JP6624458B2 - Battery control system - Google Patents

Battery control system Download PDF

Info

Publication number
JP6624458B2
JP6624458B2 JP2016222622A JP2016222622A JP6624458B2 JP 6624458 B2 JP6624458 B2 JP 6624458B2 JP 2016222622 A JP2016222622 A JP 2016222622A JP 2016222622 A JP2016222622 A JP 2016222622A JP 6624458 B2 JP6624458 B2 JP 6624458B2
Authority
JP
Japan
Prior art keywords
rate
resistance increase
deterioration
increase rate
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016222622A
Other languages
Japanese (ja)
Other versions
JP2018081796A (en
Inventor
啓太 小宮山
啓太 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016222622A priority Critical patent/JP6624458B2/en
Publication of JP2018081796A publication Critical patent/JP2018081796A/en
Application granted granted Critical
Publication of JP6624458B2 publication Critical patent/JP6624458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池の電池制御システムに関する。   The present invention relates to a battery control system for a secondary battery.

軽量で高エネルギー密度が得られるリチウムイオン二次電池等の二次電池は、車両搭載用電源として好ましく用いられている。この種の二次電池においては、正極活物質を含む正極と負極活物質を含む負極との間で、電荷担体(例えばリチウムイオン二次電池の場合、リチウム)を授受することで充放電が行われる。すなわち、充電時には電荷担体が正極活物質から引き抜かれ、イオンとして電解液(電解質)中に放出される。充電時には該電荷担体は負極側に設けられた負極活物質の構造内に入り、ここで正極活物質から外部回路を通ってきた電子を得て、吸蔵される。この種の二次電池の電池制御に関する従来技術として、特許文献1が挙げられる。   Secondary batteries, such as lithium ion secondary batteries, which are lightweight and provide high energy density, are preferably used as power sources for vehicles. In this type of secondary battery, charge and discharge are performed by transferring charge carriers (for example, lithium in the case of a lithium ion secondary battery) between a positive electrode containing a positive electrode active material and a negative electrode containing a negative electrode active material. Is That is, at the time of charging, the charge carriers are extracted from the positive electrode active material and released as ions into the electrolytic solution (electrolyte). During charging, the charge carriers enter the structure of the negative electrode active material provided on the negative electrode side, where electrons that have passed through an external circuit are obtained from the positive electrode active material and are occluded. As a conventional technique relating to battery control of a secondary battery of this type, Patent Literature 1 is cited.

特開2011−222343号公報JP 2011-222343 A

特許文献1には、経年劣化の内部抵抗と区間放電量の相関マップを備え、実際に取得した区間放電量と廃部抵抗とを相関マップを介して少なくとも一方を変換して対比させ、リチウムの析出の程度を判定する電池システムが記載されている。同公報では、電池における放電量の減少幅は、経年劣化による減少幅とリチウム析出に起因する減少幅との和であると想定し、内部抵抗値の上昇の程度はリチウム析出の有無にほとんど影響されないという知見の基、内部抵抗値の値に基づいて経年劣化のみによる放電量の減少幅を推定し、これを全体の減少幅から差し引くことで、リチウムの析出の程度を判定している。しかしながら、本発明者の検討によれば、リチウムの析出の程度によっては内部抵抗値の上昇も起こるため、リチウム析出による劣化が所定量を超えた場合はリチウム析出劣化の推定精度が悪化し、誤判定が生じる場合があり得る。リチウム析出劣化の程度を精度よく把握したい。   Patent Literature 1 includes a correlation map between the internal resistance due to aging and the section discharge amount, and converts at least one of the actually acquired section discharge amount and the waste part resistance by converting the correlation map through the correlation map, thereby depositing lithium. A battery system for determining the degree of is described. In this publication, it is assumed that the amount of decrease in the amount of discharge in a battery is the sum of the amount of decrease due to aging and the amount of decrease due to lithium deposition. Based on the knowledge that the discharge is not performed, the extent of the decrease in the discharge amount due to only the aging degradation is estimated based on the value of the internal resistance, and the degree of lithium precipitation is determined by subtracting this from the overall decrease. However, according to the study of the present inventor, since the internal resistance value also increases depending on the degree of lithium precipitation, when the deterioration due to lithium precipitation exceeds a predetermined amount, the estimation accuracy of lithium precipitation deterioration deteriorates, and Judgment may occur. I want to know the degree of lithium precipitation deterioration with high accuracy.

