JP6628574B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP6628574B2
JP6628574B2 JP2015228509A JP2015228509A JP6628574B2 JP 6628574 B2 JP6628574 B2 JP 6628574B2 JP 2015228509 A JP2015228509 A JP 2015228509A JP 2015228509 A JP2015228509 A JP 2015228509A JP 6628574 B2 JP6628574 B2 JP 6628574B2
Authority
JP
Japan
Prior art keywords
core
inner case
stress
resin material
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015228509A
Other languages
Japanese (ja)
Other versions
JP2017096740A (en
Inventor
明彦 平林
明彦 平林
正三 依田
正三 依田
修 横田
修 横田
彰悟 外谷
彰悟 外谷
孝浩 佐野
孝浩 佐野
正幸 原野
正幸 原野
淳士 野村
淳士 野村
秀和 増田
秀和 増田
渡辺 英雄
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2015228509A priority Critical patent/JP6628574B2/en
Publication of JP2017096740A publication Critical patent/JP2017096740A/en
Application granted granted Critical
Publication of JP6628574B2 publication Critical patent/JP6628574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、外部磁界や電界に対するシールド効果を高め、かつ、センサヘッド相互の定位置を安定的に維持させることで測定精度の向上を図ることができるカレントセンサに関する技術である。   The present invention relates to a technique relating to a current sensor capable of enhancing a shielding effect against an external magnetic field or an electric field and stably maintaining a fixed position between sensor heads to improve measurement accuracy.

クランプ式電流計は、例えば特許文献1に開示されているように、活線状態にある被測定導体へのクランプを可能にすることで該被測定導体に流れる電流を検出するカレントセンサを備えて形成されている。   As disclosed in Patent Document 1, for example, a clamp-type ammeter includes a current sensor that detects a current flowing in a conductor to be measured by enabling clamping to the conductor to be measured in a live state. Is formed.

特許第4459567号公報Japanese Patent No. 4459567

図5および図6(a),(b)は、特許文献1に図1および図2(a),(b)として示されているクランプセンサ(カレントセンサ)を参照符号を変えて再掲した説明図であり、これらの図のうち、図5は、全体の分解斜視図を、図6(a)は、図6(b)におけるB−B線矢視方向での縦断面図を、図6(b)は、図6(a)におけるA−A線矢視方向での縦断面図をそれぞれ示す。   FIGS. 5 and 6 (a) and (b) are descriptions in which the clamp sensor (current sensor) shown in FIGS. 5 is an exploded perspective view of the entirety, FIG. 6A is a longitudinal sectional view taken along the line BB in FIG. 6B, and FIG. FIG. 6B is a longitudinal sectional view taken along the line AA in FIG. 6A.

これらの図によれば、カレントセンサ111は、一方のコア部117と他方のコア部127とからなる磁気コア121により囲繞され、かつ、相互間に開閉自在なクランプ測定窓112を形成して被測定導体Lの導入を自在に組み合わされる一方のセンサヘッド113(図示例では上側に位置)と他方のセンサヘッド123(図示例では下側に位置)とで構成されている。   According to these figures, the current sensor 111 is surrounded by a magnetic core 121 composed of one core portion 117 and the other core portion 127, and forms a clamp measurement window 112 which can be opened and closed between the cores. It is composed of one sensor head 113 (positioned on the upper side in the illustrated example) and the other sensor head 123 (positioned on the lower side in the illustrated example), into which the measurement conductor L is freely introduced.

これらのうち、一方のセンサヘッド113は、一方の外ケース部115内に空隙118を確保して一方の内ケース部116を収容してなる一方のシールドケース114と、一対の突合せ端面117a,117aを露出させて一方の内ケース部116内に固定配置される一方のコア部117と、一方の外ケース部115内で一方の内ケース部116の収容位置を規制しつつ相互を導通させるべく空隙118内に介在させた非磁性かつ導電性の素材からなる一方の一対のスペーサ119,119と、クランプ測定窓112の上面部を画成する一方の隔壁部120とで構成されている。   Of these, one sensor head 113 has one shield case 114 having a space 118 in one outer case part 115 and containing one inner case part 116, and a pair of butted end faces 117a, 117a. A gap is formed to expose one of the core portions 117 fixedly disposed in the one inner case portion 116 and the other inner case portion 116 to regulate the accommodating position of the one inner case portion 116 in the one outer case portion 115 so as to conduct each other. The clamp 118 includes one pair of spacers 119 and 119 made of a non-magnetic and conductive material and one partition 120 that defines the upper surface of the clamp measurement window 112.

また、一方のコア部117は、図6(a),(b)に示すように一対の突合せ端面117a,117aの面高が一方の内ケース部116の開放端面116aと略一致する配置関係のもとで露出させ、かつ、一方の内ケース部116内に図示しない注入樹脂材を充填して位置固定させた状態のもとで収容されている。   As shown in FIGS. 6A and 6B, the one core portion 117 has an arrangement relationship in which the surface height of the pair of abutting end surfaces 117a, 117a substantially matches the open end surface 116a of the one inner case portion 116. It is exposed under the condition, and is housed in a state where one of the inner case portions 116 is filled with an injection resin material (not shown) and fixed in position.

これに対し、他方のセンサヘッド123は、他方の外ケース部125内に空隙128を確保して他方の内ケース部126を収容してなる他方のシールドケース124と、一対の突合せ端面127a,127aを露出させて他方の内ケース部126内に固定配置される他方のコア部127と、他方の外ケース部125内で他方の内ケース部126の収容位置を規制しつつ相互を導通させるべく空隙128内に介在させた非磁性かつ導電性の素材からなる他方の一対のスペーサ129,129と、クランプ測定窓112の下面部を画成する他方の隔壁部130とで構成されている。   On the other hand, the other sensor head 123 has a gap 128 in the other outer case portion 125 and accommodates the other inner case portion 126 with the other shield case 124 and a pair of butted end surfaces 127a, 127a. The other core portion 127 fixedly arranged in the other inner case portion 126 by exposing the second inner case portion 126 and a gap for restricting the accommodation position of the other inner case portion 126 in the other outer case portion 125 so as to conduct each other. It is composed of the other pair of spacers 129 and 129 made of a non-magnetic and conductive material interposed in 128 and the other partition 130 that defines the lower surface of the clamp measurement window 112.

また、他方のコア部127は、図6(a),(b)に示すように一対の突合せ端面127a,127aの面高が他方の内ケース部126の開放端面126aと略一致する配置関係のもとで露出させ、かつ、他方の内ケース部126内に図示しない注入樹脂材を充填して位置固定させた状態のもとで収容されている。   The other core portion 127 has an arrangement relationship in which the surface height of the pair of butted end surfaces 127a, 127a substantially matches the open end surface 126a of the other inner case portion 126, as shown in FIGS. The other inner case portion 126 is exposed and filled with an injectable resin material (not shown) so as to be fixed in position.

つまり、特許文献1のカレントセンサ111は、いずれも非磁性材料からなる一方の一対のスペーサ119,119と他方の一対のスペーサ129,129とを介在させたことにより、その測定時に一方のシールドケース114を構成している一方の内ケース部116と、他方のシールドケース124を構成している他方の内ケース部126とを、それぞれの開放端面116a,126aが相互に正対する位置関係のもとで当接させておくことができるので、外部磁界や電界に対するシールド効果を確実なものとすることができる。   In other words, the current sensor 111 of Patent Literature 1 has one pair of spacers 119, 119 made of non-magnetic material and the other pair of spacers 129, 129 interposed therebetween, so that one shield case is used for measurement. The one inner case part 116 forming the other part 114 and the other inner case part 126 forming the other shield case 124 are placed under a positional relationship in which their open end faces 116a and 126a face each other. , It is possible to ensure a shielding effect against an external magnetic field or electric field.

また、一方の一対のスペーサ119,119は、一方の外ケース部115と一方の内ケース部116とを、他方の一対のスペーサ129,129は、他方の外ケース部125と他方の内ケース部126とを、それぞれ電気的に確実に導通させることで、コモンモードノイズなどの外来ノイズの影響を効果的に抑制することができることになる。   Further, one pair of spacers 119, 119 connects one outer case 115 and one inner case 116, and the other pair of spacers 129, 129 connects the other outer case 125 and the other inner case. 126 can be effectively electrically connected to each other, whereby the effect of external noise such as common mode noise can be effectively suppressed.

一方、図7は、図5および図6に示すカレントセンサにコネクタを付加してなる従来例を模式的に示す説明図であり、そのうちの(a)は、図6(a)に対応させ、かつ、他方のセンサヘッド側のスペーサの図示を省略して示す説明図を、(b)は、一方のセンサヘッド側の説明図を、(c)は、図7(b)を底面側から見た状態の説明図を、(d)は、コネクタと一方のコア部との配置関係を頂面側から見た状態の説明図を、それぞれ示す。   On the other hand, FIG. 7 is an explanatory view schematically showing a conventional example in which a connector is added to the current sensor shown in FIGS. 5 and 6, in which (a) corresponds to FIG. FIG. 7B is an explanatory view showing the spacer on the other sensor head side without illustration, FIG. 7B is an explanatory view showing the one sensor head side, and FIG. (D) shows an explanatory view of a state in which the arrangement relationship between the connector and one of the core portions is viewed from the top side.

同図によれば、カレントセンサ111は、一方のコア部117と他方のコア部127とからなる磁気コア121により囲繞され、かつ、相互間に開閉自在なクランプ測定窓112を形成して図示しない被測定導体の導入を自在に組み合わされる一方のセンサヘッド113と他方のセンサヘッド123とで構成されている。なお、図7における図5および図6の各構成部材と同一の部材には、同一の参照符号を付してその詳細説明を省略する。   According to the figure, the current sensor 111 is surrounded by a magnetic core 121 comprising one core portion 117 and the other core portion 127, and forms a clamp measurement window 112 which can be opened and closed between each other, and is not shown. It is composed of one sensor head 113 and the other sensor head 123 that can freely combine the conductor to be measured. In FIG. 7, the same members as those in FIGS. 5 and 6 are denoted by the same reference numerals, and detailed description thereof will be omitted.

