JP6625299B1 - Rare earth sintered magnet and rotating electric machine using the same - Google Patents

Rare earth sintered magnet and rotating electric machine using the same Download PDF

Info

Publication number
JP6625299B1
JP6625299B1 JP2019547328A JP2019547328A JP6625299B1 JP 6625299 B1 JP6625299 B1 JP 6625299B1 JP 2019547328 A JP2019547328 A JP 2019547328A JP 2019547328 A JP2019547328 A JP 2019547328A JP 6625299 B1 JP6625299 B1 JP 6625299B1
Authority
JP
Japan
Prior art keywords
earth sintered
sintered magnet
rare earth
rare
cut surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019547328A
Other languages
Japanese (ja)
Other versions
JPWO2020255240A1 (en
Inventor
上山 幸嗣
幸嗣 上山
伸緒 横村
伸緒 横村
亮人 岩▲崎▼
亮人 岩▲崎▼
寺井 護
護 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6625299B1 publication Critical patent/JP6625299B1/en
Publication of JPWO2020255240A1 publication Critical patent/JPWO2020255240A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Laser Beam Processing (AREA)

Abstract

R2T14B相を有し、Rが、Nd、Pr、Dy及びTbからなる群から選択される少なくとも1種であり、Tが、Fe及びCoからなる群から選択される少なくとも1種である希土類焼結磁石であって、前記希土類焼結磁石の切断面が、R及びOを主体とする部分と、前記R及びOを主体とする部分と比較してTの濃度が高いTリッチ部分とを有し、前記希土類焼結磁石の切断面積に対する前記Tリッチ部分の面積割合が5%〜30%である、希土類焼結磁石。Rare earth sintering having an R2T14B phase, wherein R is at least one selected from the group consisting of Nd, Pr, Dy and Tb, and T is at least one selected from the group consisting of Fe and Co The magnet, wherein the cut surface of the rare-earth sintered magnet has a portion mainly composed of R and O, and a T-rich portion having a higher T concentration than the portion mainly composed of R and O. A rare earth sintered magnet, wherein an area ratio of the T-rich portion to a cut area of the rare earth sintered magnet is 5% to 30%.

Description

本発明は、希土類焼結磁石及びそれを用いた回転電機に関する。   The present invention relates to a rare earth sintered magnet and a rotating electric machine using the same.

希土類焼結磁石は、磁石用原料粉末を磁場中でプレス成形した後、焼結させることにより製造される。希土類焼結磁石は、焼結収縮が大きく、寸法精度が悪いため、焼結後に研磨等の加工が必要となる。しかしながら、加工時の影響で希土類焼結磁石の磁気特性が低下することが多い。   Rare earth sintered magnets are manufactured by pressing a raw material powder for a magnet in a magnetic field and then sintering. Since rare earth sintered magnets have large sintering shrinkage and poor dimensional accuracy, processing such as polishing is required after sintering. However, the magnetic properties of rare earth sintered magnets often deteriorate due to the effects of processing.

そこで、磁気特性の低下を防止するため、特許文献1では、波長1000〜1100nmの基本波を有する固体レーザーをネオジム磁石に照射してネオジム磁石を切断加工することが提案されている。   Therefore, in order to prevent a decrease in magnetic properties, Patent Document 1 proposes irradiating a neodymium magnet with a solid-state laser having a fundamental wave having a wavelength of 1000 to 1100 nm to cut the neodymium magnet.

特開2009−000732号公報JP 2009-000732 A

しかしながら、特許文献1の方法で希土類焼結磁石に切断加工を施しても、得られる希土類焼結磁石には磁気特性の低下が見られるという課題があった。   However, even if the rare-earth sintered magnet is cut by the method of Patent Document 1, the resulting rare-earth sintered magnet has a problem that the magnetic properties are reduced.

本発明は、上述の課題を解決するためになされたものであり、焼結後に施した切断加工による磁気特性の低下が抑制された希土類焼結磁石を提供することを目的とする。   The present invention has been made to solve the above-described problem, and has as its object to provide a rare-earth sintered magnet in which a decrease in magnetic properties due to a cutting process performed after sintering is suppressed.

本発明は、R214B相を有し、Rが、Nd、Pr、Dy及びTbからなる群から選択される少なくとも1種であり、Tが、Fe及びCoからなる群から選択される少なくとも1種である希土類焼結磁石であって、前記希土類焼結磁石の切断面が、R及びOを主体とする部分と、前記R及びOを主体とする部分と比較してTの濃度が高いTリッチ部分とを有し、前記希土類焼結磁石の切断面積に対する前記Tリッチ部分の面積割合が5%〜30%である、希土類焼結磁石である。The present invention has an R 2 T 14 B phase, wherein R is at least one selected from the group consisting of Nd, Pr, Dy, and Tb, and T is selected from the group consisting of Fe and Co. At least one kind of rare-earth sintered magnet, wherein the cut surface of the rare-earth sintered magnet has a T concentration higher than that of a portion mainly composed of R and O and a portion mainly composed of R and O. A rare-earth sintered magnet having a high T-rich portion, wherein an area ratio of the T-rich portion to a cut area of the rare-earth sintered magnet is 5% to 30%.

本発明によれば、焼結後に施した切断加工による磁気特性の低下が抑制された希土類焼結磁石を提供することができる。   According to the present invention, it is possible to provide a rare earth sintered magnet in which a decrease in magnetic properties due to a cutting process performed after sintering is suppressed.

本発明の一実施の形態に係る希土類焼結磁石の切断加工に用いる加工装置の概略構成図である。It is a schematic structure figure of the processing device used for cutting of the rare earth sintered magnet concerning one embodiment of the present invention. 本発明の一実施の形態に係る希土類焼結磁石の切断加工に用いる加工装置の概略構成図である。It is a schematic structure figure of the processing device used for cutting of the rare earth sintered magnet concerning one embodiment of the present invention. 本発明の一実施の形態に係る回転電機の回転子の構成を示す正面図である。It is a front view showing the composition of the rotor of the rotary electric machine concerning one embodiment of the present invention. 本発明の一実施の形態に係る回転電機の固定子の構成を示す正面図である。FIG. 2 is a front view illustrating a configuration of a stator of the rotating electric machine according to one embodiment of the present invention. 実施例1の希土類焼結磁石の切断面の組成像及び元素マッピングである。3 is a composition image and element mapping of a cut surface of the rare earth sintered magnet of Example 1. 図5に示す組成像及び元素マッピングにおけるTリッチ部分を強調したものである。FIG. 6 emphasizes a T-rich portion in the composition image and the element mapping shown in FIG. 5. 比較例1の希土類焼結磁石の切断面の組成像及び元素マッピングである。9 is a composition image and element mapping of a cut surface of the rare earth sintered magnet of Comparative Example 1. 実施例1の希土類焼結磁石の切断面における酸素レベルと比較例1の希土類焼結磁石の切断面における酸素レベルとを比較結果である。5 is a comparison result between the oxygen level at the cut surface of the rare earth sintered magnet of Example 1 and the oxygen level at the cut surface of the rare earth sintered magnet of Comparative Example 1. 比較例2の希土類焼結磁石の切断面の組成像及び元素マッピングである。9 is a composition image and an element mapping of a cut surface of a rare earth sintered magnet of Comparative Example 2. 実施例1の希土類焼結磁石の切断面を側方からEPMA分析して得られたDyマッピングである。4 is a Dy mapping obtained by performing EPMA analysis on a cut surface of the rare earth sintered magnet of Example 1 from the side. 比較例1の希土類焼結磁石の切断面を側方からEPMA分析して得られたDyマッピングである。6 is a Dy mapping obtained by performing EPMA analysis on the cut surface of the rare earth sintered magnet of Comparative Example 1 from the side. 希土類焼結磁石の磁気特性の評価結果の一例である。It is an example of the evaluation result of the magnetic characteristic of a rare earth sintered magnet.

