JP6626621B2 - Suspended particulate matter measuring device by optical method - Google Patents

Suspended particulate matter measuring device by optical method Download PDF

Info

Publication number
JP6626621B2
JP6626621B2 JP2015039568A JP2015039568A JP6626621B2 JP 6626621 B2 JP6626621 B2 JP 6626621B2 JP 2015039568 A JP2015039568 A JP 2015039568A JP 2015039568 A JP2015039568 A JP 2015039568A JP 6626621 B2 JP6626621 B2 JP 6626621B2
Authority
JP
Japan
Prior art keywords
wavelength
particulate matter
attenuation coefficient
light
collection filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015039568A
Other languages
Japanese (ja)
Other versions
JP2016161359A (en
Inventor
岳志 紀本
岳志 紀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimoto Electric Co Ltd
Original Assignee
Kimoto Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimoto Electric Co Ltd filed Critical Kimoto Electric Co Ltd
Priority to JP2015039568A priority Critical patent/JP6626621B2/en
Publication of JP2016161359A publication Critical patent/JP2016161359A/en
Application granted granted Critical
Publication of JP6626621B2 publication Critical patent/JP6626621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、大気中に浮遊する粒子状物質を捕集し、捕集された粒子状物質の炭素成分についての測定を行う浮遊粒子状物質測定装置に関する。   TECHNICAL FIELD The present invention relates to a suspended particulate matter measuring device that collects particulate matter suspended in the atmosphere and measures a carbon component of the collected particulate matter.

大気中には、燃料の燃焼過程で発生した揮発性ガスが酸化、凝縮、凝集して形成される超微細粒子、燃料の燃焼過程および気相化学反応で形成されるたとえば黒煙粒子などの微細粒子、自然現象で発生するたとえば海塩粒子、黄砂などの粗大粒子等種々の浮遊粒子状物質いわゆる粉塵が存在する。このような大気中の浮遊粒子状物質は、人体の鼻腔・咽頭、気管支、肺臓などに沈着し、健康に影響を及ぼすことが知られ、古くは黒い霧(スモッグ)と呼ばれた頃から環境問題として採り上げられ、大気汚染の状態を示す1つの指標として測定がなされてきた。   In the atmosphere, ultra-fine particles formed by the oxidation, condensation and aggregation of volatile gases generated during the fuel combustion process, and fine particles such as black smoke particles formed by the fuel combustion process and the gas phase chemical reaction There are various kinds of suspended particulate matter, so-called dust, such as particles and coarse particles such as sea salt particles and yellow sand generated by natural phenomena. Such suspended particulate matter in the atmosphere is known to deposit on the human nose and pharynx, bronchi, lungs, etc. and affect health. It has been taken up as a problem and has been measured as one indicator of the state of air pollution.

大気中の浮遊粒子状物質は、測定間隔を予め定め、定めた期間ごとにたとえば集塵フィルタを交換するなどによってフィルタに捕集し、その大気中の質量濃度(総量)が測定されてきた。近年測定技術の進展とともに、大気中に存在する浮遊粒子状物質の総量にとどまらず、浮遊粒子状物質の中でも人体の肺臓に沈着しやすく長期にわたって健康に影響を及ぼすとされる微細粒子の含有量を総量から分離して測定するとともに、連続的に測定する装置が提案されている(特許文献1参照)。   The suspended particulate matter in the atmosphere is collected in a filter at predetermined intervals, for example, by exchanging a dust collection filter at predetermined intervals, and the mass concentration (total amount) in the atmosphere has been measured. With the development of measurement technology in recent years, not only the total amount of suspended particulate matter present in the atmosphere, but also the content of fine particles that are likely to deposit on the lungs of the human body and affect health over a long period of time among suspended particulate matter There has been proposed an apparatus for measuring separately from the total amount and measuring continuously (see Patent Document 1).

浮遊粒子状物質は日本国内ばかりの問題ではなく、中国では其の高濃度のために疫学的な知見から呼吸器疾患や循環器疾患の原因となり、死亡率を上昇させていることは極めて大きな社会問題である。浮遊粒子状物質の発生のメカニズムや挙動を研究する上で、浮遊粒子状物質中の有機炭素についてのモニタリングのデータが少ない。その原因として現在ある装置が複雑なため高額であるばかりでなく、ランニングコストも高く、さらに、連続にモニタリングするには感度が低いことが問題として挙げられる。   Suspended particulate matter is not only a problem in Japan, but in China, its high concentration causes epidemiologic findings to cause respiratory and cardiovascular diseases, and it is extremely large that mortality is increasing. It is a problem. In studying the mechanism and behavior of suspended particulate matter, there are few monitoring data on organic carbon in suspended particulate matter. The problem is that not only is it expensive because of the complexity of existing devices, but also the running cost is high, and the sensitivity is low for continuous monitoring.

このように浮遊粒子状物質の測定技術は長足の進歩を遂げているが、特許文献1に開示される技術は、あくまでも大気中における浮遊粒子状物質の質量濃度の測定であり、浮遊粒子状物質中の組成に言及するものではない。たとえばディーゼルエンジン搭載車両の排気ガスを成因とする浮遊粒子状物質には、元素状炭素(Elementary Carbon:略称EC)、有機炭素(Organic Carbon:略称OC)が含まれ、この元素状炭素(EC)、有機炭素(OC)には窒素酸化物、硫黄酸化物などのような健康に有害な物質が吸着されていると考えられている。したがって、浮遊粒子状物質中のたとえば元素状炭素(EC)含有量、有機炭素(OC)含有量を知ることができれば、発生源や生成のメカニズムを推定することが出来、削減の対策を打ち立てることが可能となる。特に、有機炭素化合物は浮遊粒子状物質中の主成分の一つであるが、その発生源や生成のメカニズムについての知見が乏しく、大気中の浮遊粒子状物質における組成分析、特に、有機炭素のモニタリングが強く望まれている。   As described above, the technology for measuring suspended particulate matter has made great strides, but the technique disclosed in Patent Document 1 is merely a measurement of the mass concentration of suspended particulate matter in the atmosphere, It does not refer to the composition therein. For example, suspended particulate matter originating from exhaust gas of a vehicle equipped with a diesel engine includes elemental carbon (abbreviated as EC) and organic carbon (abbreviated as OC). It is considered that organic carbon (OC) adsorbs substances harmful to health, such as nitrogen oxides and sulfur oxides. Therefore, if the content of, for example, elemental carbon (EC) and organic carbon (OC) in suspended particulate matter can be known, the source and mechanism of generation can be estimated, and measures for reduction can be established. Becomes possible. In particular, organic carbon compounds are one of the main components in suspended particulate matter, but knowledge of their sources and mechanisms of formation is poor, and compositional analysis of suspended particulate matter in the atmosphere, Monitoring is strongly desired.

浮遊粒子状物質における組成分析を可能にする装置として、熱分解管とCO分析計とを備えた炭素分別分析装置(カーボンアナライザ)であって、熱分解管に、有機炭素(OC)を揮発・熱分解させるための低温加熱部と、元素状炭素(EC)を熱分解させるための高温加熱部とを備え、低温加熱部で有機炭素(OC)を分離し、高温加熱部で元素状炭素(EC)を分離する炭素分別分析装置が提案されている(特許文献2参照)。 As a device capable of analyzing the composition of suspended particulate matter, a carbon separation analyzer (carbon analyzer) equipped with a pyrolysis tube and a CO 2 analyzer, in which organic carbon (OC) is volatilized in the pyrolysis tube・ It has a low-temperature heating section for thermal decomposition and a high-temperature heating section for thermal decomposition of elemental carbon (EC). Organic carbon (OC) is separated at the low-temperature heating section, and elemental carbon is heated at the high-temperature heating section. A carbon fractionation analyzer for separating (EC) has been proposed (see Patent Document 2).

特許文献2に開示される技術によれば、ヘリウムや窒素などの不活性ガス、または、酸素や空気などの助燃ガスが択一的にキャリアガスとして熱分解管内に導入され、たとえば400℃程度に設定された低温加熱部での有機炭素(OC)の熱分解によるCOの濃度がCO分析計で測定され、たとえば1000℃程度に設定された高温加熱部での元素状炭素(EC)の熱分解によるCOの濃度がCO分析計で測定される。 According to the technique disclosed in Patent Literature 2, an inert gas such as helium or nitrogen, or an auxiliary combustion gas such as oxygen or air is alternatively introduced into the pyrolysis tube as a carrier gas, and is heated to, for example, about 400 ° C. the concentration of CO 2 by thermal decomposition of the set organic carbon at low temperature heating unit (OC) is measured by CO 2 analyzer, elemental carbon in (EC) at a high temperature heating part, which for example is set to about 1000 ° C. the concentration of CO 2 by thermal decomposition is measured by CO 2 analyzer.

特開2001−343319号公報JP 2001-343319 A 特開2000−241404号公報JP 2000-241404 A

特許文献2に開示される技術では、浮遊粒子状物質中の元素状炭素(EC)含有量、有機炭素(OC)含有量を測定することができるけれども、元素状炭素(EC)および有機炭素(OC)を熱分解させるための加熱装置が必要となり、装置の構造が複雑になるとともに、ヘリウムガスや酸素ボンベなどの高価な運転用ガスが必要となるため、ランニングコストが高くなるだけでなく、保守も大変である。   The technique disclosed in Patent Document 2 can measure the elemental carbon (EC) content and the organic carbon (OC) content in the suspended particulate matter, but the elemental carbon (EC) and the organic carbon ( A heating device for thermally decomposing OC) is required, which complicates the structure of the device, and requires expensive operating gas such as helium gas and oxygen cylinder. Maintenance is also difficult.

本発明の目的は、大気中に浮遊する粒子状物質中の少なくとも有機炭素(OC)の量を測定することができる浮遊粒子状物質測定装置を提供することである。   An object of the present invention is to provide a suspended particulate matter measuring device capable of measuring at least the amount of organic carbon (OC) in particulate matter suspended in the atmosphere.

本発明は、
a 大気中に浮遊する粒子状物質を捕集するシート状の捕集フィルタ4と、
b 2種類の予め定める相互に異なる波長λ1、λ2を有する光をそれぞれ出射して捕集フィルタ4の一主面に向けて照射する光源手段6、7と、
c 捕集フィルタ4の前記一主面とは反対側の他主面に対向して配設され、粒子状物質が捕集される捕集フィルタ4を透過した光を受光し、その受光した光の光強度を検出する透過光強度検出手段8と、
d 演算手段11、12、13であって、
透過光強度検出手段8からの出力が与えられ、各波長λ1、λ2毎の検出された透過光強度の減衰率Tatn(λ1)、Tatn(λ2)と、有機炭素の各波長λ1、λ2毎の予め定める透過光減衰係数ε(OC,λ1)、ε(OC,λ2)と、元素状炭素の各波長λ1、λ2毎の予め定める透過光減衰係数ε(EC,λ1)、ε(EC,λ2)とに基づいて、
一方の波長λ1の有機炭素の透過光減衰係数ε(OC,λ1)と、他方の波長λ2の有機炭素の透過光減衰係数ε(OC,λ2)との差を演算し、
一方の波長λ1の元素状炭素の透過光減衰係数ε(EC,λ1)と、他方の波長λ2の元素状炭素の透過光減衰係数ε(EC,λ2)との差を演算し、
これらの差を用いて捕集フィルタ4に捕集された粒子状物質中の有機炭素の量[OC]tを演算する演算手段11、12、13とを含むことを特徴とする浮遊粒子状物質測定装置である。
The present invention
a sheet-like trapping filter 4 for trapping particulate matter floating in the atmosphere;
b light source means 6, 7 for emitting two types of light having different wavelengths λ1, λ2, respectively, and irradiating the light toward one main surface of the collection filter 4,
c, which is disposed to face the other main surface of the collection filter 4 opposite to the one main surface, receives light transmitted through the collection filter 4 where particulate matter is collected, and receives the received light. Transmitted light intensity detecting means 8 for detecting the light intensity of
d arithmetic means 11, 12, 13;
The output from the transmitted light intensity detecting means 8 is provided, and the attenuation ratios Tatn (λ1) and Tatn (λ2) of the detected transmitted light intensity for each wavelength λ1 and λ2, and the respective wavelengths λ1 and λ2 of the organic carbon. A predetermined transmitted light attenuation coefficient ε (OC, λ1), ε (OC, λ2), and a predetermined transmitted light attenuation coefficient ε (EC, λ1), ε (EC, λ2) for each wavelength λ1, λ2 of elemental carbon. ) And based on
The difference between the transmitted light attenuation coefficient ε (OC, λ1) of the organic carbon of one wavelength λ1 and the transmitted light attenuation coefficient ε (OC, λ2) of the other wavelength λ2 organic carbon is calculated,
Calculate the difference between the transmitted light attenuation coefficient ε (EC, λ1) of the elemental carbon of one wavelength λ1 and the transmitted light attenuation coefficient ε (EC, λ2) of the other wavelength λ2,
Calculating means for calculating the amount [OC] t of organic carbon in the particulate matter collected by the collection filter using the difference between the two elements; It is a measuring device.