また、図7(a),(b)に示す例においては、一方のコア部117と一方の内ケース部116との間にコネクタ131が介在配置されている。該コネクタ121は、図6に示すような被測定導体Lのコモンモード電圧による影響(CMRR)を軽減するために、一方のコア部117を基準電位に接続するために必要なものであり、該コア部117に対するコネクタ121の配置関係は、図7(d)に示されているように一方のコア部117の頂面の中央部位に小さな長方形を呈して配置される関係にある。   In the example shown in FIGS. 7A and 7B, a connector 131 is interposed between one core portion 117 and one inner case portion 116. The connector 121 is necessary to connect one core portion 117 to a reference potential in order to reduce the influence (CMRR) of the conductor L under test due to the common mode voltage as shown in FIG. The arrangement relationship of the connector 121 with respect to the core portion 117 is such that as shown in FIG. 7D, a small rectangle is arranged at the center of the top surface of one of the core portions 117.

ところで、図5〜図7に示す従来タイプのカレントセンサ111にあっては、被測定導体Lのコモンモード電圧による影響(CMRR)を改善しつつ、一方のセンサヘッド113を構成している一方のコア部117と一方のシールドケース114との間の透磁率や他方のコア部127と他方のシールドケース124との間の透磁率がそれぞれ低下することのないようにして、一方のコア部117回りや他方のコア部127回りの各空間領域内のそれぞれの収納部材に極力応力がかからないように配慮した上で樹脂材を注入して位置固定しておく必要がある。   Meanwhile, in the conventional type current sensor 111 shown in FIGS. 5 to 7, one of the sensor heads 113 that constitutes one of the sensor heads 113 while improving the influence (CMRR) of the conductor L to be measured due to the common mode voltage is improved. In order to prevent the magnetic permeability between the core 117 and the one shield case 114 and the magnetic permeability between the other core 127 and the other shield case 124 from decreasing, respectively, the one core 117 In addition, it is necessary to inject a resin material and fix the position in such a manner that stress is not applied as much as possible to each storage member in each space area around the other core portion 127.

特に、注入する樹脂材としてエポキシ樹脂材を含む熱硬化性絶縁樹脂材を用いる場合には、高温環境下や高温高湿度環境下に一度でもさらされてしまうと、硬化過程で発生する収縮、膨張状態が常温に戻しても環境変化前の状態には戻らないという特性があることから、被測定導体Lのコモンモード電圧による影響(CMRR)を改善しつつ、一方のセンサヘッド113を構成している一方のコア部117と一方のシールドケース114との間の透磁率や他方のコア部127と他方のシールドケース124との間の透磁率がそれぞれ低下することのないようにして注入する必要がある。   In particular, when a thermosetting insulating resin material containing an epoxy resin material is used as the resin material to be injected, if it is exposed to a high-temperature environment or a high-temperature, high-humidity environment even once, the shrinkage and expansion that occur during the curing process Since there is a characteristic that even when the state is returned to normal temperature, it does not return to the state before the environmental change, the one sensor head 113 is configured while improving the influence (CMRR) of the conductor L to be measured due to the common mode voltage. It is necessary to perform the injection so that the magnetic permeability between the one core portion 117 and the one shield case 114 and the magnetic permeability between the other core portion 127 and the other shield case 124 do not decrease. is there.

しかし、エポキシ樹脂材を含む熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する収縮、膨張時におけるこのような特性は、発生応力により一方の内ケース部116を一方の外ケース部115内で移動させたり、他方の内ケース部126を他方の外ケース部125内で移動させたりすることから、一方のセンサヘッド113側の突合せ端面117aと他方のセンサヘッド123側の突合せ端面127aとの正対する位置関係についても変化させるに至る。   However, such characteristics at the time of shrinkage and expansion generated during the curing process after the injection of the thermosetting insulating resin material including the epoxy resin material are caused by the generated stress that the one inner case portion 116 is moved to the one outer case portion 115 by the generated stress. In the inner case part 126 and the other inner case part 126 is moved in the other outer case part 125, so that the butt end face 117a on the one sensor head 113 side and the butt end face 127a on the other sensor head 123 side are moved. Is also changed.

その結果、あるカレントセンサのセンサヘッドについての例ではあるが、例えば磁気コアにおける一方のコア部の変動が5μm程度で、一方のシールドケースにおける内ケース部の高さ変動が2μm程度であった場合であっても測定値を1%rdg.程度にまで変動させてしまうという無視できぬ問題点のあることが指摘されている。   As a result, as an example of a sensor head of a certain current sensor, for example, when the variation of one core portion of the magnetic core is about 5 μm and the height variation of the inner case portion of one shield case is about 2 μm Even when the measured value is 1% rdg. It has been pointed out that there is a problem that cannot be ignored.

つまり、図5〜図7に示す従来タイプのカレントセンサ111のセンサヘッド113,123にあっては、注入されたエポキシ樹脂材を含む熱硬化性絶縁樹脂材の硬化過程で発生する収縮・膨張に伴って生じる応力が磁気コア121を構成するコア部117,127の位置や、シールドケース114,124における内ケース部116,126の高さ・位置に変動をもたらし、これらの位置変動が結果的にその測定値に狂いを生じさせてしまうという不都合があった。   That is, in the sensor heads 113 and 123 of the conventional type current sensor 111 shown in FIGS. 5 to 7, the contraction / expansion that occurs during the curing process of the thermosetting insulating resin material including the injected epoxy resin material is prevented. The resulting stress causes fluctuations in the positions of the core portions 117 and 127 constituting the magnetic core 121 and in the heights and positions of the inner case portions 116 and 126 in the shield cases 114 and 124. There was a disadvantage that the measured values would be out of order.

本発明は、注入する樹脂材材としてエポキシ樹脂材を含む熱硬化性絶縁樹脂材を用いる場合にみられた上記従来技術の問題点に鑑み、外部磁界や電界に対するシールド効果を高めつつ、測定精度の向上を図ることができるカレントセンサを提供することに目的がある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art when a thermosetting insulating resin material including an epoxy resin material is used as a resin material to be injected. It is an object of the present invention to provide a current sensor capable of improving the current.

本発明は、上記目的を達成すべくなされたものであり、そのうちの第1の発明は、突合せ端面相互を正対接触させるべく配置される一対のコア部からなる磁気コアにより囲繞され、かつ、相互間に開閉自在なクランプ測定窓を形成して被測定導体の導入を自在に組み合わされる一組のセンサヘッドを備え、これらセンサヘッドのそれぞれは、外ケース部内に空隙を確保して内ケース部を収容してなるシールドケースと、前記突合せ端面を露出させて前記内ケース部内に位置固定して収容される前記コア部と、前記外ケース部内で前記内ケース部の収容位置を規制しつつ双方を導通させるべく前記空隙内に介在配置される一対のスペーサと、前記クランプ測定窓を画成する隔壁部と、いずれか一方の前記コア部側に配置されて前記磁気コア側を基準電位に接続させるコネクタとをえ、少なくとも一方の前記センサヘッドには、該センサヘッド内に熱硬化性絶縁樹脂材を注入して前記コア部を含む収納部材を位置固定すべく、前記熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮により生ずる応力による前記コア部側の定位置を変動させようとする作用方向を規制する応力対処手段を設けてなるカレントセンサにおいて、前記応力対処手段は、前記コネクタを備える側の前記コア部における前記内ケース部側との対向面と同等以上の面サイズを付与して介在させた前記コネクタにより形成したことを最も主要な特徴とする。
Means for Solving the Problems The present invention has been made to achieve the above object, and a first invention of the present invention is surrounded by a magnetic core consisting of a pair of cores arranged so as to bring the butted end faces into direct contact with each other, and forming a closable clamp measurement window therebetween, comprising a set of sensor heads freely combined introduction of the measurement conductor, each of these sensor heads, internal to secure voids in the outer case case And a core case that is fixedly housed in the inner case portion by exposing the butted end face, and restricting a housing position of the inner case portion in the outer case portion. A pair of spacers interposed in the gap to conduct both, a partition portion defining the clamp measurement window, and the magnetic core side disposed on one of the core portions; E Bei a connector to be connected to a reference potential, at least one of the sensor head, by injecting a thermosetting insulating resin material so as to position fixing the housing member including the core portion in the sensor head, the heat In a current sensor provided with a stress coping means for regulating an action direction in which a fixed position on the core portion side is changed by a stress caused by expansion and contraction generated in a curing process after injecting a curable insulating resin material. The most main feature is that the stress coping means is formed by the connector provided with a surface size equal to or greater than the surface facing the inner case portion side of the core portion on the side provided with the connector. Features.

また、第2の発明は、突合せ端面相互を正対接触させるべく配置される一対のコア部からなる磁気コアにより囲繞され、かつ、相互間に開閉自在なクランプ測定窓を形成して、被測定導体の導入を自在に組み合わされる一組のセンサヘッドを備え、これらセンサヘッドのそれぞれは、外ケース部内に空隙を確保して内ケース部を収容してなるシールドケースと、前記突合せ端面を露出させて前記内ケース部内に位置固定して収容される前記コア部と、前記外ケース部内で前記内ケース部の収容位置を規制しつつ双方を導通させるべく前記空隙内に介在配置される一対のスペーサと、前記クランプ測定窓を画形する隔壁部と、いずれか一方の前記コア部側に配置されて前記磁気コア側を基準電位に接続させるコネクタとを少なくとも備え、それぞれの前記センサヘッド内に熱硬化性絶縁樹脂材を注入して前記コア部を含む収納部材を位置固定してなるカレントセンサにおいて、少なくとも一方の前記センサヘッドには、前記コア部と前記内ケース部との間および前記内ケース部と前記外ケース部との間とのうち、少なくとも一方の側への前記熱硬化性絶縁樹脂材の入り込みを阻止してその注入量を減容しつつ該熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮時の応力の作用方向を前記コア部もしくは前記内ケース部以外の方向へと規制するための応力対処手段を設けたことを最も主要な特徴とする According to a second aspect of the present invention, there is provided a clamp measuring window which is surrounded by a magnetic core comprising a pair of core portions arranged so as to bring the butted end faces into direct contact with each other, and which is openable and closable between the magnetic cores. It comprises a set of sensor heads that are freely combined with the introduction of conductors, and each of these sensor heads has a shield case accommodating the inner case portion by securing a gap in the outer case portion, and exposing the butting end surface. And a pair of spacers interposed and disposed in the gap so that the core portion is fixedly accommodated in the inner case portion and accommodates the inner case portion in the outer case portion while controlling the accommodation position of the inner case portion. And a partition portion defining the clamp measurement window, and at least a connector disposed on one of the core portions and connecting the magnetic core side to a reference potential, In a current sensor in which a thermosetting insulating resin material is injected into the sensor head and a storage member including the core is fixed in position, at least one of the sensor heads includes the core and the inner case. And between the inner case portion and the outer case portion, to prevent the thermosetting insulating resin material from entering at least one side, thereby reducing the amount of heat to be injected. A stress coping means is provided for restricting the direction of action of stress at the time of expansion and contraction generated during the curing process after injecting the curable insulating resin material to a direction other than the core portion or the inner case portion. The most important feature .