実施の形態1.
実施の形態1に係る希土類焼結磁石は、R214B相を有する希土類焼結磁石に特定の切断加工を施して得られるものである。ここで、Rは、Nd(ネオジム)、Pr(プラセオジム)、Dy(ジスプロシウム)及びTb(テルビウム)からなる群から選択される少なくとも1種である。Tは、Fe(鉄)及びCo(コバルト)からなる群から選択される少なくとも1種である。磁気特性の観点から、Rは、Ndを必須とし、Ndの一部が、Pr、Dy及びTbからなる群から選択される少なくとも1種で置換されているものが好ましい。また、磁気特性の観点から、Tは、Feを必須とし、Feの一部が、Coで置換されているものが好ましい。切断加工前の希土類焼結磁石は、公知の方法に準じて、希土類焼結磁石用の原料粉末を磁場中でプレス成形した後、焼結させることにより製造することができる。また、切断加工前の希土類焼結磁石として、R214B相を有する市販の希土類焼結磁石を用いることもできる。
Embodiment 1 FIG.
The rare earth sintered magnet according to the first embodiment is obtained by subjecting a rare earth sintered magnet having an R 2 T 14 B phase to a specific cutting process. Here, R is at least one selected from the group consisting of Nd (neodymium), Pr (praseodymium), Dy (dysprosium), and Tb (terbium). T is at least one selected from the group consisting of Fe (iron) and Co (cobalt). From the viewpoint of magnetic properties, it is preferable that R essentially includes Nd, and that Nd is partially substituted with at least one selected from the group consisting of Pr, Dy, and Tb. Further, from the viewpoint of magnetic characteristics, T is preferably made of Fe, and a part of Fe is preferably replaced by Co. The rare earth sintered magnet before the cutting process can be manufactured by press-forming raw material powder for the rare earth sintered magnet in a magnetic field and then sintering according to a known method. Further, as the rare earth sintered magnet before cutting, a commercially available rare earth sintered magnet having an R 2 T 14 B phase can be used.

図1及び2は、本実施の形態に係る希土類焼結磁石の切断加工に用いる加工装置の概略構成図である。   1 and 2 are schematic configuration diagrams of a processing apparatus used for cutting a rare earth sintered magnet according to the present embodiment.

図1において、加工装置は、レーザー発振器1と、反射ミラー2と、集光レンズ3と、加工ヘッド4と、ポンプ5と、加工台6とを備える。加工ヘッド4は、ポンプ5から供給された水を被加工物に向けて噴射するためのノズルを備える。また、加工台6の上には、被加工物としての希土類焼結磁石7が配置されている。図1の加工装置において、YAGレーザー発振器、CO2レーザー発振器などのレーザー発振器1から出射されたレーザー光8は、反射ミラー2で反射された後、集光レンズ3で集光されて加工ヘッド4に送られる。ポンプ5から供給された水は、加工ヘッド4に設けられたノズルから噴射されて水柱9を形成する。加工ヘッド4に送られたレーザー光8は、水柱9内を進行して希土類焼結磁石7に照射される。このように希土類焼結磁石7に水を噴射しながらレーザー光8を照射することによって切断加工が行なわれる。In FIG. 1, the processing apparatus includes a laser oscillator 1, a reflection mirror 2, a condenser lens 3, a processing head 4, a pump 5, and a processing table 6. The processing head 4 includes a nozzle for jetting water supplied from the pump 5 toward the workpiece. On the processing table 6, a rare earth sintered magnet 7 as a workpiece is disposed. In the processing apparatus shown in FIG. 1, a laser beam 8 emitted from a laser oscillator 1 such as a YAG laser oscillator or a CO 2 laser oscillator is reflected by a reflection mirror 2 and then condensed by a condenser lens 3 to be processed by a processing head 4. Sent to Water supplied from the pump 5 is jetted from a nozzle provided on the processing head 4 to form a water column 9. The laser beam 8 sent to the processing head 4 travels in the water column 9 and is irradiated on the rare earth sintered magnet 7. Thus, the cutting process is performed by irradiating the laser light 8 while spraying water on the rare earth sintered magnet 7.

図2において、加工装置は、レーザー発振器1と、反射ミラー2と、集光レンズ3と、水噴射ノズル10と、ポンプ5と、加工台6とを備える。水噴射ノズル10には、ポンプ5から水が供給される。また、加工台6の上には、被加工物としての希土類焼結磁石7が配置されている。図2の加工装置では、図示していないが、水噴射ノズル10及び被加工物としての希土類焼結磁石7が水中に浸漬されている。図2の加工装置において、レーザー発振器1から出射されたレーザー光8は、反射ミラー2で反射された後、集光レンズ3で集光されて、図示していないが、水中を進行して希土類焼結磁石7に照射される。ポンプ5から供給された水は、水噴射ノズル10から被加工物に向けて噴射される。このように希土類焼結磁石7に水を噴射しながらレーザー光8を照射することによって切断加工が行なわれる。   2, the processing apparatus includes a laser oscillator 1, a reflection mirror 2, a condenser lens 3, a water jet nozzle 10, a pump 5, and a processing table 6. Water is supplied from the pump 5 to the water injection nozzle 10. On the processing table 6, a rare earth sintered magnet 7 as a workpiece is disposed. In the processing apparatus of FIG. 2, although not shown, the water injection nozzle 10 and the rare-earth sintered magnet 7 as a workpiece are immersed in water. In the processing apparatus shown in FIG. 2, a laser beam 8 emitted from a laser oscillator 1 is reflected by a reflection mirror 2 and then condensed by a condenser lens 3. Irradiated on the sintered magnet 7. The water supplied from the pump 5 is injected from the water injection nozzle 10 toward the workpiece. Thus, the cutting process is performed by irradiating the laser light 8 while spraying water on the rare earth sintered magnet 7.

希土類焼結磁石7に照射するレーザー光8の波長は、例えばYAGレーザーを用いる場合には、基本波長である1064nm又は第二高調波である532nmとすることができる。レーザー出力は、限定されるものではないが、10W〜2000Wの範囲とすることができる。また、加工ヘッド4に設けられたノズル及び水噴射ノズル10の孔径は、限定されるものではないが、20μm〜500μmの範囲とすることができる。加工ヘッド4に設けられたノズル及び水噴射ノズル10の孔径が上記範囲内であれば、希土類焼結磁石7を著しく破損することなく適切に切断することができる。水の噴射圧力は、レーザー光8による切断加工を行いつつ特定の組織を有する切断面を形成する観点から、1MPa〜50MPaの範囲とすることが好ましく、5MPa〜40MPaの範囲とすることがより好ましい。水の噴射圧力が1MPa未満であると、加工部への水の供給が不足して、特定の組織を有する切断面を形成できない場合がある。一方、水の噴射圧力が50MPa超であると、希土類焼結磁石7の固定が困難になる場合がある。切断加工に用いる水は、希土類焼結磁石7の腐食を防止する観点から、少なくとも塩素イオンを除去したものが好ましく、例えば、蒸留水、イオン交換水などの純水、超純水などを用いることができる。切断加工時の水温は、レーザー光8が安定する温度であればよく、例えば、5℃〜50℃の範囲である。作業性を考慮すると、切断加工時の水温は15℃〜35℃であることが好ましい。   When a YAG laser is used, for example, the wavelength of the laser beam 8 applied to the rare-earth sintered magnet 7 can be 1064 nm, which is the fundamental wavelength, or 532 nm, which is the second harmonic. Laser power can be, but is not limited to, in the range of 10W to 2000W. Further, the hole diameter of the nozzle provided in the processing head 4 and the water jet nozzle 10 is not limited, but may be in the range of 20 μm to 500 μm. When the hole diameters of the nozzle provided in the processing head 4 and the water injection nozzle 10 are within the above ranges, the rare earth sintered magnet 7 can be appropriately cut without being significantly damaged. The injection pressure of water is preferably in the range of 1 MPa to 50 MPa, and more preferably in the range of 5 MPa to 40 MPa, from the viewpoint of forming a cut surface having a specific structure while performing cutting by the laser beam 8. . If the water injection pressure is less than 1 MPa, the supply of water to the processing portion may be insufficient, and a cut surface having a specific structure may not be formed. On the other hand, if the water injection pressure is more than 50 MPa, it may be difficult to fix the rare earth sintered magnet 7. From the viewpoint of preventing corrosion of the rare-earth sintered magnet 7, water used for the cutting process is preferably one from which at least chlorine ions have been removed. For example, pure water such as distilled water or ion-exchanged water, or ultrapure water may be used. Can be. The water temperature at the time of cutting may be a temperature at which the laser beam 8 is stable, and is, for example, in the range of 5 ° C to 50 ° C. In consideration of workability, the water temperature at the time of cutting is preferably from 15 ° C to 35 ° C.