本発明は、
e 大気中に浮遊する粒子状物質を捕集するシート状の捕集フィルタ4と、
f 2種類の予め定める相互に異なる波長λ1、λ2を有する光をそれぞれ出射して捕集フィルタの一主面に向けて照射する光源手段6、7と、
g 捕集フィルタ4の前記一主面に対向して配設され、粒子状物質が捕集された捕集フィルタ4で反射された光を受光し、その受光した光の光強度を検出する反射光強度検出手段9と、
h 演算手段11、12、13であって、
反射光強度検出手段9からの出力が与えられ、各波長λ1、λ2毎の検出された反射光強度の減衰率Ratn(λ1)、Ratn(λ2)と、有機炭素の各波長λ1、λ2毎の予め定める反射光減衰係数σ(OC,λ1)、σ(OC,λ2)と、元素状炭素の各波長λ1、λ2毎の予め定める反射光減衰係数σ(EC,λ1)、σ(EC,λ2)とに基づいて、
一方の波長λ1の有機炭素の反射光減衰係数σ(OC,λ1)と、他方の波長λ2の有機炭素の反射光減衰係数σ(OC,λ2)との差を演算し、
一方の波長λ1の元素状炭素の反射光減衰係数σ(EC,λ1)と、他方の波長λ2の元素状炭素の反射光減衰係数σ(EC,λ2)との差を演算し、
これらの差を用いて捕集フィルタ4に捕集された粒子状物質中の有機炭素の量[OC]rを演算する演算手段11、12、13とを含むことを特徴とする浮遊粒子状物質測定装置である。
The present invention
e a sheet-shaped collection filter 4 for collecting particulate matter floating in the atmosphere;
f light source means 6, 7 for emitting two types of light having different wavelengths λ1 and λ2, respectively, and irradiating the light toward one main surface of the collection filter;
g Reflection disposed opposite to the one main surface of the collection filter 4 for receiving light reflected by the collection filter 4 from which particulate matter has been collected, and detecting the light intensity of the received light. Light intensity detecting means 9;
h arithmetic means 11, 12, 13;
The output from the reflected light intensity detecting means 9 is given, and the attenuation rates Ratn (λ1) and Ratn (λ2) of the detected reflected light intensity for each wavelength λ1 and λ2, and for each wavelength λ1 and λ2 of the organic carbon. Predetermined reflected light attenuation coefficient σ (OC, λ1), σ (OC, λ2), and predetermined reflected light attenuation coefficient σ (EC, λ1) for each wavelength λ1, λ2 of elemental carbon, σ (EC, λ2 ) And based on
Calculate the difference between the reflected light attenuation coefficient σ (OC, λ1) of organic carbon of one wavelength λ1 and the reflected light attenuation coefficient σ (OC, λ2) of organic carbon of the other wavelength λ2,
The difference between the reflected light attenuation coefficient σ (EC, λ1) of the elemental carbon of one wavelength λ1 and the reflected light attenuation coefficient σ (EC, λ2) of the other wavelength λ2,
Calculating means for calculating the amount [OC] r of the organic carbon in the particulate matter collected by the collection filter using the difference between the two elements; It is a measuring device.

本発明は、
i 大気中に浮遊する粒子状物質を捕集するシート状の捕集フィルタ4と、
j 2種類の予め定める相互に異なる波長λ1、λ2を有する光をそれぞれ出射して捕集フィルタ4の一主面に向けて照射する光源手段6、7と、
k 捕集フィルタ4の前記一主面とは反対側の他主面に対向して配設され、粒子状物質が捕集される捕集フィルタ4を透過した光を受光し、その受光した光の光強度を検出する透過光強度検出手段8と、
L 捕集フィルタ4の前記一主面に対向して配設され、粒子状物質が捕集された捕集フィルタで反射された光を受光し、その受光した光の光強度を検出する反射光強度検出手段9と、
m 演算手段11、12、13であって、
透過光強度検出手段と反射光強度検出手段とからの各出力が与えられ、各波長λ1、λ2毎の検出された透過光強度の減衰率Tatn(λ1)、Tatn(λ2)と、有機炭素の各波長λ1、λ2毎の予め定める透過光減衰係数ε(OC,λ1)、ε(OC,λ2)と、元素状炭素の各波長λ1、λ2毎の予め定める透過光減衰係数ε(EC,λ1)、ε(EC,λ2)と、各波長λ1、λ2毎の検出された反射光強度の減衰率Ratn(λ1)、Ratn(λ2)と、有機炭素の各波長λ1、λ2毎の予め定める予め定める反射光減衰係数σ(OC,λ1)、σ(OC,λ2)と、元素状炭素の各波長λ1、λ2毎の予め定める反射光減衰係数σ(EC,λ1)、σ(EC,λ2)とに基づいて、
一方の波長λ1の有機炭素の透過光減衰係数ε(OC,λ1)と、他方の波長λ2の有機炭素の透過光減衰係数ε(OC,λ2)との第1の差を演算し、
一方の波長λ1の元素状炭素の透過光減衰係数ε(EC,λ1)と、他方の波長λ2の元素状炭素の透過光減衰係数ε(EC,λ2)との第2の差を演算し、
一方の波長λ1の有機炭素の反射光減衰係数σ(OC,λ1)と、他方の波長λ2の有機炭素の反射光減衰係数σ(OC,λ2)との第3の差を演算し、
一方の波長λ1の元素状炭素の反射光減衰係数σ(EC,λ1)と、他方の波長λ2の元素状炭素の反射光減衰係数σ(EC,λ2)との第4の差を演算し、
これらの第1〜第4の差を用いて捕集フィルタ4に捕集された粒子状物質中の有機炭素の量を演算する演算手段11、12、13とを含むことを特徴とする浮遊粒子状物質測定装置である。
The present invention
i. a sheet-shaped collection filter 4 for collecting particulate matter floating in the atmosphere;
j light source means 6 and 7 for emitting two types of light having different wavelengths λ 1 and λ 2 respectively and irradiating the light to one main surface of the collection filter 4;
k is disposed opposite the other main surface of the collection filter 4 opposite to the one main surface, receives light transmitted through the collection filter 4 where the particulate matter is collected, and receives the received light. Transmitted light intensity detecting means 8 for detecting the light intensity of
L: a reflected light disposed opposite to the one main surface of the collection filter 4 for receiving light reflected by the collection filter from which particulate matter has been collected, and detecting the light intensity of the received light Intensity detection means 9;
m arithmetic means 11, 12, 13;
Each output from the transmitted light intensity detecting means and the reflected light intensity detecting means is given, and the attenuation rate Tatn (λ1), Tatn (λ2) of the detected transmitted light intensity for each wavelength λ1, λ2, and organic carbon A predetermined transmitted light attenuation coefficient ε (OC, λ1) and ε (OC, λ2) for each wavelength λ1 and λ2, and a predetermined transmitted light attenuation coefficient ε (EC and λ1) for each wavelength λ1 and λ2 of elemental carbon. ), Ε (EC, λ2), each wavelength λ1, attenuation rate of detected reflected light intensity Ratn (λ1) for each λ2, Ratn (λ2), and each predetermined wavelength λ1, λ2 of organic carbon. Determined reflected light attenuation coefficient σ (OC, λ1), σ (OC, λ2), and predetermined reflected light attenuation coefficient σ (EC, λ1), σ (EC, λ2) for each wavelength λ1, λ2 of elemental carbon And based on
The first difference between the transmitted light attenuation coefficient ε (OC, λ1) of the organic carbon having one wavelength λ1 and the transmitted light attenuation coefficient ε (OC, λ2) of the organic carbon having the other wavelength λ2 is calculated,
Calculate the second difference between the transmitted light attenuation coefficient ε (EC, λ1) of one elemental carbon of wavelength λ1 and the transmitted light attenuation coefficient ε (EC, λ2) of the other wavelength λ2,
The third difference between the reflected light attenuation coefficient σ (OC, λ1) of the organic carbon of one wavelength λ1 and the reflected light attenuation coefficient σ (OC, λ2) of the organic wavelength of the other wavelength λ2 is calculated,
Calculate the fourth difference between the reflected light attenuation coefficient σ (EC, λ1) of the elemental carbon having one wavelength λ1 and the reflected light attenuation coefficient σ (EC, λ2) of the elemental carbon having the other wavelength λ2,
Calculating means for calculating the amount of organic carbon in the particulate matter collected by the collection filter using the first to fourth differences; It is a substance measuring device.

また本発明の浮遊粒子状物質測定装置において、前記第1波長帯域は220nm以上500nm以下であり、
前記第2波長帯域は650nm以上1000nm以下であることを特徴とする。
Further, in the suspended particulate matter measuring device of the present invention, the first wavelength band is 220 nm or more and 500 nm or less,
The second wavelength band is not less than 650 nm and not more than 1000 nm.

本発明の一態様に係る浮遊粒子状物質測定装置によれば、捕集フィルタ上に捕集された浮遊粒子状物質に、光源から出射された、第1波長帯域内の波長を有する光と第2波長帯域内の波長を有する光とを、交互に照射する。そして、透過光強度検出部によって検出された、捕集フィルタ上の浮遊粒子状物質からの透過光の透過光強度に基づいて、演算部が浮遊粒子状物質中の少なくとも有機炭素の量を演算する。   According to the suspended particulate matter measurement device of one embodiment of the present invention, the suspended particulate matter collected on the collection filter includes light emitted from a light source and having a wavelength within the first wavelength band. Light having a wavelength within two wavelength bands is alternately irradiated. Then, based on the transmitted light intensity of the transmitted light from the suspended particulate matter on the collection filter detected by the transmitted light intensity detection unit, the computing unit computes at least the amount of organic carbon in the suspended particulate matter. .

また本発明の他の一態様に係る浮遊粒子状物質測定装置によれば、捕集フィルタ上に捕集された浮遊粒子状物質に、光源から出射された、第1波長帯域内の波長を有する光と第2波長帯域内の波長を有する光とを、交互に照射する。そして、反射光強度検出部によって検出された、捕集フィルタ上の浮遊粒子状物質からの反射光の反射光強度に基づいて、演算部が浮遊粒子状物質中の少なくとも有機炭素の量を演算する。   Further, according to the suspended particulate matter measuring device according to another aspect of the present invention, the suspended particulate matter collected on the collection filter has a wavelength in the first wavelength band emitted from the light source. Light and light having a wavelength within the second wavelength band are alternately irradiated. Then, based on the reflected light intensity of the reflected light from the suspended particulate matter on the collection filter detected by the reflected light intensity detection unit, the computing unit computes at least the amount of organic carbon in the suspended particulate matter. .

また本発明の他の一態様に係る浮遊粒子状物質測定装置によれば、捕集フィルタ上に捕集された浮遊粒子状物質に、光源から出射された、第1波長帯域内の波長を有する光と第2波長帯域内の波長を有する光とを、交互に照射する。そして、透過光強度検出部によって検出された、捕集フィルタ上の浮遊粒子状物質からの透過光の透過光強度と、反射光強度検出部によって検出された、捕集フィルタ上の浮遊粒子状物質からの反射光の反射光強度とに基づいて、演算部が浮遊粒子状物質中の少なくとも有機炭素の量を演算する。   Further, according to the suspended particulate matter measuring device according to another aspect of the present invention, the suspended particulate matter collected on the collection filter has a wavelength in the first wavelength band emitted from the light source. Light and light having a wavelength within the second wavelength band are alternately irradiated. Then, the transmitted light intensity of the transmitted light from the suspended particulate matter on the collection filter detected by the transmitted light intensity detection unit, and the suspended particulate matter on the collection filter detected by the reflected light intensity detection unit The calculation unit calculates at least the amount of organic carbon in the suspended particulate matter based on the reflected light intensity of the reflected light from.

このように構成された本発明の浮遊粒子状物質測定装置は、従来技術のように元素状炭素および有機炭素を熱分解させることなく、またキャリアガスも必要とせずに、大気中に浮遊する粒子状物質中の少なくとも有機炭素の量を、測定することができる。   The suspended particulate matter measuring device of the present invention thus configured does not thermally decompose elemental carbon and organic carbon as in the prior art, and does not require a carrier gas. At least the amount of organic carbon in the particulate matter can be measured.

また本発明によれば、光源から出射される光の波長について、前記第1波長帯域は220nm以上500nm以下であり、前記第2波長帯域は650nm以上1000nm以下であるので、大気中に浮遊する粒子状物質中の少なくとも有機炭素の量を、より確実かつ効率的に測定することができる。   Further, according to the present invention, regarding the wavelength of the light emitted from the light source, the first wavelength band is 220 nm or more and 500 nm or less, and the second wavelength band is 650 nm or more and 1000 nm or less. It is possible to more reliably and efficiently measure the amount of at least the organic carbon in the substance.

