JP6627310B2 - Coal-fired power plant - Google Patents

Coal-fired power plant Download PDF

Info

Publication number
JP6627310B2
JP6627310B2 JP2015152879A JP2015152879A JP6627310B2 JP 6627310 B2 JP6627310 B2 JP 6627310B2 JP 2015152879 A JP2015152879 A JP 2015152879A JP 2015152879 A JP2015152879 A JP 2015152879A JP 6627310 B2 JP6627310 B2 JP 6627310B2
Authority
JP
Japan
Prior art keywords
coal
fine
pulverized coal
denitration
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015152879A
Other languages
Japanese (ja)
Other versions
JP2017032213A (en
Inventor
敏和 吉河
敏和 吉河
健治 引野
健治 引野
啓一郎 盛田
啓一郎 盛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2015152879A priority Critical patent/JP6627310B2/en
Priority to PCT/JP2016/071550 priority patent/WO2017022519A1/en
Publication of JP2017032213A publication Critical patent/JP2017032213A/en
Application granted granted Critical
Publication of JP6627310B2 publication Critical patent/JP6627310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)

Description

本発明は、石炭火力発電設備に関する。より詳しくは、脱硝装置を構成する脱硝触媒の劣化を抑制できる石炭火力発電設備に関する。   The present invention relates to a coal-fired power generation facility. More specifically, the present invention relates to a coal-fired power generation facility capable of suppressing deterioration of a denitration catalyst constituting a denitration device.

石炭火力発電所では、石炭の燃焼に伴い窒素酸化物が発生するが、大気汚染防止法等により、窒素酸化物の排出は一定水準以下に抑えることが必要となっている。そこで発電所では、窒素酸化物を還元分解するために脱硝装置を設置している。この脱硝装置には、五酸化バナジウム等の活性成分を含む脱硝触媒が配置されており、ここにアンモニアを共存させることで、高温下の還元反応により脱硝を実現している。   In a coal-fired power plant, nitrogen oxides are generated by the burning of coal, but it is necessary to keep the emission of nitrogen oxides below a certain level by the Air Pollution Control Law. Therefore, power plants are equipped with denitration equipment to reduce and decompose nitrogen oxides. In this denitration apparatus, a denitration catalyst containing an active component such as vanadium pentoxide is disposed, and by coexisting ammonia here, denitration is realized by a reduction reaction at a high temperature.

この脱硝触媒は、一般に300℃〜400℃の高温雰囲気下で効率的に作動するため、ボイラにおいて石炭を燃焼させた直後の煤塵が非常に多く含まれた排ガスを脱硝させる必要がある。脱硝装置の性能を維持するために、活性が低下した触媒は、新品の触媒に取替えたり、再生したりする必要がある。   Since this denitration catalyst generally operates efficiently in a high-temperature atmosphere of 300 ° C. to 400 ° C., it is necessary to denitrate exhaust gas containing a very large amount of dust immediately after burning coal in a boiler. In order to maintain the performance of the denitration device, it is necessary to replace the catalyst with reduced activity with a new catalyst or to regenerate the catalyst.

例えば、下記の特許文献1には、脱硝触媒が複数段充填された排煙脱硝装置の脱硝触媒の交換方法であって、最上流側に位置する第1段目の脱硝触媒を取出す触媒取出し工程と、第2段目以降の全ての脱硝触媒を順次、1段上流側に移動させる触媒移動工程と、触媒移動工程により移動して空となった最下流段に新たな脱硝触媒を補充する触媒補充工程と、を含む脱硝触媒の交換方法が開示されている。   For example, Patent Literature 1 below discloses a method of replacing a denitration catalyst of a flue gas denitration apparatus in which a denitration catalyst is filled in a plurality of stages, and a catalyst removal step of removing a first-stage denitration catalyst located on the most upstream side. And a catalyst moving step of sequentially moving all the denitration catalysts of the second and subsequent stages to the first stage upstream, and a catalyst for replenishing a new denitration catalyst in the lowermost stage that has been moved and emptied by the catalyst moving step. A method for replacing a denitration catalyst including a replenishing step is disclosed.

特開2013−052335号公報JP 2013-052335 A

しかしながら、そもそも、どのタイミングで脱硝触媒の取替えや再生を行うかについて、従来は知見がない。このため、現地での排ガス測定や実際に触媒サンプルを採取して触媒性能試験等を実施し、脱硝率の低下を測定しているのが現状である。石炭火力発電所の操業における脱硝触媒の機能の低下は長期間に亘って徐々に進行するものであるから、この劣化メカニズムを明らかにすることは、劣化予測や劣化抑制対策を講じる上で極めて重要である。   However, in the first place, there is no knowledge about when to replace or regenerate the denitration catalyst. For this reason, the present situation is to measure the decrease in the denitration rate by measuring the exhaust gas on site or actually collecting a catalyst sample and conducting a catalyst performance test or the like. Since the deterioration of the function of the denitration catalyst in the operation of coal-fired power plants gradually progresses over a long period of time, it is extremely important to clarify this deterioration mechanism in predicting deterioration and taking measures to control deterioration. It is.

本発明者らは、脱硝触媒の劣化メカニズムにつき鋭意検討した結果、従来の石炭灰の粒径である数十μm以上百μm以下程度の範囲に比べて遥かに小さい粒径の堆積物が脱硝触媒の表面を被覆して被覆層を形成し、それによって、脱硝触媒と排ガスの接触が阻害され脱硝触媒の性能が低下していることを見出した。   The present inventors have conducted intensive studies on the deterioration mechanism of the denitration catalyst, and found that a deposit having a particle size much smaller than the range of the conventional coal ash having a particle size of about several tens μm to about 100 μm was obtained. It was found that the surface of was coated to form a coating layer, whereby the contact between the denitration catalyst and the exhaust gas was hindered, and the performance of the denitration catalyst was reduced.

従って、本発明は、微小な粒径の堆積物が脱硝触媒の表面を被覆することを防ぐことで脱硝触媒の劣化を抑制できる石炭火力発電設備を提供することを目的とする。   Accordingly, an object of the present invention is to provide a coal-fired power generation facility capable of suppressing deterioration of a denitration catalyst by preventing a deposit having a small particle size from covering the surface of the denitration catalyst.

