ1が、刃先を母材に片あたりさせながら切削する場合は、その片側刃先の角度Jは、軸直角方向に対して上記角度Iの1/2に設定すれば良いことになる。   As a result, the angle I and the shape of the cutting edge 2B of the tip 1 may be set so that the thread can be machined. For example, the angle I may be substantially equal to the "thread angle T" or It is preferable to set smaller. In the case where the insert 1 is cut while the cutting edge is brought into contact with the base material, the angle J of the cutting edge on one side may be set to の of the angle I with respect to the direction perpendicular to the axis.

なお、上記ねじ体や山角度の特徴を説明すると以下の通りとなる。   The features of the screw body and the ridge angle will be described below.

(1)軸部と、上記軸部の周面に形成され、適宜のリード角及び/又はリード方向に設定される第一螺旋溝と、上記軸部の周面に形成され、上記リード角及び/又はリード方向に対して相異なるリード角及び/又はリード方向に設定される第二螺旋溝と、を備え、上記第一螺旋溝と上記第二螺旋溝とが、上記軸部の軸方向における同一領域上に重畳形成されることで条状に形成されるねじ山部を有し、上記ねじ山部は、上記軸方向に沿う断面を軸直交方向視する際において、該ねじ山の頂部から谷に向かって延在する一対の斜面の成す山角度が61°以上且つ75°以下に設定されることを特徴とする雄ねじ体である。   (1) A shaft portion, a first spiral groove formed on the peripheral surface of the shaft portion and set at an appropriate lead angle and / or lead direction, and a shaft formed on the peripheral surface of the shaft portion and forming the lead angle and And / or a second spiral groove set at a different lead angle and / or a lead direction with respect to the lead direction, wherein the first spiral groove and the second spiral groove are in the axial direction of the shaft portion. It has a thread portion formed in a strip shape by being superimposed on the same region, and the thread portion is viewed from the top of the thread when viewing a cross section along the axial direction perpendicular to the axis. A male screw body characterized in that a mountain angle formed by a pair of slopes extending toward a valley is set to 61 ° or more and 75 ° or less.

(2)前記雄ねじ体に関連して、前記山角度が73°以下に設定されることを特徴とする。   (2) The ridge angle is set to 73 ° or less in relation to the male screw body.

(3)前記雄ねじ体に関連して、前記山角度が63°以上に設定されることを特徴とする。   (3) The ridge angle is set to 63 ° or more in relation to the male screw body.

(4)前記雄ねじ体に関連して、前記山角度が、70°±3°の範囲に設定されることを特徴とする。   (4) The ridge angle is set in a range of 70 ° ± 3 ° in relation to the male screw body.

(5)雌ねじ部を有し、該雌ねじ部を構成する雌ねじ山部は、軸方向に沿う断面における軸直交方向視において、該雌ねじ部のねじ山の頂部から谷に向かって延在する一対の斜面の成す山角度が61°以上75°以下に設定されることを特徴とする雌ねじ体である。   (5) A female thread portion having a female thread portion, wherein the female thread portion constituting the female thread portion extends from the top of the thread of the female thread portion toward the trough when viewed in the direction perpendicular to the axis in a cross section along the axial direction. A female screw body characterized in that a mountain angle formed by the slope is set to 61 ° or more and 75 ° or less.

(6)前記雌ねじ体に関連して、上記のいずれかに記載の雄ねじ体と螺合可能に構成されることを特徴とする。   (6) In relation to the female screw body, the female screw body is configured to be screwable with any of the male screw bodies described above.