上記した切断加工を施して得られる希土類焼結磁石7の切断面は、R及びOを主体とする部分と、R及びOを主体とする部分と比較してTの濃度が高いTリッチ部分とを有する。切断面に形成されたR及びOを主体とする部分とTリッチ部分との厚み(切断面からの深さ)は、0.1μm〜25μmであることが好ましく、0.5μm〜10μmであることがより好ましい。R及びOを主体とする部分とTリッチ部分との厚みが上記範囲内であれば、磁気特性の低下をより抑制することができる。また、Tリッチ部分の面積割合は、希土類焼結磁石7の切断面積に対して、5%〜30%であり、好ましくは10%〜20%である。希土類焼結磁石の切断面におけるR及びOを主体とする部分とTリッチ部分とは、電子プローブマイクロアナライザー(Electron Probe Micro Analyzer;EPMA)を用いた元素分析により決定することができる。Tリッチ部分の面積割合が上記した範囲内であれば、切断加工による磁気特性の低下が抑制される。   The cut surface of the rare-earth sintered magnet 7 obtained by performing the above-described cutting processing includes a portion mainly composed of R and O, and a T-rich portion having a higher T concentration than a portion mainly composed of R and O. Having. The thickness (depth from the cut surface) of the portion mainly composed of R and O and the T-rich portion formed on the cut surface is preferably 0.1 μm to 25 μm, and more preferably 0.5 μm to 10 μm. Is more preferred. When the thickness of the portion mainly composed of R and O and the thickness of the T-rich portion are within the above range, the deterioration of the magnetic properties can be further suppressed. The area ratio of the T-rich portion is 5% to 30%, preferably 10% to 20%, based on the cut area of the rare earth sintered magnet 7. The portion mainly composed of R and O and the T-rich portion on the cut surface of the rare earth sintered magnet can be determined by elemental analysis using an electron probe microanalyzer (EPMA). When the area ratio of the T-rich portion is within the above range, the decrease in magnetic properties due to the cutting process is suppressed.

耐食性と機械的強度とを両立する観点から、Tリッチ部分は、Fe及びCoを含むことが好ましい。被加工物として、Dyを含む希土類焼結磁石7を用いた場合、希土類焼結磁石7の切断面から深さ方向に向かって0.5μm〜7μmの範囲におけるDyの濃度が、希土類焼結磁石7の切断面から深さ方向に向かって7μm超の範囲におけるDyの濃度より高いこと、言い換えれば、希土類焼結磁石7の切断面から深さ方向に向かって0.5μm〜7μmの範囲にDy濃化層が存在していてもよい。Tリッチ部分と共存し易いDy濃化層が存在しても、希土類焼結磁石7の機械的強度に問題が生じることはない。Dy濃化層は、切断加工後の希土類焼結磁石7の保磁力が低下するのを抑制する可能性がある。Tリッチ部分には、Dy以外に、希土類焼結磁石7に予め配合されている他の元素が微量成分として取り込まれていてもよい。このような他の元素としては、例えば、B、C、N、Al、Si、P、S、Ti、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Pr、Nb、Nd、Tb、La、Smなどが挙げられる。   From the viewpoint of achieving both corrosion resistance and mechanical strength, the T-rich portion preferably contains Fe and Co. When the rare-earth sintered magnet 7 containing Dy is used as the workpiece, the concentration of Dy in the range of 0.5 μm to 7 μm in the depth direction from the cut surface of the rare-earth sintered magnet 7 increases. 7 is higher than the concentration of Dy in the range of more than 7 μm in the depth direction from the cut surface of No. 7, in other words, Dy is in the range of 0.5 μm to 7 μm in the depth direction from the cut surface of the rare earth sintered magnet 7. A thickened layer may be present. Even if there is a Dy-enriched layer that is likely to coexist with the T-rich portion, no problem occurs in the mechanical strength of the rare-earth sintered magnet 7. The Dy-enriched layer has a possibility that the coercive force of the rare-earth sintered magnet 7 after the cutting process is suppressed from being reduced. In the T-rich portion, in addition to Dy, other elements previously blended in the rare earth sintered magnet 7 may be incorporated as trace components. Examples of such other elements include B, C, N, Al, Si, P, S, Ti, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Pr, Nb, Nd, Tb, and La. , Sm and the like.

上記した切断加工を施して得られる希土類焼結磁石7には、耐食性を向上させるため、追加の表面処理を施してもよい。追加の表面処理の例としては、リン酸、クロム酸、ジルコニウム系、チタネート系、マンガン系、シリケート系などの化成処理、フッ酸を用いる表面処理が挙げられる。希土類焼結磁石7には、必要に応じて、エポキシ系、ポリエステル系、アクリル系、アミドイミド系、ポリイミド系、シリコーン系、亜鉛フレーク含有ジンクリッチペイント、アルキルシリケート系、フッ素樹脂系などの塗装被膜を形成してもよい。また、希土類焼結磁石7には、必要に応じて、粉体塗装被膜、電着塗装被膜、パリレンの蒸着被膜などを形成してもよい。また、希土類焼結磁石7には、必要に応じて、アルミニウムの蒸着被膜、アルミニウム合金の蒸着被膜、TiN系被膜、真空蒸着法、スパッタ又は湿式法を用いた金属系被膜を形成してもよい。湿式法を用いた金属系被膜としては、ニッケルめっき、銅めっき、錫めっき、亜鉛めっき、錫合金めっき、亜鉛合金めっき、微粒子を含有する金属めっき、無電解Ni−Pめっき、無電解Ni−Bめっきなどが挙げられる。また、希土類焼結磁石7には、酸化物、窒化物などを生成する処理を施してもよい。   The rare-earth sintered magnet 7 obtained by performing the above-described cutting may be subjected to an additional surface treatment in order to improve corrosion resistance. Examples of the additional surface treatment include a chemical treatment such as phosphoric acid, chromic acid, zirconium-based, titanate-based, manganese-based, and silicate-based, and a surface treatment using hydrofluoric acid. The rare earth sintered magnet 7 may be coated with a paint film such as an epoxy-based, polyester-based, acrylic-based, amide-imide-based, polyimide-based, silicone-based, zinc-flake-containing zinc-rich paint, alkylsilicate-based, or fluororesin-based, as necessary. It may be formed. Further, a powder coating film, an electrodeposition coating film, a vapor deposition film of parylene, or the like may be formed on the rare earth sintered magnet 7 as necessary. If necessary, the rare earth sintered magnet 7 may be formed with a deposited film of aluminum, a deposited film of an aluminum alloy, a TiN-based film, a metal film using a vacuum deposition method, a sputtering method or a wet method. . Examples of the metal-based coating using a wet method include nickel plating, copper plating, tin plating, zinc plating, tin alloy plating, zinc alloy plating, metal plating containing fine particles, electroless Ni-P plating, and electroless Ni-B. Plating and the like. Further, the rare-earth sintered magnet 7 may be subjected to a process for generating an oxide, a nitride, or the like.