本発明は、石炭を粉砕して微粉炭を製造する微粉炭機と、前記微粉炭機の下流側に配置され微小な微粉炭である微小炭を除去する微小炭除去装置と、前記微小炭除去装置において微小炭が除去された微粉炭を燃焼させる燃焼ボイラと、前記燃焼ボイラの下流側に配置され該燃焼ボイラにおいて微粉炭が燃焼されて発生した排ガス中に含まれる窒素酸化物を除去する脱硝装置と、を備える石炭火力発電設備に関する。   The present invention provides a pulverized coal machine for pulverizing coal to produce pulverized coal, a fine coal removal device disposed downstream of the pulverized coal machine to remove fine coal as fine pulverized coal, and the fine coal removal device. A combustion boiler for burning pulverized coal from which fine coal has been removed in a device, and a denitrification device disposed downstream of the combustion boiler for removing nitrogen oxides contained in exhaust gas generated by burning the pulverized coal in the combustion boiler And a coal-fired power plant comprising the same.

また、前記微小炭除去装置は、微粉炭が空気と共に導入されると共に遠心力により微粉炭に含まれる微小炭を分離するサイクロン分離装置であることが好ましい。   In addition, it is preferable that the fine coal removal device is a cyclone separation device that introduces fine coal together with air and separates fine coal contained in the fine coal by centrifugal force.

また、前記微小炭除去装置は、異なる大きさの網目部を有する複数のメッシュ層を備える分級装置であることが好ましい。   Further, it is preferable that the fine charcoal removing device is a classifying device including a plurality of mesh layers having mesh portions having different sizes.

また、前記微小炭除去装置は、2μm未満の微粉炭を微小炭として除去する能力を備えることが好ましい。   Further, it is preferable that the fine coal removing device has an ability to remove pulverized coal having a size of less than 2 μm as fine coal.

本発明によれば、微小な粒径の堆積物が脱硝触媒の表面を被覆することを防ぐことで脱硝触媒の劣化を抑制できる石炭火力発電設備を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the coal-fired power generation equipment which can suppress deterioration of a denitration catalyst by preventing that the deposit of a small particle size coats the surface of a denitration catalyst can be provided.

本発明の一実施形態に係る石炭火力発電設備の構成を示す図である。It is a figure showing composition of a coal-fired power generation facility concerning one embodiment of the present invention. 微小炭除去装置としてのサイクロン分離装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the cyclone separation apparatus as a micro coal removal apparatus. 微小炭除去装置としての分級装置の構成を模式的に示す図である。It is a figure showing typically composition of a classification device as a minute charcoal removal device. 図1に示す燃焼ボイラの付近を拡大して示す図である。It is a figure which expands and shows the vicinity of the combustion boiler shown in FIG. 図1に示す脱硝装置を拡大して示す図である。It is a figure which expands and shows the denitration apparatus shown in FIG.

以下、本発明の石炭火力発電設備の好ましい一実施形態について、図面を参照しながら説明する。
本実施形態の石炭火力発電設備1は、図1に示すように、石炭バンカ20と、給炭機25と、微粉炭機30と、微小炭除去装置10と、燃焼ボイラ40と、燃焼ボイラ40の下流側に設けられた排気通路50と、この排気通路50に設けられた脱硝装置60、空気予熱器70、電気集塵装置90、ガスヒータ(熱回収用)80、誘引通風機210、脱硫装置220、ガスヒータ(再加熱用)230、脱硫通風機240、及び煙突250と、を備える。
Hereinafter, a preferred embodiment of a coal-fired power generation facility of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the coal-fired power plant 1 of the present embodiment includes a coal bunker 20, a coal feeder 25, a pulverized coal machine 30, a fine coal removal device 10, a combustion boiler 40, and a combustion boiler 40. An exhaust passage 50 provided on the downstream side of the apparatus, and a denitration device 60, an air preheater 70, an electric dust collector 90, a gas heater (for heat recovery) 80, an induced draft fan 210, a desulfurization device provided in the exhaust passage 50 220, a gas heater (for reheating) 230, a desulfurization ventilator 240, and a chimney 250.

石炭バンカ20は、石炭サイロ(図示しない)から運炭設備によって供給された石炭を貯蔵する。給炭機25は、石炭バンカ20から供給された石炭を所定の供給スピードで微粉炭機30に供給する。
微粉炭機30は、給炭機25から供給された石炭を粉砕して微粉炭を製造する。微粉炭機30においては、石炭は、平均粒径60μm〜80μmに粉砕される。また、微粉炭の粒度分布は、150μm以上が10〜15%、75μm〜150μmが30〜40%、75μm未満が45〜60%程度となる。
微粉炭機30としては、ローラミル、チューブミル、ボールミル、ビータミル、インペラーミル等が用いられる。
The coal bunker 20 stores coal supplied by a coal transportation facility from a coal silo (not shown). The coal feeder 25 supplies the coal supplied from the coal bunker 20 to the pulverized coal machine 30 at a predetermined supply speed.
The pulverized coal machine 30 pulverizes the coal supplied from the coal feeder 25 to produce pulverized coal. In the pulverized coal machine 30, the coal is pulverized to an average particle size of 60 μm to 80 μm. The particle size distribution of pulverized coal is about 10 to 15% for 150 μm or more, about 30 to 40% for 75 μm to 150 μm, and about 45 to 60% for less than 75 μm.
As the pulverized coal machine 30, a roller mill, a tube mill, a ball mill, a beater mill, an impeller mill, or the like is used.

微小炭除去装置10は、微粉炭機30の下流側に配置され、微小な微粉炭である微小炭を除去する。ここで、微小炭とは、粒径が2μm未満の微粉炭を表す。
即ち、微粉炭機30において、粒径75μm未満の微粉炭は45〜60%程度含まれるが、このうち、2%程度(つまり、全体の1%程度)は、粒径2μm未満の微粉炭(微小炭)として存在する。
The fine coal removing device 10 is disposed downstream of the pulverized coal machine 30 and removes fine coal as fine pulverized coal. Here, the fine coal means fine coal having a particle size of less than 2 μm.
That is, in the pulverized coal machine 30, pulverized coal having a particle size of less than 75 μm is included in an amount of about 45 to 60%. Micro charcoal).