本発明の一実施形態に係る浮遊粒子状物質測定装置1の構成を概略的に示す図である。It is a figure showing roughly composition of suspended particulate matter measuring device 1 concerning one embodiment of the present invention. 浮遊粒子状物質測定装置1における、捕集フィルタ4の近傍を拡大して示す図である。It is a figure which expands and shows the vicinity of the collection filter 4 in the suspended particulate matter measuring device 1. 透過光強度の減衰率の測定日時ごとの変化に関する測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result regarding the change of the attenuation rate of the transmitted light intensity for every measurement date. 反射光強度の減衰率の測定日時ごとの変化に関する測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result regarding the change of the attenuation rate of the reflected light intensity for every measurement date. 有機炭素(OC)濃度の測定日時ごとの変化に関する測定結果の一例を示すグラフである。It is a graph which shows an example of a measurement result about change of an organic carbon (OC) density for every measurement date. 元素状炭素(EC)濃度の測定日時ごとの変化に関する測定結果の一例を示すグラフである。It is a graph which shows an example of a measurement result about change of elemental carbon (EC) concentration for every measurement date. PM2.5の質量濃度の測定日時ごとの変化に関する測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result regarding the change of the mass concentration of PM2.5 for every measurement date. 光強度とfWSOCとの相関を示すグラフである。It is a graph which shows the correlation between light intensity and fWSOC. 浮遊粒子状物質測定装置1による透過光強度に基づいて算出された有機炭素の濃度[OC]t(μgC/m)と、カーボンアナライザによるPM2.5中の有機炭素の濃度(μgC/m)との相関を示すグラフである。The concentration of the calculated organic carbon based on the transmitted light intensity by suspended particulate matter measuring apparatus 1 [OC] t (μgC / m 3), the concentration of organic carbon in PM2.5 by the carbon analyzer (μgC / m 3 FIG. 浮遊粒子状物質測定装置1による反射光強度に基づいて算出された元素状炭素の濃度[EC]r(μgC/m)と、カーボンアナライザによるPM2.5中の元素状炭素の濃度(μgC/m)との相関を示すグラフである。The concentration of elemental carbon [EC] r (μgC / m 3 ) calculated based on the reflected light intensity by the suspended particulate matter measuring device 1 and the concentration of elemental carbon in PM2.5 (μgC / is a graph showing the correlation between m 3).

図1は、本発明の一実施形態に係る浮遊粒子状物質測定装置1の構成を概略的に示す図である。図2は、浮遊粒子状物質測定装置1における、捕集フィルタ4の近傍を拡大して示す図である。本実施形態に係る浮遊粒子状物質測定装置1は、大気中に浮遊する粒子状物質(以下、「浮遊粒子状物質」という)中の少なくとも有機炭素(OC)の量(濃度)を測定することに用いられる。本実施形態では、浮遊粒子状物質測定装置1は、浮遊粒子状物質中の元素状炭素(EC)および有機炭素(OC)の量(濃度)を測定するように構成される。   FIG. 1 is a diagram schematically showing a configuration of a suspended particulate matter measuring device 1 according to one embodiment of the present invention. FIG. 2 is an enlarged view showing the vicinity of the collection filter 4 in the suspended particulate matter measuring device 1. The suspended particulate matter measuring device 1 according to the present embodiment measures at least the amount (concentration) of organic carbon (OC) in particulate matter suspended in the air (hereinafter referred to as “suspended particulate matter”). Used for In the present embodiment, the suspended particulate matter measuring device 1 is configured to measure the amounts (concentrations) of elemental carbon (EC) and organic carbon (OC) in the suspended particulate matter.

浮遊粒子状物質測定装置1は、大略、大気中に浮遊する浮遊粒子状物質を捕集する浮遊粒子捕集手段2と、該浮遊粒子捕集手段2により捕集された浮遊粒子状物質を分級する分級器3と、該分級器3で分級された浮遊粒子状物質が供給され、その供給された浮遊粒子状物質を捕集する捕集フィルタ4と、該捕集フィルタ4の一部を収容する容器5と、光を出射する光源6と、複合光ファイバ7と、透過光受光部および透過光強度検出部としての機能を有する透過光検出器8と、反射光強度検出部としての機能を有する反射光検出器9と、第1演算部111および第2演算部112を有する演算部11と、制御部12と、記憶部13と、容器5内を減圧する吸引ポンプ14と、を含んで構成される。浮遊粒子状物質測定装置1において、浮遊粒子捕集手段2および吸引ポンプ14以外の各部は、筐体15内に収容されている。   The suspended particulate matter measuring device 1 generally includes a suspended particulate collection means 2 for trapping suspended particulate matter floating in the atmosphere, and classifies the suspended particulate matter collected by the suspended particulate collection means 2. A classifier 3 to be separated, a trapping filter 4 to which the suspended particulate matter classified by the classifier 3 is supplied and trapping the supplied suspended particulate matter, and a part of the trapping filter 4 A light source 6 that emits light, a composite optical fiber 7, a transmitted light detector 8 having a function as a transmitted light receiver and a transmitted light intensity detector, and a function as a reflected light intensity detector. Including the reflected light detector 9, the arithmetic unit 11 having the first arithmetic unit 111 and the second arithmetic unit 112, the control unit 12, the storage unit 13, and the suction pump 14 for reducing the pressure inside the container 5. Be composed. In the suspended particulate matter measuring device 1, each part other than the suspended particle collecting means 2 and the suction pump 14 is housed in a housing 15.

捕集フィルタ4は、フッ素樹脂から成るフィルタであり、薄膜シート状(テープ状)の形状を有し、心材に巻きまわされたコイル状態で巻戻しリール41に装着される。巻戻しリール41においてコイルの外周から巻戻された捕集フィルタ4は、予め定める距離だけ離隔した位置に設けられる巻取りリール42に噛込み巻取られる。巻取りリール42には、巻取りリール42を回転駆動させる不図示の電動機が連結され、電動機にはさらに制御電源が接続される。電動機は、制御電源からの動作指令に従って、予め定める時間間隔で、予め定める回数だけ回転するように動作する。このことによって、電動機で回転駆動される巻取りリール42が、捕集フィルタ4を予め定める時間間隔で予め定める長さだけ巻取るので、捕集フィルタ4が連続的に送給される。連続的に送給される捕集フィルタ4は、フィルタ破損検出センサ44によって切断などの破損が発生しているかどうかの検出が行われる。   The collection filter 4 is a filter made of a fluororesin, has a thin film sheet shape (tape shape), and is mounted on the rewind reel 41 in a coil state wound around a core material. The collection filter 4 rewound from the outer periphery of the coil on the rewind reel 41 is engaged and wound on a take-up reel 42 provided at a position separated by a predetermined distance. The take-up reel 42 is connected to an electric motor (not shown) for driving the take-up reel 42 to rotate, and a control power supply is further connected to the electric motor. The motor operates to rotate a predetermined number of times at predetermined time intervals in accordance with an operation command from the control power supply. As a result, the take-up reel 42, which is rotationally driven by the electric motor, winds the collecting filter 4 at a predetermined time interval for a predetermined length, so that the collecting filter 4 is continuously fed. The collection filter 4 that is continuously fed detects whether breakage such as cutting has occurred by the filter breakage detection sensor 44.

また、捕集フィルタ4は、図2に示すように、後述の複合光ファイバ7と対向する側の一主面とは反対側の他主面側から、捕集フィルタサポート網43によって支持されている。この捕集フィルタサポート網43は、複数の線状部材432が格子状に配置されて成り、線状部材432間に開口431を有する。また、捕集フィルタ4は、不図示のフィルタ押えブロックが上昇された状態で連続的な送給が可能となり、フィルタ押えブロックが降下されて該フィルタ押えブロックが捕集フィルタ4に当接した状態で連続的な送給が不能となる。   As shown in FIG. 2, the collection filter 4 is supported by a collection filter support network 43 from the other main surface side opposite to the one main surface facing the composite optical fiber 7 described below. I have. The collection filter support net 43 includes a plurality of linear members 432 arranged in a lattice, and has openings 431 between the linear members 432. The trapping filter 4 can be continuously fed with a filter holding block (not shown) raised, and the filter holding block is lowered and the filter holding block contacts the collection filter 4. Makes continuous feeding impossible.

浮遊粒子捕集手段2は、大気中に浮遊する浮遊粒子状物質を捕集し、浮遊粒子状物質を含む大気を、管路21を介して分級器3へと流入させる。   The floating particle collecting means 2 collects the floating particulate matter floating in the air, and causes the air containing the floating particulate matter to flow into the classifier 3 through the pipe 21.

分級器3は、たとえば、粒径(厳密には空気力学的粒径)2.5μm以下の粒子とそれ以外の粒子とに分級する。本実施形態の浮遊粒子状物質測定装置1は、分級器3によって分級された、人体の肺臓に沈着して健康に影響を及ぼすと言われている粒径2.5μm以下の浮遊粒子状物質について、その浮遊粒子状物質に含まれる元素状炭素(EC)および有機炭素(OC)の濃度を測定するように構成されている。   The classifier 3 classifies, for example, particles having a particle size (strictly, aerodynamic particle size) of 2.5 μm or less and other particles. The suspended particulate matter measuring device 1 according to the present embodiment is configured to classify suspended particulate matter having a particle size of 2.5 μm or less, which is classified by the classifier 3 and is said to be deposited on the lungs of a human body and affect health. It is configured to measure the concentrations of elemental carbon (EC) and organic carbon (OC) contained in the suspended particulate matter.

容器5は、分級器3の大気流過方向下流側に連接され、たとえば金属製の直方体形状を有する箱形部材であり、捕集フィルタ4の送給路上に配置される。捕集フィルタ4の送給路上に位置する容器5の対向する一対の壁面には、フィルタ挿通孔5a,5bがそれぞれ形成されている。巻戻しリール41から巻戻された捕集フィルタ4は、フィルタ挿通孔5a,5bを挿通されることによって、容器5内空間を通過し、巻取りリール42に巻取られる。この容器5内空間を流過する大気は、捕集フィルタ4によってフィルタリングされ、容器5内空間における捕集フィルタ4によるフィルタリング位置が、浮遊粒子状物質の捕集位置である。また、容器5内空間は、分級器3によって分級された粒径2.5μm以下の浮遊粒子状物質を含む大気が流入する空間(以下、「測定対象空間」という)と、それ以外の残余空間とに仕切られている。   The container 5 is connected to a downstream side of the classifier 3 in the air flow direction, is a box-shaped member having a rectangular parallelepiped shape made of metal, for example, and is disposed on a feed path of the collection filter 4. Filter insertion holes 5a and 5b are formed on a pair of opposed wall surfaces of the container 5 located on the feed path of the collection filter 4, respectively. The collection filter 4 unwound from the rewind reel 41 passes through the space inside the container 5 by being inserted through the filter insertion holes 5a and 5b, and is wound on the take-up reel 42. The air flowing through the space inside the container 5 is filtered by the collection filter 4, and the filtering position of the collection filter 4 in the space inside the container 5 is the collection position of the suspended particulate matter. The space inside the container 5 includes a space into which the air containing suspended particulate matter having a particle size of 2.5 μm or less that has been classified by the classifier 3 flows (hereinafter, referred to as a “measurement target space”), and other remaining spaces. And is divided into.

容器5には、前記測定対象空間側に接続される管路51と、前記残余空間側に接続される管路52とを介して、吸引ポンプ14が接続されている。管路51および管路52には、容器5内の圧力を監視するための圧力センサ511が配設されている。また、管路51には、容器5から流入される浮遊粒子状物質をフィルタリングするフィルタ511と、管路51内を流過する流体の流量を検出する流量センサ512と、管路51内を流過する流体の流量を制御する流量制御電磁弁513とが配設されている。管路52には、容器5から流入される浮遊粒子状物質をフィルタリングするフィルタ521と、管路52内を流過する流体の流量を検出する流量センサ522と、管路52内を流過する流体の流量を制御する流量制御電磁弁523とが配設されている。   The suction pump 14 is connected to the container 5 via a pipeline 51 connected to the measurement target space side and a pipeline 52 connected to the remaining space side. A pressure sensor 511 for monitoring the pressure in the container 5 is provided in the pipes 51 and 52. The pipe 51 has a filter 511 for filtering suspended particulate matter flowing from the container 5, a flow sensor 512 for detecting a flow rate of a fluid flowing through the pipe 51, and a flow sensor 512 for detecting a flow rate of the fluid flowing through the pipe 51. A flow control solenoid valve 513 for controlling the flow rate of the passing fluid is provided. In the pipe 52, a filter 521 for filtering suspended particulate matter flowing from the container 5, a flow sensor 522 for detecting a flow rate of a fluid flowing in the pipe 52, and a flow in the pipe 52 A flow control solenoid valve 523 for controlling the flow rate of the fluid is provided.