なお、本実施の形態において、希土類焼結磁石7の切断加工には、面取り加工、部分的な寸法加工、穴あけ加工なども含まれる。   In the present embodiment, the cutting of the rare-earth sintered magnet 7 includes chamfering, partial dimensional processing, drilling, and the like.

実施の形態1によれば、焼結後に施した切断加工による磁気特性の低下が抑制された希土類焼結磁石を提供することができる。また、実施の形態1による希土類焼結磁石は、動作温度の上昇に伴う磁気特性の低下率が小さく、良好な角型比を有する。   According to the first embodiment, it is possible to provide a rare earth sintered magnet in which a decrease in magnetic properties due to a cutting process performed after sintering is suppressed. Moreover, the rare earth sintered magnet according to the first embodiment has a small rate of decrease in magnetic properties with an increase in operating temperature, and has a good squareness ratio.

実施の形態2.
実施の形態2に係る回転電機は、上述した実施の形態1の希土類焼結磁石を用いた回転子と、固定子とを備える。図3は、実施の形態2に係る回転電機の回転子の構成を示す正面図である。図3において、回転子は、回転子鉄心11と、希土類焼結磁石7とを備える。回転子鉄心11は、複数の鋼板を積層して形成されている。回転子鉄心11の中心には、シャフト孔12が形成されている。希土類焼結磁石7は、回転子鉄心11の周方向に設けられた複数の磁石挿入孔に挿入されている。
Embodiment 2 FIG.
The rotating electric machine according to the second embodiment includes a rotor using the rare-earth sintered magnet of the first embodiment and a stator. FIG. 3 is a front view showing the configuration of the rotor of the rotary electric machine according to Embodiment 2. In FIG. 3, the rotor includes a rotor core 11 and a rare-earth sintered magnet 7. The rotor core 11 is formed by stacking a plurality of steel plates. A shaft hole 12 is formed at the center of the rotor core 11. The rare earth sintered magnet 7 is inserted into a plurality of magnet insertion holes provided in the circumferential direction of the rotor core 11.

実施の形態2によれば、磁気特性の優れた希土類焼結磁石が回転子に組み込まれているので、回転電機の高効率化、小型化などを図ることができる。   According to the second embodiment, since the rare earth sintered magnet having excellent magnetic properties is incorporated in the rotor, it is possible to increase the efficiency and reduce the size of the rotating electric machine.

実施の形態3.
実施の形態3に係る回転電機は、上述した実施の形態1の希土類焼結磁石を用いた固定子と、回転子とを備える。図4は、実施の形態3に係る回転電機の固定子の構成を示す正面図である。図4において、固定子は、固定子鉄心13と、希土類焼結磁石7とを備える。固定子鉄心13は、複数の鋼板を積層して形成されている。希土類焼結磁石7は、固定子鉄心13の内周面に設けられた磁石取付スロットに取り付けられている。
Embodiment 3 FIG.
The rotating electric machine according to the third embodiment includes a stator using the rare-earth sintered magnet of the first embodiment and a rotor. FIG. 4 is a front view showing the configuration of the stator of the rotating electric machine according to the third embodiment. In FIG. 4, the stator includes a stator core 13 and a rare earth sintered magnet 7. The stator core 13 is formed by stacking a plurality of steel plates. The rare earth sintered magnet 7 is mounted on a magnet mounting slot provided on the inner peripheral surface of the stator core 13.

実施の形態3によれば、磁気特性の優れた希土類焼結磁石が固定子に組み込まれているので、回転電機の高効率化、小型化などを図ることができる。   According to the third embodiment, since the rare earth sintered magnet having excellent magnetic properties is incorporated in the stator, it is possible to increase the efficiency and reduce the size of the rotating electric machine.

なお、実施の形態2及び3において、希土類焼結磁石7の固定に用いる接着剤としては、エポキシ系、アクリル系、ウレタン系、フェノール系、シアノアクリレート系、シリコーン系、アミドイミド系、ホットメルト系、ポリイミド系、変性シリコーン系、塗装に用いられる有機樹脂成分などが挙げられる。これらの接着剤の硬化方法は、限定されるものではないが、加熱硬化、室温硬化、湿気硬化、UV硬化、電子線硬化などが挙げられる。また、熱硬化樹脂以外の熱可塑性樹脂、液晶ポリマーなどの樹脂を用いて希土類焼結磁石7を固定してもよい。   In Embodiments 2 and 3, the adhesive used for fixing the rare earth sintered magnet 7 includes epoxy, acrylic, urethane, phenol, cyanoacrylate, silicone, amideimide, hot melt, and the like. Examples include polyimide-based, modified silicone-based, and organic resin components used for coating. The method for curing these adhesives is not limited, and examples thereof include heat curing, room temperature curing, moisture curing, UV curing, and electron beam curing. Alternatively, the rare earth sintered magnet 7 may be fixed using a resin other than a thermosetting resin, such as a thermoplastic resin or a liquid crystal polymer.

以下、実施例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。
<実施例1>
公知の方法に準じて、12.5mm×60mmの大きさで厚さが4.5mmであり、R214B相を有し、RがNd及びDyであり、TがFe及びCoである希土類焼結磁石を作製した。この希土類焼結磁石では厚さ方向を容易磁化方向とした。
図1に示す加工装置の加工台に上記希土類焼結磁石を固定し、YAGレーザー発振器から出射された波長532nmのレーザー光と噴射圧力30MPa及び水温20℃〜25℃の水噴流とにより上記希土類焼結磁石を7mm×7mmの大きさで厚さが1mmの希土類焼結磁石に切断加工した後、水洗及び乾燥させることで、実施例1の希土類焼結磁石を得た。切断加工後の希土類焼結磁石では厚さ方向を容易磁化方向とした。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
<Example 1>
According to a known method, a size of 12.5 mm × 60 mm, a thickness of 4.5 mm, an R 2 T 14 B phase, R is Nd and Dy, and T is Fe and Co. A rare earth sintered magnet was produced. In this rare earth sintered magnet, the thickness direction was set as the easy magnetization direction.
The rare earth sintered magnet was fixed to a working table of the working apparatus shown in FIG. The cut magnet was cut into a rare earth sintered magnet having a size of 7 mm × 7 mm and a thickness of 1 mm, washed with water and dried to obtain a rare earth sintered magnet of Example 1. In the rare earth sintered magnet after the cutting, the thickness direction was set as the easy magnetization direction.

<実施例2>
公知の方法に準じて、12.5mm×60mmの大きさで厚さが4.5mmであり、R214B相を有し、RがNd及びDyであり、TがFe及びCoである希土類焼結磁石を作製した。この希土類焼結磁石では厚さ方向を容易磁化方向とした。
図2に示す加工装置の加工台に上記希土類焼結磁石を固定すると共に水温20℃〜25℃の水中に浸漬し、YAGレーザー発振器から出射された波長1064nmのレーザー光と噴射圧力8MPa及び水温20℃〜25℃の水噴流とにより上記希土類焼結磁石を7mm×7mmの大きさで厚さが1mmの希土類焼結磁石に切断加工した後、水洗及び乾燥させることで、実施例2の希土類焼結磁石を得た。切断加工後の希土類焼結磁石では厚さ方向を容易磁化方向とした。
<Example 2>
According to a known method, a size of 12.5 mm × 60 mm, a thickness of 4.5 mm, an R 2 T 14 B phase, R is Nd and Dy, and T is Fe and Co. A rare earth sintered magnet was produced. In this rare earth sintered magnet, the thickness direction was set as the easy magnetization direction.
The rare earth sintered magnet was fixed on a processing table of the processing apparatus shown in FIG. After cutting the rare earth sintered magnet into a 7 mm × 7 mm rare earth sintered magnet having a thickness of 1 mm by a water jet at 25 ° C. to 25 ° C., the rare earth sintered magnet of Example 2 was washed with water and dried. A magnet was obtained. In the rare earth sintered magnet after the cutting, the thickness direction was set as the easy magnetization direction.