本実施形態では、微小炭除去装置10により、この微小炭を除去することで、後述する脱硝触媒の劣化を抑制している。
微小炭除去装置10としては、図2に示すように、サイクロン分離装置10Aや、図3に示すように、分級装置10Bを好適に用いることができる。
In the present embodiment, the fine charcoal removing device 10 removes the fine charcoal, thereby suppressing the deterioration of the denitration catalyst described later.
As the fine coal removal device 10, a cyclone separation device 10A as shown in FIG. 2 and a classification device 10B as shown in FIG. 3 can be suitably used.

サイクロン分離装置10Aは、図2に示すように、頂点が下方を向いた円錐形状の本体を備え、この本体に空気と共に導入された微粉炭を遠心力により分級する。そして、粒径の大きな微粉炭(本実施形態では、粒径2μm以上の微粉炭)が下方に集められ、空気と共に燃焼ボイラ40に供給される。
また、粒径の小さい微粉炭(粒径2μm未満の微小炭)は、本体の上部に回収される。
As shown in FIG. 2, the cyclone separation device 10A includes a conical main body whose apex faces downward, and classifies pulverized coal introduced with air into the main body by centrifugal force. Then, pulverized coal having a large particle diameter (in this embodiment, pulverized coal having a particle diameter of 2 μm or more) is collected below and supplied to the combustion boiler 40 together with air.
Further, pulverized coal having a small particle size (fine coal having a particle size of less than 2 μm) is collected at an upper portion of the main body.

また、分級装置10Bは、図3に示すように、異なる大きさの網目部を有する複数のメッシュ層11,12,13を備える。網目部の大きさは、上段のメッシュ層11から下段のメッシュ層13に向かうに従って小さく構成される。本実施形態では、微粉炭機30から微粉炭が空気と共に最初に導入される上段のメッシュ層11の網目部は、目開き45μmに構成され、中段のメッシュ層12の網目部は、目開き20μmに構成される。そして、下段のメッシュ層13の網目部は、目開き2μmに構成される。   Further, as shown in FIG. 3, the classifier 10B includes a plurality of mesh layers 11, 12, and 13 having meshes of different sizes. The size of the mesh portion is configured to decrease from the upper mesh layer 11 to the lower mesh layer 13. In the present embodiment, the mesh portion of the upper mesh layer 11 into which pulverized coal is first introduced together with air from the pulverized coal machine 30 is configured to have a mesh size of 45 μm, and the mesh portion of the middle mesh layer 12 has a mesh size of 20 μm. Is configured. The mesh portion of the lower mesh layer 13 has a mesh size of 2 μm.

以上の分級装置10Bによれば、微粉炭機130で製造された微粉炭は、まず上段のメッシュ層11に導入され、ここで粒径45μm以上の微粉炭が補足され、粒径45μm未満の微粉炭は、中段のメッシュ層12に送られる。
中段のメッシュ層12では、粒径20μm以上の微粉炭が捕捉され、粒径20μm未満の微粉炭は、下段のメッシュ層13に送られる。
下段のメッシュ層13では、粒径2μm以上の微粉炭が補足され、粒径2μm未満の微粉炭は回収される。
メッシュ層11,12,13で捕捉された微粉炭は、空気と共に燃焼ボイラ40に供給される。
According to the above classifier 10B, the pulverized coal produced by the pulverized coal machine 130 is first introduced into the upper mesh layer 11, where the pulverized coal having a particle size of 45 μm or more is captured, and the fine powder having a particle size of less than 45 μm is added. The charcoal is sent to the middle mesh layer 12.
In the middle mesh layer 12, pulverized coal having a particle size of 20 μm or more is captured, and pulverized coal having a particle size of less than 20 μm is sent to the lower mesh layer 13.
In the lower mesh layer 13, pulverized coal having a particle size of 2 μm or more is captured, and pulverized coal having a particle size of less than 2 μm is collected.
The pulverized coal captured by the mesh layers 11, 12, 13 is supplied to the combustion boiler 40 together with air.

燃焼ボイラ40は、微小炭除去装置10から供給された微粉炭を、強制的に供給された空気と共に燃焼する。微粉炭を燃焼することによりクリンカアッシュ及びフライアッシュなどの石炭灰が生成されると共に、排ガスが発生する。
尚、クリンカアッシュとは、微粉炭を燃焼させた場合に発生する石炭灰のうち、燃焼ボイラ40の底部に落下した塊状の石炭灰をいう。また、フライアッシュとは、微粉炭を燃焼させた場合に発生する石炭灰のうち、燃焼ガス(排ガス)と共に吹き上げられて排気通路50側に流通する程度の粒径(粒径200μm程度以下)の球状の石炭灰をいう。
The combustion boiler 40 burns the pulverized coal supplied from the fine coal removal device 10 together with the forcibly supplied air. Combustion of the pulverized coal generates coal ash such as clinker ash and fly ash, and also generates exhaust gas.
The clinker ash is a lump of coal ash that has fallen to the bottom of the combustion boiler 40 among coal ash generated when pulverized coal is burned. Further, fly ash is a coal ash generated when pulverized coal is burned and has a particle size (particle size of about 200 μm or less) that is blown up together with a combustion gas (exhaust gas) and flows to the exhaust passage 50 side. It refers to spherical coal ash.

図4を参照して、燃焼ボイラ40について詳しく説明すると、図4において、燃焼ボイラ40は全体として略逆U字状をなしており、図中矢印に沿って排ガス(燃焼ガス)が逆U字状に移動した後、2次節炭器41eを通過後に、再度小さくU字状に反転する。   Referring to FIG. 4, the combustion boiler 40 will be described in detail. In FIG. 4, the combustion boiler 40 has a substantially inverted U-shape as a whole, and the exhaust gas (combustion gas) is inverted U-shaped along the arrow in the figure. After passing through the secondary economizer 41e, it is again inverted into a small U-shape.