第2の発明における前記応力対処手段は、前記内ケース部と前記コア部との間の空間領域内に配置して前記熱硬化性絶縁樹脂材の膨張・収縮時の応力の作用方向を前記コア部以外の方向へと規制する非磁性内側仕切り材と、前記内ケース部と前記外ケース部との間の空間領域内に配置して前記熱硬化性絶縁樹脂材の膨張・収縮時の応力の作用方向を前記内ケース部以外の方向へと規制する非磁性外側仕切り材とで形成するものであってもよい。 In the second invention, the stress coping means is disposed in a space region between the inner case portion and the core portion, and adjusts a direction of stress acting upon expansion and contraction of the thermosetting insulating resin material to the core. A non-magnetic inner partitioning member that regulates in a direction other than the portion, and a stress at the time of expansion and contraction of the thermosetting insulating resin material arranged in a space region between the inner case portion and the outer case portion. It may be formed of a non-magnetic outer partition member that regulates the action direction to a direction other than the inner case portion.

この場合、前記非磁性内側仕切り材と前記非磁性外側仕切り材とは、いずれも略コ字状または略ボックス状を呈し、前記コア部方向に開口面以外の部位を位置させて配置するのが好ましい。   In this case, the non-magnetic inner partitioning material and the non-magnetic outer partitioning material each have a substantially U-shape or a substantially box-like shape, and are preferably arranged with a portion other than the opening face positioned in the core direction. preferable.

また、前記非磁性内側仕切り材は、前記コネクタと前記内ケース部との間に介在させた状態で前記内ケース部の長手方向での一側端面側から他側端面側へと至る水平板部と、該水平板部の面方向と直交して前記コア部の近傍へと至る内側堰板部とからなる略T字状を呈する導電性内側仕切り板であり、前記非磁性外側仕切り材は、前記スペーサの開放端側から前記外ケース部の長手方向での対応部位側へと至る水平板部と、該水平板部の面方向と直交して内ケース部の前記他側端面側の近傍へと至る外側堰板部とで形成した導電性外側仕切り板とすることもできる。この場合、前記導電性外側仕切り板を構成する前記水平板部は、前記スペーサと一体に形成することもできる。   Further, the non-magnetic inner partition member is a horizontal plate portion extending from one end surface side to the other end surface side in the longitudinal direction of the inner case portion in a state interposed between the connector and the inner case portion. And a conductive inner partition plate having a substantially T-shape comprising an inner weir plate portion reaching the vicinity of the core portion orthogonally to the surface direction of the horizontal plate portion, and the non-magnetic outer partition material is A horizontal plate portion extending from the open end side of the spacer to a corresponding portion side in the longitudinal direction of the outer case portion, and orthogonal to a surface direction of the horizontal plate portion, to the vicinity of the other end surface side of the inner case portion. And a conductive outer partition plate formed by an outer weir plate portion reaching the outer partition wall. In this case, the horizontal plate portion forming the conductive outer partition plate may be formed integrally with the spacer.

請求項1に記載の発明(第1の発明)によれば、少なくともいずれか一方のセンサヘッドは、熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮時に生ずる応力により少なくともコア部側の定位置を変動させようとする作用を阻止する応力対処手段を設けて形成することで、熱硬化性絶縁樹脂材の硬化過程で発生する膨張・収縮時に生ずる応力を該応力対処手段を介して阻止することができるので、コア部側の定位置に変動を生じさせる要因をなくすことにより外部磁界や電界に対するシールド効果を備えた高精度なカレントセンサを提供することができる。 According to the first aspect of the present invention , at least one of the sensor heads has at least one of a sensor head and a stress generated during expansion and contraction generated in a curing process after the thermosetting insulating resin material is injected. By providing a stress countermeasure for preventing an action of changing the fixed position on the core portion side, the stress generated at the time of expansion and contraction generated during the curing process of the thermosetting insulating resin material is reduced. Therefore, it is possible to provide a high-precision current sensor having a shielding effect against an external magnetic field or an electric field by eliminating a factor that causes a change in a fixed position on the core portion side.

しかも、応力対処手段は、コネクタを備える側のコア部における内ケース部側との対向面と同等以上の面サイズを付与して介在させたコネクタにより形成されているので、コア部と内ケース部との間への熱硬化性絶縁樹脂材の入り込みを阻止してその注入量を減容することで、コア部相互の突合せ端面の位置や、内ケース部相互の突合せ端面の位置を変動させる応力作用からの影響を軽減させることができる。また、コネクタは、従来のコネクタよりも面サイズの大きなものが用いられる結果、それだけ電気的な接触面積を大きく確保しながらコア部と基準電位間の抵抗値を軽減させることで被測定導体のコモンモード電圧による影響(CMRR)を受ける度合いを低下させてやることもできる。 Moreover, the stress coping means Runode is formed by a connector with an opposing surface and equal or greater surface size of the inner casing portion is interposed by applying in the core portion of the side having the connector, the core portion and the inner casing section By preventing the thermosetting insulating resin material from entering the gap between the core and the inner case, the stress that changes the position of the butted end faces of the core parts and the position of the butted end faces of the inner case parts is reduced. The effect from the action can be reduced. In addition, the connector used has a larger surface size than the conventional connector.As a result, the resistance between the core and the reference potential is reduced while securing a large electrical contact area. It is also possible to reduce the degree of being affected by the mode voltage (CMRR).

請求項に記載の発明(第2の発明)によれば、少なくとも一方のセンサヘッドには、少なくとも一方の前記センサヘッドには、前記コア部と前記内ケース部との間および前記内ケース部と前記外ケース部との間とのうち、少なくとも一方の側への前記熱硬化性絶縁樹脂材の入り込みを阻止してその注入量を減容しつつ該熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮時の応力の作用方向をコア部もしくは内ケース部以外の方向へと規制するための応力対処手段が設けられているので、コア部と内ケース部との間および内ケース部と外ケース部との間とのうち、少なくとも一方の側への熱硬化性絶縁樹脂材の注入量を減容するとともに、熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮時の応力の作用方向をコア部もしくは内ケース部以外の方向へと規制するすることができるので、コア部相互の突合せ端面の位置や、内ケース部相互の突合せ端面の位置を変動させる応力作用からの影響を軽減させることができる。しかも、請求項3に記載の発明によれば、応力対処手段は、内ケース部とコア部との間の空間領域内に配置された非磁性内側仕切り材と、内ケース部と外ケース部との間の空間領域内に配置された非磁性外側仕切り材とで形成されているので、熱硬化性絶縁樹脂材を減容注入できるほか、熱硬化性絶縁樹脂材の硬化過程で発生する膨張・収縮時の応力方向をコア部や内ケース部以外の方向へと規制してコア部相互の突合せ端面の位置や、内ケース部相互の突合せ端面の位置を変位させる応力作用からの影響を軽減させることができる。 According to the invention described in claim 2 (second invention) , at least one of the sensor heads has at least one of the sensor heads, between the core part and the inner case part, and the inner case part. After the thermosetting insulating resin material is injected while preventing the thermosetting insulating resin material from entering at least one side between the outer case portion and the outer case portion while reducing the injection amount. There is provided a stress countermeasure for restricting the direction of action of stress at the time of expansion and contraction generated during the hardening process to a direction other than the core portion or the inner case portion. And between the inner case part and the outer case part, while reducing the injection amount of the thermosetting insulating resin material to at least one side, during the curing process after the injection of the thermosetting insulating resin material How stress acts during expansion and contraction Can be restricted to a direction other than the core portion or the inner case portion, so that the influence of the stress acting to change the position of the butted end surfaces of the core portions and the position of the butted end surfaces of the inner case portions can be reduced. be able to. In addition, according to the third aspect of the present invention, the stress coping means includes the non-magnetic inner partition member disposed in the space between the inner case portion and the core portion, and the inner case portion and the outer case portion. Since it is formed with the non-magnetic outer partitioning material placed in the space area between the two, it is possible to reduce the volume of the thermosetting insulating resin material and to inject it. The direction of stress during shrinkage is restricted to a direction other than the core and the inner case to reduce the effect of stress acting to displace the position of the butted end faces of the core parts and the position of the butted end faces of the inner case parts. be able to.

請求項4に記載の発明によれば、請求項3における非磁性内側仕切り材と非磁性外側仕切り材とは、いずれも略コ字状または略ボックス状を呈し、コア部方向に開口面以外の部位を位置させて配置されているので、内ケース部とコア部との間の空間領域は非磁性内側仕切り材を介して、内ケース部と外ケース部との間の空間領域は非磁性外側仕切り材を介して、それぞれの空間領域内の熱硬化性絶縁樹脂材を分断・減容することで応力作用の影響を受けずらくすることができる。また、非磁性内側仕切り材と非磁性外側仕切り材とのそれぞれの開口面は、コア部方向とは異なる方向に向けて配置されているので、熱硬化性絶縁樹脂材の膨張・収縮時に生ずる応力をコア部以外の方向へと方向規制することができる。   According to the invention described in claim 4, the non-magnetic inner partition member and the non-magnetic outer partition member in claim 3 both have a substantially U-shape or a substantially box-like shape, and each of the non-magnetic inner partition member and the non-magnetic outer partition member has a portion other than the opening surface in the core portion direction. Since the parts are located and positioned, the space area between the inner case part and the core part is through the non-magnetic inner partition material, and the space area between the inner case part and the outer case part is the non-magnetic outer part. By dividing and reducing the volume of the thermosetting insulating resin material in each space region via the partition member, the influence of the stress action can be reduced. In addition, since the opening surfaces of the non-magnetic inner partition member and the non-magnetic outer partition member are arranged in a direction different from the direction of the core portion, the stress generated when the thermosetting insulating resin material expands and contracts. Can be restricted to a direction other than the core portion.