<比較例1>
公知の方法に準じて、12.5mm×60mmの大きさで厚さが4.5mmであり、R214B相を有し、RがNd及びDyであり、TがFe及びCoである希土類焼結磁石を作製した。この希土類焼結磁石では厚さ方向を容易磁化方向とした。
上記希土類焼結磁石に水を掛けながらダイヤモンド砥石を用いて7mm×7mmの大きさで厚さが1mmの希土類焼結磁石に切断加工した後、水洗及び乾燥させることで、比較例1の希土類焼結磁石を得た。
<Comparative Example 1>
According to a known method, a size of 12.5 mm × 60 mm, a thickness of 4.5 mm, an R 2 T 14 B phase, R is Nd and Dy, and T is Fe and Co. A rare earth sintered magnet was produced. In this rare earth sintered magnet, the thickness direction was set as the easy magnetization direction.
After cutting the rare earth sintered magnet into a 7 mm x 7 mm rare earth sintered magnet having a thickness of 1 mm using a diamond grindstone while applying water to the rare earth sintered magnet, washing with water and drying are performed to obtain the rare earth sintered magnet of Comparative Example 1. A magnet was obtained.

<比較例2>
公知の方法に準じて、12.5mm×60mmの大きさで厚さが4.5mmであり、R214B相を有し、RがNd及びDyであり、TがFe及びCoである希土類焼結磁石を作製した。この希土類焼結磁石では厚さ方向を容易磁化方向とした。
水を噴射する代わりに水の撹拌を行った以外は実施例2と同様にして、上記希土類焼結磁石を7mm×7mmの大きさで厚さが1mmの希土類焼結磁石に切断加工した後、水洗及び乾燥させることで、比較例2の希土類焼結磁石を得た。
<Comparative Example 2>
According to a known method, a size of 12.5 mm × 60 mm, a thickness of 4.5 mm, an R 2 T 14 B phase, R is Nd and Dy, and T is Fe and Co. A rare earth sintered magnet was produced. In this rare earth sintered magnet, the thickness direction was set as the easy magnetization direction.
After cutting the rare earth sintered magnet into a rare earth sintered magnet having a size of 7 mm × 7 mm and a thickness of 1 mm in the same manner as in Example 2 except that water was stirred instead of spraying water, By washing with water and drying, a rare earth sintered magnet of Comparative Example 2 was obtained.

図5は、実施例1の希土類焼結磁石の切断面を、走査型電子顕微鏡(Scanning Electron Microscope:SEM)で分析して得られた組成像(COMPO像)及び電界放出型電子プローブマイクロアナライザー(Field Emission-Electron Probe Micro Analyzer:FE−EPMA)で分析して得られた元素マッピングである。   FIG. 5 shows a composition image (COMPO image) obtained by analyzing a cut surface of the rare earth sintered magnet of Example 1 with a scanning electron microscope (SEM) and a field emission electron probe microanalyzer ( This is an element mapping obtained by analysis with a Field Emission-Electron Probe Micro Analyzer (FE-EPMA).

図5に示す組成像から分かるように、実施例1の希土類焼結磁石の切断面は、白色部と灰色部とが波打ったような状態となっていた。図5に示す組成像及び元素マッピングの対比から、組成像の白色部は、Nd、Dy及びOを主体としており、この部分ではFe及びCoが僅かに検出されるだけであることが分かった。一方、組成像の灰色部は、白色部と比較してFe及びCoの濃度が高くなっており、この部分ではNd、Dy及びOが僅かに検出されるだけであることが分かった。図5に示す組成像及び元素マッピングにおいて、Fe及びCoの濃度が高くなっている部分をTリッチ部分として強調したものを図6に示す。元素マッピングの検出レベルで比較すると、Tリッチ部分では、Tリッチ部分以外の部分、具体的にはNd、Dy及びOを主体とする部分と比較して2倍以上のFe及びCoが検出されていた。組成像の灰色部で判断する限り、Tリッチ部分は、直径0.5μmの円形のものから20μm×10μmのものまで存在していると考えられる。   As can be seen from the composition image shown in FIG. 5, the cut surface of the rare earth sintered magnet of Example 1 was in a state where the white portion and the gray portion were wavy. From the comparison between the composition image and the element mapping shown in FIG. 5, it was found that the white portion of the composition image was mainly composed of Nd, Dy, and O, and Fe and Co were only slightly detected in this portion. On the other hand, in the gray part of the composition image, the concentrations of Fe and Co were higher than in the white part, and it was found that Nd, Dy, and O were only slightly detected in this part. In the composition image and the element mapping shown in FIG. 5, a portion where the concentration of Fe and Co is high is emphasized as a T-rich portion, and FIG. Comparing at the detection level of elemental mapping, Fe and Co are detected in the T-rich portion twice or more times in the portion other than the T-rich portion, specifically in the portion mainly composed of Nd, Dy and O. Was. Judging from the gray part of the composition image, it is considered that the T-rich part exists from a circular one having a diameter of 0.5 μm to a one having a diameter of 20 μm × 10 μm.

実施例1の希土類焼結磁石では、Tリッチ部分の面積割合は切断面積に対して10%であった。また、実施例2の希土類焼結磁石では、Tリッチ部分の面積割合は切断面積に対して17%であった。   In the rare earth sintered magnet of Example 1, the area ratio of the T-rich portion was 10% with respect to the cut area. In the rare earth sintered magnet of Example 2, the area ratio of the T-rich portion was 17% with respect to the cut area.

図7は、比較例1の希土類焼結磁石の切断面を、走査型電子顕微鏡で分析して得られた組成像及び電界放出型電子プローブマイクロアナライザーで分析して得られた元素マッピングである。   FIG. 7 is a composition image obtained by analyzing a cut surface of the rare earth sintered magnet of Comparative Example 1 with a scanning electron microscope and an element mapping obtained by analyzing with a field emission electron probe microanalyzer.

図7に示す組成像から分かるように、比較例1の希土類焼結磁石の切断面には、波打ったような状態は認められない。図7に示す元素マッピングから、Nd、Dy及びFeが切断面全体に分布していることが分かった。   As can be seen from the composition image shown in FIG. 7, no wavy state is observed on the cut surface of the rare earth sintered magnet of Comparative Example 1. From the element mapping shown in FIG. 7, it was found that Nd, Dy, and Fe were distributed over the entire cut surface.

図8は、実施例1の希土類焼結磁石の切断面における酸素の検出レベルと比較例1の希土類焼結磁石の切断面における酸素の検出レベルとを比較したものである。存在比率の比較は、電界放出型電子プローブマイクロアナライザーでの対応元素のシグナル比で行った。測定は、電界放出型電子プローブマイクロアナライザー(日本電子株式会社製JXA−8530F)を用いて以下の条件で行った。
加速電圧:15.0kV
照射電流:5.014e−008A、
照射時間:10ms
画素数:512ピクセル×512ピクセル
倍率:2000倍
積算回数:1回
ビーム径:1μm
FIG. 8 compares the detection level of oxygen on the cut surface of the rare earth sintered magnet of Example 1 with the oxygen detection level on the cut surface of the rare earth sintered magnet of Comparative Example 1. The comparison of the abundance ratio was performed based on the signal ratio of the corresponding element in the field emission electron probe microanalyzer. The measurement was performed using a field emission type electron probe microanalyzer (JXA-8530F, manufactured by JEOL Ltd.) under the following conditions.
Acceleration voltage: 15.0 kV
Irradiation current: 5.014e-008A,
Irradiation time: 10ms
Number of pixels: 512 pixels × 512 pixels Magnification: 2000 times Number of integration: 1 Beam diameter: 1 μm

図8において、縦軸は、元素の存在比率であり、横軸は、酸素の検出レベルである。各点の値を掛け合わせて、実施例1の希土類焼結磁石の切断面における酸素の検出レベルの平均値及び比較例1の希土類焼結磁石の切断面における酸素の検出レベルの平均値をそれぞれ算出した。酸素の検出レベルの平均値は、実施例1では74.0であり、比較例1では36.9であった。この結果から、実施例1の希土類焼結磁石の切断面には、比較例1の希土類焼結磁石の切断面よりも明らかに多い酸素の存在が認められる。   In FIG. 8, the vertical axis indicates the element abundance ratio, and the horizontal axis indicates the oxygen detection level. By multiplying the values of the respective points, the average value of the detected level of oxygen on the cut surface of the rare earth sintered magnet of Example 1 and the average value of the detected level of oxygen on the cut surface of the rare earth sintered magnet of Comparative Example 1 are respectively obtained. Calculated. The average value of the detection levels of oxygen was 74.0 in Example 1 and 36.9 in Comparative Example 1. From these results, it can be seen that the cross section of the rare earth sintered magnet of Example 1 has more oxygen than the cross section of the rare earth sintered magnet of Comparative Example 1.