ここで提案される二次電池の電池制御システムは、電荷担体を可逆的に吸蔵および放出可能な電極活物質を備える二次電池の電池制御システムである。この電池制御システムは、前記二次電池の温度を検出する温度センサと、前記二次電池に出入りする電流を検出する電流センサと、前記二次電池の電圧を検出する電圧センサと、前記電荷担体の析出に起因する容量劣化率ΔCを算出する算出部とを備える。前記算出部は、前記電流センサで検出された電流値と前記電圧センサで検出された電圧値とから該二次電池の抵抗増加率ΔRcurrentを測定するステップと、前記温度センサによって検出された電池温度と各電池温度で保持された積算時間とを含む温度頻度分布情報に基づき、前記二次電池の材料摩耗による材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCを推定するステップと、前記測定した抵抗増加率ΔRcurrentと前記推定した材料劣化後の抵抗増加率ΔRとを比較するステップと、前記比較した抵抗増加率がΔR≧ΔRcurrentの関係を満たす場合、材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示す第1マップを用いて、前記推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCから、前記電荷担体の析出に起因する容量劣化率ΔCを算出するステップと、前記比較した抵抗増加率がΔR<ΔRcurrentの関係を満たす場合、前記電荷担体の過度な析出が生じていると判断し、材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示すマップであって前記第1マップとは特性が異なる第2マップを用いて、前記推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCから、前記電荷担体の析出に起因する容量劣化率ΔCを算出するステップと、を実行するように構成されている。かかる構成によると、電荷担体の析出による抵抗増加も考慮して、電荷担体の析出に起因する容量劣化率ΔCが算出されるため、算出精度が向上する。 The battery control system for a secondary battery proposed here is a battery control system for a secondary battery including an electrode active material capable of reversibly inserting and extracting charge carriers. The battery control system includes a temperature sensor that detects a temperature of the secondary battery, a current sensor that detects a current flowing into and out of the secondary battery, a voltage sensor that detects a voltage of the secondary battery, and the charge carrier. and a calculation unit for calculating a capacity deterioration rate [Delta] C y due to precipitation of. The calculating unit measures a resistance increase rate ΔR current of the secondary battery from a current value detected by the current sensor and a voltage value detected by the voltage sensor; and a battery detected by the temperature sensor. Estimating a resistance increase rate ΔR x and a capacity deterioration rate ΔC x after material deterioration due to material wear of the secondary battery based on temperature frequency distribution information including a temperature and an integration time held at each battery temperature; Comparing the measured resistance increase rate ΔR current with the estimated resistance increase rate after material deterioration ΔR x ; and if the compared resistance increase rate satisfies the relationship of ΔR x ≧ ΔR current , using the first map showing the correlation between the resistance increasing rate [Delta] R x and the total capacity deterioration rate (ΔC x + ΔC y), the resistance increase ratio after the estimated material degradation [Delta] R x and capacity degradation rate [Delta] C x Al, calculating a capacity deterioration rate [Delta] C y due to deposition of the charge carriers, wherein the compared resistance increase rate may satisfy the relationship ΔR x <ΔR current, excessive precipitation of the charge carriers occurs decision and, from the first map to a map showing the correlation between resistance increase ratio after material degradation [Delta] R x and the total capacity deterioration rate (ΔC x + ΔC y) using a second map which characteristic is different from the from the estimated resistance increase ratio after material degradation [Delta] R x and capacity degradation rate [Delta] C x, and is configured to perform a step of calculating a capacity deterioration rate [Delta] C y due to deposition of the charge carriers. According to such a configuration, in consideration of the resistance increase due to precipitation of the charge carriers, the capacity deterioration rate [Delta] C y due to precipitation of the charge carriers is calculated, calculation accuracy is improved.

本実施形態に係る二次電池の電池制御装置によって制御される電源システムの構成を示すブロック図である。It is a block diagram showing the composition of the power supply system controlled by the battery control device of the secondary battery concerning this embodiment. 経時日数と抵抗増加率との関係を示すグラフである。It is a graph which shows the relationship between aging days and a resistance increase rate. 経時日数と容量維持率との関係を示すグラフである。It is a graph which shows the relationship between aging days and a capacity maintenance rate. 電池温度Tと劣化速度βとの関係を示すグラフである。5 is a graph showing a relationship between a battery temperature T and a deterioration rate β. 電池温度頻度分布を示すグラフである。4 is a graph showing a battery temperature frequency distribution. 材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示すグラフである。Is a graph showing a correlation between the resistance increasing rate [Delta] R x and the total capacity deterioration rate after material degradation (ΔC x + ΔC y). 材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示すグラフである。Is a graph showing a correlation between the resistance increasing rate [Delta] R x and the total capacity deterioration rate after material degradation (ΔC x + ΔC y). 材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示すグラフである。Is a graph showing a correlation between the resistance increasing rate [Delta] R x and the total capacity deterioration rate after material degradation (ΔC x + ΔC y). 容量劣化率ΔC算出処理ルーチンの一例を示すフローチャートである。Is a flowchart illustrating an example of a capacity deterioration rate [Delta] C y calculation processing routine.

以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極及び負極の構成及び製法、二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, members and parts having the same function are described with the same reference numerals. The dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect actual dimensional relationships. In addition, matters other than those specifically mentioned in the present specification, which are necessary for carrying out the present invention (for example, the configuration and manufacturing method of a positive electrode and a negative electrode, general techniques related to the construction of secondary batteries and other batteries) ) Can be understood as a design matter of a person skilled in the art based on the prior art in the field.

特に限定することを意図したものではないが、以下では主としてリチウムイオン二次電池を制御する場合を例として、本発明の電池制御システムに係る好適な実施形態を説明する。なお、本明細書において「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオン(Liイオン)を利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。   Although not intended to be particularly limited, a preferred embodiment according to the battery control system of the present invention will be described below mainly for the case of controlling a lithium ion secondary battery. In this specification, the term “lithium ion secondary battery” refers to a secondary battery that utilizes lithium ions (Li ions) as electrolyte ions and achieves charge / discharge by transfer of charge accompanying lithium ions between positive and negative electrodes. Say.

図1は、本実施形態に係るリチウムイオン二次電池10の制御装置によって制御される電池制御システム1の構成を示すブロック図である。このリチウムイオン二次電池10の制御装置は、車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)に好適に用いられる。   FIG. 1 is a block diagram illustrating a configuration of a battery control system 1 controlled by a control device of a lithium ion secondary battery 10 according to the present embodiment. The control device of the lithium ion secondary battery 10 is suitably used for a vehicle (typically, an automobile, particularly an automobile having an electric motor such as a hybrid automobile, an electric automobile, or a fuel cell automobile).