燃焼ボイラ40の下方には、燃焼ボイラ40の内部のバーナーゾーン41a’付近で微粉炭を燃焼するためのバーナ41aが配置されている。また、燃焼ボイラ40の内部のU字頂部付近には、第一の過熱器41bが配置されており、更にそこから第二の過熱器41cが続いて配置されている。更に、第二の過熱器41cの終端付近からは、1次節炭器41d、2次節炭器41eが2段階に設けられている。ここで、節炭器(ECOとも呼ばれる)は、排ガスの保有する熱を利用してボイラ給水を予熱するために設けられた伝熱面群である。   Below the combustion boiler 40, a burner 41a for burning pulverized coal near the burner zone 41a 'inside the combustion boiler 40 is arranged. A first superheater 41b is arranged near the U-shaped top inside the combustion boiler 40, and a second superheater 41c is further arranged therefrom. Further, from the vicinity of the end of the second superheater 41c, a primary economizer 41d and a secondary economizer 41e are provided in two stages. Here, the economizer (also referred to as ECO) is a group of heat transfer surfaces provided for preheating boiler feedwater using heat of exhaust gas.

以上の燃焼ボイラ40によれば、バーナーゾーン41a’において微粉炭が燃焼される。微粉炭の燃焼温度は、1300℃から1500℃に及び、燃焼によって生成される石炭灰は、矢印の方向に沿って上昇して排ガスと共に第一の過熱器41b、第二の過熱器41c、1次節炭器41d、及び2次節炭器41eを順次通過する。燃焼ガスは、ボイラ給水を予熱するために設けられた伝熱面群を通過することによって熱交換され、450℃〜500℃程度に温度が低下する。排ガスがバーナーゾーン41a’から節炭器付近まで到達するまでに要する時間は、おおむね5秒から10秒である。
ここで、本実施形態では、微小炭除去装置10により粒径2μm未満の微粉炭(微小炭)を除去しているので、生成される石炭灰中に含まれる微小な石炭灰(粒径1μm以下)の割合を低減できる。
According to the combustion boiler 40 described above, pulverized coal is burned in the burner zone 41a '. The combustion temperature of the pulverized coal ranges from 1300 ° C. to 1500 ° C., and the coal ash generated by the combustion rises along the direction of the arrow, and together with the exhaust gas, the first superheater 41b and the second superheater 41c, 1c. It sequentially passes through the next economizer 41d and the secondary economizer 41e. The combustion gas exchanges heat by passing through a group of heat transfer surfaces provided for preheating the boiler feedwater, and the temperature drops to about 450 to 500 ° C. The time required for the exhaust gas to reach from the burner zone 41a 'to the vicinity of the economizer is about 5 to 10 seconds.
Here, in this embodiment, since the pulverized coal (fine coal) having a particle size of less than 2 μm is removed by the fine coal removal device 10, fine coal ash (particle size of 1 μm or less) contained in the generated coal ash is removed. ) Can be reduced.

排気通路50は、燃焼ボイラ40の下流側に配置され、燃焼ボイラ40で発生した排ガス及び生成された石炭灰を流通させる。この排気通路50には、上述のように、脱硝装置60、空気予熱器70、ガスヒータ(熱回収用)80、電気集塵装置90、誘引通風機210、脱硫装置220と、ガスヒータ(再加熱用)230、脱硫通風機240、及び煙突250がこの順で配置される。   The exhaust passage 50 is disposed downstream of the combustion boiler 40, and allows exhaust gas generated in the combustion boiler 40 and generated coal ash to flow. As described above, the exhaust passage 50 includes a denitration device 60, an air preheater 70, a gas heater (for heat recovery) 80, an electric precipitator 90, an induction ventilator 210, a desulfurization device 220, and a gas heater (for reheating). ) 230, a desulfurization ventilator 240, and a chimney 250 are arranged in this order.

脱硝装置60は、排ガス中の窒素酸化物を除去する。本実施形態では、脱硝装置60は、比較的高温(300℃〜400℃)の排ガス中に還元剤としてアンモニアガスを注入し、脱硝触媒との作用により排ガス中の窒素酸化物を無害な窒素と水蒸気に分解する、いわゆる乾式アンモニア接触還元法により排ガス中の窒素酸化物を除去する。   The denitration device 60 removes nitrogen oxides in the exhaust gas. In the present embodiment, the denitration apparatus 60 injects ammonia gas as a reducing agent into exhaust gas at a relatively high temperature (300 ° C. to 400 ° C.), and converts nitrogen oxides in the exhaust gas into harmless nitrogen by the action of the denitration catalyst. Nitrogen oxides in exhaust gas are removed by a so-called dry ammonia catalytic reduction method that decomposes into steam.

脱硝装置60は、図5に示すように、脱硝反応器61と、この脱硝反応器61の内部に配置される複数段の脱硝触媒層62,62,62と、脱硝触媒層62の上流側に配置される整流層63と、脱硝反応器61の入口付近に配置される整流板64と、脱硝反応器61の上流側に配置されるアンモニア注入部65と、を備える。   As shown in FIG. 5, the denitration apparatus 60 includes a denitration reactor 61, a plurality of stages of denitration catalyst layers 62, 62, 62 disposed inside the denitration reactor 61, and an upstream side of the denitration catalyst layer 62. A rectifying layer 63 is disposed, a rectifying plate 64 disposed near the inlet of the denitration reactor 61, and an ammonia injection section 65 disposed upstream of the denitration reactor 61.

脱硝反応器61は、脱硝装置60における脱硝反応の場となる。
脱硝触媒層62は、脱硝反応器61の内部に、排ガスの流路に沿って所定間隔をあけて複数段(本実施形態では3段)配置される。
The denitration reactor 61 is a place for a denitration reaction in the denitration device 60.
The denitration catalyst layers 62 are arranged inside the denitration reactor 61 at a plurality of stages (three stages in the present embodiment) at predetermined intervals along the flow path of the exhaust gas.

