JP6624638B2 - Photocurrent sensor - Google Patents

Photocurrent sensor Download PDF

Info

Publication number
JP6624638B2
JP6624638B2 JP2016032128A JP2016032128A JP6624638B2 JP 6624638 B2 JP6624638 B2 JP 6624638B2 JP 2016032128 A JP2016032128 A JP 2016032128A JP 2016032128 A JP2016032128 A JP 2016032128A JP 6624638 B2 JP6624638 B2 JP 6624638B2
Authority
JP
Japan
Prior art keywords
signal
optical fiber
fiber transmission
optical
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016032128A
Other languages
Japanese (ja)
Other versions
JP2017150890A (en
Inventor
英治 板倉
英治 板倉
有貴 椎野
有貴 椎野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Toko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Toko Co Ltd filed Critical Takaoka Toko Co Ltd
Priority to JP2016032128A priority Critical patent/JP6624638B2/en
Publication of JP2017150890A publication Critical patent/JP2017150890A/en
Application granted granted Critical
Publication of JP6624638B2 publication Critical patent/JP6624638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、光電流センサに関するものである。   The present invention relates to a photocurrent sensor.

交流電流計測用の光電流センサは、例えば、光源から出射された光をセンサヘッドに導き、時間的に変化する交流測定対象である交流電流に基づき光の強度を変調し、変調された光信号を光電変換素子にて電気信号に変換し、その電気信号中に含まれる交流成分と直流成分を分離し、その比(AC/DC)より被測定電流信号を求め、電流値を測定するものがある。光電変換素子に入力される光信号には、DC成分が変動するドリフト的な変動がある。このドリフト的な変動の要因には、光源から出射される光信号の光量の変動、光ファイバ伝送路の光損失の変動、センサヘッドや光カプラ等の光学部品の光損失変動がある。AC/DCを求めることで、これらのドリフト的な変動はカットできる。   The photocurrent sensor for measuring the alternating current, for example, guides the light emitted from the light source to the sensor head, modulates the intensity of the light based on the alternating current that is the time-varying alternating current measurement object, and modulates the optical signal. Is converted into an electric signal by a photoelectric conversion element, an AC component and a DC component included in the electric signal are separated, a current signal to be measured is obtained from a ratio (AC / DC), and a current value is measured. is there. The optical signal input to the photoelectric conversion element has a drift-like variation in which a DC component varies. Factors of this drift-like variation include a variation in the light amount of the optical signal emitted from the light source, a variation in the optical loss of the optical fiber transmission line, and a variation in the optical loss of the optical components such as the sensor head and the optical coupler. By calculating AC / DC, these drift-like fluctuations can be cut.

この基本的な測定方式では、光源から発生する比較的高速に変動する光源ノイズの影響が、センサ出力(電流値)に影響を与える。そこで、係る光源ノイズの影響を除去する発明として、例えば特許文献1に開示された「強度変調型光センサおよび光電流・電圧センサ」がある。この特許文献1に開示された発明は、光源から出射された光の一部を分離して参照信号を得、この参照信号の交流成分と直流成分との比から光源ノイズ補正信号を求め、この光源ノイズ補正信号をセンサヘッドからの戻り信号に基づいて求めた被測定電流信号から減算し、その減算した信号に基づき電流値を求めることで、光源ノイズの影響を低減するようにしている。   In this basic measurement method, the influence of light source noise generated from the light source and fluctuating at a relatively high speed affects the sensor output (current value). Therefore, as an invention for removing the influence of such light source noise, for example, there is an “intensity modulation type optical sensor and a photocurrent / voltage sensor” disclosed in Patent Document 1. The invention disclosed in Patent Document 1 obtains a reference signal by separating a part of light emitted from a light source, obtains a light source noise correction signal from a ratio between an AC component and a DC component of the reference signal, and obtains a reference signal. The influence of the light source noise is reduced by subtracting the light source noise correction signal from the measured current signal obtained based on the return signal from the sensor head and obtaining the current value based on the subtracted signal.

特許第4631907号公報Japanese Patent No. 4631907

光電流センサを地中線事故区間検出装置や、系統事故判定装置などに適用する場合、遠隔地で発生した事故等を検出するため、センサヘッドは、光源から離れた地点に設置する。そのため、光源とセンサヘッドを接続する光ファイバ伝送路の伝送路長も長くなる。この伝送路長は、例えば10km〜20km程度、さらにはそれ以上の長距離となる。さらに、上記の被測定電流信号や光源ノイズ補正信号の算出や、補正処理を行う光電変換器は、光源の付近に設置される。   When the photocurrent sensor is applied to an underground line accident section detecting device, a system accident judging device, and the like, a sensor head is installed at a position distant from the light source in order to detect an accident or the like occurring in a remote place. Therefore, the transmission path length of the optical fiber transmission path connecting the light source and the sensor head also becomes longer. The transmission path length is, for example, about 10 km to 20 km, and more than that. Further, a photoelectric converter that performs the above-described calculation of the current signal to be measured and the light source noise correction signal and correction processing is installed near the light source.

そのため、参照信号は、光源から出射後、比較的すぐに分岐して光電変換器に到るが、被測定電流信号を得るための光信号は長距離の光ファイバ伝送路(往路)を進んでセンサヘッドに到り、そこから光ファイバ伝送路(復路)を進んで光電変換器に到る。従って、同時刻に光源から出射した光に基づく被測定電流信号と、光源ノイズ補正信号が発生する時刻にずれが生じる。そして、上述したように、伝送路長が長くなると、光ファイバ伝送路を進む光の伝送時間が無視できなくなる。   Therefore, the reference signal branches off relatively quickly after being emitted from the light source and reaches the photoelectric converter, but the optical signal for obtaining the current signal to be measured travels along a long-distance optical fiber transmission line (outbound path). The light reaches the sensor head, and then travels along the optical fiber transmission path (return path) to reach the photoelectric converter. Therefore, there is a difference between the measured current signal based on the light emitted from the light source at the same time and the time when the light source noise correction signal is generated. As described above, when the length of the transmission path becomes longer, the transmission time of light traveling through the optical fiber transmission path cannot be ignored.