吸引ポンプ14は、流量制御電磁弁513,523によって好ましくはその吸気量が1〜20L(リットル)/minに設定される。吸引ポンプ14が管路51,52を介して容器5内の大気を吸引することによって、浮遊粒子捕集手段2から浮遊粒子状物質を含む大気が管路21内に吸引される。管路21内に吸引された大気は、分級器3によって、粒径2.5μm以下の浮遊粒子状物質を含む大気と、それ以外の粒子を含む大気とに分別され、粒径2.5μm以下の浮遊粒子状物質を含む大気が容器5内の前記測定対象空間内を流過する際、容器5内の前記測定対象空間内に送給された捕集フィルタ4によってフィルタリングされ、捕集フィルタ4上に浮遊粒子状物質が捕集される。   The suction amount of the suction pump 14 is preferably set to 1 to 20 L (liter) / min by the flow control solenoid valves 513 and 523. When the suction pump 14 sucks the air in the container 5 through the pipes 51 and 52, the air containing the floating particulate matter is sucked into the pipe 21 from the floating particle collecting means 2. The air sucked into the pipe 21 is separated by the classifier 3 into an air containing suspended particulate matter having a particle size of 2.5 μm or less and an air containing other particles, and a particle size of 2.5 μm or less. When the air containing suspended particulate matter flows through the measurement target space in the container 5, the air is filtered by the collection filter 4 sent into the measurement target space in the container 5, and the collection filter 4 Suspended particulate matter is collected on top.

捕集フィルタ4の一主面側(分級器3が配設される側)の上方には、光源6が配設されている。光源6は、後述の制御部12に制御されて、予め定める第1波長帯域内の波長(たとえば375nm)を有する光と、該第1波長帯域とは異なる予め定める第2波長帯域内の波長(たとえば890nm)を有する光とを、交互に出射する。なお、光源6は、第1波長帯域内において波長の異なる複数の光と、第2波長帯域内において波長の異なる複数の光とを出射するように構成されていてもよい。また、光源6は、第1波長帯域および第2波長帯域とは異なる波長帯域(第3波長帯域、第4波長帯域)内の波長を有する光を出射可能に構成されていてもよい。第1波長帯域は220nm以上500nm以下であり、第2波長帯域は650nm以上1000nm以下である。また、第3波長帯域は400nm以上600nm以下であり、第4波長帯域は200nm以上300nm以下である。光源6は、第1波長帯域内の波長を有する光を出射可能なLED(発光ダイオード)と、第2波長帯域内の波長を有する光を出射可能なLEDとを含み、必要に応じて第3波長帯域内の波長を有する光を出射可能なLEDと、第4波長帯域内の波長を有する光を出射可能なLEDとを含んで構成される。なお、光源6は、LEDによって実現されることに限定されるものではなく、たとえばキセノンランプを用いてもよい。   A light source 6 is provided above one main surface of the collection filter 4 (the side on which the classifier 3 is provided). The light source 6 is controlled by the control unit 12 described later, and emits light having a wavelength within a predetermined first wavelength band (for example, 375 nm) and a wavelength within a predetermined second wavelength band different from the first wavelength band ( (E.g., 890 nm) are emitted alternately. The light source 6 may be configured to emit a plurality of lights having different wavelengths in the first wavelength band and a plurality of lights having different wavelengths in the second wavelength band. Further, the light source 6 may be configured to be able to emit light having a wavelength in a wavelength band (third wavelength band, fourth wavelength band) different from the first wavelength band and the second wavelength band. The first wavelength band is from 220 nm to 500 nm, and the second wavelength band is from 650 nm to 1000 nm. The third wavelength band is 400 nm or more and 600 nm or less, and the fourth wavelength band is 200 nm or more and 300 nm or less. The light source 6 includes an LED (light emitting diode) capable of emitting light having a wavelength within the first wavelength band, and an LED capable of emitting light having a wavelength within the second wavelength band. It is configured to include an LED capable of emitting light having a wavelength within the wavelength band and an LED capable of emitting light having a wavelength within the fourth wavelength band. In addition, the light source 6 is not limited to being realized by the LED, and for example, a xenon lamp may be used.

光源6には、複合光ファイバ7が接続されている。複合光ファイバ7は、光出射用ファイバの周囲に受光用ファイバが配置されて成る光ファイバであって、一端部が光源6および反射光検出器9に接続され、他端部が容器5の前記測定対象空間内に挿入されて捕集フィルタ4の一主面に対向して設けられ、光源6から出射された光を捕集フィルタ4の一主面に向けて伝搬する出射光伝搬部、捕集フィルタ4上の浮遊粒子状物質からの反射光を受光する反射光受光部、および反射光を反射光検出器9に伝搬する反射光伝搬部としての機能を有する。このような複合光ファイバ7としては、オムロン株式会社製のE32−D32L 2Mなどを用いることができる。   A composite optical fiber 7 is connected to the light source 6. The composite optical fiber 7 is an optical fiber in which a light receiving fiber is arranged around a light emitting fiber. One end of the composite optical fiber 7 is connected to the light source 6 and the reflected light detector 9, and the other end is formed of the container 5. An emission light propagation unit which is inserted into the measurement target space and is provided to face one main surface of the collection filter 4 and propagates light emitted from the light source 6 toward one main surface of the collection filter 4. It has a function as a reflected light receiving unit that receives the reflected light from the floating particulate matter on the collection filter 4 and a reflected light propagation unit that propagates the reflected light to the reflected light detector 9. As such a composite optical fiber 7, E32-D32L 2M manufactured by OMRON Corporation can be used.

透過光検出器8は、たとえばシリコンフォトダイオード、光電子増倍管、光分解能を有するマルチスペクトロメータなどによって実現され、容器5の前記測定対象空間内において、捕集フィルタ4の一主面とは反対側の他主面に対向して配設され、浮遊粒子状物質を捕集した捕集フィルタ4を透過した透過光を受光し、浮遊粒子状物質からの透過光に対応した光の光強度に応じた電圧値(mV)を検出する。   The transmitted light detector 8 is realized by, for example, a silicon photodiode, a photomultiplier, a multi-spectrometer having optical resolution, and the like, and is opposite to one main surface of the collection filter 4 in the measurement target space of the container 5. Is disposed opposite to the other main surface of the side, receives the transmitted light transmitted through the collection filter 4 that captures the suspended particulate matter, and reduces the light intensity of the light corresponding to the transmitted light from the suspended particulate matter. A corresponding voltage value (mV) is detected.

反射光検出器9は、たとえばシリコンフォトダイオード、光電子増倍管、光分解能を有するマルチスペクトロメータなどによって実現され、複合光ファイバ7の一端部に接続され、複合光ファイバ7の受光用ファイバを伝搬された、浮遊粒子状物質を捕集した捕集フィルタ4を反射した反射光を受光し、浮遊粒子状物質からの反射光に対応した光の光強度に応じた電圧値(mV)を検出する。   The reflected light detector 9 is realized by, for example, a silicon photodiode, a photomultiplier, a multi-spectrometer having optical resolution, etc., is connected to one end of the composite optical fiber 7, and propagates through the light receiving fiber of the composite optical fiber 7. The reflected light reflected by the collection filter 4 that has collected the suspended particulate matter is received, and a voltage value (mV) corresponding to the light intensity of the light corresponding to the reflected light from the suspended particulate matter is detected. .

透過光検出器8および反射光検出器9は、マルチスペクトルメータを用いることにより、瞬時に複数の波長の光を受光することができる。また、透過光検出器8および反射光検出器9を複数セットして、バンドパスフィルタを用いて瞬時に複数の波長の光を受光するように構成してもよい。さらにまた、透過光検出器8および反射光検出器9をそれぞれ1つ備える構成とし、光源6を出射光の波長の異なる複数のLEDを有する構成として、各LEDを別々に点灯または消灯させるような構成としてもよい。本実施形態では、浮遊粒子状物質測定装置1は、透過光検出器8および反射光検出器9をそれぞれ1つ備える構成であり、光源6が出射光の波長の異なる複数のLEDを有する構成である。   The transmitted light detector 8 and the reflected light detector 9 can instantaneously receive light of a plurality of wavelengths by using a multi-spectrometer. A plurality of transmitted light detectors 8 and a plurality of reflected light detectors 9 may be set, and light of a plurality of wavelengths may be instantaneously received using a bandpass filter. Furthermore, the light source 6 is configured to include a plurality of LEDs having different wavelengths of emitted light so that each LED is individually turned on or off. It may be configured. In the present embodiment, the suspended particulate matter measurement device 1 has a configuration in which one transmitted light detector 8 and one reflected light detector 9 are provided, and the light source 6 has a plurality of LEDs having different emission light wavelengths. is there.

また、反射光検出器9は、リファレンス検出器としての機能を有し、光源6から出射された光の一部を受光し、その受光した出射光の光強度に応じた電圧値(mV)を検出する。   The reflected light detector 9 has a function as a reference detector, receives a part of the light emitted from the light source 6, and outputs a voltage value (mV) corresponding to the light intensity of the received emitted light. To detect.

演算部11、制御部12および記憶部13は、パーソナルコンピュータ(PC)などによって実現される。演算部11は、第1演算部111と第2演算部112とを有し、浮遊粒子状物質中の元素状炭素(EC)および有機炭素(OC)の量(濃度)を求める演算を実行する回路である。   The calculation unit 11, the control unit 12, and the storage unit 13 are realized by a personal computer (PC) or the like. The operation unit 11 includes a first operation unit 111 and a second operation unit 112, and executes an operation for calculating the amounts (concentrations) of elemental carbon (EC) and organic carbon (OC) in suspended particulate matter. Circuit.

第1演算部111は、透過光検出器8および反射光検出器9と接続され、透過光検出器8で検出された透過光強度に応じた電圧値と、リファレンス検出器として機能した反射光検出器9で検出された出射光強度に応じた電圧値とに基づいて、捕集フィルタ4上の浮遊粒子状物質中の元素状炭素(EC)および有機炭素(OC)の濃度を演算する。   The first calculation unit 111 is connected to the transmitted light detector 8 and the reflected light detector 9, and detects a voltage value according to the transmitted light intensity detected by the transmitted light detector 8 and a reflected light detection functioning as a reference detector. The concentration of elemental carbon (EC) and organic carbon (OC) in the suspended particulate matter on the collection filter 4 is calculated based on the voltage value corresponding to the intensity of the emitted light detected by the detector 9.

第2演算部112は、反射光検出器9と接続され、反射光検出器9で検出された反射光強度に応じた電圧値と、リファレンス検出器として機能した反射光検出器9で検出された出射光強度に応じた電圧値とに基づいて、捕集フィルタ4上の浮遊粒子状物質中の元素状炭素(EC)および有機炭素(OC)の濃度を演算する。   The second operation unit 112 is connected to the reflected light detector 9 and detects a voltage value corresponding to the intensity of the reflected light detected by the reflected light detector 9 and the voltage value detected by the reflected light detector 9 functioning as a reference detector. The concentrations of elemental carbon (EC) and organic carbon (OC) in the suspended particulate matter on the collection filter 4 are calculated based on the voltage value corresponding to the intensity of the emitted light.

記憶部13は、フラッシュメモリなどの不揮発性の半導体メモリや、ハードディスクドライブ(HDD:Hard Disk Drive)などの不揮発性のメモリによって実現され、後述の予め実験的に求められた透過光減衰係数、反射光減衰係数の情報や、オペレーティングシステム(OS:Operating System)プログラム、コンピュータを浮遊粒子状物質測定装置1として機能させるためのプログラム(以下、「浮遊粒子状物質測定処理プログラム」という)、および、種々のアプリケーションプログラムを記憶する。   The storage unit 13 is realized by a non-volatile semiconductor memory such as a flash memory or a non-volatile memory such as a hard disk drive (HDD: Hard Disk Drive). Information on the light attenuation coefficient, an operating system (OS) program, a program for causing a computer to function as the suspended particulate matter measurement device 1 (hereinafter, referred to as a “suspended particulate matter measurement processing program”), and various types. Is stored.

制御部12は、浮遊粒子状物質測定装置1の各部の動作を制御する処理部であり、たとえば、中央演算処理装置(CPU:Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)を備えるマイクロコンピュータ、マイクロプロセッサなどによって実現される処理回路である。制御部12は、記憶部13からRAMにロードされるOSプログラム、浮遊粒子状物質測定処理プログラム、および、種々のアプリケーションプログラムを実行する。   The control unit 12 is a processing unit that controls the operation of each unit of the suspended particulate matter measurement device 1, and includes, for example, a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM). ) Is a processing circuit realized by a microcomputer, a microprocessor, or the like. The control unit 12 executes an OS program, a suspended particulate matter measurement processing program, and various application programs loaded from the storage unit 13 to the RAM.