図9は、比較例2の希土類焼結磁石の切断面を、走査型電子顕微鏡で分析して得られた組成像及び電界放出型電子プローブマイクロアナライザーで分析して得られた元素マッピングである。   FIG. 9 is a composition image obtained by analyzing a cut surface of the rare earth sintered magnet of Comparative Example 2 with a scanning electron microscope and an element mapping obtained by analyzing with a field emission electron probe microanalyzer.

図9に示す組成像から分かるように、比較例2の希土類焼結磁石の切断面には、微細な球状物質及び粉末状物質が付着していた。図9に示す元素マッピングから、これらの付着物は、Fe及びOを主体とするものであり、Nd及びDyが少ないことが分かった。   As can be seen from the composition image shown in FIG. 9, a fine spherical substance and a powdery substance were adhered to the cut surface of the rare earth sintered magnet of Comparative Example 2. From the element mapping shown in FIG. 9, it was found that these deposits were mainly composed of Fe and O, and had a small amount of Nd and Dy.

図10は、電界放出型電子プローブマイクロアナライザーで実施例1の希土類焼結磁石の切断面を側方から分析して得られたDyマッピングである。図10に示すDyマッピングから、切断面から深さ方向に向かって0.5μm〜7μmの範囲におけるDyの濃度が、切断面から深さ方向に向かって7μm超の範囲におけるDyの濃度よりも高いことが分かった。   FIG. 10 is a Dy mapping obtained by analyzing the cut surface of the rare-earth sintered magnet of Example 1 from the side using a field emission electron probe microanalyzer. From the Dy mapping shown in FIG. 10, the concentration of Dy in the range of 0.5 μm to 7 μm from the cut surface in the depth direction is higher than the concentration of Dy in the range of more than 7 μm in the depth direction from the cut surface. I found out.

また、DyマッピングにおけるDyの検出シグナルを二値化し、256分割したときの輝度によって定量比較を試みた。輝度が高い方がDyの比率が多く、輝度が低い方がDyの比率が少ないと言える。このときのDy二値化レベルを図10に併せて示す。実施例1の希土類焼結磁石の切断面から深さ方向に向かって0.5μm〜7μmの範囲におけるDy二値化レベルは140.4であった。一方、実施例1の希土類焼結磁石の切断面から深さ方向に向かって7μm超の範囲におけるDy二値化レベルは107.0であった。   In addition, a Dy detection signal in Dy mapping was binarized, and quantitative comparison was attempted based on luminance when 256 divisions were made. It can be said that the higher the luminance, the higher the ratio of Dy, and the lower the luminance, the lower the ratio of Dy. The Dy binarization level at this time is also shown in FIG. The Dy binarization level in the range of 0.5 μm to 7 μm in the depth direction from the cut surface of the rare earth sintered magnet of Example 1 was 140.4. On the other hand, the Dy binarization level in the range of more than 7 μm in the depth direction from the cut surface of the rare earth sintered magnet of Example 1 was 107.0.

また、実施例2の希土類焼結磁石の切断面から深さ方向に向かって0.5μm〜7μmの範囲におけるDy二値化レベルは110.5であった。一方、実施例2の希土類焼結磁石の切断面から深さ方向に向かって7μm超の範囲におけるDy二値化レベルは103.1であった。   The Dy binarization level in the range of 0.5 μm to 7 μm in the depth direction from the cut surface of the rare earth sintered magnet of Example 2 was 110.5. On the other hand, the Dy binarization level in the range of more than 7 μm in the depth direction from the cut surface of the rare earth sintered magnet of Example 2 was 103.1.

図11は、電界放出型電子プローブマイクロアナライザーで比較例1の希土類焼結磁石の切断面を側方から分析して得られたDyマッピングである。図11に示すDyマッピングから、比較例1の希土類焼結磁石では実施例1の希土類焼結磁石で見られたようなDy濃化層は認められなかった。DyマッピングにおけるDyの検出シグナルを二値化し、256分割したときの輝度によって定量比較を試みた。このときのDy二値化レベルを図11に併せて示す。比較例1の希土類焼結磁石の切断面から深さ方向に向かって0.5μm〜7μmの範囲におけるDy二値化レベルは101.6であった。一方、比較例1の希土類焼結磁石の切断面から深さ方向に向かって7μm超の範囲におけるDy二値化レベルは115.4であった。   FIG. 11 is a Dy mapping obtained by analyzing the cut surface of the rare earth sintered magnet of Comparative Example 1 from the side by using a field emission electron probe microanalyzer. From the Dy mapping shown in FIG. 11, the rare earth sintered magnet of Comparative Example 1 did not show a Dy-enriched layer as seen in the rare earth sintered magnet of Example 1. The detection signal of Dy in the Dy mapping was binarized, and quantitative comparison was attempted based on the luminance at the time of 256 divisions. The Dy binarization level at this time is also shown in FIG. The Dy binarization level in the range of 0.5 μm to 7 μm in the depth direction from the cut surface of the rare earth sintered magnet of Comparative Example 1 was 101.6. On the other hand, the Dy binarization level in the range of more than 7 μm in the depth direction from the cut surface of the rare earth sintered magnet of Comparative Example 1 was 115.4.

図5〜図11に示す結果から、以下のことが分かった。
比較例2では、レーザー光を照射する際に水を噴射していないため、切断面が形成される段階においてFeがNd及びDyと分離され、Fe及びOを主体とする微粒子が切断面に多数付着したと考えられる。比較例2では、微粒子が被覆する面積割合が切断面積に対して51%であった。
実施例1では、希土類焼結磁石に水を噴射しながらレーザー光を照射して切断加工を行なうため、希土類焼結磁石を構成する成分が溶解し、切断面に再析出すると共に取り込まれることにより、特殊な組成を有する切断面が形成されたと考えられる。その切断面は、Nd、Dy及びOを主体とする部分と、Fe及びCoのリッチな部分とを有していた。実施例1の希土類焼結磁石の切断面にも0.3μm〜5μmの微粒子は僅かに見られた。切断面に付着した微粒子が少ないため、磁気特性の低下が抑制されると考えられる。実施例1では、微粒子が被覆する面積割合が切断面積に対して1%以下であった。
From the results shown in FIGS. 5 to 11, the following has been found.
In Comparative Example 2, since water was not sprayed when irradiating the laser beam, Fe was separated from Nd and Dy at the stage where the cut surface was formed, and many fine particles mainly composed of Fe and O were present on the cut surface. It is considered to have adhered. In Comparative Example 2, the area ratio covered by the fine particles was 51% of the cut area.
In the first embodiment, since cutting is performed by irradiating a laser beam while spraying water on the rare-earth sintered magnet, the components constituting the rare-earth sintered magnet are dissolved, re-precipitated on the cut surface and taken in. It is considered that a cut surface having a special composition was formed. The cut surface had a portion mainly composed of Nd, Dy and O, and a portion rich in Fe and Co. Fine particles of 0.3 μm to 5 μm were also slightly observed on the cut surface of the rare earth sintered magnet of Example 1. It is considered that the decrease in magnetic properties is suppressed because the amount of fine particles attached to the cut surface is small. In Example 1, the ratio of the area covered by the fine particles was 1% or less with respect to the cut area.