よって、被測定電流信号を補正する際に使用する光源ノイズ補正信号は、被測定電流信号が出射したときの光源ノイズの状態と異なる状態のものとなり、正確な補正ができないという課題を生じる。   Therefore, the light source noise correction signal used when correcting the measured current signal is in a state different from the state of the light source noise when the measured current signal is emitted, and there is a problem that accurate correction cannot be performed.

上述した課題を解決するために、本発明は、光源と、前記光源から出射される光信号を伝送する第一光ファイバ伝送路と、前記第一光ファイバ伝送路の先端側に接続され、前記光信号が入力されるセンサヘッドと、前記センサヘッドから出力される検出信号を伝送する第二光ファイバ伝送路と、前記第一光ファイバ伝送路を伝送する前記光信号の一部を参照信号として取り出す光分離手段と、その光分離手段で取り出された参照信号を伝送する第三光ファイバ伝送路と、前記第二光ファイバ伝送路と前記第三光ファイバ伝送路がそれぞれ接続される光電変換器とを備え、前記光電変換器は、入力された前記検出信号に基づく信号から前記参照信号に基づく信号を減算して光源ノイズ補正を行う補正機能を備え、前記光分離手段は、前記センサヘッド側に配置し、前記第二光ファイバ伝送路の伝送路長と前記第三光ファイバ伝送路の伝送路長を等しくするものを前提とする。光分離手段は、実施形態では光カプラに対応する。 To solve the problems described above, the present invention includes a light source, a first optical fiber transmission path for transmitting the optical signal emitted from the light source, is connected to the distal end side of the first optical fiber transmission path, A sensor head to which the optical signal is input, a second optical fiber transmission line for transmitting a detection signal output from the sensor head, and a reference signal indicating a part of the optical signal transmitted through the first optical fiber transmission line As a light separating means, a third optical fiber transmission line for transmitting the reference signal extracted by the light separating means, and a photoelectric conversion unit to which the second optical fiber transmission line and the third optical fiber transmission line are respectively connected. Wherein the photoelectric converter has a correction function of subtracting a signal based on the reference signal from a signal based on the input detection signal to perform light source noise correction, and the light separating unit includes a sensor. Place the head side, it is assumed that equal the transmission path length of said third optical fiber transmission path and the transmission path length of said second optical fiber transmission path. The light separating means corresponds to an optical coupler in the embodiment.

本発明によれば、光分離手段をセンサヘッド側に配置するとともに、第二光ファイバ伝送路の光ファイバ伝送路長と、第三光ファイバ伝送路の光ファイバ伝送路長を等しくしたため、同一時刻に光源から出射した光は、時間差を発生せずに第二光ファイバ伝送路と第三光ファイバ伝送路のそれぞれから同一タイミングで光電変換器に入射する。よって、光源とセンサヘッドの設置位置が、例えば数km〜20km、或いはそれ以上というような非常に離れている場合でも、同時に光電変換器に入力される検出信号と参照信号は、光源から同時に出射した光信号に基づくもので同じ光源ノイズがのっている。従って、参照信号を用いて光源ノイズを補正することで、検出信号から光源ノイズを除去し、精度の良い出力値を得られる。   According to the present invention, the light separating means is arranged on the sensor head side, and the optical fiber transmission line length of the second optical fiber transmission line is made equal to the optical fiber transmission line length of the third optical fiber transmission line. The light emitted from the light source enters the photoelectric converter at the same timing from each of the second optical fiber transmission line and the third optical fiber transmission line without generating a time difference. Therefore, even when the installation position of the light source and the sensor head is very far, for example, several km to 20 km or more, the detection signal and the reference signal that are simultaneously input to the photoelectric converter are simultaneously emitted from the light source. The light source noise is based on the light signal. Therefore, by correcting the light source noise using the reference signal, the light source noise is removed from the detection signal, and an accurate output value can be obtained.

(1)上述した前提において、前記検出信号に基づく信号のDC成分と、前記参照信号に基づく信号のDC成分を等しくする調整機能を設け、前記減算は、前記検出信号に基づく信号のAC成分から、前記参照信号に基づく信号のAC成分を減算するとよい。 (1) On the premise described above, an adjustment function for equalizing the DC component of the signal based on the detection signal and the DC component of the signal based on the reference signal is provided, and the subtraction is performed from the AC component of the signal based on the detection signal. , The AC component of the signal based on the reference signal may be subtracted.

通常、検出信号と参照信号の信号レベルは異なるため、単純に検出信号から参照信号を減算しても適切な光源ノイズの補正が行なえず、例えば、AC成分とDC成分の比を求めて正規化した信号同士を減算する必要がある。かかる正規化のためには、高価な除算器が必要となる。本発明ではDC成分が等しくなるので、検出信号に基づく信号と、参照信号に基づく信号の信号レベルは等しくなり、AC成分同士を直接減算することで精度良く光源ノイズ補正を行える。よって、除算器等が不要となるので、光電センサを安価に構成できるので良い。   Usually, since the signal levels of the detection signal and the reference signal are different, even if the reference signal is simply subtracted from the detection signal, appropriate light source noise correction cannot be performed. For example, the ratio between the AC component and the DC component is obtained and normalized. The subtracted signals need to be subtracted. An expensive divider is required for such normalization. In the present invention, since the DC component is equal, the signal level of the signal based on the detection signal is equal to the signal level of the signal based on the reference signal, and the light source noise can be accurately corrected by directly subtracting the AC components. Therefore, since a divider or the like is not required, the photoelectric sensor can be configured at low cost.

(2)(1)の発明を実現するより具体的な発明としては、例えば、前記調整機能は、前記光電変換器に実装された前記検出信号用の第一受光素子の後段に配置された第一自動増幅調整器と、前記参照信号用の第二受光素子の後段に配置された第二自動増幅調整器を備え、前記第一自動増幅調整器から出力される信号のDC成分と、前記第二自動増幅調整器から出力される信号のDC成分が等しくなるように前記第一自動増幅調整器と前記第二自動増幅調整器の増幅率をフィードバック制御するように構成するとよい。 (2) As a more specific invention for realizing the invention of (1) , for example, the adjustment function is provided in a stage following the first light receiving element for the detection signal mounted on the photoelectric converter. One automatic amplification adjuster, comprising a second automatic amplification adjuster disposed after the second light receiving element for the reference signal, the DC component of the signal output from the first automatic amplification adjuster, Preferably, the amplification factors of the first and second automatic amplification controllers are feedback-controlled so that the DC components of the signals output from the two automatic amplification controllers are equal.