請求項5に記載の発明によれば、非磁性内側仕切り材は、水平板部と内側堰板部とを有する導電性内側仕切り板として、非磁性外側仕切り材は、水平板部と外側堰板部とを有する導電性外側仕切り板としてそれぞれが形成されているので、内ケース部とコア部との間の空間領域は導電性内側仕切り板の内側堰板部で、内ケース部と外ケース部との間の空間領域は導電性外側仕切り板の外側堰板部で、それぞれを分断・減容しつつ、熱硬化性絶縁樹脂材の膨張・収縮時に生ずる応力の影響をコア部や内ケース部が受けないようにすることができる。   According to the invention described in claim 5, the non-magnetic inner partition member is a conductive inner partition plate having a horizontal plate portion and an inner dam plate portion, and the non-magnetic outer partition member is a horizontal plate portion and an outer dam plate. And a space region between the inner case portion and the core portion is the inner dam plate portion of the conductive inner partition plate, and the inner case portion and the outer case portion. The space between them is the outer weir plate part of the conductive outer partition plate, which separates and reduces the volume of each, and reduces the effects of the stress generated when the thermosetting insulating resin material expands and contracts. Can be avoided.

請求項6に記載の発明によれば、請求項5の導電性外側仕切り板を構成する水平板部は、スペーサと一体に形成されているので、それだけ応力対処手段の部材構成を簡素化することができるほか、該応力対処手段の配置作業もより簡略化することができる。   According to the sixth aspect of the present invention, since the horizontal plate portion forming the conductive outer partition plate of the fifth aspect is formed integrally with the spacer, the member configuration of the stress handling means can be simplified accordingly. In addition, the operation of arranging the stress handling means can be further simplified.

本発明の全体構成例についての部材相互の配置関係を明らかにすべく、図7に示す従来例と同じ構成のもとで、異なる参照符号を付与して模式的に示す説明図。FIG. 8 is an explanatory diagram schematically showing the same configuration as that of the conventional example shown in FIG. 7 with different reference numerals attached thereto in order to clarify the positional relationship between members in the overall configuration example of the present invention. 本発明の第1の発明の一例を模式的に示す説明図であり、そのうちの(a)は、図7(b)に対応させて示す説明図を、(b)は、図2(a)の要部を、(c)は、図2(b)におけるコネクタと一方のコア部との配置関係を頂面側から見た状態の説明図を、それぞれ示す。It is explanatory drawing which shows an example of the 1st invention of this invention typically, (a) is explanatory drawing corresponding to FIG.7 (b), (b) is FIG.2 (a) 2 (c) is an explanatory view of the arrangement of the connector and one of the cores in FIG. 2 (b) as viewed from the top side. 本発明の第2の発明の一例を図2(a)に対応させて示す説明図。Explanatory drawing showing an example of the second invention of the present invention in correspondence with FIG. 図3に示す第2の発明の変形例を示す説明図。FIG. 4 is an explanatory view showing a modification of the second invention shown in FIG. 3. 従来例の全体構成についての分解斜視図。FIG. 6 is an exploded perspective view of the entire configuration of a conventional example. 図5に示す従来例の配置関係を示す説明図であり、そのうちの(a)は、図6(b)におけるB−B線矢視方向での縦断面図を、(b)は、図6(a)におけるA−A線矢視方向での縦断面図をそれぞれ示す。6A and 6B are explanatory views showing the arrangement relationship of the conventional example shown in FIG. 5, in which FIG. 6A is a longitudinal sectional view taken along line BB in FIG. 6B, and FIG. (A) is a longitudinal sectional view taken along the line AA in FIG. 図5および図6に示すカレントセンサにコネクタを付加した他の従来例を模式的に示す説明図であり、そのうちの(a)は、図6(a)に対応させ、かつ、一方のセンサヘッド側のスペーサの図示を省略して示す説明図を、(b)は、図7(a)において一方の外ケース部を除いた際の一方のセンサヘッド側の説明図を、(c)は、図7(b)を底面側から見た状態の説明図を、(d)は、コネクタと一方のコア部との配置関係を頂面側から見た状態の説明図を、それぞれ示す。FIG. 7 is an explanatory view schematically showing another conventional example in which a connector is added to the current sensor shown in FIGS. 5 and 6, wherein (a) corresponds to FIG. 6 (a) and one of the sensor heads; FIG. 7 (b) is an explanatory view showing the one side of the sensor head when one outer case part is removed in FIG. 7 (a), and FIG. FIG. 7B is an explanatory view of the state viewed from the bottom side, and FIG. 7D is an explanatory view of the arrangement relation between the connector and one core portion viewed from the top side.

図1は、本発明の説明に先立ち、本発明の全体構成例についての部材相互の配置関係を改めて明らかにすべく、図7に示す従来例と同じ構成のもとで、異なる参照符号を付与して模式的に示した説明図である。   Prior to the description of the present invention, FIG. 1 is given the same reference numerals as in the conventional example shown in FIG. FIG.

同図によれば、本発明に係るカレントセンサ11は、閉止測定時に対応する位置関係にある突合せ端面17a,27aを正対接触させるべく配置される一対のコア部17,27からなる磁気コア21により囲繞され、かつ、相互間に開閉自在なクランプ測定窓12を形成して図6示されているような被測定導体Lの導入を自在に組み合わされる一組のセンサヘッド13,23を備えている。なお、図1中の参照符号35,36は、一方のセンサヘッド13におけるエポキシ樹脂材などの熱硬化性絶縁樹脂材が注入される空間領域を、37,38は、他方のセンサヘッド23におけるエポキシ樹脂材などの熱硬化性絶縁樹脂材が注入される空間領域をそれぞれ示す。 As shown in the figure, the current sensor 11 according to the present invention includes a magnetic core 21 composed of a pair of core portions 17 and 27 arranged so as to bring the butting end surfaces 17a and 27a in a positional relationship corresponding to the close measurement into direct contact. It is surrounded by, and forms a closable clamp measurement window 12 therebetween, comprising a set of sensor heads 13 and 23 to be combined freely introduction of measured conductor L as shown FIG ing. Reference numerals 35 and 36 in FIG. 1 denote spatial regions into which a thermosetting insulating resin material such as an epoxy resin material is injected in one sensor head 13, and reference numerals 37 and 38 denote epoxy regions in the other sensor head 23. The space region into which a thermosetting insulating resin material such as a resin material is injected is shown.

そして、これらセンサヘッド13,23のそれぞれは、パーマロイ材などの高透磁率合金材からなる外ケース部15,25内に空隙18,28を確保して同じくパーマロイ材などの高透磁率合金材からなる内ケース部16,26を収容してなるシールドケース14,24と、それぞれの突合せ端面17a,27aを露出させて内ケース部16,26内に位置固定して収容されるコア部17,27と、外ケース部15,25内で内ケース部16,26の収容位置を規制しつつ双方と面接触させるべくそれぞれの空隙18,28内に介在配置される青銅、銅、アルミニウムなどの非磁性かつ導電性の金属材からなるスペーサ19(他方のセンサヘッド23の側のスペーサは図示省略)と、クランプ測定窓12を画成する隔壁部20,30と、磁気コア21側を基準電位に接続させるべくいずれかのコア部17,27と内ケース部16,26、図示例によれば上側に位置する一方のコア部17と一方の内ケース部16との間に配置されるコネクタ31とを少なくとも備えて形成されている。なお、該コネクタ31は、例えばスポンジ状の発泡体の回りに導電性金属細線を巻き付けるなどして、コア部17と内ケース部16との間を電気的に導通させることができるようにして形成されている。   Each of the sensor heads 13 and 23 has a space 18 and 28 in the outer case portions 15 and 25 made of a high-permeability alloy material such as a permalloy material, and is made of a high-permeability alloy material such as a permalloy material. Shield cases 14 and 24 accommodating the inner case sections 16 and 26, and core sections 17 and 27 that are fixedly accommodated in the inner case sections 16 and 26 by exposing the respective butting end faces 17a and 27a. And a non-magnetic material such as bronze, copper, or aluminum interposed in the respective gaps 18 and 28 so as to make a surface contact with the inner case portions 16 and 26 in the outer case portions 15 and 25 while regulating the housing position. And a spacer 19 made of a conductive metal material (a spacer on the other sensor head 23 side is not shown), partition walls 20 and 30 defining the clamp measurement window 12, and a magnetic field. (A) In order to connect the 21 side to the reference potential, between any one of the core portions 17 and 27 and the inner case portions 16 and 26, and between the one core portion 17 located on the upper side and the one inner case portion 16 in the illustrated example. And a connector 31 arranged at least. The connector 31 is formed so as to allow electrical conduction between the core portion 17 and the inner case portion 16 by, for example, winding a conductive metal wire around a sponge-like foam. Have been.

以下、図1において上側に位置している一方のセンサヘッド13側に本発明を適用した場合を例に説明する。なお、図2は、本発明のうちの第1の発明の一例を、図3は、本発明のうちの第2の発明の一例を、図4は、図3に示す第2の発明の変形例を、それぞれ模式的に示した説明図である。 Hereinafter, a case where the present invention is applied to one sensor head 13 located on the upper side in FIG. 1 will be described as an example. Incidentally, FIG. 2, an example of the first aspect of the present invention, FIG. 3, an example of a second invention of the present invention, FIG. 4, the second invention shown in FIG. 3 It is explanatory drawing which showed the modification of each typically.

本発明において少なくともいずれか一方のセンサヘッド、図示例では上側に位置するコネクタ31を備える側のセンサヘッド13は、エポキシ樹脂材を含む図示しない熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮に伴って生ずる応力により一方のコア部17側の定位置を変動させようとする作用を阻止する応力対処手段41を設けることで、収納部材であるコア部17や内ケース部16の事後的な位置変動の抑制を可能にして形成されている。   In the present invention, at least one of the sensor heads, in the illustrated example, the sensor head 13 provided with the connector 31 located on the upper side is in a curing process after injecting a thermosetting insulating resin material (not shown) including an epoxy resin material. By providing a stress coping means 41 for preventing an effect of changing a fixed position on one core portion 17 side by a stress generated due to the generated expansion and contraction, the core portion 17 and the inner case portion which are storage members are provided. It is formed so as to be able to suppress the subsequent position fluctuation of the sixteen.

ここで、図2に示す第1の発明の一例についてより詳しく説明すれば、力対処手段41は、一方のセンサヘッド13が備えるコネクタ31自体の形状に変化を与えて形成されるものである。すなわち、一方の外ケース部15内にてスペーサ31を介して配置される内ケース部16一方のコア部17との間に介在配置されるコネクタ31(応力対処手段41)は、コア部17の頂面サイズと同等もしくはそれ以上の面サイズを有する対向面31aが付与されて形成されている。 Here, it will be described in more detail an example of the first invention shown in FIG. 2, stress coping means 41, intended to be formed by applying a change in shape of the connector 31 itself one of the sensor head 13 is provided is there. That is, the connector 31 (stress handling means 41) interposed between the inner case part 16 and the one core part 17 arranged via the spacer 31 in the one outer case part 15 An opposing surface 31a having a surface size equal to or larger than the top surface size is provided and formed.