電池制御システム1は、リチウムイオン二次電池10と、これに接続された負荷20と、二次電池10の温度を検出する温度センサ(図示せず)と、二次電池10に出入りする電流を検出する電流センサ(図示せず)と、前記二次電池の電圧を検出する電圧センサ(図示せず)と、電子制御ユニット(ECU)30とを含む構成であり得る。ECU30は、負荷20に接続されたリチウムイオン二次電池10の運転をコントロールするものとして構成されており、所定の情報に基づいて、負荷20を駆動制御する。リチウムイオン二次電池10に接続された負荷20は、該電池10に蓄えられた電力を消費する電力消費機(例えばモータ)を含み得る。また、該負荷20は、電池10を充電可能な電力を供給する電力供給機(充電器)を含み得る。   The battery control system 1 includes a lithium ion secondary battery 10, a load 20 connected thereto, a temperature sensor (not shown) for detecting the temperature of the secondary battery 10, and a current flowing into and out of the secondary battery 10. The configuration may include a current sensor (not shown) for detecting, a voltage sensor (not shown) for detecting the voltage of the secondary battery, and an electronic control unit (ECU) 30. The ECU 30 is configured to control the operation of the lithium ion secondary battery 10 connected to the load 20, and controls the drive of the load 20 based on predetermined information. The load 20 connected to the lithium ion secondary battery 10 may include a power consuming device (for example, a motor) that consumes the power stored in the battery 10. In addition, the load 20 may include a power supply (charger) that supplies power capable of charging the battery 10.

リチウムイオン二次電池10は、セパレータを介して対向する正極と負極と、これら正負極間に供給されるリチウムイオンを含む電解質とから構成されている。正極および負極には、電荷担体としてのリチウムイオンを吸蔵および放出し得る電極活物質が含まれている。電池10の充電時には、正極活物質からリチウムイオンが放出され、このリチウムイオンは電解質を通じて負極活物質に吸蔵される。また、電池10の放電時には、その逆に、負極活物質に吸蔵されていたリチウムイオンが放出され、このリチウムイオンは電解質を通じて再び正極活物質に吸蔵される。この正極活物質と負極活物質との間のリチウムイオンの移動に伴い、活物質から外部端子へと電子が流れる。これにより、負荷20に対して放電が行われる。   The lithium ion secondary battery 10 includes a positive electrode and a negative electrode that face each other with a separator interposed therebetween, and an electrolyte containing lithium ions supplied between the positive and negative electrodes. The positive electrode and the negative electrode contain an electrode active material capable of inserting and extracting lithium ions as charge carriers. When the battery 10 is charged, lithium ions are released from the positive electrode active material, and the lithium ions are occluded in the negative electrode active material through the electrolyte. Conversely, when the battery 10 is discharged, lithium ions occluded in the negative electrode active material are released, and the lithium ions are occluded again in the positive electrode active material through the electrolyte. With the movement of lithium ions between the positive electrode active material and the negative electrode active material, electrons flow from the active material to external terminals. Thereby, discharge is performed to the load 20.

ここでリチウムイオン二次電池は、一般に、使用に伴い劣化が生じることが知られている。本発明者の知見によれば、劣化の主な原因としては、二次電池の材料の摩耗による材料劣化と、二次電池の内部における負極でのリチウムの析出による劣化とが考えられる。使用に伴い劣化が生じると、図2に示すように、日数の経過とともに、二次電池に流れる電流と電圧の降下量とから算出される抵抗増加率ΔRcurrentは増大傾向になり得る。かかる抵抗増加率ΔRcurrentには、材料劣化による抵抗増加分(抵抗増加率ΔR)に加えて、リチウム析出による抵抗増加分が含まれている。また、図3に示すように、日数の経過とともに、容量維持率は低下傾向(容量劣化率は増大傾向)になり得る。かかる容量劣化率には、材料劣化による容量劣化分(容量劣化率ΔC)に加えて、リチウム析出による容量劣化分(容量劣化率ΔC)が含まれている。本発明者は、二次電池の抵抗増加率ΔRや容量劣化率ΔCから、二次電池を解体することなく、リチウムの析出の程度(リチウム析出に起因する容量劣化率ΔC)を判定することを検討している。 Here, it is known that a lithium ion secondary battery generally deteriorates with use. According to the knowledge of the present inventors, the main causes of the deterioration are considered to be material deterioration due to wear of the material of the secondary battery and deterioration due to deposition of lithium on the negative electrode inside the secondary battery. When deterioration occurs with use, as shown in FIG. 2, the resistance increase rate ΔR current calculated from the current flowing through the secondary battery and the amount of voltage drop may increase as the number of days elapses. The resistance increase rate ΔR current includes the resistance increase due to lithium deposition in addition to the resistance increase due to material degradation (resistance increase rate ΔR x ). Further, as shown in FIG. 3, as the number of days elapses, the capacity maintenance rate may tend to decrease (the capacity deterioration rate tends to increase). The capacity deterioration rate includes the capacity deterioration due to lithium deposition (capacity deterioration rate ΔC y ) in addition to the capacity deterioration due to material deterioration (capacity deterioration rate ΔC x ). The inventor determines the degree of lithium deposition (capacity deterioration rate ΔC y due to lithium deposition) from the resistance increase rate ΔR x and the capacity deterioration rate ΔC x of the secondary battery without dismantling the secondary battery. I'm considering doing that.