(3)(1)の発明を実現するより具体的な発明としては、例えば、前記調整機能は、前記第二光ファイバ伝送路に実装した第一自動光可変減衰器と、前記第三光ファイバ伝送路に実装した第二自動光可変減衰器とを備え、前記第一自動光可変減衰器と前記第二自動光可変減衰器は、それぞれ前記検出信号と前記参照信号の信号レベルを減衰して、前記光電変換器に入力する前記検出信号のDC成分と、前記参照信号のDC成分が等しくなるように前記第一自動光可変減衰器と前記第二自動光可変減衰器の減衰量をフィードバック制御するように構成するとよい。 (3) As a more specific invention for realizing the invention of (1) , for example, the adjusting function includes a first automatic optical variable attenuator mounted on the second optical fiber transmission line, and the third optical fiber. It comprises a second automatic optical variable attenuator mounted on the transmission line, and the first automatic optical variable attenuator and the second automatic optical variable attenuator attenuate the signal levels of the detection signal and the reference signal, respectively. And feedback control of the attenuation of the first automatic optical variable attenuator and the second automatic optical variable attenuator so that the DC component of the detection signal input to the photoelectric converter is equal to the DC component of the reference signal. It is good to be constituted so that.

本発明では、光源とセンサヘッドの設置位置が、例えば数km〜20km、或いはそれ以上というような非常に離れている場合でも、センサヘッドから出力される検出信号から光源ノイズを除去し、精度の良い測定が行える。   In the present invention, even when the installation positions of the light source and the sensor head are very far, for example, several km to 20 km or more, the light source noise is removed from the detection signal output from the sensor head, and the accuracy is improved. Good measurements can be made.

本発明に係る光電流センサの好適な第一実施形態を示す図である。It is a figure showing preferred 1st embodiment of a photocurrent sensor concerning the present invention. 本発明に係る光電流センサの好適な第二実施形態を示す図である。It is a figure showing the suitable 2nd embodiment of the photocurrent sensor concerning the present invention. 本発明に係る光電流センサの好適な第三実施形態を示す図である。It is a figure showing the suitable 3rd embodiment of the photocurrent sensor concerning the present invention.

以下、本発明の一実施形態について図面に基づき、詳細に説明する。なお、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not construed as being limited thereto, and various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art without departing from the scope of the present invention.

図1は、本発明に係る光電流センサの好適な第一実施形態を示している。図1に示すように、光電流センサは、光源10と、検査対象の電流が流れる被測定導体1を周回するように配置するセンサヘッド15と、光電変換器20と、それらを接続する光ファイバ伝送路を備える。   FIG. 1 shows a first preferred embodiment of a photocurrent sensor according to the present invention. As shown in FIG. 1, the photocurrent sensor includes a light source 10, a sensor head 15 arranged so as to go around a conductor under test 1 through which a current to be inspected flows, a photoelectric converter 20, and an optical fiber connecting them. A transmission path is provided.

光源10には、例えば希土類元素添加物ファイバを半導体レーザ等の励起用光源で励起することにより生じた自然放出光がファイバ内を導波するに従い増幅する現象を利用した光源(ASE)を使用する。   As the light source 10, for example, a light source (ASE) utilizing a phenomenon in which spontaneous emission light generated by exciting a rare earth element-doped fiber with a pumping light source such as a semiconductor laser is amplified as it propagates through the fiber is used. .

センサヘッド15は、強磁性ファラデー回転子と偏光分離素子からなる光学部品15aと、センサファイバ15bと、センサファイバ15bの先端に接続したミラー15cとを備える。センサファイバ15bは、被測定導体1の周りを1回巻する。   The sensor head 15 includes an optical component 15a including a ferromagnetic Faraday rotator and a polarization splitting element, a sensor fiber 15b, and a mirror 15c connected to a tip of the sensor fiber 15b. The sensor fiber 15b is wound once around the conductor 1 to be measured.

光ファイバ伝送路は、光源10とセンサヘッド15とを接続する第一光ファイバ伝送路11と、センサヘッド15と光電変換器20とを接続する第二光ファイバ伝送路12と、第一光ファイバ伝送路11と光カプラ16で連結する第三光ファイバ伝送路13とを備える。より具体的には、第一光ファイバ伝送路11は、センサヘッド15を構成する光学部品15aの入力部に接続する。また、第二光ファイバ伝送路12は、その一端はセンサヘッド15を構成する光学部品15aの出力部に接続し、他端は光電変換器20の第一受光素子21に接続する。また、第三光ファイバ伝送路13は、その一端は光カプラ16にて第一光ファイバ伝送路11に接続され、他端は光電変換器20の第二受光素子22に接続する。   The optical fiber transmission line includes a first optical fiber transmission line 11 connecting the light source 10 and the sensor head 15, a second optical fiber transmission line 12 connecting the sensor head 15 and the photoelectric converter 20, and a first optical fiber A third optical fiber transmission line 13 connected to the transmission line 11 by an optical coupler 16 is provided. More specifically, the first optical fiber transmission line 11 is connected to an input part of an optical component 15a constituting the sensor head 15. The second optical fiber transmission line 12 has one end connected to the output part of the optical component 15 a constituting the sensor head 15, and the other end connected to the first light receiving element 21 of the photoelectric converter 20. The third optical fiber transmission line 13 has one end connected to the first optical fiber transmission line 11 by the optical coupler 16 and the other end connected to the second light receiving element 22 of the photoelectric converter 20.

そして、それら3本の光ファイバ伝送路は、例えばいずれも単一モード光ファイバを使用する。さらに、第二受光素子22と第一受光素子21は、受信した光信号を電気信号に変換するもので、ともにフォトダイオードで構成する。   Each of the three optical fiber transmission lines uses, for example, a single mode optical fiber. Further, the second light receiving element 22 and the first light receiving element 21 convert a received optical signal into an electric signal, and are both constituted by photodiodes.