(7)呼び径を一定として前記山角度及び谷径を相異ならせた複数の検証用雄ねじ体と、上記検証用雄ねじ体と螺合する複数の検証用雌ねじ体を用い、上記検証用雄ねじ体に上記検証用雌ねじ体を螺合させて軸方向に相対離反させる締結強度試験を行う場合において、上記検証用雄ねじ体が軸部で破断して締結状態が解除される軸破断形態、及び、上記検証用雄ねじ体のねじ山が変形若しくは剪断することによって締結状態が解除されるねじ山崩れ形態の双方の形態の破壊を生じさせることで、上記軸破断形態と上記ねじ山崩れ形態の境界近傍と成り得る上記谷径(以下、境界谷径と称す)について、前記山角変量に起因する変化度合いを抽出する境界谷径抽出工程と、上記境界谷径の変化度合いに基づいて、該境界谷径が最大値と成り得る特定の前記山角度(以下、軸破断優位山角度と称す)を選定する軸破断優位山角度選定工程と、上記軸破断優位山角度と近似する山角度を、前記呼び径における実際の前記雄ねじ体及び/又は前記雌ねじ体に適用する山角度決定工程と、を有することを特徴とするねじ体設計方法である。   (7) The male screw body for verification using a plurality of male screw bodies for verification in which the nominal diameter is constant and the peak angle and the valley diameter are different, and a plurality of female screw bodies for verification screwed with the male screw body for verification. In the case of performing a fastening strength test in which the female screw body for verification is screwed into the axial direction and relatively disengaged in the axial direction, the male screw body for verification is broken at the shaft portion to release the fastening state, and the shaft break form, and By causing the destruction of both forms of the thread collapse form in which the fastening state is released by the deformation or shearing of the thread of the male screw body for verification, it can be near the boundary between the shaft fracture form and the thread collapse form. For the valley diameter (hereinafter referred to as a boundary valley diameter), a boundary valley diameter is extracted based on the peak angle variation, and the boundary valley diameter is maximized based on the boundary valley diameter change degree. Can be a value A shaft break dominant crest angle selecting step of selecting the constant crest angle (hereinafter referred to as a shaft break dominant crest angle); and a crest angle approximate to the shaft break dominant crest angle, the actual male screw body at the nominal diameter. And / or a thread angle determining step applied to the female screw body.

(8)前記ねじ体設計方法に関連して、前記境界谷径抽出工程は、前記山角度及び前記呼び径が一定で、該谷径を相異ならせた複数の前記検証用雄ねじ体と、該検証用雄ねじ体と螺合する複数の前記検証用雌ねじ体を用い、前記検証用雄ねじ体に前記検証用雌ねじ体を螺合させて軸方向に相対離反させる締結強度試験を行う場合において、前記検証用雄ねじ体が軸部で破断して締結が解除される軸破断形態、及び、前記検証用雄ねじ体のねじ山が変形若しくは剪断することによって締結が解除されるねじ山崩れ形態の双方の形態の破壊を生じさせることで、前記軸破断形態と前記ねじ山崩れ形態の境界近傍と成り得る特定の前記谷径(以下、境界谷径と称す)を抽出する個別境界谷径抽出工程と、互いに異なる複数の前記山角度を選定し、各山角度に基づいて、前記個別境界谷径抽出工程を繰り返し行うことで、前記山角度変量に起因する前記境界谷径の変化度合いを抽出する工程と、を有することを特徴とする。   (8) In connection with the screw body design method, the boundary valley diameter extracting step includes: a plurality of the male screw bodies for verification, wherein the ridge angle and the nominal diameter are constant and the valley diameters are different; In the case where a plurality of the verification internal thread bodies to be screwed with the verification external thread body is used, and the fastening strength test is performed in which the verification internal thread body is screwed to the verification external thread body and relatively separated in the axial direction, the verification is performed. In this case, the external thread body is broken at the shaft part to release the fastening, and the verification external thread body is deformed or sheared to break the thread and break the thread. The individual boundary trough diameter extraction step of extracting a specific trough diameter (hereinafter, referred to as a boundary trough diameter) that can be near the boundary between the shaft fracture mode and the thread break mode by causing Select the peak angle, Based on the angle, the By repeating individual boundary valley 径抽 out process, characterized in that it and a step of extracting the degree of change of the boundary root diameter due to the mountain angle variable.

(9)上記ねじ体設計方法に基づいて設計されたものであることを特徴とする雄ねじ体である。   (9) A male screw body designed based on the above screw body design method.

(10)上記ねじ体設計方法に基づいて設計されたものであることを特徴とする雌ねじ体である。   (10) A female screw body designed based on the above screw body design method.