実施例1では、切断面から深さ方向に向かって特定の範囲においてDy濃化層が形成されていることが認められた。これは、切断面が形成される段階においてDyの析出が優先的に起こるためであると推定される。   In Example 1, it was recognized that the Dy-enriched layer was formed in a specific range from the cut surface toward the depth direction. This is presumed to be because precipitation of Dy occurs preferentially at the stage where the cut surface is formed.

次に、実施例1及び2並びに比較例1及び2で得られた希土類焼結磁石の磁気特性を評価した。図12は、磁気特性の評価結果の一例である。図12において、縦軸は、磁束密度[T]であり、横軸は、磁場[MA/m]である。希土類焼結磁石は、動作させるときの保磁力が重要な指標である。最大磁束密度Brの90%の磁束密度になる地点(90%Br)に対応する磁場を保磁力Hkとし、各希土類焼結磁石の最大磁束密度Br及び保磁力Hkを表1に示す。最大磁束密度Br及び保磁力Hkは、23℃及び90℃でそれぞれ評価した。   Next, the magnetic properties of the rare earth sintered magnets obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated. FIG. 12 is an example of the evaluation results of the magnetic characteristics. In FIG. 12, the vertical axis is the magnetic flux density [T], and the horizontal axis is the magnetic field [MA / m]. The coercive force during operation of a rare earth sintered magnet is an important index. The magnetic field corresponding to a point (90% Br) at which the magnetic flux density becomes 90% of the maximum magnetic flux density Br is defined as a coercive force Hk. Table 1 shows the maximum magnetic flux density Br and the coercive force Hk of each rare earth sintered magnet. The maximum magnetic flux density Br and the coercive force Hk were evaluated at 23 ° C. and 90 ° C., respectively.

Figure 0006625299
Figure 0006625299

表1から分かるように、23℃において、実施例1及び2の希土類焼結磁石の最大磁束密度Br及び保磁力Hkは、比較例1の希土類焼結磁石の最大磁束密度Br及び保磁力Hkよりも僅かに低かった。90℃において、実施例1及び2の希土類焼結磁石の最大磁束密度Brは、比較例1の希土類焼結磁石の最大磁束密度Brと同等であった。更に、90℃において、実施例1及び2の希土類焼結磁石の保磁力Hkは、比較例1の希土類焼結磁石の保磁力Hkよりも高かった。一方、比較例2の希土類焼結磁石は、切断加工の影響により最大磁束密度Brが著しく低下した。   As can be seen from Table 1, at 23 ° C., the maximum magnetic flux density Br and the coercive force Hk of the rare earth sintered magnets of Examples 1 and 2 are higher than the maximum magnetic flux density Br and the coercive force Hk of the rare earth sintered magnet of Comparative Example 1. Was also slightly lower. At 90 ° C., the maximum magnetic flux density Br of the rare earth sintered magnets of Examples 1 and 2 was equal to the maximum magnetic flux density Br of the rare earth sintered magnet of Comparative Example 1. Further, at 90 ° C., the coercive force Hk of the rare earth sintered magnets of Examples 1 and 2 was higher than the coercive force Hk of the rare earth sintered magnet of Comparative Example 1. On the other hand, in the rare earth sintered magnet of Comparative Example 2, the maximum magnetic flux density Br was significantly reduced due to the effect of cutting.

<回転子の作製例>
実施例1と同様の方法で、5mm×10mmの大きさで厚さが1.2mmの希土類焼結磁石に切断加工した後、水洗及び乾燥させた。切断加工後の希土類焼結磁石では厚さ方向を容易磁化方向とした。
直径200mmで厚さ0.2mmのケイ素鋼板を複数積層した後、かしめて厚さ60mmの回転子鉄心を作製した。回転子鉄心の周方向には、1.3mm×5.1mmの磁石挿入孔を16箇所設けた。回転子鉄心の中心には、シャフト孔を形成した。磁石挿入孔1箇所につき、先に作製した希土類焼結磁石を6個挿入した。希土類焼結磁石が挿入された磁石挿入孔の隙間に室温硬化型の2液アクリル接着剤(セメダイン株式会社製Y611黒S)を充填して希土類焼結磁石と回転子鉄心とを接着した。その後、シャフト孔にシャフトを圧入して埋込磁石(Interior Permanent Magnet:IPM)型の回転子を得た。
<Example of rotor production>
In the same manner as in Example 1, a rare earth sintered magnet having a size of 5 mm × 10 mm and a thickness of 1.2 mm was cut, washed with water and dried. In the rare earth sintered magnet after the cutting, the thickness direction was set as the easy magnetization direction.
After laminating a plurality of silicon steel plates having a diameter of 200 mm and a thickness of 0.2 mm, they were caulked to produce a rotor core having a thickness of 60 mm. Sixteen 1.3 mm × 5.1 mm magnet insertion holes were provided in the circumferential direction of the rotor core. A shaft hole was formed at the center of the rotor core. Six rare earth sintered magnets prepared above were inserted into one magnet insertion hole. A room temperature curing type two-component acrylic adhesive (Y611 Black S, manufactured by Cemedine Co., Ltd.) was filled in the gap between the magnet insertion holes into which the rare earth sintered magnets were inserted, and the rare earth sintered magnets were bonded to the rotor core. Thereafter, the shaft was press-fitted into the shaft hole to obtain an embedded magnet (Interior Permanent Magnet: IPM) type rotor.

<固定子の作製例>
実施例1と同様の方法で、5mm×10mmの大きさで厚さが1.2mmの希土類焼結磁石をニアネットシェイプの成型法で作製した。次に、実施例2と同様の方法で、希土類焼結磁石のバリ及び突起部を除去して寸法加工を施した。この希土類焼結磁石では厚さ方向を容易磁化方向とした。
厚さ0.2mmのケイ素鋼板を複数積層した後、かしめて厚さ40mmの固定子鉄心を作製した。固定子鉄心の中央には、内径160mmの貫通孔を設けた。貫通孔の内周面には、1.3mm×5.1mmの磁石取付スロットを8箇所設けた。磁石取付スロット1箇所につき、先に作製した希土類焼結磁石を4個取り付けて永久磁石型の固定子を得た。希土類焼結磁石の取り付けには、室温硬化型の2液アクリル接着剤(セメダイン株式会社製Y611黒S)を用いた。
<Example of stator production>
In the same manner as in Example 1, a rare earth sintered magnet having a size of 5 mm × 10 mm and a thickness of 1.2 mm was produced by a near net shape molding method. Next, in the same manner as in Example 2, the burrs and protrusions of the rare earth sintered magnet were removed and dimension processing was performed. In this rare earth sintered magnet, the thickness direction was set as the easy magnetization direction.
After stacking a plurality of silicon steel plates having a thickness of 0.2 mm, a stator core having a thickness of 40 mm was formed by caulking. A through hole having an inner diameter of 160 mm was provided in the center of the stator core. Eight magnet mounting slots of 1.3 mm × 5.1 mm were provided on the inner peripheral surface of the through hole. Permanent magnet-type stators were obtained by mounting the four rare earth sintered magnets prepared above per magnet mounting slot. For mounting the rare earth sintered magnet, a room temperature curing type two-component acrylic adhesive (Y611 Black S manufactured by Cemedine Co., Ltd.) was used.