光カプラ16は、第一光ファイバ伝送路11内を進む光信号の一部を分離して取り出す機能を持つ。取り出した光信号は、第三光ファイバ伝送路13内を進む。取り出した光信号は、センサヘッド15での光損失分を考慮し、センサヘッド15へ進む光信号よりも小さい信号レベルとなるようにしている。第二光ファイバ伝送路12と第三光ファイバ伝送路13を伝送したそれぞれの光は、光電変換器20へ入射する光信号の入力光量が同等になるように設定する。   The optical coupler 16 has a function of separating and extracting a part of an optical signal traveling in the first optical fiber transmission line 11. The extracted optical signal travels through the third optical fiber transmission line 13. The extracted optical signal has a signal level smaller than that of the optical signal traveling to the sensor head 15 in consideration of the light loss in the sensor head 15. The respective lights transmitted through the second optical fiber transmission line 12 and the third optical fiber transmission line 13 are set so that the input light amounts of the optical signals incident on the photoelectric converter 20 become equal.

上記の構成を採ることで、光源10から出射した光信号は、第一光ファイバ伝送路11を通ってセンサヘッド15に入力される。このセンサヘッド15は、時間的に変化する交流測定対象に基づき入力された光信号の強度を変調し、変調された光信号を出力する。この出力された光信号は、第二光ファイバ伝送路12内を進み、第一受光素子21に入力する。   With the above configuration, an optical signal emitted from the light source 10 is input to the sensor head 15 through the first optical fiber transmission line 11. The sensor head 15 modulates the intensity of an input optical signal based on a time-varying AC measurement target, and outputs a modulated optical signal. The output optical signal travels through the second optical fiber transmission line 12 and enters the first light receiving element 21.

一方、光カプラ16にて第一光ファイバ伝送路11から分離された光信号は、第三光ファイバ伝送路13内を進み、第二受光素子22に入力する。これにより、光電変換器20には、検出信号が第一受光素子21に与えられ、ノイズ補正用の参照信号が第二受光素子22に与えられる。   On the other hand, the optical signal separated from the first optical fiber transmission line 11 by the optical coupler 16 travels in the third optical fiber transmission line 13 and enters the second light receiving element 22. Thus, the photoelectric converter 20 is provided with the detection signal to the first light receiving element 21 and the reference signal for noise correction to the second light receiving element 22.

そして、本実施形態では、光カプラ16をセンサヘッド15の近くに配置した。すなわち、特許文献1等に示す従来例では光源の近くに光カプラを配置し、光源から出射した光信号の一部をすぐに分離して光電変換器に与えるようにしているが、本実施形態では、光源10から離れた位置で分離するようにした。離れた位置は、センサヘッド15に近い位置である。   Then, in the present embodiment, the optical coupler 16 is arranged near the sensor head 15. That is, in the conventional examples shown in Patent Document 1 and the like, an optical coupler is arranged near a light source, and a part of an optical signal emitted from the light source is immediately separated and applied to a photoelectric converter. Then, the light source 10 is separated at a position away from the light source 10. The distant position is a position close to the sensor head 15.

さらに、第二光ファイバ伝送路12の光ファイバ伝送路長L2と、第三光ファイバ伝送路13の光ファイバ伝送路長L3を等しくした。第一光ファイバ伝送路11の光ファイバ伝送路長L1は、例えば10km〜20kmと非常に長く、この光ファイバ伝送路長L1に比べ、光カプラ16からセンサヘッド15までの長さが極めて短く無視できる。すると、光源10から出射された光信号が、センサヘッド15を経由して光電変換器20に至る経路の総ファイバ伝送路長は、L1+L2に近似できる。よって、L1+L2=L1+L3より、同一時刻に光源10から出射した光は、時間差を発生せずに第二光ファイバ伝送路12と第三光ファイバ伝送路13のそれぞれから同一タイミングで光電変換器20に入射する。よって、第一受光素子21と第二受光素子22に同時に入射する光信号は、同じ光源ノイズがのっている。従って、第二受光素子22に入射する光信号を用いて光源ノイズを補正することで、第一受光素子21から入射する交流測定対象に基づく光信号から光源ノイズを除去し、精度の良い出力値を得られる。   Further, the optical fiber transmission line length L2 of the second optical fiber transmission line 12 was made equal to the optical fiber transmission line length L3 of the third optical fiber transmission line 13. The optical fiber transmission line length L1 of the first optical fiber transmission line 11 is very long, for example, 10 km to 20 km, and the length from the optical coupler 16 to the sensor head 15 is extremely short compared to the optical fiber transmission line length L1 and is ignored. it can. Then, the total fiber transmission path length of the path from the optical signal emitted from the light source 10 to the photoelectric converter 20 via the sensor head 15 can be approximated to L1 + L2. Therefore, from L1 + L2 = L1 + L3, the light emitted from the light source 10 at the same time is transmitted from the second optical fiber transmission line 12 and the third optical fiber transmission line 13 to the photoelectric converter 20 at the same timing without generating a time difference. Incident. Therefore, optical signals that are simultaneously incident on the first light receiving element 21 and the second light receiving element 22 have the same light source noise. Therefore, by correcting the light source noise using the optical signal incident on the second light receiving element 22, the light source noise is removed from the optical signal based on the AC measurement object incident from the first light receiving element 21, and the accurate output value is obtained. Can be obtained.

係る光源ノイズ補正処理機能を備えた光電変換器20は、具体的には、以下のように構成している。第一受光素子21は、センサヘッド15からの光信号を光電変換して電気信号に変換する。光信号は、測定対象である交流電流に伴う光量変動に加え、測定対象以外の要因による光量変動がある。測定対象以外の要因による光量変動は、ドリフト的な変動に伴うDC成分(DC)と、光源ノイズによる比較的高速な変動に伴うAC成分(AC)がある。測定対象である交流電流に伴う光量変動は、AC成分(AC)である。よって、第一受光素子21から出力される電気信号は、DC+AC(S+N)となる。 The photoelectric converter 20 having the light source noise correction processing function is specifically configured as follows. The first light receiving element 21 photoelectrically converts an optical signal from the sensor head 15 into an electric signal. The optical signal has a light quantity fluctuation due to factors other than the measurement target in addition to a light quantity fluctuation due to the AC current to be measured. Fluctuations in the light amount due to factors other than the measurement target include a DC component (DC 1 ) accompanying a drift-like variation and an AC component (AC N ) accompanying a relatively high-speed variation due to light source noise. Quantity variation due to a measurement target alternating current is an AC component (AC S). Therefore, the electric signal output from the first light receiving element 21 is DC 1 + AC (S + N) .