このような形状サイズが付与される結果、コネクタ31には、図2(b)に太幅破線による囲繞領域A,Bとして示す2カ所にてコア部17と内ケース部16との間にエポキシ樹脂材などの熱硬化性絶縁樹脂材の入り込みを阻止してその注入量を減容させることことができ、それだけ熱硬化性絶縁樹脂材を空間領域35内に注入した後の硬化過程で発生する膨張・収縮に伴って生ずる応力の影響を受けコア部17側が従動して変動する要因を減じ得る応力対処手段41としての機能を付与してやることができる。   As a result of the provision of such a shape and size, the connector 31 has an epoxy between the core portion 17 and the inner case portion 16 at two locations shown as surrounding regions A and B indicated by thick broken lines in FIG. It is possible to prevent the thermosetting insulating resin material such as a resin material from entering and to reduce the amount of the resin material to be injected, which is generated in the curing process after the thermosetting insulating resin material is injected into the space region 35. It is possible to add a function as a stress coping unit 41 that can reduce a factor that fluctuates due to the influence of stress caused by expansion / contraction on the core 17 side.

つまり、一方のコア部17と一方の内ケース部16との間には、線膨張の大きなエポキシ樹脂材などの熱硬化性絶縁樹脂材がコネクタ31(応力対処手段41)に阻止されて入り込むことができなくなる結果、該熱硬化性絶縁樹脂材の注入量を減らすことで温度変化などによる応力の悪しき影響を緩和でき、その結果、図1に示す一方のセンサヘッド13側の突合せ端面17aと他方のセンサヘッド23側の突合せ端面27aとの間に生ずる変位や、一方の内ケース部16側の突合せ端面と他方の内ケース部26側の突合せ端面との間に生ずる変位を減少させて測定値の変動を軽減できることになる。   That is, a thermosetting insulating resin material such as an epoxy resin material having a large linear expansion is prevented from entering the connector 31 (stress coping means 41) between the one core portion 17 and the one inner case portion 16. As a result, by reducing the injection amount of the thermosetting insulating resin material, it is possible to alleviate the adverse effect of stress due to a temperature change or the like. As a result, the butt end face 17a on one sensor head 13 side shown in FIG. And the displacement between the butting end face 27a of the sensor head 23 and the butting end face of the inner case part 16 and the butting end face of the other inner case part 26 are reduced. Can be reduced.

しかも、コネクタ31(応力対処手段41)は、図7に示すコネクタ131よりも面サイズの大きなものが用いられる結果、それだけ電気的な接触面積を大きく確保しながらコア部17と基準電位間の抵抗値を軽減させることで図6に示すような被測定導体Lのコモンモード電圧による影響(CMRR)を受ける度合いを低下させてやることもできることになる。   Moreover, as the connector 31 (stress handling means 41), a connector having a larger surface size than the connector 131 shown in FIG. 7 is used. As a result, the resistance between the core portion 17 and the reference potential can be increased while ensuring a large electrical contact area. By reducing the value, the degree of influence (CMRR) of the conductor L under test due to the common mode voltage as shown in FIG. 6 can be reduced.

次に、本発明の第2の発明の一例を詳しく説明すれば、一組のセンサヘット13,23のうちの少なくとも一方、図3に示す例では上側に位置するセンサヘッド13には、コア部17と内ケース部16との間および内ケース部16と外ケース部15との間とのうち、少なくとも一方の側への前記熱硬化性絶縁樹脂材の入り込みを阻止してその注入量を減容しつつ該熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮時の応力の作用方向を前記コア部もしくは前記内ケース部以外の方向へと規制するための応力対処手段41が設けられている。これを図3に基づいてより詳しく説明すれば、応力対処手段41は、一方の内ケース部16と一方のコア部17との間の空間領域35内に配置してエポキシ樹脂材などの熱硬化性絶縁樹脂材を注入する際の注入量の減容と、注入した後の硬化過程で発生するの膨張・収縮に伴って生ずる応力の作用方向を規制する非磁性内側仕切り材42と、内ケース部16と外ケース部15との間の空間領域36内に配置して同様に熱硬化性絶縁樹脂材を注入する際の注入量の減容と、注入した後の熱硬化性絶縁樹脂材の膨張・収縮時に生ずる応力の作用方向を規制する非磁性外側仕切り材46とで形成されている。 Next, an example of the second invention of the present invention will be described in detail . At least one of the pair of sensor heads 13 and 23, and in the example shown in FIG. 17 and the inner case portion 16 and between the inner case portion 16 and the outer case portion 15 are prevented from entering the thermosetting insulating resin material into at least one side to reduce the injection amount. A stress coping means for restricting the direction of expansion and contraction stress generated in a curing process after injecting the thermosetting insulating resin material into a direction other than the core portion or the inner case portion. 41 are provided. This will be described in more detail with reference to FIG. 3. The stress countermeasure means 41 is disposed in the space region 35 between the one inner case part 16 and the one core part 17 and is made of a thermosetting material such as an epoxy resin material. A non-magnetic inner partitioning member 42 for reducing the volume of injection of the conductive insulating resin material and for controlling the direction of action of stress caused by expansion and contraction occurring during the curing process after injection, and an inner case. Similarly, when the thermosetting insulating resin material is disposed in the space region 36 between the portion 16 and the outer case portion 15 and the thermosetting insulating resin material is injected, the injection amount can be reduced . It is formed of a non-magnetic outer partition member 46 that regulates the direction of action of stress generated during expansion and contraction.

すなわち、図3に示す第2の発明の一例によれば、略コ字状または略ボックス状を呈する非磁性内側仕切り材42(応力対処手段41)は、一方の内ケース部16の空間領域35を図3中にゴシック欧文字Aとして示されている太幅破線による囲繞領域と、ゴシック欧文字Bとして示されている太幅破線による囲繞領域とに分断し、かつ、一方のコア部17方向に開口面42a以外の部位を位置させて配置されている。 That is, according to an example of the second invention shown in FIG. 3, the non-magnetic inner partition member 42 (stress coping means 41) having a substantially U-shape or a substantially box shape is provided in the space region 35 of the one inner case portion 16. Is divided into a surrounding area indicated by a bold dashed line shown as Gothic European character A in FIG. 3 and a surrounding area indicated by a bold dashed line indicated as Gothic European character B, and And a portion other than the opening surface 42a.

このため、熱硬化性絶縁樹脂材を一方の内ケース部16内に減容注入した後の硬化過程で発生する膨張・収縮時に生ずる応力は、非磁性内側仕切り材42(応力対処手段41)を介して一方のコア部17側に作用させないように邪魔したり、同図中に示す矢印Y方向へと方向規制したりすることができることになる。 For this reason, the stress generated at the time of expansion and contraction generated in the hardening process after the thermosetting insulating resin material is injected into one inner case portion 16 with reduced volume is applied to the nonmagnetic inner partition member 42 (stress handling means 41). through it or disturb so as not to act on one of the core portion 17 side, so that it is possible or direction regulating the arrow Y 1 direction shown in FIG.

また、同じく略コ字状または略ボックス状を呈する非磁性外側仕切り材46(応力対処手段41)は、一方の外ケース部15の空間領域36を図3中にゴシック欧文字Cとして示されている太幅破線による囲繞領域と、ゴシック欧文字Dとして示されている太幅破線による囲繞領域とに分断し、かつ、一方の内ケース部16(一方のコア部17)方向に開口面46a以外の部位を位置させて配置されることになる。   The non-magnetic outer partition member 46 (stress coping means 41), which also has a substantially U-shape or a substantially box-like shape, has a space region 36 of one outer case portion 15 shown as Gothic European character C in FIG. Is divided into a surrounding area indicated by a thick dashed line and a surrounding area indicated by a thick dashed line indicated by the Gothic European character D, and other than the opening surface 46a in the direction of one inner case portion 16 (one core portion 17). Is positioned and positioned.

このため、熱硬化性絶縁樹脂材を一方の外ケース部15の空間領域36内に減容注入した後の硬化過程で発生する膨張・収縮時に生ずる応力は、非磁性外側仕切り材46(応力対処手段41)を介して一方の内ケース部16側、ひいては一方のコア部17側に作用させないように邪魔したり、同図中に示す矢印Y方向へと方向規制したりすることができることになる。 For this reason, the stress generated at the time of expansion and contraction generated during the hardening process after the volumetric injection of the thermosetting insulating resin material into the space region 36 of the one outer case portion 15 is caused by the non-magnetic outer partition member 46 (stress management). means 41) through one of the inner case portion 16 side, or interfere so as not to act on the thus one core portion 17 side, that can be or direction regulating the arrow Y 2 direction indicated in FIG. Become.

一方、図4に示す第2の発明の変形例によれば、非磁性内側仕切り材42は、コネクタ31と一方の内ケース部16との間に介在させた状態で該内ケース部16の長手方向での一側端面16a側から他側端面16b側へと至る水平板部44と、該水平板部44の面方向と直交して一方のコア部17の近傍へと至る内側堰板部45とからなる略T字状を呈する導電性内側仕切り板43(応力対処手段41)として形成されている。 On the other hand, according to the modified example of the second invention shown in FIG. 4, the non-magnetic inner partition member 42 is disposed in the longitudinal direction of the inner case 16 while being interposed between the connector 31 and one of the inner cases 16. Plate portion 44 extending from one side end surface 16a side to the other side end surface 16b side in the direction, and an inner weir plate portion 45 orthogonal to the horizontal direction of the horizontal plate portion 44 and approaching one of the core portions 17. Are formed as a substantially T-shaped conductive inner partition plate 43 (stress coping means 41).

つまり、略T字状を呈する導電性内側仕切り板43(非磁性内側仕切り材42)は、一方の内ケース部16の空間領域35を図4中にゴシック欧文字Aとして示されている太幅破線による囲繞領域と、ゴシック欧文字Bとして示されている太幅破線による囲繞領域とに分断し、かつ、一方のコア部17方向に開口面44a以外の部位を位置させて配置されることになる。   In other words, the conductive inner partition plate 43 (non-magnetic inner partition member 42) having a substantially T-shape is formed such that the space region 35 of the one inner case portion 16 has a large width shown as Gothic European character A in FIG. It is divided into a surrounding region indicated by a broken line and a surrounding region indicated by a thick dashed line shown as Gothic European character B, and is arranged such that a portion other than the opening surface 44a is positioned in the direction of one core portion 17. Become.