ここで、本発明者の知見によれば、リチウムの析出が少ない通常劣化状態と、リチウムが過度に析出した異常劣化状態とでは、リチウム析出が抵抗増加率ΔRcurrentに与える影響が異なる。具体的には、リチウム析出が少ない通常劣化状態においては、抵抗増加率ΔRcurrentはリチウムが析出してもさほど上昇しないが、リチウムが過度に析出した異常劣化状態では、抵抗増加率ΔRcurrentはリチウムが析出するに従い増大傾向を示す。一方、材料の摩耗による劣化は、熱履歴に依存するため、電池に与えられた熱負荷と劣化速度を用いれば、材料劣化による抵抗増加率ΔRおよび容量劣化率ΔCを推し量ることができる。そのため、熱履歴から推定した材料劣化による抵抗増加率ΔRと実際に測定した抵抗増加率ΔRcurrentとを比較することで、二次電池の状態が、リチウムの析出が少ない通常劣化状態であるか、あるいは、リチウムが過度に析出した異常劣化状態であるかを判断することができる。そして、それぞれの劣化状態に応じて、適切な相関マップを用いることで、二次電池の抵抗増加率ΔRおよび容量劣化率ΔCから、リチウムの析出の程度(リチウム析出に起因する容量劣化率ΔC)を判定することができる。 Here, according to the knowledge of the present inventor, the influence of lithium deposition on the resistance increase rate ΔR current is different between the normal deterioration state in which lithium precipitation is small and the abnormal deterioration state in which lithium is excessively precipitated. Specifically, in a normal deterioration state in which lithium deposition is small, the resistance increase rate ΔR current does not increase so much even when lithium is deposited, but in an abnormal deterioration state in which lithium is excessively deposited, the resistance increase rate ΔR current is lithium. Shows an increasing tendency as the precipitates. On the other hand, since the deterioration due to the wear of the material depends on the thermal history, the resistance increase rate ΔR x and the capacity deterioration rate ΔC x due to the material deterioration can be estimated by using the heat load and the deterioration rate given to the battery. Therefore, by comparing the resistance increase rate ΔR x due to material deterioration estimated from the thermal history with the actually measured resistance increase rate ΔR current , whether the state of the secondary battery is the normal deterioration state with little lithium precipitation Alternatively, it can be determined whether the battery is in an abnormally deteriorated state in which lithium is excessively precipitated. Then, by using an appropriate correlation map in accordance with the respective deterioration states, the degree of lithium deposition (the capacity deterioration rate due to lithium deposition) can be determined from the resistance increase rate ΔR x and the capacity deterioration rate ΔC x of the secondary battery. ΔC y ) can be determined.

以上のような知見から、ここに開示される電池制御システム1では、ECU30が、電流センサで検出された電流値と電圧センサで検出された電圧値とから該二次電池の抵抗増加率ΔRcurrentを測定する(ΔRcurrent測定ステップ)。また、温度センサによって検出された電池温度と各電池温度で保持された積算時間とを含む温度頻度分布情報に基づき、二次電池の材料摩耗による材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCを推定する(ΔRおよびΔC推定ステップ)。そして、測定した抵抗増加率ΔRcurrentと推定した材料劣化後の抵抗増加率ΔRとを比較する(比較ステップ)。ここで、比較した抵抗増加率がΔR≧ΔRcurrentの関係を満たす場合、ECU30は、材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示す第1マップを用いて、上記推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCから、リチウムの析出に起因する容量劣化率ΔCを算出する。一方、比較した抵抗増加率がΔR<ΔRcurrentの関係を満たす場合、ECU30は、リチウムの過度な析出が生じていると判断し、第1マップとは特性が異なる第2マップを用いて、上記推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCから、リチウムの析出に起因する容量劣化率ΔCを算出する(ΔC算出ステップ)。そして、算出された容量劣化率ΔCの値がLi析出許容量ΔClimitを超えているか否かを判定し、容量劣化率ΔCが許容量ΔClimitを超えている場合には、電池の使用を停止する(判定ステップ)。 From the above findings, in the battery control system 1 disclosed herein, the ECU 30 calculates the resistance increase rate ΔR current of the secondary battery from the current value detected by the current sensor and the voltage value detected by the voltage sensor. Is measured (ΔR current measurement step). Further, based on temperature frequency distribution information including the battery temperature detected by the temperature sensor and the accumulated time held at each battery temperature, the resistance increase rate ΔR x and the capacity deterioration rate after material deterioration due to material wear of the secondary battery are obtained. Estimate ΔC x (ΔR x and ΔC x estimation step). Then, comparing the resistance increase rate [Delta] R x of the material after deterioration was estimated to have measured the resistance increase rate [Delta] R current (comparison step). Here, when the compared resistance increase rate satisfies the relationship of ΔR x ≧ ΔR current , the ECU 30 determines the first correlation indicating the correlation between the resistance increase rate ΔR x after material deterioration and the total capacity deterioration rate (ΔC x + ΔC y ). using the map, from the estimated resistance increase ratio after material degradation [Delta] R x and capacity degradation rate [Delta] C x, and calculates the capacity deterioration rate [Delta] C y due to deposition of lithium. On the other hand, if the compared resistance increase rate satisfies the relationship of ΔR x <ΔR current , the ECU 30 determines that excessive precipitation of lithium has occurred, and uses the second map having characteristics different from those of the first map. From the estimated resistance increase rate ΔR x after the material deterioration and the capacity deterioration rate ΔC x , a capacity deterioration rate ΔC y due to lithium precipitation is calculated (ΔC y calculation step). Then, it is determined whether or not the value of the calculated capacity deterioration rate ΔC y exceeds the allowable amount of Li precipitation ΔC limit . If the capacity deterioration rate ΔC y exceeds the allowable amount ΔC limit , the use of the battery is determined. Is stopped (judgment step).