脱硝触媒層62は、脱硝触媒としての複数のハニカム触媒(図示せず)を含んで構成される。ハニカム触媒は、長手方向に延びる複数の排ガス流通穴が形成された長尺状(直方体状)に形成される。そして、複数のハニカム触媒は、排ガス流通穴が排ガスの流路に沿うように配置される。ハニカム触媒としては、例えば、150mm×150mm×860mmの直方体形状で目開き6mm×6mmの排ガス流通穴が400個(20×20)形成されたものが用いられる。また、一層の脱硝触媒層62には、例えば、9000本から10000本のハニカム触媒が設置される。
ハニカム触媒は、バナジウムやタングステン等の触媒物質を酸化チタンや酸化ジルコニウム等のセラミック材料に担持させた後、押出成形することで形成される。
The denitration catalyst layer 62 is configured to include a plurality of honeycomb catalysts (not shown) as denitration catalysts. The honeycomb catalyst is formed in a long shape (a rectangular parallelepiped shape) in which a plurality of exhaust gas flow holes extending in the longitudinal direction are formed. The plurality of honeycomb catalysts are arranged such that the exhaust gas flow holes are along the flow path of the exhaust gas. As the honeycomb catalyst, for example, a catalyst having a rectangular parallelepiped shape of 150 mm x 150 mm x 860 mm and having 400 (20 x 20) exhaust gas flow holes with openings of 6 mm x 6 mm is used. Further, for example, 9000 to 10000 honeycomb catalysts are installed in one layer of the denitration catalyst layer 62.
The honeycomb catalyst is formed by supporting a catalyst substance such as vanadium or tungsten on a ceramic material such as titanium oxide or zirconium oxide and then extruding the catalyst.

整流層63は、脱硝触媒層62の上流側に配置される。整流層63は、格子状に形成された複数の開口を有する金属部材等により構成され、脱硝反応器61における排ガスの流路を区画する。整流層63は、排気通路50を流通し脱硝反応器61に導入される排ガスを整流して脱硝触媒層62に均等に導く。   The rectification layer 63 is arranged on the upstream side of the denitration catalyst layer 62. The rectifying layer 63 is formed of a metal member or the like having a plurality of openings formed in a lattice, and divides a flow path of exhaust gas in the denitration reactor 61. The rectification layer 63 rectifies the exhaust gas flowing through the exhaust passage 50 and introduced into the denitration reactor 61, and uniformly guides the exhaust gas to the denitration catalyst layer 62.

整流板64は、脱硝反応器61の入口の近傍における整流層63よりも上流側に配置される。より具体的には、整流板64は、脱硝反応器61又は排気通路50の内壁における屈曲部分に配置され、内壁から内面側に突出する。整流板64は、排気通路50又は脱硝反応器61における屈曲部分における排ガスの流れを整える。   The rectifying plate 64 is arranged near the inlet of the denitration reactor 61 and on the upstream side of the rectifying layer 63. More specifically, the current plate 64 is disposed at a bent portion of the inner wall of the denitration reactor 61 or the exhaust passage 50, and protrudes from the inner wall to the inner surface side. The current plate 64 regulates the flow of the exhaust gas at the bent portion of the exhaust passage 50 or the denitration reactor 61.

アンモニア注入部65は、脱硝反応器61の上流側に配置され、排気通路50にアンモニアを注入する。   The ammonia injection section 65 is arranged on the upstream side of the denitration reactor 61 and injects ammonia into the exhaust passage 50.

以上の脱硝装置60によれば、まず、アンモニア注入部65において、排気通路50を流通する高温の排ガス(300℃〜400℃)にアンモニアが注入される。アンモニアが注入された排ガスは、整流板64及び整流層63により整流され、脱硝触媒層62に導入される。   According to the above denitration apparatus 60, first, in the ammonia injection section 65, ammonia is injected into the high-temperature exhaust gas (300 ° C. to 400 ° C.) flowing through the exhaust passage 50. The exhaust gas into which ammonia has been injected is rectified by the rectifying plate 64 and the rectifying layer 63, and is introduced into the denitration catalyst layer 62.

脱硝触媒層62においては、アンモニアを含む排ガスがハニカム触媒の排ガス流通穴を通過するときに、以下の化学反応式に従って、窒素酸化物とアンモニアとが反応し、無害な窒素と水蒸気に分解される。
4NO+4NH+O→4N+6H
NO+NO+2NH→2N+3H
In the denitration catalyst layer 62, when the exhaust gas containing ammonia passes through the exhaust gas flow hole of the honeycomb catalyst, the nitrogen oxide and ammonia react with each other according to the following chemical reaction formula, and are decomposed into harmless nitrogen and water vapor. .
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O

ここで、脱硝触媒は、使用により劣化し脱硝率が低下する。脱硝触媒の劣化の原因としては、シンタリング等の熱的劣化、触媒成分の被毒による化学的劣化、及び石炭灰が触媒表面を被覆することによる物理的劣化等が挙げられる。本発明者らは、今般、石炭灰の平均的な粒径である数十μm以上百μm以下程度の範囲に比べて遥かに小さい粒径(1μm以下、より詳細には数十nm程度)の石炭灰に起因する堆積物が脱硝触媒の表面を被覆して被覆層を形成し、それによって、脱硝触媒と排ガスの接触が阻害され脱硝触媒の性能が低下していることを見出した。このような微小な粒径の石炭灰は含有量が少ないため、これまで脱硝触媒の劣化の原因とは考えられていなかった。   Here, the denitration catalyst is deteriorated by use and the denitration rate is reduced. Causes of the deterioration of the denitration catalyst include thermal deterioration such as sintering, chemical deterioration due to poisoning of the catalyst component, and physical deterioration due to coal ash covering the catalyst surface. The present inventors have recently found that the particle size of coal ash (1 μm or less, more specifically, several tens nm) is much smaller than the average particle size of coal ash in the range of several tens μm to 100 μm. It has been found that the deposits caused by the coal ash cover the surface of the denitration catalyst to form a coating layer, whereby the contact between the denitration catalyst and the exhaust gas is inhibited and the performance of the denitration catalyst is reduced. Since the content of the coal ash having such a small particle size is small, it has not been considered as a cause of deterioration of the denitration catalyst.