(11)雄ねじ体及び/又は雌ねじ体に適用されるねじ山構造であって、該ねじ山構造におけるねじ山の頂部から谷に向かって延在する一対の斜面の成す山角度が61°以上且つ75°以下に設定されることを特徴とするねじ山構造である。   (11) A thread structure applied to a male screw body and / or a female screw body, wherein a pair of slopes extending from the top to the bottom of the thread in the thread structure has a thread angle of 61 ° or more and A thread structure characterized by being set to 75 ° or less.

1 チップ
2L1、2L2 刃部
3 本体部
4 傾斜面
25 チップホルダ
15L1、15L2 位置決め面
25 チップホルダ
27 シャンク部
30 ボルト孔
35 チップ収容孔
40 下あご部
45 傾斜面
50 押し出し孔
60 ホルダ側位置決め面
70 締め付けねじ
75 ハンマー
80 押し出し棒
85 チップ収容孔
87 チップホルダ
90 下あご部
95 傾斜面
100 ボルト孔
105 ホルダ側位置決め面
110 締め付けねじ
120 チップホルダ
130 スローアウェイチップ
140 雄ねじ体
DESCRIPTION OF SYMBOLS 1 Chip 2L1, 2L2 Blade part 3 Main body part 4 Inclined surface 25 Chip holder 15L1, 15L2 Positioning surface 25 Chip holder 27 Shank part 30 Bolt hole 35 Chip accommodating hole 40 Lower jaw part 45 Inclined surface 50 Extrusion hole 60 Holder side positioning surface 70 Tightening screw 75 Hammer 80 Push rod 85 Chip receiving hole 87 Tip holder 90 Lower jaw 95 Inclined surface 100 Bolt hole 105 Holder side positioning surface 110 Tightening screw 120 Chip holder 130 Throw away tip 140 Male screw

Claims (15)