ECU30の典型的な構成には、少なくとも、かかる制御を行うためのプログラムを記憶したROM(Read Only Memory)と、そのプログラムを実行可能なCPU(Central Processing Unit)と、一時的にデータを記憶するRAM(random access memory)と、図示しない入出力ポートとが含まれる。二次電池10には、前述した電流センサと電圧センサと温度センサとが取り付けられている。ECU30には、入力ポートを介して各センサの出力信号が入力される。そして、ECU30は、各センサからの出力信号に基づいて、二次電池10に出入りする電流値、電圧値および電池温度の情報を取得するようになっている。かかるECU30により、本実施形態の算出部が構成されている。   A typical configuration of the ECU 30 includes at least a ROM (Read Only Memory) storing a program for performing such control, a CPU (Central Processing Unit) capable of executing the program, and temporarily storing data. It includes a random access memory (RAM) and an input / output port (not shown). The above-described current sensor, voltage sensor, and temperature sensor are attached to the secondary battery 10. The ECU 30 receives output signals of the respective sensors via input ports. The ECU 30 acquires information on current values, voltage values, and battery temperatures that enter and exit the secondary battery 10 based on output signals from the sensors. The ECU 30 constitutes a calculation unit of the present embodiment.

<ΔRcurrent測定ステップ>
ΔRcurrent測定ステップでは、ECU30は、負荷20からの充放電の際にリチウムイオン二次電池10に流れる電流Iと電池電圧の降下量ΔVとから該二次電池の抵抗増加率ΔRcurrentを測定する。
<ΔR current measurement step>
The [Delta] R current measuring step, ECU 30 is a resistance increase rate [Delta] R current of the secondary battery and a drop amount [Delta] V x of the current I x and the battery voltage flowing in the lithium ion secondary battery 10 during charging and discharging of the load 20 Measure.

<ΔRおよびΔC推定ステップ>
ΔRおよびΔC推定ステップでは、ECU30は、電池温度と各電池温度で保持された積算時間とを含む温度頻度分布情報に基づき、二次電池における材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCを推定する。本発明者の知見によれば、材料の摩耗による劣化は、熱履歴に依存するため、電池に与えられた熱負荷と劣化速度を用いれば、材料劣化による抵抗増加率ΔRおよび容量劣化率ΔCを推定することができる。具体的には、図4の温度加速性アレニウスモデルに示すように、電池温度が高いほど劣化速度βは増大傾向を示す。この相関関係を利用することで、上記温度頻度分布情報と劣化速度βとから、材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCを推定することができる。
<ΔR x and ΔC x estimation step>
In the ΔR x and ΔC x estimation steps, the ECU 30 determines the resistance increase rate ΔR x and the capacity degradation after material deterioration in the secondary battery based on the temperature frequency distribution information including the battery temperature and the integration time held at each battery temperature. Estimate the rate ΔC x . According to the knowledge of the present inventor, since the deterioration due to the wear of the material depends on the thermal history, the resistance increase rate ΔR x and the capacity deterioration rate ΔC due to the material deterioration can be obtained by using the heat load and the deterioration rate given to the battery. x can be estimated. Specifically, as shown in the temperature-accelerated Arrhenius model in FIG. 4, the higher the battery temperature, the higher the deterioration rate β. By utilizing this correlation, the resistance increase rate ΔR x and the capacity deterioration rate ΔC x after material deterioration can be estimated from the temperature frequency distribution information and the deterioration rate β.

この実施形態では、図4に示すように、電池温度と劣化速度との関係を示すデータをマップの形でROMに記憶しておき、このマップを参照して、所定の電池温度(例えば温度域)の劣化速度を決定する。かかるデータは、二次電池を複数用意し、種々異なる温度条件の耐久試験に供し、そのときの一定時間ごとの抵抗増加率および容量劣化率の推移から求めることができる。   In this embodiment, as shown in FIG. 4, data indicating the relationship between the battery temperature and the deterioration rate is stored in a ROM in the form of a map, and a predetermined battery temperature (for example, a temperature range) is referred to with reference to this map. ) Is determined. Such data can be obtained by preparing a plurality of secondary batteries, subjecting them to endurance tests under various temperature conditions, and changing the resistance increase rate and the capacity deterioration rate at regular time intervals.

また、各電池温度で保持された積算時間と各電池温度における劣化速度とを積算して総和することで、材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCを算出することができる。ここで、各電池温度で保持された積算時間は、所定の電池温度(例えば温度域)で二次電池がどの程度保持されたかを、所定の電池温度ごとに積算することで求めることができる。なお、材料劣化による抵抗増加および容量劣化は、電池が充放電を行っていなくても(使用されていなくても)生じ得る。したがって、上記積算時間のカウントは、電池の使用時(例えば車両走行時)と、電池の使用休止時(例えば車両停止時)との双方において行うことが好ましい。得られた温度頻度分布情報は、図5に示すようなマップやテーブルの形でROMに記憶しておくとよい。 In addition, by accumulating and integrating the integrated time held at each battery temperature and the deterioration rate at each battery temperature, the resistance increase rate ΔR x and the capacity deterioration rate ΔC x after material deterioration can be calculated. Here, the accumulated time held at each battery temperature can be obtained by integrating the degree of the secondary battery held at a predetermined battery temperature (for example, a temperature range) for each predetermined battery temperature. The increase in resistance and the deterioration in capacity due to material deterioration may occur even when the battery is not charged or discharged (even if not used). Therefore, the counting of the integrated time is preferably performed both when the battery is used (for example, when the vehicle is running) and when the battery is not used (for example, when the vehicle is stopped). The obtained temperature frequency distribution information may be stored in the ROM in the form of a map or a table as shown in FIG.