第一受光素子21の後段には、第一ローパスフィルタ23及び第一ハイパスフィルタ24を並列に接続する。第一受光素子21から出力される信号は、第一ローパスフィルタ23及び第一ハイパスフィルタ24にそれぞれ入力し、これらのフィルタにより当該電気信号をDC成分とAC成分に分離する。よって、第一ローパスフィルタ23からは、DCが出力され、第一ハイパスフィルタ24からは、AC(S+N)が出力される。 A first low-pass filter 23 and a first high-pass filter 24 are connected in parallel downstream of the first light receiving element 21. The signal output from the first light receiving element 21 is input to a first low-pass filter 23 and a first high-pass filter 24, respectively, and the electric signal is separated into a DC component and an AC component by these filters. Therefore, DC 1 is output from the first low-pass filter 23, and AC (S + N) is output from the first high-pass filter 24.

第一ローパスフィルタ23及び第一ハイパスフィルタ24の後段には、第一除算器27を接続する。この第一除算器27は、AC(S+N)/DCを演算処理し、被測定電流信号M(S+N)を求めるものである。第一除算器27の出力は、DC成分で正規化した被測定電流信号であり、DCが持つドリフト的な変動は補正できるが、光源ノイズを含んでいる。 A first divider 27 is connected to a stage subsequent to the first low-pass filter 23 and the first high-pass filter 24. The first divider 27, AC (S + N) / DC 1 to arithmetic processing, and requests the measured current signal M (S + N). The output of the first divider 27 is a current signal to be measured normalized by the DC component, and the drift-like fluctuation of the DC 1 can be corrected, but includes light source noise.

第二受光素子22は、入射された光信号(参照信号)を、光電変換して電気信号に変換する。この光信号は、センサヘッド15に到る前に光カプラ16で分離したものであり、光源10から出射された光信号と同等のものである。よって、当該光信号は、ドリフト的な変動に伴うDC成分(DC)と、光源ノイズによる比較的高速な変動に伴うAC成分(AC)が含まれる。このAC成分には、測定対象である交流電流に伴うAC成分はない。よって、第二受光素子22から出力される電気信号は、DC+AC(N)となる。 The second light receiving element 22 photoelectrically converts the incident optical signal (reference signal) into an electric signal. This optical signal is separated by the optical coupler 16 before reaching the sensor head 15, and is equivalent to the optical signal emitted from the light source 10. Therefore, the optical signal includes a DC component (DC 2 ) accompanying a drift-like variation and an AC component (AC N ) accompanying a relatively high-speed variation due to light source noise. This AC component has no AC component associated with the AC current to be measured. Therefore, the electric signal output from the second light receiving element 22 is DC 2 + AC (N) .

第二受光素子22の後段には、第二ローパスフィルタ25及び第二ハイパスフィルタ26を並列に接続する。第二受光素子22から出力される信号は、第二ローパスフィルタ25及び第二ハイパスフィルタ26にそれぞれ入力し、これらのフィルタにより当該電気信号をDC成分とAC成分に分離する。よって、第二ローパスフィルタ25からは、DCが出力され、第二ハイパスフィルタ26からは、AC(N)が出力される。 A second low-pass filter 25 and a second high-pass filter 26 are connected in parallel at the subsequent stage of the second light receiving element 22. The signal output from the second light receiving element 22 is input to a second low-pass filter 25 and a second high-pass filter 26, respectively, and the electric signal is separated into a DC component and an AC component by these filters. Therefore, DC 2 is output from the second low-pass filter 25, and AC (N) is output from the second high-pass filter 26.

第二ローパスフィルタ25及び第二ハイパスフィルタ26の後段には、第二除算器28を接続する。この第二除算器28は、AC(N)/DCを演算処理し、DC成分で正規化することにより、ドリフト的な変動を補正した光源ノイズ補正信号M(N)を求めるものである。 A second divider 28 is connected to a stage subsequent to the second low-pass filter 25 and the second high-pass filter 26. The second divider 28 calculates the light source noise correction signal M (N) in which AC (N) / DC 2 is subjected to arithmetic processing and normalized by the DC component, thereby correcting drift-like fluctuation.

そして、第一除算器27の出力と第二除算器28の出力を、それぞれ減算器29に与え、減算器29で光源ノイズ補正信号を被測定電流信号から差し引く。それぞれ除算器で除算して正規化することにより、ドリフト的な変動を補正しているため、光源10から同一時刻に出射された光に基づく2つの信号(被測定電流信号と光源ノイズ補正信号)から光源ノイズ成分を正確に除去することができる。   Then, the output of the first divider 27 and the output of the second divider 28 are given to a subtractor 29, and the subtracter 29 subtracts the light source noise correction signal from the current signal to be measured. Since the drift-like fluctuation is corrected by dividing by the divider and normalizing, two signals based on the light emitted from the light source 10 at the same time (current signal to be measured and light source noise correction signal) , The light source noise component can be accurately removed.

図2は、本発明に係る光電流センサの第二実施形態を示している。本実施形態では、第一実施形態と同様に、第一光ファイバ伝送路11に接続する光カプラ16の設置位置をセンサヘッド15側にし、第二光ファイバ伝送路12の光ファイバ伝送路長L2と第三光ファイバ伝送路13の光ファイバ伝送路長L3を等しくするという基本構成は同様にし、光電変換器20′の内部構成を変更している。   FIG. 2 shows a second embodiment of the photocurrent sensor according to the present invention. In the present embodiment, similarly to the first embodiment, the installation position of the optical coupler 16 connected to the first optical fiber transmission line 11 is set to the sensor head 15 side, and the optical fiber transmission line length L2 of the second optical fiber transmission line 12 is set. The basic configuration of making the optical fiber transmission line length L3 equal to that of the third optical fiber transmission line 13 is the same, and the internal configuration of the photoelectric converter 20 'is changed.

すなわち、第一実施形態に用いた光電変換器20は、第一除算器27や第二除算器28を備えている。係る除算機能を有したICは高価なため、光電流センサが高価になるという課題がある。係る課題を解決するため、本実施形態では、除算器を用いることなく光源ノイズ補正を行うことのできる光電変換器20′を実現した。   That is, the photoelectric converter 20 used in the first embodiment includes the first divider 27 and the second divider 28. Since an IC having such a division function is expensive, there is a problem that a photocurrent sensor becomes expensive. In order to solve such a problem, in the present embodiment, a photoelectric converter 20 'capable of performing light source noise correction without using a divider is realized.