相対移動する外部ワークに切削加工を行う切削用チップであって、
柱状の本体と、
上記本体の端部に位置され、刃先を備える刃部と、を有し、
上記本体は、
上記刃先のすくい面の幅方向の両外側に位置する周面には、それぞれ、上記本体長手方向に平行となる仮想中心軸を有する部分円筒又は円柱状領域が形成され、
上記刃先の相対すくい方向の両外側の少なくとも一方に位置する周面には、円弧又は平面に形成される底部を挟んで上記本体長手方向に延びる一対の傾斜面が形成される、
ことを特徴とする切削用チップ。
A cutting tip for performing cutting on a relatively moving external work,
A columnar body,
A blade portion provided at an end of the main body and having a blade edge,
The main body is
On the peripheral surface located on both outer sides in the width direction of the rake face of the cutting edge, a partial cylindrical or columnar region having a virtual central axis parallel to the longitudinal direction of the main body is formed, respectively.
A pair of inclined surfaces extending in the longitudinal direction of the main body are formed on a peripheral surface located on at least one of both outer sides in the relative rake direction of the cutting edge, with a bottom formed in an arc or a plane interposed therebetween.
A cutting tip characterized by the above-mentioned.
前記一対の傾斜面は、前記部分円筒又は円柱状領域の前記本体長手方向に直行する断面となる部分円弧の延長線上の円弧軌跡よりも半径方向内側に形成されていることを特徴とする請求項1に記載の切削用チップ。   The pair of inclined surfaces are formed radially inward of an arc locus on an extension of a partial arc that is a cross section of the partial cylinder or the columnar region and that is orthogonal to the longitudinal direction of the main body. 2. The cutting tip according to 1. 前記一対の傾斜面は、前記本体長手方向から見た場合に前記刃先の先端から前記相対すくい方向に延びる基準線に対して対称に形成されることを特徴とする請求項1又は請求項2に記載の切削用チップ。   The said pair of slopes are formed symmetrically with respect to the reference line extended in the said relative rake direction from the front-end | tip of the said cutting edge when it sees from the said main body longitudinal direction, The Claim 1 or Claim 2 characterized by the above-mentioned. The described cutting tip. 少なくとも一対の前記部分円筒又は円柱状領域の曲率中心が互いに一致することを特徴とする請求項1乃至請求項3の何れかに記載の切削用チップ。   The cutting tip according to any one of claims 1 to 3, wherein the centers of curvature of at least a pair of the partial cylinders or the cylindrical regions coincide with each other. 前記刃部は、前記本体長手方向の一方の端部に形成されており、
前記本体には、外部部材と上記本体長手方向の一方に係合可能な位置決め面を有することを特徴とする請求項1乃至請求項4の何れかに記載の切削用チップ。
The blade portion is formed at one end in the longitudinal direction of the main body,
The cutting tip according to any one of claims 1 to 4, wherein the main body has a positioning surface that can be engaged with an external member and one of the main body in the longitudinal direction.
前記刃部は、前記本体長手方向の両端にそれぞれ形成されており、
前記本体には、外部部材と上記本体長手方向の一方に係合可能な第一位置決め面、及び、該外部部材と上記本体長手方向の他方に係合可能な第二位置決め面と、を有することを特徴とする請求項1乃至請求項4の何れかに記載の切削用チップ。
The blades are formed at both ends in the longitudinal direction of the main body, respectively.
The main body has an external member and a first positioning surface that can be engaged with one of the main body longitudinal direction, and a second positioning surface that can be engaged with the external member and the other of the main body longitudinal direction. The cutting tip according to any one of claims 1 to 4, characterized in that:
前記刃部における前記刃先の先端は、前記相対すくい方向から視た場合に、前記本体長手方向に延びる基準線に対して対称形状となることを特徴とする請求項1乃至請求項6の何れかに記載の切削用チップ。   The tip of the cutting edge of the blade portion has a symmetrical shape with respect to a reference line extending in the longitudinal direction of the main body when viewed from the relative rake direction. A cutting tip according to item 1. 前記刃先の前逃げ角は、10°以上であることを特徴とする請求項1乃至請求項7の何れかに記載の切削用チップ。   The cutting tip according to any one of claims 1 to 7, wherein a front clearance angle of the cutting edge is 10 ° or more. 請求項1乃至請求項8の何れかに記載された前記切削用チップと、該切削用チップを保持するチップホルダを組み合わせた切削用バイトセット。 A cutting tool set comprising a combination of the cutting tip according to any one of claims 1 to 8 and a tip holder for holding the cutting tip . 前記チップホルダは、ホルダ本体の先端部に、刃先を露出させた状態で前記切削用チップを収容して保持する収容孔を有することを特徴とする請求項9に記載の切削用バイトセット。The cutting tool set according to claim 9, wherein the tip holder has an accommodation hole at an end of the holder main body for accommodating and holding the cutting tip in a state where a cutting edge is exposed. 前記チップホルダは、前記ホルダ本体の外周面に、前記収容孔へ貫通するボルト穴を有し、ボルトによって切削用チップを締め付け固定することを特徴とする請求項10に記載の切削用バイトセット。The cutting tool set according to claim 10, wherein the tip holder has a bolt hole that penetrates into the housing hole on an outer peripheral surface of the holder body, and the cutting tip is fastened and fixed by a bolt. 前記チップホルダは、前記ホルダ本体に、前記収容孔の軸と平行方向で前記切削用チップの刃先向きに該切削用チップを押し出すための孔を備えることを特徴とする請求項10又は請求項11に記載の切削用バイトセット。12. The tip holder according to claim 10, wherein the holder main body includes a hole for pushing out the cutting tip in a direction parallel to an axis of the accommodation hole toward a cutting edge of the cutting tip. Cutting tool set described in 1. 前記チップホルダは、前記切削用チップの刃部を受け止める下あご部が、前記収容孔の下面に連続して、かつ、前記ホルダ本体の先端部から前記切削用チップの長手方向に突出して形成されていることを特徴とする請求項10乃至請求項12の何れかに記載の切削用バイトセット。The tip holder is formed such that a lower jaw portion for receiving a blade portion of the cutting tip is continuous with a lower surface of the accommodation hole and protrudes from a tip end of the holder body in a longitudinal direction of the cutting tip. The cutting tool set according to any one of claims 10 to 12, characterized in that: 前記チップホルダは、前記ホルダ本体長手方向に対して、前記収容孔の軸方向が直角であることを特徴とする請求項10乃至請求項13の何れかに記載の切削用バイトセット。The cutting tool set according to any one of claims 10 to 13, wherein in the tip holder, an axial direction of the housing hole is perpendicular to a longitudinal direction of the holder body. 前記チップホルダは、前記ホルダ本体長手方向に対して、前記収容孔の軸方向が平行であることを特徴とする請求項10乃至請求項13の何れかに記載の切削用バイトセット。The cutting tool set according to any one of claims 10 to 13, wherein the tip holder has an axial direction of the housing hole parallel to a longitudinal direction of the holder main body.
JP2016082799A 2016-04-18 2016-04-18 Cutting insert, tip holder, cutting tool set Active JP6628677B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016082799A JP6628677B2 (en) 2016-04-18 2016-04-18 Cutting insert, tip holder, cutting tool set
PCT/JP2017/015370 WO2017183591A1 (en) 2016-04-18 2017-04-14 Cutting chip, chip holder, cutting tool set
TW106112870A TW201738019A (en) 2016-04-18 2017-04-18 Cutting core, core carrier, and cutting tool set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082799A JP6628677B2 (en) 2016-04-18 2016-04-18 Cutting insert, tip holder, cutting tool set