そこで、本実施形態では、石炭火力発電設備1を、粒径2μm未満の微粉炭を除去する微小炭除去装置10を含んで構成した。これにより粒径2μm未満の微粉炭(微小炭)を含まない微粉炭を燃焼ボイラ40において燃焼させられるので、生成される石炭灰中に含まれる微小な石炭灰(粒径1μm以下)の割合を低減できる。よって、ハニカム触媒(脱硝触媒)の表面に、微小な石炭灰に起因する被覆層が形成されることを防げるので、ハニカム触媒の劣化を抑制できる。   Therefore, in the present embodiment, the coal-fired power plant 1 is configured to include the fine coal removal device 10 that removes pulverized coal having a particle size of less than 2 μm. As a result, the pulverized coal containing no pulverized coal (fine coal) having a particle size of less than 2 μm can be burned in the combustion boiler 40. Can be reduced. Therefore, it is possible to prevent the formation of the coating layer caused by the minute coal ash on the surface of the honeycomb catalyst (denitration catalyst), and it is possible to suppress the deterioration of the honeycomb catalyst.

空気予熱器70は、排気通路50における脱硝装置60の下流側に配置される。空気予熱器70は、脱硝装置60を通過した排ガスと押込式通風機75から送り込まれる燃焼用空気とを熱交換させ、排ガスを冷却すると共に、燃焼用空気を加熱する。   The air preheater 70 is disposed downstream of the denitration device 60 in the exhaust passage 50. The air preheater 70 exchanges heat between the exhaust gas passing through the denitration device 60 and the combustion air sent from the push-type ventilator 75, thereby cooling the exhaust gas and heating the combustion air.

ガスヒータ80は、排気通路50における空気予熱器70の下流側に配置される。ガスヒータ80には、空気予熱器70において熱回収された排ガスが供給される。ガスヒータ80は、排ガスから更に熱回収する。   The gas heater 80 is disposed downstream of the air preheater 70 in the exhaust passage 50. The exhaust gas heat recovered in the air preheater 70 is supplied to the gas heater 80. The gas heater 80 further recovers heat from the exhaust gas.

電気集塵装置90は、排気通路50におけるガスヒータ80の下流側に配置される。電気集塵装置90には、ガスヒータ80において熱回収された排ガスが供給される。電気集塵装置90は、電極に電圧を印加することによって排ガス中の石炭灰(フライアッシュ)を収集する装置である。電気集塵装置90において捕集されるフライアッシュは、フライアッシュ回収装置120に回収される。   The electric precipitator 90 is disposed downstream of the gas heater 80 in the exhaust passage 50. The exhaust gas heat recovered by the gas heater 80 is supplied to the electric dust collector 90. The electric precipitator 90 is a device that collects coal ash (fly ash) in exhaust gas by applying a voltage to an electrode. The fly ash collected by the electric dust collector 90 is collected by the fly ash collecting device 120.

誘引通風機210は、排気通路50における電気集塵装置90の下流側に配置される。誘引通風機210は、電気集塵装置90においてフライアッシュが除去された排ガスを、一次側から取り込んで二次側に送り出す。   The induction ventilator 210 is arranged downstream of the electric precipitator 90 in the exhaust passage 50. The induction ventilator 210 takes in the exhaust gas from which fly ash has been removed in the electric precipitator 90 from the primary side and sends it out to the secondary side.

脱硫装置220は、排気通路50における誘引通風機210の下流側に配置される。脱硫装置220には、誘引通風機210から送り出された排ガスが供給される。脱硫装置220は、排ガスに石灰石と水との混合液を吹き付けることにより、排ガスに含有されている硫黄酸化物を混合液に吸収させて脱硫石膏スラリーを生成させ、この脱硫石膏スラリーを脱水処理することで脱硫石膏を生成する。脱硫装置220において生成された脱硫石膏は、この装置に接続された脱硫石膏回収装置222に回収される。   The desulfurization device 220 is arranged in the exhaust passage 50 on the downstream side of the induction ventilator 210. The exhaust gas sent from the induction ventilator 210 is supplied to the desulfurization device 220. The desulfurization device 220 sprays a mixed solution of limestone and water on the exhaust gas to absorb the sulfur oxides contained in the exhaust gas into the mixed solution to generate a desulfurized gypsum slurry, and performs a dehydration treatment on the desulfurized gypsum slurry. This produces desulfurized gypsum. The desulfurized gypsum generated in the desulfurization device 220 is recovered by a desulfurized gypsum recovery device 222 connected to the device.

ガスヒータ230は、排気通路50における脱硫装置220の下流側に配置される。ガスヒータ230には、脱硫装置220において硫黄酸化物が除去された排ガスが供給される。ガスヒータ230は、排ガスを加熱する。ガスヒータ80及びガスヒータ230は、排気通路50における、空気予熱器70と電気集塵装置90との間を流通する排ガスと、脱硫装置220と脱硫通風機240との間を流通する排ガスと、の間で熱交換を行うガスガスヒータとして構成してもよい。   The gas heater 230 is disposed downstream of the desulfurization device 220 in the exhaust passage 50. The exhaust gas from which the sulfur oxides have been removed in the desulfurization device 220 is supplied to the gas heater 230. The gas heater 230 heats the exhaust gas. The gas heater 80 and the gas heater 230 are disposed between the exhaust gas flowing between the air preheater 70 and the electrostatic precipitator 90 and the exhaust gas flowing between the desulfurization device 220 and the desulfurization ventilator 240 in the exhaust passage 50. May be configured as a gas gas heater that performs heat exchange.

脱硫通風機240は、排気通路50におけるガスヒータ230の下流側に配置される。脱硫通風機240は、ガスヒータ230において加熱された排ガスを一次側から取り込んで二次側に送り出す。
煙突250は、排気通路50における脱硫通風機240の下流側に配置される。煙突250には、ガスヒータ230で加熱された排ガスが導入される。煙突250は、排ガスを排出する。
The desulfurization ventilator 240 is disposed downstream of the gas heater 230 in the exhaust passage 50. The desulfurization ventilator 240 takes in the exhaust gas heated by the gas heater 230 from the primary side and sends it to the secondary side.
The chimney 250 is disposed downstream of the desulfurization ventilator 240 in the exhaust passage 50. The exhaust gas heated by the gas heater 230 is introduced into the chimney 250. The chimney 250 discharges exhaust gas.