具体的には、第一受光素子21と、各フィルタ(第一ローパスフィルタ23,第一ハイパスフィルタ24)との間に、第一自動増幅調整器31を配置する。そして、第一自動増幅調整器31は、第一ローパスフィルタ23の出力(DC′)をフィードバックし、当該出力(DC′)が基準値になるように増幅率を調整する。増幅率は、1を超える場合(増加)と、1未満になる場合(減少)がある。また、第一ハイパスフィルタ24の出力は、減算器29の一方(+側)に入力する。 Specifically, the first automatic amplification adjuster 31 is arranged between the first light receiving element 21 and each of the filters (the first low-pass filter 23 and the first high-pass filter 24). Then, the first automatic amplification adjuster 31 feeds back the output (DC 1 ′) of the first low-pass filter 23 and adjusts the amplification factor so that the output (DC 1 ′) becomes the reference value. The amplification factor may be more than 1 (increase) or less than 1 (decrease). The output of the first high-pass filter 24 is input to one side (+ side) of the subtractor 29.

第一実施形態で説明したとおり、第一受光素子21から出力される電気信号は、DC+AC(S+N)となる。そして、係る信号は、第一自動増幅調整器31で増幅されてDC′+AC(S+N)′となり、各フィルタでそれぞれの成分に分離される。よって、第一ローパスフィルタ23からは、DC′が出力され、第一ハイパスフィルタ24からはAC(S+N)′が出力される。 As described in the first embodiment, the electric signal output from the first light receiving element 21 is DC 1 + AC (S + N) . Then, the signal is amplified by the first automatic amplification adjuster 31 to be DC 1 ′ + AC (S + N) ′, and is separated into respective components by each filter. Therefore, DC 1 ′ is output from the first low-pass filter 23, and AC (S + N) ′ is output from the first high-pass filter 24.

同様に、第二受光素子22と、各フィルタ(第二ローパスフィルタ25,第二ハイパスフィルタ26)と間に、第二自動増幅調整器32を配置する。そして、第二自動増幅調整器32は、第二ローパスフィルタ25の出力(DC′)をフィードバックし、当該出力(DC′)が基準値になるように増幅率を調整する。増幅率は、1を超える場合(増加)と、1未満になる場合(減少)がある。また、第二ハイパスフィルタ26の出力は、減算器29の他方(−側)に入力する。 Similarly, a second automatic amplification adjuster 32 is arranged between the second light receiving element 22 and each of the filters (the second low-pass filter 25 and the second high-pass filter 26). Then, the second automatic amplification adjuster 32 feeds back the output (DC 2 ′) of the second low-pass filter 25 and adjusts the amplification factor so that the output (DC 2 ′) becomes the reference value. The amplification factor may be more than 1 (increase) or less than 1 (decrease). The output of the second high-pass filter 26 is input to the other (−) side of the subtractor 29.

すると、第二受光素子22から出力される電気信号(DC+AC(N))は、第二自動増幅調整器32で増幅されてDC′+AC(N)′となり、各フィルタでそれぞれの成分に分離される。よって、第二ローパスフィルタ25からは、DC′が出力され、第二ハイパスフィルタ26からはAC(N)′が出力される。 Then, the electric signal (DC 2 + AC (N) ) output from the second light receiving element 22 is amplified by the second automatic amplification adjuster 32 to become DC 2 ′ + AC (N) ′, and each component is applied to each filter. Is separated into Therefore, DC 2 ′ is output from the second low-pass filter 25, and AC (N) ′ is output from the second high-pass filter 26.

第一自動増幅調整器31における基準値と、第二自動増幅調整器32における基準値は、等しくする。これにより、第一ローパスフィルタ23の出力(DC′)と第二ローパスフィルタ25の出力(DC′)は等しくなる。 The reference value in the first automatic amplification adjuster 31 is equal to the reference value in the second automatic amplification adjuster 32. Thus, 'the output of the second low-pass filter 25 (DC 2 output of the first low-pass filter 23 (DC 1)') are equal.

このように、被測定電流信号に基づく増幅処理後の信号と、光源ノイズ補正信号に基づく増幅処理後の信号のDC成分が等しくなるため、AC成分同士を直接減算しても第一実施形態の除算器で比を求めた値の減算処理と同様になり、光源ノイズ補正を行うことができる。よって、本実施形態では、高価な除算器を必要としないため、光電流センサ全体を安価に構成することができる。
なお、その他の構成並びに作用効果は、上述した第一実施形態と同様であるため、対応する部材の同一符号を付し、その詳細な説明を省略する。
As described above, since the DC component of the signal after the amplification process based on the measured current signal and the signal after the amplification process based on the light source noise correction signal are equal, even if the AC components are directly subtracted from each other, the first embodiment Light source noise correction can be performed in the same manner as the subtraction processing of the value obtained by the ratio in the divider. Therefore, in this embodiment, since an expensive divider is not required, the entire photocurrent sensor can be configured at low cost.
Since the other configuration and operation and effect are the same as those of the above-described first embodiment, corresponding members are denoted by the same reference numerals, and detailed description thereof will be omitted.

図3は、本発明に係る光電流センサの第三実施形態を示している。本実施形態では、第二実施形態と同様に、除算器を用いない光電変換器20″を用いるように構成している。 具体的には、光電変換器20″は、第一受光素子21の後段に第一ローパスフィルタ23及び第一ハイパスフィルタ24を並列に接続し、第二受光素子22の後段に第二ローパスフィルタ25及び第二ハイパスフィルタ26を並列に接続する。それら両ハイパスフィルタの出力をそれぞれ減算器29に入力するように構成する。   FIG. 3 shows a third embodiment of the photocurrent sensor according to the present invention. In the present embodiment, similarly to the second embodiment, the photoelectric converter 20 "that does not use a divider is configured to be used. Specifically, the photoelectric converter 20" is a component of the first light receiving element 21. The first low-pass filter 23 and the first high-pass filter 24 are connected in parallel at the subsequent stage, and the second low-pass filter 25 and the second high-pass filter 26 are connected in parallel at the subsequent stage of the second light receiving element 22. The outputs of the high-pass filters are input to the subtractor 29, respectively.