<比較ステップ>
比較ステップでは、ECU30は、ΔRcurrent測定ステップで測定した抵抗増加率ΔRcurrentと、ΔRおよびΔC推定ステップで推定した材料劣化後の抵抗増加率ΔRとを比較する。
<Comparison step>
In the comparison step, the ECU 30 compares the resistance increase rate ΔR current measured in the ΔR current measurement step with the resistance increase rate ΔR x after material deterioration estimated in the ΔR x and ΔC x estimation steps.

<ΔC算出ステップ>
ΔC算出ステップでは、ECU30は、比較ステップで比較した抵抗増加率がΔR≧ΔRcurrentの関係を満たす場合、リチウムの過度な析出が生じていないと判断し、推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCに基づき、リチウムの析出に起因する容量劣化率ΔCを算出する。具体的には、図6に示すように、リチウムの過度な析出が生じていない条件下における材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示すデータを予め予備実験等により取得して第1マップ(Line1)の形でROMに記憶しておく。そして、この第1マップを参照して、推定した材料劣化後の抵抗増加率ΔRに対応するトータル容量劣化率(ΔC+ΔC)を推定し、推定したトータル容量劣化率(ΔC+ΔC)から材料劣化後の容量劣化率ΔCを差し引くことで、リチウムの析出に起因する容量劣化率ΔCを算出する。
<ΔC y calculation step>
In the ΔC y calculation step, if the resistance increase rate compared in the comparison step satisfies the relationship ΔR x ≧ ΔR current , the ECU 30 determines that excessive precipitation of lithium has not occurred, and the estimated resistance increase after material deterioration. based on the rate [Delta] R x and capacity degradation rate [Delta] C x, and calculates the capacity deterioration rate [Delta] C y due to deposition of lithium. Specifically, as shown in FIG. 6, data showing the correlation between the resistance increase rate ΔR x after the material degradation and the total capacity degradation rate (ΔC x + ΔC y ) under the condition that the lithium is not excessively precipitated. Is obtained in advance by a preliminary experiment or the like, and stored in the ROM in the form of a first map (Line 1). Then, with reference to the first map, a total capacity deterioration rate (ΔC x + ΔC y ) corresponding to the estimated resistance increase rate ΔR x after material deterioration is estimated, and the estimated total capacity deterioration rate (ΔC x + ΔC y). ) from by subtracting the capacity deterioration rate [Delta] C x after material degradation, to calculate the capacity degradation rate [Delta] C y due to deposition of lithium.

また、ΔC算出ステップでは、ECU30は、比較ステップで比較した抵抗増加率がΔR<ΔRcurrentの関係を満たす場合、リチウムの過度な析出が生じていると判断し、前記第1マップとは特性が異なる第2マップを用いて、推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCに基づき、リチウムの析出に起因する容量劣化率ΔCを算出する。具体的には、図7に示すように、リチウムの過度な析出が生じている条件下における材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示すデータを予め予備実験等により取得して第2マップ(Line2)の形でROMに記憶しておく。この実施形態では、第2マップのLine2は、材料劣化後の抵抗増加率ΔRに対応するトータル容量劣化率(ΔC+ΔC)が第1マップのLine1よりも大きくなる(すなわち右側にシフトする)ように設定されている。そして、この第2マップを参照して、推定した材料劣化後の抵抗増加率ΔRに対応するトータル容量劣化率(ΔC+ΔC)を推定し、推定したトータル容量劣化率(ΔC+ΔC)から材料劣化後の容量劣化率ΔCを差し引くことで、リチウムの析出に起因する容量劣化率ΔCを算出する。 Further, the [Delta] C y calculation step, ECU 30, when compared to the resistance increase rate in comparison step satisfies the relationship ΔR x <ΔR current, determines that the excessive deposition of lithium occurs, the first map and the properties by using different second map on the basis of the estimated resistance increase ratio after material degradation [Delta] R x and capacity degradation rate [Delta] C x, and calculates the capacity deterioration rate [Delta] C y due to deposition of lithium. Specifically, as shown in FIG. 7, data showing the correlation between the resistance increase rate ΔR x after the material degradation and the total capacity degradation rate (ΔC x + ΔC y ) under the condition where excessive precipitation of lithium occurs. Is obtained in advance by a preliminary experiment or the like and stored in the ROM in the form of a second map (Line 2). In this embodiment, Line2 second map, the total capacity deterioration rate corresponding to the resistance increase rate [Delta] R x after material degradation (ΔC x + ΔC y) is shifted to larger (i.e. the right side than the Line1 of the first map ) Is set as follows. Then, referring to the second map, a total capacity deterioration rate (ΔC x + ΔC y ) corresponding to the estimated resistance increase rate ΔR x after the material deterioration is estimated, and the estimated total capacity deterioration rate (ΔC x + ΔC y). ) from by subtracting the capacity deterioration rate [Delta] C x after material degradation, to calculate the capacity degradation rate [Delta] C y due to deposition of lithium.

ここで、リチウムの過度な析出が生じている(すなわちΔR<ΔRcurrent)にもかかわらず、第1マップを用いてリチウムの析出に起因する容量劣化率ΔCを算出しようとすると、図8に示すように、容量劣化率ΔCが実際よりも少なく算出されるため、容量劣化率ΔCがLi析出許容量ΔClimitを超えているにもかかわらず、まだ電池を使用できると判定される可能性がある。これに対し、ΔRcurrentとΔRとの大小関係から第2マップを選択して容量劣化率ΔCを算出することで、容量劣化率ΔCが許容量ΔClimitを超えていると適切に判断でき、電池の使用を確実に停止することができる。 Here, even if excessive deposition of lithium occurs (that is, ΔR x <ΔR current ), an attempt is made to calculate the capacity deterioration rate ΔC y caused by the deposition of lithium using the first map, as shown in FIG. since, as shown in, the capacity deterioration rate [Delta] C y is calculated actually less than, the capacity deterioration rate [Delta] C y despite exceeds Li precipitated tolerance [Delta] C limit, it is determined that the still available batteries there is a possibility. In contrast, by calculating the [Delta] R current and [Delta] R x from the magnitude relationship selects the second map capacity degradation rate [Delta] C y of appropriately determine the capacity deterioration rate [Delta] C y exceeds the allowable amount [Delta] C limit The use of the battery can be reliably stopped.