このため、熱硬化性絶縁樹脂材を一方の内ケース部16の空間領域35内に減容注入した後の硬化過程で発生する膨張・収縮時に生ずる応力は、非磁性内側仕切り材42としての導電性内側仕切り板43(応力対処手段41)を介して一方のコア部17側に作用させないように邪魔したり、同図中に示す矢印Y方向へと方向規制したりすることができることになる。 For this reason, the stress generated at the time of expansion and contraction generated during the hardening process after the volumetric injection of the thermosetting insulating resin material into the space region 35 of the one inner case portion 16 is caused by the conductive property of the nonmagnetic inner partition member 42. or interfere so as not to act on one of the core portion 17 side through the sexual inner partition plate 43 (stress coping means 41), so that it is possible or direction regulating the arrow Y 1 direction shown in FIG. .

また、非磁性外側仕切り材46(応力対処手段41)は、一方のスペーサ19の開放端19a側から一方の外ケース部15の長手方向での対応部位(図4中では外ケース部15において左側に位置する一側端面15aではなく、右側に位置する他側端面15b)側へと至る水平板部48と、該水平板部48の面方向と直交して一方の内ケース部16の他側端面16b側の近傍へと至る外側堰板部49とからなる略L字状を呈する導電性外側仕切り板47(応力対処手段41)として形成されている。   In addition, the non-magnetic outer partition member 46 (stress handling means 41) is provided at a corresponding portion in the longitudinal direction of one outer case portion 15 from the open end 19a side of one spacer 19 (the left side in the outer case portion 15 in FIG. 4). The horizontal plate portion 48 reaching not the one end surface 15a located on the right side but the other end surface 15b) located on the right side, and the other side of one of the inner case portions 16 orthogonal to the surface direction of the horizontal plate portion 48 It is formed as a substantially L-shaped conductive outer partition plate 47 (stress handling means 41) composed of an outer weir plate portion 49 reaching the vicinity of the end face 16b side.

つまり、略L字状を呈する導電性外側仕切り板47(非磁性外側仕切り材46)は、一方の外ケース部15の空間領域36を図4中にゴシック欧文字Cとして示されている太幅破線による囲繞領域と、ゴシック欧文字Dとして示されている太幅破線による囲繞領域とに分断し、かつ、一方のコア部17方向に開口面46a以外の部位を位置させて配置されることになる。   That is, the conductive outer partition plate 47 (non-magnetic outer partition member 46) having a substantially L-shape is formed such that the space region 36 of the one outer case portion 15 has a large width shown as Gothic European character C in FIG. It is divided into a surrounding region indicated by a broken line and a surrounding region indicated by a thick broken line indicated by the Gothic European character D, and is arranged such that a portion other than the opening surface 46a is positioned in the direction of one core portion 17. Become.

このため、熱硬化性絶縁樹脂材を一方の外ケース部15の空間領域36内に減容注入した後の硬化過程で発生する膨張・収縮時に生ずる応力は、非磁性外側仕切り材46としての導電性外側仕切り板47(応力対処手段41)を介して一方の内ケース部16、ひいては一方のコア部17側に作用させないように邪魔したり、同図中に示す矢印Y方向へと方向規制したりすることができることになる。なお、導電性外側仕切り板47を構成する水平板部48は、図示は省略してあるが、一方のスペーサ19と一体に形成することもできる。 For this reason, the stress generated at the time of expansion and contraction generated in the hardening process after the volumetric injection of the thermosetting insulating resin material into the space region 36 of the one outer case portion 15 is caused by the conductive as the nonmagnetic outer partition member 46. sex outer partition plate 47 (stress coping means 41) one of the inner case portion 16 via a or interfere so as not to act on the thus one core portion 17 side, direction and regulation of the arrow Y 2 direction indicated in FIG. You can do that. The horizontal plate portion 48 constituting the conductive outer partition plate 47 is not shown, but can be formed integrally with one of the spacers 19.

本発明は、このようにして構成されているので、少なくともいずれか一方のセンサヘッド、図示例では上側に位置するコネクタ31を備える側のセンサヘッド13は、熱硬化性絶縁樹脂材を減容注入した後の硬化過程で発生する膨張・収縮時に生ずる応力により少なくとも一方のコア部17側の定位置を変動させようとする作用を阻止する応力対処手段41を設けて形成することで、熱硬化性絶縁樹脂材の硬化過程で発生する膨張・収縮時に生ずる応力を該応力対処手段41を介して阻止することができるので、コア部16側の定位置に変動を生じさせる要因をなくすことにより外部磁界や電界に対するシールド効果を備えた高精度なカレントセンサ11を提供することができる。 Since the present invention is configured in this manner, at least one of the sensor heads, in the illustrated example the sensor head 13 on the side provided with the connector 31 located on the upper side, reduces the volume of the thermosetting insulating resin material by injection. By providing a stress coping means 41 for preventing an action of changing a fixed position on at least one of the core portions 17 by a stress generated at the time of expansion and contraction generated in a hardening process after the heat hardening process, the thermosetting Since the stress generated at the time of expansion and contraction generated during the curing process of the insulating resin material can be prevented through the stress coping means 41, the external magnetic field can be eliminated by eliminating the factor causing the fixed position on the core portion 16 side to fluctuate. And a highly accurate current sensor 11 having a shielding effect against electric fields.

すなわち、図2に示す第1の発明によれば、応力対処手段41は、コネクタ31を備える側のコア部17における内ケース部16の頂面と同等以上の面サイズが付与された対向面31aを備えてなるコネクタ31を介在させて形成することができるので、コア部17と内ケース部16との間である、図2(b)中に太幅破線による囲繞領域A,Bとして示される2カ所にてコア部17と内ケース部16との間にエポキシ樹脂材などの熱硬化性絶縁樹脂材の入り込みを阻止してその注入量を減容することで、コア部17,27相互の突合せ端面17a,27aの位置や、内ケース部16,26相互の突合せ端面の位置を変動させる応力作用からの影響を軽減させることができる。 That is, according to the first invention shown in FIG. 2, the stress handling means 41 is provided on the opposing surface 31 a having a surface size equal to or greater than the top surface of the inner case portion 16 in the core portion 17 on the side provided with the connector 31. Can be formed with a connector 31 having the same as shown in FIG. 2 (b), which is between the core portion 17 and the inner case portion 16 and is indicated by surrounding regions A and B indicated by thick broken lines. At two locations, a thermosetting insulating resin material such as an epoxy resin material is prevented from entering between the core portion 17 and the inner case portion 16 to reduce the amount of injection, thereby reducing the amount of injection between the core portions 17 and 27. It is possible to reduce the influence from the stress action that fluctuates the positions of the butting end surfaces 17a and 27a and the positions of the butting end surfaces of the inner case portions 16 and 26.

また、コネクタ31は、図7に示す従来のコネクタ131よりも面サイズの大きなものが用いられる結果、それだけ電気的な接触面積を大きく確保しながら一方のコア部17と基準電位間の抵抗値を軽減させることで図6に示されているような被測定導体Lのコモンモード電圧による影響(CMRR)を受ける度合いを低下させてやることもできる。   As the connector 31, a connector having a larger surface size than the conventional connector 131 shown in FIG. 7 is used. As a result, the resistance between one core portion 17 and the reference potential can be increased while securing a large electrical contact area. By reducing this, the degree of influence (CMRR) of the conductor to be measured L due to the common mode voltage as shown in FIG. 6 can be reduced.

また、図3に示す第2の発明によれば、少なくとも一方のセンサヘッド13には、コア部17と内ケース部16との間および内ケース部16と外ケース部15との間とのうち、少なくとも一方の側への前記熱硬化性絶縁樹脂材の入り込みを阻止してその注入量を減容しつつ該熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮時の応力の作用方向をコア部17もしくは内ケース部16以外の方向へと規制するための応力対処手段41が設けられているので、コア部17と内ケース部16との間および内ケース部16と外ケース部15との間とのうち、少なくとも一方の側への熱硬化性絶縁樹脂材の注入量を減容するとともに、熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮時の応力の作用方向をコア部17もしくは内ケース部16以外の方向へと規制するすることができるので、コア部17,27相互の突合せ端面17a,27aの位置や、内ケース部16,26相互の突合せ端面の位置を変動させる応力作用からの影響を軽減させることができる。
しかも、請求項3に記載の発明によれば、応力対処手段は、内ケース部とコア部との間の空間領域内に配置された非磁性内側仕切り材と、内ケース部と外ケース部との間の空間領域内に配置された非磁性外側仕切り材とで形成されているので、熱硬化性絶縁樹脂材を減容注入できるほか、熱硬化性絶縁樹脂材の硬化過程で発生する膨張・収縮時の応力方向をコア部や内ケース部以外の方向へと規制してコア部相互の突合せ端面の位置や、内ケース部相互の突合せ端面の位置を変位させる応力作用からの影響を軽減させることができる。このとき、応力対処手段41が図3に示すように一方の内ケース部16と一方のコア部17との間の空間領域35内に配置された非磁性内側仕切り材42と、一方の内ケース部16と一方の外ケース部15との間の空間領域36内に配置された非磁性外側仕切り材46とで形成されている場合は、熱硬化性絶縁樹脂材の硬化過程で発生する膨張・収縮時の応力方向をコア部17や内ケース部16以外の方向へと規制して図1に示すコア部17,27相互の突合せ端面17a,27aの位置や、内ケース部16,26相互の突合せ端面の位置を変位させる応力作用からの影響を軽減させることができる。
According to the second invention shown in FIG. 3, at least one of the sensor heads 13 includes a portion between the core portion 17 and the inner case portion 16 and a portion between the inner case portion 16 and the outer case portion 15. At the time of expansion / shrinkage occurring in the curing process after the thermosetting insulating resin material is injected while preventing the thermosetting insulating resin material from entering at least one side and reducing the injection amount. Since the stress countermeasure means 41 is provided for restricting the acting direction of the stress to a direction other than the core portion 17 or the inner case portion 16, the space between the core portion 17 and the inner case portion 16 and between the core case 17 and the inner case portion 16 are provided. The volume of the thermosetting insulating resin material injected into at least one side between the outer case portion 15 and the outer case portion 15 is reduced, and the expansion and shrinkage generated in the curing process after the thermosetting insulating resin material is injected. The action direction of the stress at the time of contraction Or, it can be restricted to a direction other than the inner case part 16, so that the position of the butted end faces 17a and 27a of the core parts 17 and 27 and the position of the butted end faces of the inner case parts 16 and 26 are changed. The effect from the stress action can be reduced.
In addition, according to the third aspect of the present invention, the stress coping means includes the non-magnetic inner partition member disposed in the space between the inner case portion and the core portion, and the inner case portion and the outer case portion. Since it is formed with the non-magnetic outer partitioning material placed in the space area between the two, it is possible to reduce the volume of the thermosetting insulating resin material and to inject it. The direction of stress during shrinkage is restricted to a direction other than the core and the inner case to reduce the effect of stress acting to displace the position of the butted end faces of the core parts and the position of the butted end faces of the inner case parts. be able to. At this time, as shown in FIG. 3 , the stress handling means 41 includes a non-magnetic inner partition member 42 disposed in the space region 35 between the one inner case portion 16 and the one core portion 17 and the one inner case portion. If it is formed by a non-magnetic outer partition member 46 disposed in the space region 36 between one of the outer casing section 15 and section 16, generated in the curing process of the thermosetting insulating resin material expands and The stress direction at the time of contraction is restricted to a direction other than the core portion 17 and the inner case portion 16 so that the positions of the butted end surfaces 17a and 27a of the core portions 17 and 27 shown in FIG. It is possible to reduce the influence from the stress action that displaces the position of the butt end face.