以下、浮遊粒子状物質測定装置1の具体的な測定処理動作について説明する。なお、浮遊粒子状物質測定装置1による測定処理動作の理解が容易となるように、以下に示す用語を用いて測定処理動作について説明する。   Hereinafter, a specific measurement processing operation of the suspended particulate matter measuring device 1 will be described. In order to facilitate understanding of the measurement processing operation by the suspended particulate matter measuring device 1, the measurement processing operation will be described using the following terms.

(1)光源6による波長λの光の出射時の各検出器の検出値
・透過光検出器8の検出値(電圧値;mV):Itrans(means,λ)
・反射光検出器9の検出値(電圧値;mV):Ireflect(means,λ)
・リファレンス検出器として機能した反射光検出器9の検出値(電圧値;mV):Irefer(means,λ)
(1) Detected value of each detector when light of wavelength λ is emitted by light source 6 Detected value of transmitted light detector 8 (voltage value: mV): Itrans (means, λ)
• Detection value of reflected light detector 9 (voltage value; mV): Ireflect (means, λ)
A detection value (voltage value; mV) of the reflected light detector 9 functioning as a reference detector: Irefer (means, λ)

(2)光源6から光が出射されていない状態における各検出器の検出値
・透過光検出器8の検出値(電圧値;mV):Itrans(dark)
・反射光検出器9の検出値(電圧値;mV):Ireflect(dark)
・リファレンス検出器として機能した反射光検出器9の検出値(電圧値;mV):Irefer(dark)
(2) Detected value of each detector when no light is emitted from light source 6 Detected value of transmitted light detector 8 (voltage value; mV): Itrans (dark)
-Detected value of reflected light detector 9 (voltage value: mV): Ireflect (dark)
A detection value (voltage value; mV) of the reflected light detector 9 functioning as a reference detector: Irefer (dark)

(3)浮遊粒子状物質が捕集されていない状態の捕集フィルタ4からの透過光および反射光に応じた光強度
・透過光強度:T(λ,0)
・反射光強度:R(λ,0)
(3) Light intensity according to transmitted light and reflected light from the trapping filter 4 in a state where no suspended particulate matter is trapped • Transmitted light intensity: T (λ, 0)
・ Reflected light intensity: R (λ, 0)

(4)捕集フィルタ4による浮遊粒子状物質の捕集が開始されてからt秒後における、捕集フィルタ4からの透過光および反射光に応じた光強度
・透過光強度:T(λ,t)
・反射光強度:R(λ,t)
(4) The light intensity according to the transmitted light and the reflected light from the collection filter 4 after t seconds from the start of the collection of the suspended particulate matter by the collection filter 4. The transmitted light intensity: T (λ, t)
・ Reflected light intensity: R (λ, t)

(5)捕集フィルタ4による浮遊粒子状物質の捕集が開始されてからt秒後における、光強度の減衰率
・透過光強度の減衰率:Tatn(λ,t)
・反射光強度の減衰率:Ratn(λ,t)
(5) Attenuation rate of light intensity t seconds after the start of collection of suspended particulate matter by the collection filter 4 • Attenuation rate of transmitted light intensity: Tatn (λ, t)
・ Attenuation rate of reflected light intensity: Ratn (λ, t)

(6)捕集フィルタサポート網43に関する設定値
・捕集フィルタサポート網43における開口431の面積:Asample
・捕集フィルタサポート網43における線状部材432の面積:Asupport
・捕集フィルタサポート網43における網目の割合:α=Asupport/(Asample+Asupport)
(6) Set value regarding collection filter support network 43 ・ Area of opening 431 in collection filter support network 43: Asample
-Area of linear member 432 in collection filter support net 43: Asupport
The ratio of meshes in the collection filter support network 43: α = Asupport / (Asample + Asupport)

(7)浮遊粒子状物質中の元素状炭素、有機炭素およびその他成分の濃度
・透過光強度に基づいて算出された元素状炭素の濃度:[EC]t
・透過光強度に基づいて算出された有機炭素の濃度:[OC]t
・透過光強度に基づいて算出されたその他成分の濃度:[M]t
・反射光強度に基づいて算出された元素状炭素の濃度:[EC]r
・反射光強度に基づいて算出された有機炭素の濃度:[OC]r
・反射光強度に基づいて算出されたその他成分の濃度:[M]r
(7) Concentration of elemental carbon, organic carbon and other components in suspended particulate matter ・ Concentration of elemental carbon calculated based on transmitted light intensity: [EC] t
・ Concentration of organic carbon calculated based on transmitted light intensity: [OC] t
・ Concentration of other components calculated based on transmitted light intensity: [M] t
・ Concentration of elemental carbon calculated based on reflected light intensity: [EC] r
・ Concentration of organic carbon calculated based on reflected light intensity: [OC] r
・ Concentration of other components calculated based on reflected light intensity: [M] r

(8)元素状炭素、有機炭素およびその他成分の減衰係数
・元素状炭素の透過光減衰係数:ε(EC,λ)
・有機炭素の透過光減衰係数:ε(OC,λ)
・その他成分の透過光減衰係数:ε(M,λ)
・元素状炭素の反射光減衰係数:σ(EC,λ)
・有機炭素の反射光減衰係数:σ(OC,λ)
・その他成分の反射光減衰係数:σ(M,λ)
(8) Attenuation coefficient of elemental carbon, organic carbon, and other components ・ Attenuation coefficient of transmitted light of elemental carbon: ε (EC, λ)
・ Attenuation coefficient of transmitted light of organic carbon: ε (OC, λ)
・ Attenuation coefficient of transmitted light of other components: ε (M, λ)
-Reflection attenuation coefficient of elemental carbon: σ (EC, λ)
-Reflection attenuation coefficient of organic carbon: σ (OC, λ)
・ Reflection light attenuation coefficient of other components: σ (M, λ)

制御部12は、フィルタ押えブロックを上昇させた状態で巻取りリール42を回転駆動させることで捕集フィルタ4を予め定める長さだけ巻取らせて捕集フィルタ4を送給させた後、フィルタ押えブロックを降下させて、浮遊粒子状物質測定装置1による測定処理動作を開始する。   The control unit 12 drives the take-up reel 42 to rotate the take-up reel 42 in a state where the filter holding block is raised, so that the collection filter 4 is taken up by a predetermined length, and the collection filter 4 is fed. The holding block is lowered, and the measurement processing operation by the suspended particulate matter measuring device 1 is started.

次に、制御部12は、光源6、複合光ファイバ7、透過光検出器8、反射光検出器9、および演算部11を制御して、浮遊粒子状物質が捕集されていない状態の捕集フィルタ4からの透過光に応じた透過光強度T(λ,0)を第1演算部111に下記式(1)に従って算出させ、反射光強度R(λ,0)を第2演算部112に下記式(2)に従って算出させる。
T(λ,0)=[Itrans(means,λ)-Itrans(dark)]/[Irefer(means,λ)-Irefer(dark)]
…(1)
R(λ,0)=[Ireflect(means,λ)-Ireflect(dark)]/[Irefer(means,λ)-Irefer(dark)]
…(2)
Next, the control unit 12 controls the light source 6, the composite optical fiber 7, the transmitted light detector 8, the reflected light detector 9, and the arithmetic unit 11 to capture the state in which suspended particulate matter is not collected. The first computing unit 111 calculates the transmitted light intensity T (λ, 0) according to the transmitted light from the collection filter 4 according to the following equation (1), and calculates the reflected light intensity R (λ, 0) in the second computing unit 112. Is calculated according to the following equation (2).
T (λ, 0) = [Itrans (means, λ) -Itrans (dark)] / [Irefer (means, λ) -Irefer (dark)]
… (1)
R (λ, 0) = [Ireflect (means, λ) -Ireflect (dark)] / [Irefer (means, λ) -Irefer (dark)]
… (2)

なお、制御部12は、光源6から光が出射されていない状態の300msの間に、透過光検出器8によるItrans(dark)の検出動作、反射光検出器9によるIreflect(dark)の検出動作、リファレンス検出器として機能した反射光検出器9によるIrefer(dark)の検出動作を実行させ、光源6から第1波長帯域内の波長λを有する光が出射された状態の300msの間に、透過光検出器8によるItrans(means,λ)の検出動作、反射光検出器9によるIreflect(means,λ)の検出動作、リファレンス検出器として機能した反射光検出器9によるIrefer(means,λ)の検出動作を実行させ、光源6から第2波長帯域内の波長λを有する光が出射された状態の300msの間に、透過光検出器8によるItrans(means,λ)の検出動作、反射光検出器9によるIreflect(means,λ)の検出動作、リファレンス検出器として機能した反射光検出器9によるIrefer(means,λ)の検出動作を実行させて、透過光強度T(λ,0)および反射光強度R(λ,0)を1秒周期で取得する。   Note that the control unit 12 performs the operation of detecting Itrans (dark) by the transmitted light detector 8 and the operation of detecting Ireflect (dark) by the reflected light detector 9 during 300 ms when light is not emitted from the light source 6. The detection operation of Irefer (dark) is performed by the reflected light detector 9 functioning as the reference detector, and the light having the wavelength λ in the first wavelength band is emitted from the light source 6 during 300 ms. The operation of detecting Itrans (means, λ) by the photodetector 8, the operation of detecting Ireflect (means, λ) by the reflected light detector 9, and the detection of Irefer (means, λ) by the reflected light detector 9 functioning as a reference detector. The detection operation is executed, and during the 300 ms when the light having the wavelength λ in the second wavelength band is emitted from the light source 6, the detection operation of Itrans (means, λ) by the transmitted light detector 8 and the detection of the reflected light are performed. (Means, λ) The detection operation and the detection operation of Irefer (means, λ) by the reflected light detector 9 functioning as the reference detector are executed, and the transmitted light intensity T (λ, 0) and the reflected light intensity R (λ, 0) are set to 1 Acquire in seconds.

次に、制御部12は、吸引ポンプ14による容器5内の大気を吸引する動作を開始させ、捕集フィルタ4による浮遊粒子状物質の捕集を開始させる。   Next, the control unit 12 starts the operation of sucking the atmosphere in the container 5 by the suction pump 14 and starts the collection of the suspended particulate matter by the collection filter 4.

次に、制御部12は、光源6、複合光ファイバ7、透過光検出器8、反射光検出器9、および演算部11を制御して、捕集フィルタ4による浮遊粒子状物質の捕集が開始されてからt秒後における、捕集フィルタ4からの透過光に応じた透過光強度T(λ,t)を第1演算部111に下記式(3)に従って算出させ、反射光強度R(λ,t)を第2演算部112に下記式(4)に従って算出させる。
T(λ,t)=[Itrans(means,λ)-Itrans(dark)]/[Irefer(means,λ)-Irefer(dark)]
…(3)
R(λ,t)=[Ireflect(means,λ)-Ireflect(dark)]/[Irefer(means,λ)-Irefer(dark)]
…(4)
Next, the control unit 12 controls the light source 6, the composite optical fiber 7, the transmitted light detector 8, the reflected light detector 9, and the arithmetic unit 11 so that the trapping filter 4 collects the suspended particulate matter. At t seconds after the start, the transmitted light intensity T (λ, t) according to the transmitted light from the collection filter 4 is calculated by the first arithmetic unit 111 according to the following equation (3), and the reflected light intensity R ( λ, t) is calculated by the second calculation unit 112 according to the following equation (4).
T (λ, t) = [Itrans (means, λ) -Itrans (dark)] / [Irefer (means, λ) -Irefer (dark)]
… (3)
R (λ, t) = [Ireflect (means, λ) -Ireflect (dark)] / [Irefer (means, λ) -Irefer (dark)]
… (4)

なお、制御部12は、光源6から光が出射されていない状態の300msの間に、透過光検出器8によるItrans(dark)の検出動作、反射光検出器9によるIreflect(dark)の検出動作、リファレンス検出器として機能した反射光検出器9によるIrefer(dark)の検出動作を実行させ、光源6から第1波長帯域内の波長λを有する光が出射された状態の300msの間に、透過光検出器8によるItrans(means,λ)の検出動作、反射光検出器9によるIreflect(means,λ)の検出動作、リファレンス検出器として機能した反射光検出器9によるIre fer(means,λ)の検出動作を実行させ、光源6から第2波長帯域内の波長λを有する光が出射された状態の300msの間に、透過光検出器8によるItrans(means,λ)の検出動作、反射光検出器9によるIreflect(means,λ)の検出動作、リファレンス検出器として機能した反射光検出器9によるIrefer(means,λ)の検出動作を実行させて、透過光強度T(λ,t)および反射光強度R(λ,t)を1秒周期で取得する。   Note that the control unit 12 performs the operation of detecting Itrans (dark) by the transmitted light detector 8 and the operation of detecting Ireflect (dark) by the reflected light detector 9 during 300 ms when light is not emitted from the light source 6. The detection operation of Irefer (dark) is performed by the reflected light detector 9 functioning as the reference detector, and the light having the wavelength λ in the first wavelength band is emitted from the light source 6 during 300 ms. Itrans (means, λ) detection operation by photodetector 8, Ireflect (means, λ) detection operation by reflected light detector 9, Ire fer (means, λ) by reflected light detector 9 functioning as a reference detector During the 300 ms in which the light having the wavelength λ in the second wavelength band is emitted from the light source 6, the operation of detecting the Itrans (means, λ) by the transmitted light detector 8 and the reflected light Ireflect by detector 9 (means, λ) And the reflected light detector 9 functioning as a reference detector performs the operation of detecting Irefer (means, λ), and the transmitted light intensity T (λ, t) and the reflected light intensity R (λ, t) are calculated. Acquired at one-second intervals.