Publications (2)

Publication Number Publication Date
JP2017192991A JP2017192991A (en) 2017-10-26
JP6628677B2 true JP6628677B2 (en) 2020-01-15

Family

ID=60115949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082799A Active JP6628677B2 (en) 2016-04-18 2016-04-18 Cutting insert, tip holder, cutting tool set

Country Status (3)

Country Link
JP (1) JP6628677B2 (en)
TW (1) TW201738019A (en)
WO (1) WO2017183591A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021010730A (en) * 2019-03-07 2021-09-28 Horn P Hartmetall Werkzeugfab Cutting insert and tool for machining a workpiece.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518027C2 (en) * 2000-04-20 2002-08-20 Sandvik Ab Cutting tool system and means for precisely positioning the same
IL136564A (en) * 2000-06-05 2003-12-10 Iscar Ltd Cutting tool assembly
JP2004042168A (en) * 2002-07-10 2004-02-12 Mitsubishi Materials Corp Grooving cutting tool and throw-away tip
IL160935A (en) * 2004-03-18 2009-09-22 Gil Hecht Cutting tool and cutting insert therefor
JP2008238315A (en) * 2007-03-27 2008-10-09 Kyocera Corp Cutting tool
JP2012111006A (en) * 2010-11-25 2012-06-14 Kyocera Corp Cutting tool

Also Published As

Publication number Publication date
WO2017183591A1 (en) 2017-10-26
JP2017192991A (en) 2017-10-26
TW201738019A (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US9630267B2 (en) Thread generating tool for producing a thread in a workpiece
JP2006263912A (en) Drill thread milling cutter
WO2009116178A1 (en) Thread forming tap
CN108136519B (en) Finish-milling tool, in particular end-mill
JP7154131B2 (en) Rotary cutting tool having a toolholder with a conical female thread and an exchangeable cutting head with a parallel male thread, and said toolholder
CA2879928C (en) Cutting tool and corresponding assembly
KR101804720B1 (en) Cutting tap
EP1611983B1 (en) High-speed processing tap
WO2017183592A1 (en) Cutting tool
KR20170015925A (en) Thread milling cutter
JP6808540B2 (en) Polygon processing tool
JP6628677B2 (en) Cutting insert, tip holder, cutting tool set
JP5958785B2 (en) Insert mounting mechanism, rotary cutting tool, tool body, wedge member and adjustment member
WO2010101512A2 (en) Method of thread milling, thread, and insert and tool for thread milling
KR20190060766A (en) Thread forming tools
JP2012061577A (en) Cutting tap
EP3153268B1 (en) Sectional hob
JP7068879B2 (en) A roughening tool and a roughening method using the roughening tool.
CN113333801A (en) Tool bit structure and cutter
WO2013124981A1 (en) Cut tap
JP2005199415A (en) Throw-away drill
WO2007063578A1 (en) Screw thread cutter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20181113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191203

R150 Certificate of patent or registration of utility model

Ref document number: 6628677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250