以上説明した本実施形態の石炭火力発電設備1によれば、以下のような効果を奏する。   According to the coal-fired power plant 1 of the present embodiment described above, the following effects can be obtained.

(1)石炭火力発電設備1を、粒径2μm未満の微粉炭を除去する微小炭除去装置10を含んで構成した。これにより粒径2μm未満の微粉炭(微小炭)を含まない微粉炭を燃焼ボイラ40において燃焼させられるので、生成される石炭灰中に含まれる微小な石炭灰(粒径1μm以下)の割合を低減できる。よって、ハニカム触媒(脱硝触媒)の表面に、微小な石炭灰に起因する被覆層が形成されることを防げるので、ハニカム触媒の劣化を抑制できる。   (1) The coal-fired power generation facility 1 was configured to include a fine coal removal device 10 for removing pulverized coal having a particle size of less than 2 μm. As a result, the pulverized coal containing no pulverized coal (fine coal) having a particle size of less than 2 μm can be burned in the combustion boiler 40. Can be reduced. Therefore, it is possible to prevent the formation of the coating layer caused by the minute coal ash on the surface of the honeycomb catalyst (denitration catalyst), and it is possible to suppress the deterioration of the honeycomb catalyst.

(2)微小炭除去装置10を、微粉炭が空気と共に導入されると共に遠心力により微粉炭に含まれる微小炭を分離するサイクロン分離装置10Aにより構成した。これにより、微粉炭機30において製造された微粉炭を空気と共に燃焼ボイラ40に供給する流路にサイクロン分離装置10Aを配置することで、微粉炭中に含まれる微小炭を好適に除去できる。よって、石炭火力発電設備1の設計を大幅に変更することなく、脱硝触媒の劣化の抑制を実現できる。   (2) The fine coal removal device 10 is constituted by a cyclone separation device 10A in which pulverized coal is introduced together with air and separates fine coal contained in the pulverized coal by centrifugal force. Thus, by arranging the cyclone separator 10A in the flow path that supplies the pulverized coal produced in the pulverized coal machine 30 to the combustion boiler 40 together with the air, the fine coal contained in the pulverized coal can be suitably removed. Therefore, it is possible to suppress the deterioration of the denitration catalyst without significantly changing the design of the coal-fired power generation facility 1.

(3)微小炭除去装置10を、異なる大きさの網目部を有する複数のメッシュ層11,12,13を備える分級装置10Bにより構成した。これにより、微粉炭機30において製造された微粉炭を空気と共に燃焼ボイラ40に供給する流路に分級装置10Bを配置することで、微粉炭中に含まれる微小炭を好適に除去できる。よって、石炭火力発電設備1の設計を大幅に変更することなく、脱硝触媒の劣化の抑制を実現できる。また、分級装置10Bを、複数のメッシュ層11,12,13を含んで構成することで、微小炭の分級精度を向上させられる。   (3) The fine charcoal removing device 10 was constituted by a classifying device 10B including a plurality of mesh layers 11, 12, 13 having mesh portions of different sizes. Thus, by arranging the classifier 10B in the flow path for supplying the pulverized coal produced in the pulverized coal machine 30 to the combustion boiler 40 together with the air, the fine coal contained in the pulverized coal can be suitably removed. Therefore, it is possible to suppress the deterioration of the denitration catalyst without significantly changing the design of the coal-fired power generation facility 1. In addition, by configuring the classification device 10B to include the plurality of mesh layers 11, 12, and 13, the classification accuracy of the fine coal can be improved.

(4)微小炭除去装置10に、2μm未満の微粉炭を微小炭として除去させた。これにより、微粉炭が燃焼されて生成する石炭灰中に含まれる粒径1μm未満の石炭灰の割合を好適に低減させられる。   (4) The pulverized coal having a size of less than 2 μm was removed by the pulverized coal removing apparatus 10 as pulverized coal. Thereby, the ratio of the coal ash having a particle size of less than 1 μm contained in the coal ash generated by burning the pulverized coal can be suitably reduced.

以上、本発明の石炭火力発電設備1の好ましい一実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
例えば、本実施形態では、脱硝触媒としてハニカム触媒を用いたが、これに限らない。即ち、脱硝触媒として、網状の基材の表面に触媒物質を塗布して構成した板状触媒を用いてもよい。
As described above, the preferred embodiment of the coal-fired power plant 1 of the present invention has been described, but the present invention is not limited to the above-described embodiment, and can be appropriately changed.
For example, in the present embodiment, a honeycomb catalyst is used as the denitration catalyst, but the present invention is not limited to this. That is, a plate-like catalyst formed by applying a catalytic substance to the surface of a net-like base material may be used as the denitration catalyst.

また、本実施形態では、微小炭除去装置10に、2μm未満の微粉炭を微小炭として除去させたが、これに限らない。即ち、微小炭除去装置に、例えば、5μm未満の微粉炭を微小炭として除去させてもよい。   Further, in the present embodiment, the pulverized coal having a size of less than 2 μm is removed as the pulverized coal by the pulverized coal removing device 10, but is not limited thereto. That is, the pulverized coal having a size of less than 5 μm may be removed by the pulverized coal removing apparatus as the pulverized coal.