このようにして取得された、透過光強度T(λ,0)、反射光強度R(λ,0)、透過光強度T(λ,t)、および反射光強度R(λ,t)に基づいて、制御部12は、捕集フィルタ4による浮遊粒子状物質の捕集が開始されてからt秒後における、透過光強度の減衰率Tatn(λ,t)を第1演算部111に下記式(5)に従って算出させ、反射光強度の減衰率Ratn(λ,t)を第2演算部112に下記式(6)に従って算出させる。
Tatn(λ,t)=-Ln[T(λ,t)/T(λ,0)] …(5)
Ratn(λ,t)=-Ln[{R(λ,t)-αR(λ,0)}/{R(λ,0)-αR(λ,0)}] …(6)
Based on the transmitted light intensity T (λ, 0), reflected light intensity R (λ, 0), transmitted light intensity T (λ, t), and reflected light intensity R (λ, t) thus obtained. Then, the control unit 12 sends the attenuation factor Tatn (λ, t) of the transmitted light intensity t seconds after the start of the collection of the suspended particulate matter by the collection filter 4 to the first calculation unit 111 using the following equation. The calculation is performed according to (5), and the attenuation rate Ratn (λ, t) of the reflected light intensity is calculated by the second calculation unit 112 according to the following equation (6).
Tatn (λ, t) =-Ln [T (λ, t) / T (λ, 0)] (5)
Ratn (λ, t) =-Ln [{R (λ, t) -αR (λ, 0)} / {R (λ, 0) -αR (λ, 0)}] (6)

次に、制御部12は、透過光強度の減衰率Tatn(λ,t)に基づいて、浮遊粒子状物質中の元素状炭素の濃度[EC]t、有機炭素の濃度[OC]t、およびその他成分の濃度[M]tを、第1演算部111に算出させ、反射光強度の減衰率Ratn(λ,t)に基づいて、浮遊粒子状物質中の元素状炭素の濃度[EC]r、有機炭素の濃度[OC]r、およびその他成分の濃度[M]rを、第2演算部112に算出させる。   Next, the control unit 12 controls the concentration [EC] t of the elemental carbon in the suspended particulate matter, the concentration [OC] t of the organic carbon, and The concentration [M] t of the other component is calculated by the first computing unit 111, and the concentration [EC] r of the elemental carbon in the suspended particulate matter is calculated based on the attenuation rate Ratn (λ, t) of the reflected light intensity. , The concentration of organic carbon [OC] r and the concentration of other components [M] r are calculated by the second computing unit 112.

たとえば、光源6から3つの波長λ1,λ2,λ3の光が交互に出射された場合、制御部12は、記憶部13に記憶されている、元素状炭素の透過光減衰係数ε(EC,λ1),ε(EC,λ2),ε(EC,λ3)、有機炭素の透過光減衰係数ε(OC,λ1),ε(OC,λ2),ε(OC,λ3)、その他成分の透過光減衰係数ε(M,λ1),ε(M,λ2),ε(M,λ3)を参照させて第1演算部111に、下記式(7)〜式(9)に従って元素状炭素の濃度[EC]t、有機炭素の濃度[OC]t、およびその他成分の濃度[M]tを算出させる。
Tatn(λ1)=ε(OC,λ1)・[OC]t+ε(EC,λ1)・[EC]t+ε(M,λ1)・[M]t …(7)
Tatn(λ2)=ε(OC,λ2)・[OC]t+ε(EC,λ2)・[EC]t+ε(M,λ2)・[M]t …(8)
Tatn(λ3)=ε(OC,λ3)・[OC]t+ε(EC,λ3)・[EC]t+ε(M,λ3)・[M]t …(9)
For example, when light of three wavelengths λ1, λ2, λ3 is alternately emitted from the light source 6, the control unit 12 stores the transmitted light attenuation coefficient ε (EC, λ1) of the elemental carbon stored in the storage unit 13. ), Ε (EC, λ2), ε (EC, λ3), transmission light attenuation coefficient of organic carbon ε (OC, λ1), ε (OC, λ2), ε (OC, λ3), transmission light attenuation of other components Referring to the coefficients ε (M, λ1), ε (M, λ2), and ε (M, λ3), the first arithmetic unit 111 gives the concentration [EC of the elemental carbon according to the following equations (7) to (9). ], The concentration of organic carbon [OC] t, and the concentration of other components [M] t.
Tatn (λ1) = ε (OC, λ1) · [OC] t + ε (EC, λ1) · [EC] t + ε (M, λ1) · [M] t (7)
Tatn (λ2) = ε (OC, λ2) · [OC] t + ε (EC, λ2) · [EC] t + ε (M, λ2) · [M] t (8)
Tatn (λ3) = ε (OC, λ3) · [OC] t + ε (EC, λ3) · [EC] t + ε (M, λ3) · [M] t… (9)

また制御部12は、記憶部13に記憶されている、元素状炭素の反射光減衰係数σ(EC,λ1),σ(EC,λ2),σ(EC,λ3)、有機炭素の反射光減衰係数σ(OC,λ1),σ(OC,λ2),σ(OC,λ3)、その他成分の反射光減衰係数σ(M,λ1),σ(M,λ2),σ(M,λ3)を参照させて第2演算部112に、下記式(10)〜式(12)に従って元素状炭素の濃度[EC]r、有機炭素の濃度[OC]r、およびその他成分の濃度[M]rを算出させる。
Ratn(λ1)=σ(OC,λ1)・[OC]r+σ(EC,λ1)・[EC]r+σ(M,λ1)・[M]r …(10)
Ratn(λ2)=σ(OC,λ2)・[OC]r+σ(EC,λ2)・[EC]r+σ(M,λ2)・[M]r …(11)
Ratn(λ3)=σ(OC,λ3)・[OC]r+σ(EC,λ3)・[EC]r+σ(M,λ3)・[M]r …(12)
The control unit 12 also stores the reflected light attenuation coefficients σ (EC, λ1), σ (EC, λ2), σ (EC, λ3) of the elemental carbon and the reflected light attenuation of the organic carbon stored in the storage unit 13. Coefficients σ (OC, λ1), σ (OC, λ2), σ (OC, λ3), and other component reflected light attenuation coefficients σ (M, λ1), σ (M, λ2), σ (M, λ3) For reference, the second arithmetic unit 112 calculates the concentration of elemental carbon [EC] r, the concentration of organic carbon [OC] r, and the concentration of other components [M] r according to the following equations (10) to (12). Let it be calculated.
Ratn (λ1) = σ (OC, λ1) · [OC] r + σ (EC, λ1) · [EC] r + σ (M, λ1) · [M] r… (10)
Ratn (λ2) = σ (OC, λ2) · [OC] r + σ (EC, λ2) · [EC] r + σ (M, λ2) · [M] r… (11)
Ratn (λ3) = σ (OC, λ3) · [OC] r + σ (EC, λ3) · [EC] r + σ (M, λ3) · [M] r… (12)

なお、浮遊粒子状物質中に、元素状炭素(EC)および有機炭素(OC)以外のその他の成分として2つの成分M1,M2が存在していた場合、上記式(7),式(8),式(10),式(11)に従って、その他の成分M1,M2の濃度を算出することもできる。   When two components M1 and M2 are present in the suspended particulate matter as components other than the elemental carbon (EC) and the organic carbon (OC), the above equations (7) and (8) are used. , Equations (10) and (11), the concentrations of the other components M1 and M2 can be calculated.

浮遊粒子状物質測定装置1による、浮遊粒子状物質中の元素状炭素(EC)および有機炭素(OC)の濃度を測定するためのより具体的な例を示すと、次のとおりである。以下の例では、浮遊粒子状物質中に元素状炭素(EC)および有機炭素(OC)の2成分のみが存在し、光源6から出射される光が波長λ=375nmの光と、波長λ=890nmの光であると仮定する。   A more specific example for measuring the concentrations of elemental carbon (EC) and organic carbon (OC) in the suspended particulate matter by the suspended particulate matter measurement device 1 is as follows. In the following example, only two components, elemental carbon (EC) and organic carbon (OC), are present in the suspended particulate matter, and the light emitted from the light source 6 has a wavelength of λ = 375 nm and a wavelength of λ = Assume 890 nm light.

この場合の、透過光強度の減衰率Tatn(λ375nm),Tatn(λ890nm)の実測データを図3に示す。図3は、透過光強度の減衰率の測定日時ごとの変化に関する測定結果の一例を示すグラフである。また、反射光強度の減衰率Ratn(λ375nm),Ratn(λ890nm)の実測データを図4に示す。図4は、反射光強度の減衰率の測定日時ごとの変化に関する測定結果の一例を示すグラフである。   FIG. 3 shows the measured data of the attenuation rates Tatn (λ375 nm) and Tatn (λ890 nm) of the transmitted light intensity in this case. FIG. 3 is a graph illustrating an example of a measurement result regarding a change in the attenuation rate of the transmitted light intensity for each measurement date and time. FIG. 4 shows the measured data of the attenuation rates Ratn (λ375 nm) and Ratn (λ890 nm) of the reflected light intensity. FIG. 4 is a graph illustrating an example of a measurement result regarding a change in the attenuation rate of the reflected light intensity for each measurement date and time.

制御部12は、第1演算部111に、下記式(13),式(14)に従って元素状炭素の濃度[EC]t、および有機炭素の濃度[OC]tを算出させる。
Tatn(λ375nm)=ε(OC,λ375nm)・[OC]t+ε(EC,λ375nm)・[EC]t …(13)
Tatn(λ890nm)=ε(OC,λ890nm)・[OC]t+ε(EC,λ890nm)・[EC]t …(14)
The control unit 12 causes the first calculation unit 111 to calculate the concentration [EC] t of the elemental carbon and the concentration [OC] t of the organic carbon according to the following equations (13) and (14).
Tatn (λ375nm) = ε (OC, λ375nm) · [OC] t + ε (EC, λ375nm) · [EC] t ... (13)
Tatn (λ890nm) = ε (OC, λ890nm) · [OC] t + ε (EC, λ890nm) · [EC] t ... (14)

また制御部12は、第2演算部112に、下記式(15),式(16)に従って元素状炭素の濃度[EC]r、および有機炭素の濃度[OC]rを算出させる。
Ratn(λ375nm)=σ(OC,λ375nm)・[OC]r+σ(EC,λ375nm)・[EC]r …(15)
Ratn(λ890nm)=σ(OC,λ890nm)・[OC]r+σ(EC,λ890nm)・[EC]r …(16)
The control unit 12 causes the second calculation unit 112 to calculate the concentration [EC] r of the elemental carbon and the concentration [OC] r of the organic carbon according to the following Expressions (15) and (16).
Ratn (λ375nm) = σ (OC, λ375nm) · [OC] r + σ (EC, λ375nm) · [EC] r… (15)
Ratn (λ890nm) = σ (OC, λ890nm) · [OC] r + σ (EC, λ890nm) · [EC] r… (16)

なお、この場合には、元素状炭素の透過光減衰係数ε(EC,λ375nm)は「0.30」であり、ε(EC,λ890nm)は「0.30」であり、有機炭素の透過光減衰係数ε(OC,λ375nm)は「0.10」であり、ε(OC,λ890nm)は「0」であり、元素状炭素の反射光減衰係数σ(EC,λ375nm)は「0.32」であり、σ(EC,λ890nm)は「0.20」であり、有機炭素の反射光減衰係数σ(OC,λ375nm)は「0.20」であり、σ(OC,λ890nm)は「0」であることが、実験的に求められている。   In this case, the transmitted light attenuation coefficient ε (EC, λ 375 nm) of elemental carbon is “0.30”, ε (EC, λ 890 nm) is “0.30”, and the transmitted light of organic carbon is The attenuation coefficient ε (OC, λ 375 nm) is “0.10”, ε (OC, λ 890 nm) is “0”, and the reflected light attenuation coefficient σ (EC, λ 375 nm) of elemental carbon is “0.32”. Σ (EC, λ 890 nm) is “0.20”, the reflection attenuation coefficient σ (OC, λ 375 nm) of the organic carbon is “0.20”, and σ (OC, λ 890 nm) is “0”. Is required experimentally.