すなわち、力対応手段41を構成する非磁性内側仕切り材42と非磁性外側仕切り材46といずれも略コ字状または略ボックス状を呈し、一方のコア部17方向に開口面42a,46a以外の部位を位置させて配置されている場合には、一方の内ケース部16と一方のコア部17との間の空間領域35は非磁性内側仕切り材42により図3中にゴシック欧文字Aとして示されている太幅破線による囲繞領域と、ゴシック欧文字Bとして示されている太幅破線による囲繞領域とに、一方の内ケース部16と一方の外ケース部15との間の空間領域36は非磁性外側仕切り材46により図3中にゴシック欧文字Cとして示されている太幅破線による囲繞領域と、ゴシック欧文字Dとして示されている太幅破線による囲繞領域とにそれぞれを分断することで、エポキシ樹脂などからなる熱硬化性絶縁樹脂材の注入量を減して応力作用の影響を受けずらくすることができる。 That is, both the non-magnetic inner partition member 42 constituting the stress corresponding unit 41 and the non-magnetic outer partition member 46 has a substantially U-shaped or substantially box-shaped, one of the core portions 17 a direction to the opening surface 42a, 46a if it is arranged to position the portion other than the gothic European letters a space region 35 in FIG. 3 by a non-magnetic inner partition member 42 between one of the inner case 16 and one of the core portion 17 A space region between one inner case portion 16 and one outer case portion 15 is surrounded by a thick region surrounded by a thick broken line and a surrounding region formed by a thick broken line shown as Gothic European character B. Numeral 36 designates a nonmagnetic outer partition member 46 which divides a surrounding area indicated by a thick dashed line shown as Gothic European character C in FIG. Doing, it is possible to pleasure not affected by the stress and volume reducing the injection amount of the thermosetting insulating resin material made of an epoxy resin acting.

また、非磁性内側仕切り材42と非磁性外側仕切り材46とのそれぞれの開口面42a,46aは、一方のコア部17方向とは異なる方向、例えば図1に示す他方のセンサヘッド23方向に向けて配置されているので、エポキシ樹脂材などの熱硬化性絶縁樹脂材の膨張・収縮時に生ずる応力作用の影響を一方のコア部17側や一方の内ケース部16側が受けないように図3に示すそれぞれの矢印Y,Y方向へと逃がしてやることができる。 The opening surfaces 42a, 46a of the non-magnetic inner partition member 42 and the non-magnetic outer partition member 46 are directed in directions different from the direction of the one core portion 17, for example, toward the other sensor head 23 shown in FIG. FIG. 3 shows that one of the core portions 17 and one of the inner case portions 16 are not affected by the stress effect generated when the thermosetting insulating resin material such as an epoxy resin material expands and contracts. It is possible to escape in the directions indicated by arrows Y 1 and Y 2 .

さらに、図4に示す第2の発明の変形例によれば、非磁性内側仕切り材43は、水平板部44と内側堰板部45とを有する導電性内側仕切り板43として、非磁性外側仕切り材46は、水平板部48と外側堰板部49とを有する導電性外側仕切り板47としてそれぞれが形成されているので、一方の内ケース部16と一方のコア部17との間の空間領域35は導電性内側仕切り板47の内側堰板部49で、一方の内ケース部16と一方の外ケース部15との間の空間領域36は導電性外側仕切り板47の外側堰板部49で、それぞれを分断・減容しつつ、熱硬化性絶縁樹脂材の膨張・収縮時に生ずる応力の影響をコア部17や内ケース部16が受けないようにすることができる。 Further, according to the modified example of the second invention shown in FIG. 4, the non-magnetic inner partition member 43 is a conductive inner partition plate 43 having a horizontal plate portion 44 and an inner weir plate portion 45 as a non-magnetic outer partition member. Since each of the members 46 is formed as a conductive outer partition plate 47 having a horizontal plate portion 48 and an outer dam plate portion 49, a space region between one inner case portion 16 and one core portion 17 is formed. Reference numeral 35 denotes an inner dam plate portion 49 of the conductive inner partition plate 47, and a space region 36 between the one inner case portion 16 and the one outer case portion 15 is an outer dam plate portion 49 of the conductive outer partition plate 47. The core portion 17 and the inner case portion 16 can be prevented from being affected by the stress generated when the thermosetting insulating resin material expands and contracts while dividing and reducing the volume.

また、一方のコア部17と一方の内ケース部16との間の空間領域35における囲繞領域Bは、内側堰板部45を案内板として、一方の内ケース部16と一方の外ケース部15との間の空間領域36における囲繞領域Dは、外側堰板部49を案内板としてそれぞれを機能させることで、エポキシ樹脂材などの熱硬化性絶縁樹脂材が硬化過程で発生する膨張・収縮に伴って生じる応力作用の影響を一方のコア部17側や一方の内ケース部16側が受けないように図4に示すそれぞれの矢印Y,Y方向へと逃がしてやることができる。 The surrounding area B in the space area 35 between the one core part 17 and the one inner case part 16 is formed by using the inner weir plate part 45 as a guide plate and the one inner case part 16 and the one outer case part 15. The surrounding area D in the space area 36 between the outer peripheral wall and the outer peripheral wall is made to function as a guide plate by using the outer dam plate portion 49 as a guide plate, so that a thermosetting insulating resin material such as an epoxy resin material can be expanded and contracted during the curing process. 4 can be released in the directions of the arrows Y 1 and Y 2 shown in FIG. 4 so that the side of the one core portion 17 and the side of the one inner case portion 16 are not affected by the resulting stress action.

また、図4に示す第2の発明の変形例において、導電性外側仕切り板46を構成する水平板部48がスペーサ19と一体に形成されている場合(図示せず)には、それだけ応力対処手段41の部材構成を簡素化することができるほか、該応力対処手段41の配置作業もより簡略化することができる。 Further, in the modification of the second invention shown in FIG. 4, when the horizontal plate portion 48 constituting the conductive outer partition plate 46 is formed integrally with the spacer 19 (not shown), the stress is reduced accordingly. The member configuration of the means 41 can be simplified, and the work of arranging the stress handling means 41 can be further simplified.

以上は、本発明を図示例に基づいて説明したものであり、その具体的な構造はこれに限定されるものではない。すなわち、図2に示す第1の発明の一例によれば、一方のセンサヘッド13側にコネクタ31が配置されている例が示されているため、応力対処手段41も一方のセンサヘッド13側に配置されることになるが、図1に示す他方のセンサヘッド23側にコネクタ31が配置されている場合には、応力対処手段41も他方のセンサヘッド23側に配置されることになる。 The above has been a description of the present invention based on the illustrated example, and the specific structure is not limited to this. That is, according to the example of the first invention shown in FIG. 2, since the example in which the connector 31 is arranged on one sensor head 13 side is shown, the stress countermeasure means 41 is also arranged on one sensor head 13 side. However, when the connector 31 is disposed on the other sensor head 23 side shown in FIG. 1, the stress handling means 41 is also disposed on the other sensor head 23 side.

11 カレントセンサ
12 クランプ測定窓
13,23 センサヘッド
14,24 シールドケース
15,25 外ケース部
15a 一側端面
15b 他側端面
16,26 内ケース部
16a 一側端面
16b 他側端面
17,27 コア部
17a,27a 突合せ端面
18,28 空隙
19 スペーサ
19a 開放端
20,30 隔壁部
21 磁気コア
31 コネクタ
31a 対向面
35,36,37,38 空間領域
41 応力対処手段
42 非磁性内側仕切り材
42a 開口面
43 導電性内側仕切り板
44 水平板部
44a 一端
44b 他端
45 内側堰板部
46 非磁性外側仕切り材
46a 開口面
47 導電性外側仕切り板
48 水平板部
48a 一端
48b他端
49 外側堰板部
DESCRIPTION OF SYMBOLS 11 Current sensor 12 Clamp measurement window 13, 23 Sensor head 14, 24 Shield case 15, 25 Outer case part 15a One side end surface 15b Other side end surface 16, 26 Inner case part 16a One side end surface 16b Other side end surface 17, 27 Core part 17a, 27a Butt end face 18, 28 Air gap
DESCRIPTION OF SYMBOLS 19 Spacer 19a Open end 20,30 Partition part 21 Magnetic core 31 Connector 31a Opposing surface 35,36,37,38 Space area 41 Stress handling means 42 Non-magnetic inner partitioning material 42a Opening surface 43 Conductive inner partitioning plate 44 Horizontal plate portion 44a One end 44b Other end 45 Inner dam 46 Non-magnetic outer partition 46a Opening surface 47 Conductive outer divider 48 Horizontal plate 48a One end 48b Other end 49 Outer dam

Claims (6)