1 石炭火力発電設備
10 微小炭除去装置
10A サイクロン分離装置
10B 分級機
30 微粉炭機
40 燃焼ボイラ
60 脱硝装置
DESCRIPTION OF SYMBOLS 1 Coal-fired power generation equipment 10 Micro coal removal equipment 10A Cyclone separation equipment 10B Classifier 30 Pulverized coal machine 40 Combustion boiler 60 Denitration equipment

Claims (4)

石炭を粉砕して微粉炭を製造する微粉炭機と、
前記微粉炭機の下流側に配置され微小な微粉炭である微小炭を除去する微小炭除去装置と、
前記微小炭除去装置において微小炭が除去された微粉炭を燃焼させ、前記微小炭除去装置で除去された微小炭を燃焼させない燃焼ボイラと、
前記燃焼ボイラの下流側に配置され該燃焼ボイラにおいて微粉炭が燃焼されて発生した排ガス中に含まれる窒素酸化物を除去する脱硝装置と、を備える石炭火力発電設備。
A pulverized coal machine that pulverizes coal to produce pulverized coal,
A fine coal removal device that is disposed downstream of the pulverized coal machine and removes fine coal that is fine pulverized coal,
A combustion boiler that burns the pulverized coal from which the fine coal has been removed in the fine coal removal device and does not burn the fine coal removed by the fine coal removal device ,
A denitrification device disposed downstream of the combustion boiler to remove nitrogen oxides contained in exhaust gas generated by burning pulverized coal in the combustion boiler.
前記微小炭除去装置は、微粉炭が空気と共に導入されると共に遠心力により微粉炭に含まれる微小炭を分離するサイクロン分離装置である請求項1に記載の石炭火力発電設備。   The coal-fired power plant according to claim 1, wherein the fine coal removal device is a cyclone separation device that introduces pulverized coal together with air and separates fine coal included in the pulverized coal by centrifugal force. 前記微小炭除去装置は、異なる大きさの網目部を有する複数のメッシュ層を備える分級装置である請求項1に記載の石炭火力発電設備。   The coal-fired power plant according to claim 1, wherein the fine coal removal device is a classification device including a plurality of mesh layers having meshes of different sizes. 前記微小炭除去装置は、2μm未満の微粉炭を微小炭として除去する能力を備える請求項1〜3のいずれかに記載の石炭火力発電設備。   The coal-fired power generation facility according to any one of claims 1 to 3, wherein the fine coal removal device has an ability to remove pulverized coal having a size of less than 2 µm as fine coal.
JP2015152879A 2015-07-31 2015-07-31 Coal-fired power plant Active JP6627310B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015152879A JP6627310B2 (en) 2015-07-31 2015-07-31 Coal-fired power plant
PCT/JP2016/071550 WO2017022519A1 (en) 2015-07-31 2016-07-22 Coal-fired power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152879A JP6627310B2 (en) 2015-07-31 2015-07-31 Coal-fired power plant

Publications (2)

Publication Number Publication Date
JP2017032213A JP2017032213A (en) 2017-02-09
JP6627310B2 true JP6627310B2 (en) 2020-01-08

Family

ID=57943029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152879A Active JP6627310B2 (en) 2015-07-31 2015-07-31 Coal-fired power plant

Country Status (2)

Country Link
JP (1) JP6627310B2 (en)
WO (1) WO2017022519A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238279B2 (en) * 2018-06-22 2023-03-14 中国電力株式会社 Machine learning device and combustion state determination device
JP7258635B2 (en) * 2019-04-15 2023-04-17 三菱重工業株式会社 Boiler, boiler system and method of starting boiler

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968395A (en) * 1982-10-12 1984-04-18 Ebara Koki Kk Classification of coal
EP0155120A3 (en) * 1984-03-13 1987-02-25 JAMES HOWDEN & COMPANY LIMITED Method operating a coal burner
JPS60223914A (en) * 1984-04-23 1985-11-08 Kawasaki Heavy Ind Ltd Adjusting device of pulverized coal-air ratio of pulverized coal manufacturing device
JPS6155516A (en) * 1984-08-24 1986-03-20 Kawasaki Heavy Ind Ltd Preparation of coal fuel
JPS61285306A (en) * 1985-06-12 1986-12-16 Babcock Hitachi Kk Burning method for pulverized carbon fuel
JPH0289911A (en) * 1988-09-22 1990-03-29 Babcock Hitachi Kk Pulverized coal fuel feed device and operation method thereof
JPH05272720A (en) * 1991-03-19 1993-10-19 Babcock Hitachi Kk Coal ash melting combustion method
JP2002309265A (en) * 2001-04-10 2002-10-23 Nippon Steel Corp Pretreatment method for coal and apparatus therefor
JP5171184B2 (en) * 2007-09-21 2013-03-27 中国電力株式会社 Coal-fired power generation system and method for increasing the average particle size of fly ash
GB201020001D0 (en) * 2010-11-25 2011-01-12 Doosan Power Systems Ltd Low rank coal processing apparatus and method

Also Published As

Publication number Publication date
WO2017022519A1 (en) 2017-02-09
JP2017032213A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
TWI449569B (en) Enhancement of conventional scr and sncr processes with ammonia destruction catalyst
JP6627312B2 (en) Coal-fired power plant
US20110311424A1 (en) BIOMASS BOILER SCR NOx AND CO REDUCTION SYSTEM
TWI529353B (en) System and method for protection of scr catalyst
CN103604133A (en) Flue gas cleaning system and flue gas cleaning process for integrated multi-pollutant removal by dry method
JP6233545B2 (en) Coal-fired power generation facility
JP6627310B2 (en) Coal-fired power plant
JP6345127B2 (en) Exhaust gas treatment system and method
JP5171184B2 (en) Coal-fired power generation system and method for increasing the average particle size of fly ash
JP6586812B2 (en) Coal-fired power generation facility
JPWO2017042895A1 (en) Thermal power generation system
JP2016131969A5 (en)
JP2010264400A (en) Denitrification apparatus
JP2010125378A (en) System for cleaning combustion gas of coal fired boiler and operation method for the same
JP5442411B2 (en) Exhaust gas treatment apparatus, combustion furnace, and exhaust gas treatment method
JP6627311B2 (en) Denitration system degradation control method
JP6848598B2 (en) How to reuse denitration catalyst
JP6245405B2 (en) Denitration catalyst degradation evaluation method
JP6601981B2 (en) Multipass boiler
JP6504314B1 (en) NOx removal equipment
JP6428964B1 (en) Denitration catalyst degradation evaluation method
JP2011031212A (en) System and method for removing mercury in exhaust gas
JP6489743B2 (en) Mercury removal equipment
JPWO2018066078A1 (en) Coal-fired power generation facility
WO2020161875A1 (en) Combustion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150