元素状炭素の濃度および有機炭素の濃度の算出結果を図5〜7に示す。図5は、有機炭素(OC)濃度の測定日時ごとの変化に関する測定結果の一例を示すグラフである。図6は、元素状炭素(EC)濃度の測定日時ごとの変化に関する測定結果の一例を示すグラフである。図7は、PM2.5の質量濃度の測定日時ごとの変化に関する測定結果の一例を示すグラフである。   The calculation results of the concentration of elemental carbon and the concentration of organic carbon are shown in FIGS. FIG. 5 is a graph showing an example of a measurement result regarding a change in organic carbon (OC) concentration at each measurement date and time. FIG. 6 is a graph showing an example of a measurement result regarding a change in elemental carbon (EC) concentration at each measurement date and time. FIG. 7 is a graph illustrating an example of a measurement result regarding a change in the mass concentration of PM2.5 at each measurement date and time.

また、図8に、浮遊粒子状物質測定装置1による測定結果とfWSOCとの相関を示した。図8は、光強度とfWSOCとの相関を示すグラフである。図8(1)は透過光強度に対応したfWSOCとの相関を示し、図8(2)は反射光強度に対応したfWSOCとの相関を示す。なお、fWSOCは、PM2.5に対応した粒子径以下の粒子径を有する微小な粒子状物質中の水溶性有機炭素のモル濃度(μmol/m)を表す。図8に示すグラフから明らかなように、浮遊粒子状物質測定装置1による、透過光強度に対応した測定結果とfWSOCとは良好な相関関係を示し、反射光強度に対応した測定結果とfWSOCとは良好な相関関係を示す。 FIG. 8 shows the correlation between the measurement result by the suspended particulate matter measuring device 1 and fWSOC. FIG. 8 is a graph showing a correlation between light intensity and fWSOC. FIG. 8A shows a correlation with fWSOC corresponding to transmitted light intensity, and FIG. 8B shows a correlation with fWSOC corresponding to reflected light intensity. In addition, fWSOC represents the molar concentration (μmol / m 3 ) of water-soluble organic carbon in fine particulate matter having a particle diameter equal to or less than the particle diameter corresponding to PM2.5. As is clear from the graph shown in FIG. 8, the measurement result corresponding to the transmitted light intensity and the fWSOC by the suspended particulate matter measurement device 1 show a good correlation, and the measurement result corresponding to the reflected light intensity and fWSOC correspond to each other. Indicates a good correlation.

また、図9は、浮遊粒子状物質測定装置1による透過光強度に基づいて算出された有機炭素の濃度[OC]t(μgC/m)と、カーボンアナライザによるPM2.5中の有機炭素の濃度(μgC/m)との相関を示すグラフである。なお、カーボンアナライザは、熱分解管とCO分析計を備えており、PM2.5中の有機を熱分解させて、PM2.5中の有機炭素の濃度を測定する。 FIG. 9 shows the concentration [OC] t (μgC / m 3 ) of the organic carbon calculated based on the transmitted light intensity by the suspended particulate matter measuring device 1 and the concentration of the organic carbon in PM2.5 by the carbon analyzer. It is a graph which shows a correlation with a density | concentration (microgram C / m < 3 >). The carbon analyzer includes a pyrolysis tube and a CO 2 analyzer, and thermally decomposes organic matter in PM2.5 to measure the concentration of organic carbon in PM2.5.

図9において、浮遊粒子状物質測定装置1による有機炭素の濃度[OC]tは、以下のようにして算出された値である。   In FIG. 9, the concentration [OC] t of the organic carbon by the suspended particulate matter measuring device 1 is a value calculated as follows.

すなわち、上記式(13),式(14)において、ε(OC,λ375nm)−ε(OC,λ890nm)=1/17.5とし、ε(EC,λ375nm)−ε(EC,λ890nm)=0として、下記式(17)に従って有機炭素の濃度[OC]t(μgC/m)を算出した。
[OC]t=17.5[Tatn(λ375nm)−Tatn(λ890nm)] …(17)
That is, in the above equations (13) and (14), ε (OC, λ375 nm) −ε (OC, λ890 nm) = 1 / 17.5 and ε (EC, λ375 nm) −ε (EC, λ890 nm) = 0, The concentration [OC] t (μgC / m 3 ) of the organic carbon was calculated according to the following equation (17).
[OC] t = 17.5 [Tatn (λ375 nm) −Tatn (λ890 nm)] (17)

図9に示すグラフから明らかなように、浮遊粒子状物質測定装置1による有機炭素の濃度[OC]tと、カーボンアナライザによる有機炭素の濃度とは、良好な相関関係を示す。   As is clear from the graph shown in FIG. 9, there is a good correlation between the concentration [OC] t of the organic carbon obtained by the suspended particulate matter measuring device 1 and the concentration of the organic carbon obtained by the carbon analyzer.

また、図10は、浮遊粒子状物質測定装置1による反射光強度に基づいて算出された元素状炭素の濃度[EC]r(μgC/m)と、カーボンアナライザによるPM2.5中の元素状炭素の濃度(μgC/m)との相関を示すグラフである。なお、カーボンアナライザは、熱分解管とCO分析計を備えており、PM2.5中の元素状炭素を熱分解させて、PM2.5中の元素状炭素の濃度を測定する。 FIG. 10 shows the concentration [EC] r (μgC / m 3 ) of elemental carbon calculated based on the reflected light intensity by the suspended particulate matter measuring device 1 and the elemental carbon content in PM2.5 by the carbon analyzer. It is a graph which shows the correlation with the density | concentration (microgram C / m < 3 >) of carbon. The carbon analyzer includes a pyrolysis tube and a CO 2 analyzer, and thermally decomposes elemental carbon in PM2.5 to measure the concentration of elemental carbon in PM2.5.

図10において、浮遊粒子状物質測定装置1による元素状炭素の濃度[EC]rは、以下のようにして算出された値である。   In FIG. 10, the concentration [EC] r of elemental carbon by the suspended particulate matter measuring device 1 is a value calculated as follows.

すなわち、上記式(16)において、σ(EC,λ890nm)≫σ(OC,λ890nm)とし、σ( EC,λ890nm)=1/4.99として、下記式(18)に従って元素状炭素の濃度[EC]r(μgC/m)を算出した。
Ratn(λ890nm)=σ(EC,λ890nm)・[EC]r …(18)
That is, in the above equation (16), σ (EC, λ890 nm) ≫σ (OC, λ890 nm), σ (EC, λ890nm) = 1 / 4.99, and the concentration of elemental carbon [EC] according to the following equation (18): r (μgC / m 3 ) was calculated.
Ratn (λ890nm) = σ (EC, λ890nm) ・ [EC] r… (18)

図10に示すグラフから明らかなように、浮遊粒子状物質測定装置1による元素状炭素の濃度[EC]rと、カーボンアナライザによる元素状炭素の濃度とは、良好な相関関係を示す。   As is clear from the graph shown in FIG. 10, there is a good correlation between the concentration [EC] r of the elemental carbon by the suspended particulate matter measuring device 1 and the concentration of the elemental carbon by the carbon analyzer.

なお、本実施形態の浮遊粒子状物質測定装置1では、上述したように、演算部11は、元素状炭素(EC)の濃度および有機炭素(OC)の濃度を、透過光強度に基づいて算出し、反射光強度に基づいて算出するように構成されているが、透過光強度に基づいて算出された濃度値と、反射光強度に基づいて算出された濃度値との平均値を、最終的な測定結果として処理するように構成されていてもよい。   In addition, in the suspended particulate matter measuring device 1 of the present embodiment, as described above, the calculation unit 11 calculates the concentration of the elemental carbon (EC) and the concentration of the organic carbon (OC) based on the transmitted light intensity. Although it is configured to calculate based on the reflected light intensity, the average value of the density value calculated based on the transmitted light intensity and the density value calculated based on the reflected light intensity is finally calculated. It may be configured to process as a simple measurement result.

以上のように構成された本実施形態の浮遊粒子状物質測定装置1によれば、従来技術のように元素状炭素(EC)および有機炭素(OC)を熱分解させることなく、またキャリアガスも必要とせずに、大気中に浮遊する粒子状物質中の少なくとも有機炭素(OC)の濃度を測定することができ、好ましくは元素状炭素(EC)および有機炭素(OC)の濃度を測定することができる。   According to the suspended particulate matter measuring device 1 of the present embodiment configured as described above, the elemental carbon (EC) and the organic carbon (OC) are not thermally decomposed unlike the related art, and the carrier gas is also used. Without the need, it is possible to measure at least the concentration of organic carbon (OC) in the particulate matter suspended in the atmosphere, preferably to measure the concentration of elemental carbon (EC) and organic carbon (OC) Can be.

1 浮遊粒子状物質測定装置
2 浮遊粒子捕集手段
3 分級器
4 捕集フィルタ
5 容器
6 光源
7 複合光ファイバ
8 透過光検出器
9 反射光検出器
11 演算部
12 制御部
13 記憶部
14 吸引ポンプ
15 筐体
41 巻戻しリール
42 巻取りリール
43 捕集フィルタサポート網
DESCRIPTION OF SYMBOLS 1 Suspended particulate matter measuring device 2 Suspended particle collection means 3 Classifier 4 Collection filter 5 Container 6 Light source 7 Composite optical fiber 8 Transmitted light detector 9 Reflected light detector 11 Operation unit 12 Control unit 13 Storage unit 14 Suction pump 15 Housing 41 Rewind reel 42 Take-up reel 43 Collection filter support net

Claims (4)