<判定ステップ>
判定ステップでは、ECU30は、ΔC算出ステップで算出した容量劣化率ΔCの値がLi析出許容量ΔClimitを超えているか否かを判定し、容量劣化率ΔCが許容量ΔClimitを超えている場合には、電池の使用を停止する。一方、容量劣化率ΔCが許容量ΔClimitを超えていない場合は電池の使用を継続する。
<Judgment step>
In the determination step, the ECU 30 determines whether the value of the capacity deterioration rate ΔC y calculated in the ΔC y calculation step exceeds the allowable amount of Li precipitation ΔC limit , and determines whether the capacity deterioration rate ΔC y exceeds the allowable amount ΔC limit . If so, stop using the battery. On the other hand, when the capacity deterioration rate [Delta] C y does not exceed the allowable amount [Delta] C limit to continue using the battery.

このように構成された電池制御システム1の動作について説明する。図9は、本実施形態に係る電池制御システム1のECU30により実行される容量劣化率ΔC算出処理ルーチンの一例を示すフローチャートである。このルーチンは、例えば二次電池が車両に搭載された直後から実行される。 The operation of the battery control system 1 configured as described above will be described. Figure 9 is a flow chart showing an example of the capacity deterioration rate [Delta] C y calculation processing routine executed by the battery control system 1 of the ECU30 in the present embodiment. This routine is executed, for example, immediately after the secondary battery is mounted on the vehicle.

図9に示す容量劣化率ΔC算出処理が実行されると、ECU30のCPUは、まず、制御対象のリチウムイオン二次電池(セル)10について、二次電池に流れる電流Iと電池電圧の降下量ΔVとから該二次電池の抵抗増加率ΔRcurrentを測定する(ステップS10)。また、電池温度と各電池温度で保持された積算時間とを含む温度頻度分布情報を取得し、ROMに記憶されている電池温度と劣化速度との関係を示すデータを参照して、二次電池における材料の摩耗による材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCを推定する(ステップS20)。 When capacity deterioration rate [Delta] C y calculation process shown in FIG. 9 is executed, CPU of ECU30, first, the lithium ion secondary battery (cell) 10 of the control target, the current I x and the battery voltage across the secondary battery and a drop amount [Delta] V x to measure the resistance increase rate [Delta] R current of the secondary battery (step S10). Also, temperature frequency distribution information including the battery temperature and the accumulated time held at each battery temperature is obtained, and the secondary battery is referred to by referring to data indicating the relationship between the battery temperature and the deterioration rate stored in the ROM. Then, the resistance increase rate ΔR x and the capacity deterioration rate ΔC x after the material deterioration due to the abrasion of the material are estimated (step S20).

次いで、ECU30は、ステップS30において、ステップS10で測定した抵抗増加率ΔRcurrentとステップS20で推定した経年劣化後の抵抗増加率ΔRとを比較する。そして、比較した抵抗増加率がΔR≧ΔRcurrentの関係を満たす場合(Yesの場合)、リチウムの過度な析出が生じていないと判断し、ステップS40に進む。ステップS40では、ECU30は、ROMに記憶されている材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示す第1マップ(Line1)を用いて、推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCから、リチウムの析出に起因する容量劣化率ΔCを算出する。一方、比較した抵抗増加率がΔR≧ΔRcurrentの関係を満たさない場合(Noの場合)、リチウムの過度な析出が生じていると判断し、ステップS50に進む。ステップS50では、ECU30は、ROMに記憶されている材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示す第2マップ(Line2)を用いて、推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCから、リチウムの析出に起因する容量劣化率ΔCを算出する。 Next, in step S30, the ECU 30 compares the resistance increase rate ΔR current measured in step S10 with the aged deterioration rate ΔR x estimated in step S20. If the compared resistance increase rates satisfy the relationship of ΔR x ≧ ΔR current (Yes), it is determined that excessive precipitation of lithium has not occurred, and the process proceeds to step S40. In step S40, the ECU 30 estimates using the first map (Line1) indicating the correlation between the resistance increase rate ΔR x after the material deterioration stored in the ROM and the total capacity deterioration rate (ΔC x + ΔC y ). From the resistance increase rate ΔR x and the capacity deterioration rate ΔC x after the material deterioration, the capacity deterioration rate ΔC y due to the precipitation of lithium is calculated. On the other hand, when the compared resistance increase rates do not satisfy the relationship of ΔR x ≧ ΔR current (No), it is determined that excessive precipitation of lithium has occurred, and the process proceeds to step S50. In step S50, the ECU 30 estimates using the second map (Line2) indicating the correlation between the resistance increase rate ΔR x after the material deterioration stored in the ROM and the total capacity deterioration rate (ΔC x + ΔC y ). From the resistance increase rate ΔR x and the capacity deterioration rate ΔC x after the material deterioration, the capacity deterioration rate ΔC y due to the precipitation of lithium is calculated.