また、光電変換器20″に前段に、それぞれ自動光可変減衰器を設け、光ファイバ伝送路を進む光信号を調整し、2つの光信号の光電変換器20″への入射光量を等しくするようにした。すなわち、第二光ファイバ伝送路12に第一自動光可変減衰器33を設け、第三光ファイバ伝送路13に第二自動光可変減衰器34を設けた。   Also, an automatic optical variable attenuator is provided in each of the preceding stages of the photoelectric converter 20 ″ so as to adjust the optical signal traveling through the optical fiber transmission line so that the amount of incident light of the two optical signals to the photoelectric converter 20 ″ is equalized. I made it. That is, the first automatic optical variable attenuator 33 was provided on the second optical fiber transmission line 12, and the second automatic optical variable attenuator 34 was provided on the third optical fiber transmission line 13.

そして、第一自動光可変減衰器33は、第一ローパスフィルタ23の出力(DC′)をフィードバックし、当該出力(DC′)が基準値になるように減衰量を調整する。また第二自動光可変減衰器34は、第二ローパスフィルタ25の出力(DC′)をフィードバックし、当該出力(DC′)が基準値になるように減衰量を調整する。 Then, the first automatic optical variable attenuator 33 feeds back the output (DC 1 ′) of the first low-pass filter 23 and adjusts the attenuation so that the output (DC 1 ′) becomes the reference value. The second automatic optical variable attenuator 34 feeds back the output (DC 2 ′) of the second low-pass filter 25 and adjusts the amount of attenuation so that the output (DC 2 ′) becomes a reference value.

第一自動光可変減衰器33における基準値と、第二自動光可変減衰器34における基準値は、等しくする。これにより、第一自動光可変減衰器33と第二自動光可変減衰器34から出力される光信号のDC成分(DC′,DC′)が等しくなる。仮に光源10から出射される光信号のDC成分が変動するようなことがあっても、両方の信号を減衰するため、DC′=DC′の状態を簡単かつ正確に維持できるので好ましい。 The reference value in the first automatic optical variable attenuator 33 is equal to the reference value in the second automatic optical variable attenuator. Thereby, the DC components (DC 1 ′, DC 2 ′) of the optical signals output from the first automatic optical variable attenuator 33 and the second automatic optical variable attenuator 34 become equal. Even if the DC component of the optical signal emitted from the light source 10 fluctuates, both signals are attenuated, so that the state of DC 1 ′ = DC 2 ′ can be easily and accurately maintained, which is preferable.

これにより、第一受光素子21に入力され、光電変換して得られた電気信号(DC′+AC′(S+N))と、第二受光素子22に入力され、光電変換して得られた電気信号(DC′+AC′(N))のDC成分は、等しい(DC′=DC′)ため、第二実施形態と同様にAC成分同士の差分をとることで、第一実施形態の除算器で比を求めた値の減算処理と同様になり、光源ノイズ補正を行うことができる。よって、本実施形態では、高価な除算器を必要としないため、光電流センサ全体を安価に構成することができる。
なお、その他の構成並びに作用効果は、上述した第一実施形態と同様であるため、対応する部材の同一符号を付し、その詳細な説明を省略する。
As a result, an electric signal (DC ′ 1 + AC ′ (S + N) ) input to the first light receiving element 21 and obtained by photoelectric conversion, and an electric signal input to the second light receiving element 22 and obtained by photoelectric conversion Since the DC component of the signal (DC 2 ′ + AC ′ (N) ) is equal (DC ′ 1 = DC ′ 2 ), the difference between the AC components is obtained as in the second embodiment, thereby obtaining the signal of the first embodiment. Light source noise correction can be performed in the same manner as in the subtraction processing of the value obtained by the ratio in the divider. Therefore, in this embodiment, since an expensive divider is not required, the entire photocurrent sensor can be configured at low cost.
Since the other configuration and operation and effect are the same as those of the above-described first embodiment, corresponding members are denoted by the same reference numerals, and detailed description thereof will be omitted.

1 被測定導体
10 光源
11 第一光ファイバ伝送路
12 第二光ファイバ伝送路
13 第三光ファイバ伝送路
15 センサヘッド
16 光カプラ(光分離手段)
20 光電変換器
20′ 光電変換器
20″ 光電変換器
21 第一受光素子
22 第二受光素子
23 第一ローパスフィルタ
24 第一ハイパスフィルタ
25 第二ローパスフィルタ
26 第二ハイパスフィルタ
27 第一除算器
28 第二除算器
29 減算器
31 第一自動増幅調整器
32 第二自動増幅調整器
33 第一自動光可変減衰器
34 第二自動光可変減衰器
DESCRIPTION OF SYMBOLS 1 Conductor under test 10 Light source 11 First optical fiber transmission line 12 Second optical fiber transmission line 13 Third optical fiber transmission line 15 Sensor head 16 Optical coupler (optical separation means)
Reference Signs List 20 photoelectric converter 20 ′ photoelectric converter 20 ″ photoelectric converter 21 first light receiving element 22 second light receiving element 23 first low-pass filter 24 first high-pass filter 25 second low-pass filter 26 second high-pass filter 27 first divider 28 Second divider 29 Subtractor 31 First automatic amplification adjuster 32 Second automatic amplification adjuster 33 First automatic optical variable attenuator 34 Second automatic optical variable attenuator

Claims (3)