a 大気中に浮遊する粒子状物質を捕集するシート状の捕集フィルタ4と、
b 2種類の予め定める相互に異なる波長λ1、λ2を有する光をそれぞれ出射して捕集フィルタ4の一主面に向けて照射する光源手段6、7と、
c 捕集フィルタ4の前記一主面とは反対側の他主面に対向して配設され、粒子状物質が捕集される捕集フィルタ4を透過した光を受光し、その受光した光の光強度を検出する透過光強度検出手段8と、
d 演算手段11、12、13であって、
透過光強度検出手段8からの出力が与えられ、各波長λ1、λ2毎の検出された透過光強度の減衰率Tatn(λ1)、Tatn(λ2)と、有機炭素の各波長λ1、λ2毎の予め定める透過光減衰係数ε(OC,λ1)、ε(OC,λ2)と、元素状炭素の各波長λ1、λ2毎の予め定める透過光減衰係数ε(EC,λ1)、ε(EC,λ2)とに基づいて、
一方の波長λ1の有機炭素の透過光減衰係数ε(OC,λ1)と、他方の波長λ2の有機炭素の透過光減衰係数ε(OC,λ2)との差を演算し、
一方の波長λ1の元素状炭素の透過光減衰係数ε(EC,λ1)と、他方の波長λ2の元素状炭素の透過光減衰係数ε(EC,λ2)との差を演算し、
これらの差を用いて捕集フィルタ4に捕集された粒子状物質中の有機炭素の量[OC]tを演算する演算手段11、12、13とを含むことを特徴とする浮遊粒子状物質測定装置。
a sheet-like trapping filter 4 for trapping particulate matter floating in the atmosphere;
b light source means 6, 7 for emitting two types of light having different wavelengths λ1, λ2, respectively, and irradiating the light toward one main surface of the collection filter 4,
c, which is disposed to face the other main surface of the collection filter 4 opposite to the one main surface, receives light transmitted through the collection filter 4 where particulate matter is collected, and receives the received light. Transmitted light intensity detecting means 8 for detecting the light intensity of
d arithmetic means 11, 12, 13;
The output from the transmitted light intensity detecting means 8 is provided, and the attenuation ratios Tatn (λ1) and Tatn (λ2) of the detected transmitted light intensity for each wavelength λ1 and λ2, and the respective wavelengths λ1 and λ2 of the organic carbon. A predetermined transmitted light attenuation coefficient ε (OC, λ1), ε (OC, λ2), and a predetermined transmitted light attenuation coefficient ε (EC, λ1), ε (EC, λ2) for each wavelength λ1, λ2 of elemental carbon. ) And based on
The difference between the transmitted light attenuation coefficient ε (OC, λ1) of the organic carbon of one wavelength λ1 and the transmitted light attenuation coefficient ε (OC, λ2) of the other wavelength λ2 organic carbon is calculated,
Calculate the difference between the transmitted light attenuation coefficient ε (EC, λ1) of the elemental carbon of one wavelength λ1 and the transmitted light attenuation coefficient ε (EC, λ2) of the other wavelength λ2,
Calculating means for calculating the amount [OC] t of organic carbon in the particulate matter collected by the collection filter using the difference between the two elements; measuring device.
e 大気中に浮遊する粒子状物質を捕集するシート状の捕集フィルタ4と、
f 2種類の予め定める相互に異なる波長λ1、λ2を有する光をそれぞれ出射して捕集フィルタの一主面に向けて照射する光源手段6、7と、
g 捕集フィルタ4の前記一主面に対向して配設され、粒子状物質が捕集された捕集フィルタ4で反射された光を受光し、その受光した光の光強度を検出する反射光強度検出手段9と、
h 演算手段11、12、13であって、
反射光強度検出手段9からの出力が与えられ、各波長λ1、λ2毎の検出された反射光強度の減衰率Ratn(λ1)、Ratn(λ2)と、有機炭素の各波長λ1、λ2毎の予め定める反射光減衰係数σ(OC,λ1)、σ(OC,λ2)と、元素状炭素の各波長λ1、λ2毎の予め定める反射光減衰係数σ(EC,λ1)、σ(EC,λ2)とに基づいて、
一方の波長λ1の有機炭素の反射光減衰係数σ(OC,λ1)と、他方の波長λ2の有機炭素の反射光減衰係数σ(OC,λ2)との差を演算し、
一方の波長λ1の元素状炭素の反射光減衰係数σ(EC,λ1)と、他方の波長λ2の元素状炭素の反射光減衰係数σ(EC,λ2)との差を演算し、
これらの差を用いて捕集フィルタ4に捕集された粒子状物質中の有機炭素の量[OC]rを演算する演算手段11、12、13とを含むことを特徴とする浮遊粒子状物質測定装置。
e a sheet-shaped collection filter 4 for collecting particulate matter floating in the atmosphere;
f light source means 6, 7 for emitting two types of light having different wavelengths λ1 and λ2, respectively, and irradiating the light toward one main surface of the collection filter;
g Reflection disposed opposite to the one main surface of the collection filter 4 for receiving light reflected by the collection filter 4 from which particulate matter has been collected, and detecting the light intensity of the received light. Light intensity detecting means 9;
h arithmetic means 11, 12, 13;
The output from the reflected light intensity detecting means 9 is given, and the attenuation rates Ratn (λ1) and Ratn (λ2) of the detected reflected light intensity for each wavelength λ1 and λ2, and for each wavelength λ1 and λ2 of the organic carbon. Predetermined reflected light attenuation coefficient σ (OC, λ1), σ (OC, λ2), and predetermined reflected light attenuation coefficient σ (EC, λ1) for each wavelength λ1, λ2 of elemental carbon, σ (EC, λ2 ) And based on
Calculate the difference between the reflected light attenuation coefficient σ (OC, λ1) of organic carbon of one wavelength λ1 and the reflected light attenuation coefficient σ (OC, λ2) of organic carbon of the other wavelength λ2,
The difference between the reflected light attenuation coefficient σ (EC, λ1) of the elemental carbon of one wavelength λ1 and the reflected light attenuation coefficient σ (EC, λ2) of the other wavelength λ2,
Calculating means for calculating the amount [OC] r of the organic carbon in the particulate matter collected by the collection filter using the difference between the two elements; measuring device.
i 大気中に浮遊する粒子状物質を捕集するシート状の捕集フィルタ4と、
j 2種類の予め定める相互に異なる波長λ1、λ2を有する光をそれぞれ出射して捕集フィルタ4の一主面に向けて照射する光源手段6、7と、
k 捕集フィルタ4の前記一主面とは反対側の他主面に対向して配設され、粒子状物質が捕集される捕集フィルタ4を透過した光を受光し、その受光した光の光強度を検出する透過光強度検出手段8と、
L 捕集フィルタ4の前記一主面に対向して配設され、粒子状物質が捕集された捕集フィルタで反射された光を受光し、その受光した光の光強度を検出する反射光強度検出手段9と、
m 演算手段11、12、13であって、
透過光強度検出手段と反射光強度検出手段とからの各出力が与えられ、各波長λ1、λ2毎の検出された透過光強度の減衰率Tatn(λ1)、Tatn(λ2)と、有機炭素の各波長λ1、λ2毎の予め定める透過光減衰係数ε(OC,λ1)、ε(OC,λ2)と、元素状炭素の各波長λ1、λ2毎の予め定める透過光減衰係数ε(EC,λ1)、ε(EC,λ2)と、各波長λ1、λ2毎の検出された反射光強度の減衰率Ratn(λ1)、Ratn(λ2)と、有機炭素の各波長λ1、λ2毎の予め定める予め定める反射光減衰係数σ(OC,λ1)、σ(OC,λ2)と、元素状炭素の各波長λ1、λ2毎の予め定める反射光減衰係数σ(EC,λ1)、σ(EC,λ2)とに基づいて、
一方の波長λ1の有機炭素の透過光減衰係数ε(OC,λ1)と、他方の波長λ2の有機炭素の透過光減衰係数ε(OC,λ2)との第1の差を演算し、
一方の波長λ1の元素状炭素の透過光減衰係数ε(EC,λ1)と、他方の波長λ2の元素状炭素の透過光減衰係数ε(EC,λ2)との第2の差を演算し、
一方の波長λ1の有機炭素の反射光減衰係数σ(OC,λ1)と、他方の波長λ2の有機炭素の反射光減衰係数σ(OC,λ2)との第3の差を演算し、
一方の波長λ1の元素状炭素の反射光減衰係数σ(EC,λ1)と、他方の波長λ2の元素状炭素の反射光減衰係数σ(EC,λ2)との第4の差を演算し、
これらの第1〜第4の差を用いて捕集フィルタ4に捕集された粒子状物質中の有機炭素の量を演算する演算手段11、12、13とを含むことを特徴とする浮遊粒子状物質測定装置。
i. a sheet-shaped collection filter 4 for collecting particulate matter floating in the atmosphere;
j light source means 6 and 7 for emitting two types of light having different wavelengths λ 1 and λ 2 respectively and irradiating the light to one main surface of the collection filter 4;
k is disposed opposite the other main surface of the collection filter 4 opposite to the one main surface, receives light transmitted through the collection filter 4 where the particulate matter is collected, and receives the received light. Transmitted light intensity detecting means 8 for detecting the light intensity of
L: a reflected light disposed opposite to the one main surface of the collection filter 4 for receiving light reflected by the collection filter from which particulate matter has been collected, and detecting the light intensity of the received light Intensity detection means 9;
m arithmetic means 11, 12, 13;
Each output from the transmitted light intensity detecting means and the reflected light intensity detecting means is given, and the attenuation rate Tatn (λ1), Tatn (λ2) of the detected transmitted light intensity for each wavelength λ1, λ2, and organic carbon A predetermined transmitted light attenuation coefficient ε (OC, λ1) for each wavelength λ1, λ2, ε (OC, λ2), and a predetermined transmitted light attenuation coefficient ε (EC, λ1) for each wavelength λ1, λ2 of elemental carbon. ), Ε (EC, λ2), each wavelength λ1, attenuation rate of detected reflected light intensity Ratn (λ1) for each λ2, Ratn (λ2), and each predetermined wavelength λ1, λ2 of organic carbon. Determined reflected light attenuation coefficient σ (OC, λ1), σ (OC, λ2), and predetermined reflected light attenuation coefficient σ (EC, λ1), σ (EC, λ2) for each wavelength λ1, λ2 of elemental carbon And based on
The first difference between the transmitted light attenuation coefficient ε (OC, λ1) of the organic carbon having one wavelength λ1 and the transmitted light attenuation coefficient ε (OC, λ2) of the organic carbon having the other wavelength λ2 is calculated,
Calculate the second difference between the transmitted light attenuation coefficient ε (EC, λ1) of one elemental carbon of wavelength λ1 and the transmitted light attenuation coefficient ε (EC, λ2) of the other wavelength λ2,
The third difference between the reflected light attenuation coefficient σ (OC, λ1) of the organic carbon of one wavelength λ1 and the reflected light attenuation coefficient σ (OC, λ2) of the organic wavelength of the other wavelength λ2 is calculated,
Calculate the fourth difference between the reflected light attenuation coefficient σ (EC, λ1) of the elemental carbon having one wavelength λ1 and the reflected light attenuation coefficient σ (EC, λ2) of the elemental carbon having the other wavelength λ2,
Calculating means for calculating the amount of organic carbon in the particulate matter collected by the collection filter using the first to fourth differences; Substance measuring device.
前記一方の波長λ1は、波長帯域220nm以上500nm以下であり、前記他方の波長λ2は、波長帯域650nm以上1000nm以下であることを特徴とする請求項1〜3のいずれか1つに記載の浮遊粒子状物質測定装置。   4. The floating device according to claim 1, wherein the one wavelength λ1 has a wavelength band of 220 nm or more and 500 nm or less, and the other wavelength λ2 has a wavelength band of 650 nm or more and 1000 nm or less. 5. Particulate matter measuring device.
JP2015039568A 2015-02-27 2015-02-27 Suspended particulate matter measuring device by optical method Active JP6626621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039568A JP6626621B2 (en) 2015-02-27 2015-02-27 Suspended particulate matter measuring device by optical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039568A JP6626621B2 (en) 2015-02-27 2015-02-27 Suspended particulate matter measuring device by optical method

Publications (2)

Publication Number Publication Date
JP2016161359A JP2016161359A (en) 2016-09-05
JP6626621B2 true JP6626621B2 (en) 2019-12-25

Family

ID=56846833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039568A Active JP6626621B2 (en) 2015-02-27 2015-02-27 Suspended particulate matter measuring device by optical method

Country Status (1)

Country Link
JP (1) JP6626621B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107340263B (en) * 2017-03-29 2023-07-25 宁波方太厨具有限公司 System for detecting organic matters in air
CN109658359B (en) * 2018-12-26 2023-06-13 联创汽车电子有限公司 Atmospheric suspended matter detection system and detection method thereof
CN111337399B (en) * 2020-04-09 2022-11-11 合肥福瞳光电科技有限公司 Monitoring mechanism for concentration of atmospheric particulate matter
KR102556940B1 (en) * 2021-03-10 2023-07-20 주식회사 전진엠에스 An apparatus for measuring black-carbon within a ship stack
WO2024053328A1 (en) * 2022-09-08 2024-03-14 株式会社堀場製作所 Analysis system and analysis method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038654B2 (en) * 1979-03-20 1985-09-02 芙蓉海洋開発株式会社 Suspended solids concentration and organic matter index measurement method in water and detection part of the measuring device
JP3034175U (en) * 1996-07-30 1997-02-14 柴田科学器械工業株式会社 Dust measurement device
JP2003091129A (en) * 2001-09-19 2003-03-28 Ricoh Co Ltd Toner concentration detecting method
DE10240204B3 (en) * 2002-08-28 2004-01-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for the optical measurement of black carbon in the atmosphere and device for carrying out the method
JP2003305454A (en) * 2003-02-17 2003-10-28 Meidensha Corp Intake water quality controller
JP4014596B2 (en) * 2004-12-03 2007-11-28 紀本電子工業株式会社 Airborne particulate matter measurement device
CN103765190B (en) * 2011-08-30 2018-04-20 关西涂料株式会社 The evaluation method and evaluating apparatus of pigment dispersion

Also Published As

Publication number Publication date
JP2016161359A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6626621B2 (en) Suspended particulate matter measuring device by optical method
JP3574045B2 (en) Continuous measurement system for suspended particulate matter
EP3514533B1 (en) Apparatus for monitoring mercury gas in a sample
US9011584B2 (en) End of service life indicator for respirator
JP4014596B2 (en) Airborne particulate matter measurement device
JP2008261712A (en) System for measuring suspended particular substance
KR20160134023A (en) hybrid environment sensor
US8206311B2 (en) Analyzer for nitric oxide in exhaled breath with multiple-use sensor
JP2010520997A (en) Method and system for detecting particles
JP2007265457A (en) Improvement of smoke detector, particularly ducted smoke detector
EP1806169A1 (en) System and method for measuring filter saturation
WO2008091359A2 (en) Methods and systems for detecting particles
JP2007255914A (en) Instrument of measuring suspended particulate matter
US10175213B2 (en) Direct in situ monitoring of adsorbent and catalyst beds
US20200225157A1 (en) System and method for estimating a remaining lifetime of an aldehyde filter
CN113884417B (en) Comprehensive detection device for composite gas
Dinh et al. Moisture removal techniques for a continuous emission monitoring system: A review
US9551652B2 (en) Chlorine dioxide gas concentration measuring apparatus
JP2010096753A (en) Mercury collector, mercury collecting unit, mercury analyzer, and its method
CN109211744B (en) Apparatus and method for measuring granular substance by optical method
JP3945770B2 (en) Suspended particulate analysis method and suspended particulate collection device used therefor
US9310309B1 (en) Method of sensing acidic/acid-forming and oxidizable gases for use as a residual filter life indicator
JP2007271460A (en) Method and instrument for measuring mercury in coal combustion exhaust gas
JP4789146B2 (en) Hexafluorobutadiene detector
JP7353314B2 (en) Chemiluminescent NOx concentration measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6626621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250