1 レーザー発振器、2 反射ミラー、3 集光レンズ、4 加工ヘッド、5 ポンプ、6 加工台、7 希土類焼結磁石、8 レーザー光、9 水柱、10 水噴射ノズル、11 回転子鉄心、12 シャフト孔、13 固定子鉄心   Reference Signs List 1 laser oscillator, 2 reflection mirror, 3 condenser lens, 4 processing head, 5 pump, 6 processing table, 7 rare earth sintered magnet, 8 laser beam, 9 water column, 10 water injection nozzle, 11 rotor core, 12 shaft hole , 13 Stator core

Claims (5)

214B相を有し、Rが、Nd、Pr、Dy及びTbからなる群から選択される少なくとも1種であり、Tが、Fe及びCoからなる群から選択される少なくとも1種である希土類焼結磁石であって、
前記希土類焼結磁石の切断面が、R及びOを主体とする部分と、前記R及びOを主体とする部分と比較してTの濃度が高いTリッチ部分とを有し、
前記希土類焼結磁石の切断面積に対する前記Tリッチ部分の面積割合が5%〜30%である、希土類焼結磁石。
R having the R 2 T 14 B phase, R is at least one member selected from the group consisting of Nd, Pr, Dy, and Tb; and T is at least one member selected from the group consisting of Fe and Co. A rare earth sintered magnet,
The cut surface of the rare earth sintered magnet has a portion mainly composed of R and O, and a T-rich portion having a higher concentration of T as compared to the portion mainly composed of R and O,
The rare earth sintered magnet, wherein an area ratio of the T-rich portion to a cut area of the rare earth sintered magnet is 5% to 30%.
前記Tリッチ部分が、Fe及びCoを含む、請求項1に記載の希土類焼結磁石。   The rare-earth sintered magnet according to claim 1, wherein the T-rich portion includes Fe and Co. 前記希土類焼結磁石の切断面から深さ方向に向かって0.5μm〜5μmの範囲におけるDyの濃度が、前記希土類焼結磁石の切断面から深さ方向に向かって5μm超の範囲におけるDyの濃度より高い、請求項1又は2に記載の希土類焼結磁石。   The concentration of Dy in the range of 0.5 μm to 5 μm in the depth direction from the cut surface of the rare earth sintered magnet is greater than 5 μm in the depth direction from the cut surface of the rare earth sintered magnet. The rare earth sintered magnet according to claim 1, which is higher than the concentration. 鋼板を積層して形成された回転子鉄心と、前記回転子鉄心に設けられた磁石挿入孔に挿入された、請求項1〜3の何れか一項に記載の希土類焼結磁石とを備える回転子と、
固定子と
を備える回転電機。
A rotor comprising: a rotor core formed by stacking steel plates; and a rare-earth sintered magnet according to any one of claims 1 to 3, which is inserted into a magnet insertion hole provided in the rotor core. With the child,
A rotating electric machine including a stator.
鋼板を積層して形成された固定子鉄心と、前記固定子鉄心の内周面に取り付けられた、請求項1〜3の何れか一項に記載の希土類焼結磁石とを備える固定子と、
回転子と
を備える回転電機。
A stator iron core formed by stacking steel plates, and a stator comprising the rare earth sintered magnet according to any one of claims 1 to 3, attached to the inner peripheral surface of the stator iron core,
A rotating electric machine including a rotor.
JP2019547328A 2019-06-18 2019-06-18 Rare earth sintered magnet and rotating electric machine using the same Active JP6625299B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024049 WO2020255240A1 (en) 2019-06-18 2019-06-18 Rare earth sintered magnet and rotating electrical machine using same

Publications (2)

Publication Number Publication Date
JP6625299B1 true JP6625299B1 (en) 2019-12-25
JPWO2020255240A1 JPWO2020255240A1 (en) 2021-09-13

Family

ID=69100990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019547328A Active JP6625299B1 (en) 2019-06-18 2019-06-18 Rare earth sintered magnet and rotating electric machine using the same

Country Status (4)

Country Link
JP (1) JP6625299B1 (en)
CN (1) CN113950728B (en)
DE (1) DE112019007471T5 (en)
WO (1) WO2020255240A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105210A (en) * 1989-08-28 1991-05-02 General Motors Corp <Gm> Method for producing permanent magnet sensor element with soft magnetic layer
JPH0462813A (en) * 1990-06-25 1992-02-27 Daihen Corp Method for producing amorphous magnetic alloy wound core
JP2005198365A (en) * 2003-12-26 2005-07-21 Neomax Co Ltd Rare earth permanent magnet for motor, and its manufacturing method
JP2010000512A (en) * 2008-06-18 2010-01-07 Sugino Mach Ltd Laser processing device
JP2018019079A (en) * 2016-07-15 2018-02-01 Tdk株式会社 R-t-b based rare earth permanent magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000732A (en) 2007-06-25 2009-01-08 Mitsubishi Materials Corp Neodymium magnet machining method
JP4788690B2 (en) * 2007-08-27 2011-10-05 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing the same
JP6848736B2 (en) * 2016-07-15 2021-03-24 Tdk株式会社 RTB series rare earth permanent magnet
JP6743549B2 (en) * 2016-07-25 2020-08-19 Tdk株式会社 R-T-B system sintered magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105210A (en) * 1989-08-28 1991-05-02 General Motors Corp <Gm> Method for producing permanent magnet sensor element with soft magnetic layer
JPH0462813A (en) * 1990-06-25 1992-02-27 Daihen Corp Method for producing amorphous magnetic alloy wound core
JP2005198365A (en) * 2003-12-26 2005-07-21 Neomax Co Ltd Rare earth permanent magnet for motor, and its manufacturing method
JP2010000512A (en) * 2008-06-18 2010-01-07 Sugino Mach Ltd Laser processing device
JP2018019079A (en) * 2016-07-15 2018-02-01 Tdk株式会社 R-t-b based rare earth permanent magnet

Also Published As

Publication number Publication date
CN113950728A (en) 2022-01-18
JPWO2020255240A1 (en) 2021-09-13
CN113950728B (en) 2023-07-04
DE112019007471T5 (en) 2022-03-10
WO2020255240A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US8823478B2 (en) Rare earth sintered magnet, method for producing same, motor and automobile
JP3918874B2 (en) Motor housing and motor device
CN103003900A (en) Permanent magnet and method of producing permanent magnet
US9028981B2 (en) Metal magnet and motor using the same
JP2008263208A (en) Corrosion-resistant rare earth magnet
JPWO2001095460A1 (en) Integrated magnet body and motor incorporating it
WO2005096326A1 (en) Rare earth magnet and method for manufacturing same
JP5573848B2 (en) Corrosion-resistant magnet and manufacturing method thereof
JP6625299B1 (en) Rare earth sintered magnet and rotating electric machine using the same
KR20000017659A (en) Fe-B-R BASED PERMANENT MAGNET HAVING CORROSION-RESISTANT FILM, AND PROCESS FOR PRODUCING THE SAME
EP1028437A1 (en) HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
WO2002006562A1 (en) Coated r-t-b magnet and method for preparation thereof
JP5516092B2 (en) Corrosion-resistant magnet and manufacturing method thereof
CN105845308B (en) Rare earth magnet and motor including the same
EP1028438B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JP2006049865A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
KR102617340B1 (en) Rare earth magnet and method for manufacturing the magnet
JP5273012B2 (en) Rare earth magnets
JP4424030B2 (en) Rare earth magnet, method for producing the same, and method for producing a multilayer body
JP2012094767A (en) Rare earth magnet, method of producing rare earth magnet and rotary machine
JPH04288804A (en) Permanent magnet and manufacture thereof
JP2006049864A (en) Corrosion resistant rare earth magnet and manufacturing method thereof
JP2011159852A (en) Method of manufacturing permanent magnet
JP4982935B2 (en) Method for preventing adhesion deterioration of nickel plating film
JP2005197280A (en) Rare earth magnet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190829

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191126

R150 Certificate of patent or registration of utility model

Ref document number: 6625299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250