突合せ端面相互を正対接触させるべく配置される一対のコア部からなる磁気コアにより囲繞され、かつ、相互間に開閉自在なクランプ測定窓を形成して被測定導体の導入を自在に組み合わされる一組のセンサヘッドを備え、これらセンサヘッドのそれぞれは、外ケース部内に空隙を確保して内ケース部を収容してなるシールドケースと、前記突合せ端面を露出させて前記内ケース部内に位置固定して収容される前記コア部と、前記外ケース部内で前記内ケース部の収容位置を規制しつつ双方を導通させるべく前記空隙内に介在配置される一対のスペーサと、前記クランプ測定窓を画成する隔壁部と、いずれか一方の前記コア部側に配置されて前記磁気コア側を基準電位に接続させるコネクタとをえ、少なくとも一方の前記センサヘッドには、該センサヘッド内に熱硬化性絶縁樹脂材を注入して前記コア部を含む収納部材を位置固定すべく、前記熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮により生ずる応力による前記コア部側の定位置を変動させようとする作用方向を規制する応力対処手段を設けてなるカレントセンサにおいて、
前記応力対処手段は、前記コネクタを備える側の前記コア部における前記内ケース部側との対向面と同等以上の面サイズを付与して介在させた前記コネクタにより形成したことを特徴とするカレントセンサ。
It is surrounded by a magnetic core consisting of a pair of core parts arranged to bring the butted end faces into direct contact with each other, and forms a clamp measurement window that can be opened and closed between them so that the conductor to be measured can be freely combined. A set of sensor heads, each of these sensor heads having a gap in the outer case to accommodate the inner case and a shield case in which the butted end surface is exposed and fixed in the inner case. And a pair of spacers interposed in the gap so as to conduct the two while regulating the storage position of the inner case part in the outer case part, and the clamp measurement window. a partition wall for forming, e Bei a connector for connecting said magnetic core side to a reference potential is disposed on either one of the core portion, at least one of said sensor head , By injecting a thermosetting insulating resin material in the sensor head in order to position fixing the housing member including the core portion, the expansion and contraction that occur curing process after injection of the thermosetting insulating resin material In a current sensor provided with stress coping means for regulating an action direction in which the fixed position on the core portion side is changed by the generated stress,
Wherein the stress coping means is formed by the connector interposed by providing a surface size equal to or greater than a surface facing the inner case portion side of the core portion on the side including the connector. Sensors.
突合せ端面相互を正対接触させるべく配置される一対のコア部からなる磁気コアにより囲繞され、かつ、相互間に開閉自在なクランプ測定窓を形成して、被測定導体の導入を自在に組み合わされる一組のセンサヘッドを備え、これらセンサヘッドのそれぞれは、外ケース部内に空隙を確保して内ケース部を収容してなるシールドケースと、前記突合せ端面を露出させて前記内ケース部内に位置固定して収容される前記コア部と、前記外ケース部内で前記内ケース部の収容位置を規制しつつ双方を導通させるべく前記空隙内に介在配置される一対のスペーサと、前記クランプ測定窓を画形する隔壁部と、いずれか一方の前記コア部側に配置されて前記磁気コア側を基準電位に接続させるコネクタとを少なくとも備え、それぞれの前記センサヘッド内に熱硬化性絶縁樹脂材を注入して前記コア部を含む収納部材を位置固定してなるカレントセンサにおいて、
少なくとも一方の前記センサヘッドには、前記コア部と前記内ケース部との間および前記内ケース部と前記外ケース部との間とのうち、少なくとも一方の側への前記熱硬化性絶縁樹脂材の入り込みを阻止してその注入量を減容しつつ前記熱硬化性絶縁樹脂材を注入した後の硬化過程で発生する膨張・収縮時の応力の作用方向を前記コア部もしくは前記内ケース部以外の方向へと規制するための応力対処手段を設けたことを特徴とするカレントセンサ。
It is surrounded by a magnetic core consisting of a pair of core parts arranged to bring the butted end faces into direct contact with each other, and forms a clamp measurement window that can be opened and closed between them so that the conductor to be measured can be freely combined. A set of sensor heads, each of these sensor heads having a gap in the outer case to accommodate the inner case and a shield case in which the butted end surface is exposed and fixed in the inner case. And a pair of spacers interposed in the gap so as to conduct the two while regulating the storage position of the inner case part in the outer case part, and the clamp measurement window. And at least one connector disposed on one of the core portions to connect the magnetic core side to a reference potential. In the current sensor formed by a position fixing the housing member including the core portion by injecting a thermosetting insulating resin material within,
In at least one of the sensor heads, the thermosetting insulating resin material to at least one side between the core portion and the inner case portion and between the inner case portion and the outer case portion The action direction of the stress at the time of expansion and contraction generated in the curing process after injecting the thermosetting insulating resin material while preventing the intrusion of the core and reducing the injection amount is changed to a direction other than the core portion or the inner case portion. A current sensor comprising a stress coping means for regulating the direction of the current sensor.
前記応力対処手段は、前記内ケース部と前記コア部との間の空間領域内に配置して前記熱硬化性絶縁樹脂材の膨張・収縮時の応力の作用方向を前記コア部以外の方向へと規制する非磁性内側仕切り材と、前記内ケース部と前記外ケース部との間の空間領域内に配置して前記熱硬化性絶縁樹脂材の膨張・収縮時の応力の作用方向を前記内ケース部以外の方向へと規制する非磁性外側仕切り材とで形成した請求項2に記載のカレントセンサ。 The stress coping means is disposed in a space region between the inner case portion and the core portion, and shifts the direction of action of stress at the time of expansion and contraction of the thermosetting insulating resin material to a direction other than the core portion. And a non-magnetic inner partitioning member that regulates the direction of action of stress at the time of expansion and contraction of the thermosetting insulating resin material disposed in a space region between the inner case portion and the outer case portion. 3. The current sensor according to claim 2, wherein the current sensor is formed of a non-magnetic outer partition member that restricts the direction other than the case portion. 前記非磁性内側仕切り材と前記非磁性外側仕切り材とは、いずれも略コ字状または略ボックス状を呈し、前記コア部方向に開口面以外の部位を位置させて配置した請求項3に記載のカレントセンサ。 The non-magnetic inner partition member and the non-magnetic outer partition member each have a substantially U-shape or a substantially box-like shape, and are arranged so that a portion other than the opening surface is located in the core direction. Current sensor. 前記非磁性内側仕切り材は、前記コネクタと前記内ケース部との間に介在させた状態で前記内ケース部の長手方向での一側端面側から他側端面側へと至る水平板部と、該水平板部の面方向と直交して前記コア部の近傍へと至る内側堰板部とからなる略T字状を呈する導電性内側仕切り板であり、
前記非磁性外側仕切り材は、前記スペーサの開放端側から前記外ケース部の長手方向での対応部位側へと至る水平板部と、該水平板部の面方向と直交して内ケース部の前記他側端面側の近傍へと至る外側堰板部とで形成した導電性外側仕切り板である請求項3に記載のカレントセンサ。
The non-magnetic inner partition member, a horizontal plate portion extending from one end surface side to the other end surface side in the longitudinal direction of the inner case portion in a state interposed between the connector and the inner case portion, A conductive inner partition plate having a substantially T-shape comprising an inner weir plate portion reaching the vicinity of the core portion orthogonal to the surface direction of the horizontal plate portion,
The non-magnetic outer partition member has a horizontal plate portion extending from the open end side of the spacer to a corresponding portion side in the longitudinal direction of the outer case portion, and an inner case portion orthogonal to the surface direction of the horizontal plate portion. 4. The current sensor according to claim 3, wherein the current sensor is a conductive outer partition plate formed by the outer weir plate portion reaching the vicinity of the other end surface side. 5.
前記導電性外側仕切り板を構成する前記水平板部は、前記スペーサと一体に形成した請求項5に記載のカレントセンサ。 The current sensor according to claim 5, wherein the horizontal plate portion forming the conductive outer partition plate is formed integrally with the spacer.
JP2015228509A 2015-11-24 2015-11-24 Current sensor Active JP6628574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015228509A JP6628574B2 (en) 2015-11-24 2015-11-24 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015228509A JP6628574B2 (en) 2015-11-24 2015-11-24 Current sensor

Publications (2)

Publication Number Publication Date
JP2017096740A JP2017096740A (en) 2017-06-01
JP6628574B2 true JP6628574B2 (en) 2020-01-08

Family

ID=58816619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015228509A Active JP6628574B2 (en) 2015-11-24 2015-11-24 Current sensor

Country Status (1)

Country Link
JP (1) JP6628574B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212126A1 (en) 2017-05-15 2018-11-22 テルモ株式会社 Balloon catheter and method for manufacturing balloon catheter
CN113252963B (en) * 2021-06-18 2021-09-28 宁波中车时代传感技术有限公司 Current sensor
WO2023112799A1 (en) * 2021-12-16 2023-06-22 日置電機株式会社 Sensor and measurement device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078066B2 (en) * 2001-11-29 2008-04-23 日置電機株式会社 Clamp sensor
JP4459567B2 (en) * 2003-07-17 2010-04-28 日置電機株式会社 Clamp sensor
JP5362450B2 (en) * 2009-06-05 2013-12-11 日置電機株式会社 Clamp sensor
EP2853904A1 (en) * 2013-09-30 2015-04-01 LEM Intellectual Property SA Clip-on current transducer or current transformer

Also Published As

Publication number Publication date
JP2017096740A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6628574B2 (en) Current sensor
JP6302453B2 (en) Current sensor
JP5985046B2 (en) Motor stator
JP6541962B2 (en) Current sensor and measuring device
JP7039609B2 (en) Current transducer with magnetic field gradient sensor
JP6402089B2 (en) Current sensor
JP2015137892A (en) Current detection structure
JP2014160035A (en) Current sensor
JP2009258048A (en) Current sensor
US20150091557A1 (en) Hall effect sensor core with multiple air gaps
KR101413484B1 (en) Non-contact type 2-channel current sensor for vehicle
JP7238440B2 (en) coil parts
JP6624207B2 (en) Current detection device and correction coefficient calculation method
RU2390865C2 (en) Current transformer for electric power supply and manufacturing method thereof
JP2014092478A (en) Current sensor
JP6672901B2 (en) Current sensor unit
JP2015172531A (en) Shield member and current detection device using the same
JP2017142109A (en) Current sensor
US20180331525A1 (en) Electrical connection box
JP5174071B2 (en) Electronic equipment
JP6084407B2 (en) Reactor
JP5171866B2 (en) Electronic equipment
JP7240110B2 (en) Penetration type current sensor
JP6442430B2 (en) Reactor
JP2003161744A (en) Clamp sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191203

R150 Certificate of patent or registration of utility model

Ref document number: 6628574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250