光源と、
前記光源から出射される光信号を伝送する第一光ファイバ伝送路と、
前記第一光ファイバ伝送路の先端側に接続され、前記光信号が入力されるセンサヘッドと、
前記センサヘッドから出力される検出信号を伝送する第二光ファイバ伝送路と、
前記第一光ファイバ伝送路を伝送する前記光信号の一部を参照信号として取り出す光分離手段と、
その光分離手段で取り出された参照信号を伝送する第三光ファイバ伝送路と、
前記第二光ファイバ伝送路と前記第三光ファイバ伝送路がそれぞれ接続される光電変換器とを備え、
前記光電変換器は、入力された前記検出信号に基づく信号から前記参照信号に基づく信号を減算して光源ノイズ補正を行う補正機能を備え、
前記光分離手段は、前記センサヘッド側に配置し、前記第二光ファイバ伝送路の伝送路長と前記第三光ファイバ伝送路の伝送路長を等しくし、
前記検出信号に基づく信号のDC成分と、前記参照信号に基づく信号のDC成分を等しくする調整機能を設け、
前記減算は、前記検出信号に基づく信号のAC成分から、前記参照信号に基づく信号のAC成分を減算することを特徴とする光電流センサ。
A light source,
A first optical fiber transmission line for transmitting an optical signal emitted from the light source,
A sensor head connected to the distal end side of the first optical fiber transmission line and receiving the optical signal,
A second optical fiber transmission line for transmitting a detection signal output from the sensor head,
Light separating means for extracting a part of the optical signal transmitted through the first optical fiber transmission line as a reference signal,
A third optical fiber transmission line for transmitting the reference signal extracted by the light separating means,
A photoelectric converter to which the second optical fiber transmission line and the third optical fiber transmission line are respectively connected,
The photoelectric converter has a correction function of performing light source noise correction by subtracting a signal based on the reference signal from a signal based on the input detection signal,
The light separating means is disposed on the sensor head side, and equalizes the transmission path length of the second optical fiber transmission path and the transmission path length of the third optical fiber transmission path ,
An adjustment function for equalizing the DC component of the signal based on the detection signal and the DC component of the signal based on the reference signal is provided.
The said subtraction subtracts the AC component of the signal based on the said reference signal from the AC component of the signal based on the said detection signal, The photocurrent sensor characterized by the above-mentioned.
前記調整機能は、前記光電変換器に実装された前記検出信号用の第一受光素子の後段に配置された第一自動増幅調整器と、前記参照信号用の第二受光素子の後段に配置された第二自動増幅調整器を備え、
前記第一自動増幅調整器から出力される信号のDC成分と、前記第二自動増幅調整器から出力される信号のDC成分が等しくなるように前記第一自動増幅調整器と前記第二自動増幅調整器の増幅率をフィードバック制御するように構成したことを特徴とする請求項1に記載の光電流センサ。
The adjustment function is a first automatic amplification adjuster disposed after the first light receiving element for the detection signal mounted on the photoelectric converter, and disposed after the second light receiving element for the reference signal. Equipped with a second automatic amplification adjuster,
The first automatic amplification controller and the second automatic amplifier are controlled such that the DC component of the signal output from the first automatic amplification controller is equal to the DC component of the signal output from the second automatic amplification controller. 2. The photocurrent sensor according to claim 1, wherein the amplification factor of the adjuster is feedback-controlled.
前記調整機能は、前記第二光ファイバ伝送路に実装した第一自動光可変減衰器と、前記第三光ファイバ伝送路に実装した第二自動光可変減衰器とを備え、
前記第一自動光可変減衰器と前記第二自動光可変減衰器は、それぞれ前記検出信号と前記参照信号の信号レベルを減衰して、前記光電変換器に入力する前記検出信号のDC成分と、前記参照信号のDC成分が等しくなるように前記第一自動光可変減衰器と前記第二自動光可変減衰器の減衰量をフィードバック制御するように構成したことを特徴とする請求項1に記載の光電流センサ。
The adjustment function includes a first automatic optical variable attenuator mounted on the second optical fiber transmission line, and a second automatic optical variable attenuator mounted on the third optical fiber transmission line,
The first automatic optical variable attenuator and the second automatic optical variable attenuator attenuate the signal levels of the detection signal and the reference signal, respectively, and a DC component of the detection signal input to the photoelectric converter, 2. The apparatus according to claim 1, wherein an amount of attenuation of the first automatic optical variable attenuator and the amount of attenuation of the second automatic optical variable attenuator are feedback-controlled so that a DC component of the reference signal becomes equal. Photocurrent sensor.
JP2016032128A 2016-02-23 2016-02-23 Photocurrent sensor Active JP6624638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032128A JP6624638B2 (en) 2016-02-23 2016-02-23 Photocurrent sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032128A JP6624638B2 (en) 2016-02-23 2016-02-23 Photocurrent sensor

Publications (2)

Publication Number Publication Date
JP2017150890A JP2017150890A (en) 2017-08-31
JP6624638B2 true JP6624638B2 (en) 2019-12-25

Family

ID=59741649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032128A Active JP6624638B2 (en) 2016-02-23 2016-02-23 Photocurrent sensor

Country Status (1)

Country Link
JP (1) JP6624638B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210313A1 (en) * 2021-03-30 2022-10-06 アダマンド並木精密宝石株式会社 Current measurement device

Also Published As

Publication number Publication date
JP2017150890A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
US9835503B2 (en) Optical fiber temperature distribution measuring device
JPH05211482A (en) Optical amplifier repeater
JP4876735B2 (en) Optical pulse tester
CN104596633B (en) Extra long distance distribution optical sensing means and method based on two-way light amplification
US9952104B2 (en) Optical fiber temperature distribution measuring device
JPH04241328A (en) Control method for optical amplifier and optical amplifier
JP2010010614A (en) Light detecting apparatus and output light intensity controller
JP5291767B2 (en) Fiber measuring device
JP2947136B2 (en) Optical amplifier
JP6624638B2 (en) Photocurrent sensor
US20160238483A1 (en) Optical fiber cable monitoring apparatus and optical fiber cable monitoring method using dual light source
JP6634310B2 (en) Photocurrent sensor
US20120002962A1 (en) Wdm signal light monitoring apparatus, wdm system and wdm signal light monitoring method
JP6624639B2 (en) Photocurrent sensor
JP6027927B2 (en) Fiber optic current sensor
KR101132784B1 (en) Optical signal charactoristics measuring device and method thereof
CN108534893B (en) Photoelectric detection circuit for optical heterodyne detection
JP2009244163A (en) Device and method for measuring ratio of light signal to noise
US6850319B2 (en) System for measuring and/or dynamically controlling power loss in an optical transmission line, and an associated method
CN108234019B (en) Method for testing additional noise power of erbium-doped fiber amplifier by dual-optical-path polarization balance
US9831953B2 (en) Excitation light source device and optical transmission system
JP4364780B2 (en) Optical fiber characteristic evaluation method and apparatus
JP2005005538A (en) Optical-fiber amplifier
JP2009276287A (en) Raman gain efficiency measurement method and device
JP2009200124A (en) Photodetector and light detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191121

R150 Certificate of patent or registration of utility model

Ref document number: 6624638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150