ステップS60では、ECU30は、上記算出したリチウムの析出に起因する容量劣化率ΔCがLi析出許容量ΔClimitを超えている(すなわちΔC>ΔClimit)か否かを判定する。容量劣化率ΔCが許容量ΔClimitを超えている場合には(Yes)、ステップS70に進み、電池の使用を停止する。一方、容量劣化率ΔCが許容量ΔClimitを超えていない場合は(No)、ステップS80に進み、電池の使用を継続する。 At step S60, ECU 30 determines whether the capacity degradation rate [Delta] C y due to deposition of lithium calculated above is greater than the deposition of Li tolerance [Delta] C limit (i.e. ΔC y> ΔC limit). If the capacity deterioration rate [Delta] C y exceeds the allowable amount ΔC limit (Yes), the process proceeds to step S70, the stop using the battery. On the other hand, when the capacity deterioration rate [Delta] C y does not exceed the allowable amount ΔC limit (No), the process proceeds to step S80, and continues the use of the battery.

上記実施形態によると、電荷担体であるリチウムの析出による抵抗増加も考慮して、リチウムの析出に起因する容量劣化率ΔCが算出されるため、算出精度が向上する。そして、算出した容量劣化率ΔCに基づいて、誤判定することなく電池の使用可否判断をすることができる。 According to the above embodiment, in consideration of the resistance increase due to lithium precipitation is charge carriers, the capacity deterioration rate [Delta] C y due to deposition of lithium is calculated, calculation accuracy is improved. Then, based on the calculated capacity degradation rate [Delta] C y, it can be a use permission determination of the battery without erroneous determination.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

1 電池制御システム
10 リチウムイオン二次電池
20 負荷
30 ECU
1 Battery control system 10 Lithium ion secondary battery 20 Load 30 ECU

Claims (1)

電荷担体を可逆的に吸蔵および放出可能な電極活物質を備える二次電池の電池制御システムであって、
前記二次電池の温度を検出する温度センサと、
前記二次電池に出入りする電流を検出する電流センサと、
前記二次電池の電圧を検出する電圧センサと、
前記電荷担体の析出に起因する容量劣化率ΔCを算出する算出部と
を備え、
前記算出部は、
前記電流センサで検出された電流値と前記電圧センサで検出された電圧値とから該二次電池の抵抗増加率ΔRcurrentを測定するステップと、
前記温度センサによって検出された電池温度と各電池温度で保持された積算時間とを含む温度頻度分布情報に基づき、前記二次電池の材料摩耗による材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCを推定するステップと、
前記測定した抵抗増加率ΔRcurrentと前記推定した材料劣化後の抵抗増加率ΔRとを比較するステップと、
前記比較した抵抗増加率がΔR≧ΔRcurrentの関係を満たす場合、材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示す第1マップを用いて、前記推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCから、前記電荷担体の析出に起因する容量劣化率ΔCを算出するステップと、
前記比較した抵抗増加率がΔR<ΔRcurrentの関係を満たす場合、前記電荷担体の過度な析出が生じていると判断し、材料劣化後の抵抗増加率ΔRとトータル容量劣化率(ΔC+ΔC)との相関を示すマップであって前記第1マップとは特性が異なる第2マップを用いて、前記推定した材料劣化後の抵抗増加率ΔRおよび容量劣化率ΔCから、前記電荷担体の析出に起因する容量劣化率ΔCを算出するステップと
を実行するように構成されている、電池制御システム。
A battery control system for a secondary battery including an electrode active material capable of reversibly occluding and releasing charge carriers,
A temperature sensor for detecting a temperature of the secondary battery,
A current sensor for detecting a current flowing into and out of the secondary battery,
A voltage sensor for detecting a voltage of the secondary battery,
A calculation unit for calculating a capacity deterioration rate ΔC y due to the deposition of the charge carriers,
The calculation unit,
Measuring a resistance increase rate ΔR current of the secondary battery from a current value detected by the current sensor and a voltage value detected by the voltage sensor;
Based on temperature frequency distribution information including the battery temperature detected by the temperature sensor and the integrated time held at each battery temperature, the resistance increase rate ΔR x and the capacity deterioration rate after material deterioration due to material wear of the secondary battery Estimating ΔC x ;
Comparing the measured resistance increase rate ΔR current with the estimated resistance increase rate after material deterioration ΔR x ;
When the compared resistance increase rate satisfies the relationship of ΔR x ≧ ΔR current , using a first map showing a correlation between the resistance increase rate ΔR x after material deterioration and the total capacity deterioration rate (ΔC x + ΔC y ), Calculating a capacity deterioration rate ΔC y due to the deposition of the charge carriers from the estimated resistance increase rate ΔR x and the capacity deterioration rate ΔC x after the material deterioration;
If the compared resistance increase rate satisfies the relationship of ΔR x <ΔR current , it is determined that excessive deposition of the charge carrier has occurred, and the resistance increase rate ΔR x after material deterioration and the total capacity deterioration rate (ΔC x + ΔC y ) using a second map having different characteristics from the first map, based on the estimated resistance increase rate ΔR x and the capacity degradation rate ΔC x after the material deterioration. It is configured to perform the steps of calculating a capacity deterioration rate [Delta] C y due to precipitation of the carrier, the battery control system.
JP2016222622A 2016-11-15 2016-11-15 Battery control system Active JP6624458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016222622A JP6624458B2 (en) 2016-11-15 2016-11-15 Battery control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222622A JP6624458B2 (en) 2016-11-15 2016-11-15 Battery control system

Publications (2)

Publication Number Publication Date
JP2018081796A JP2018081796A (en) 2018-05-24
JP6624458B2 true JP6624458B2 (en) 2019-12-25

Family

ID=62198206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222622A Active JP6624458B2 (en) 2016-11-15 2016-11-15 Battery control system

Country Status (1)

Country Link
JP (1) JP6624458B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056528B2 (en) * 2018-11-26 2022-04-19 トヨタ自動車株式会社 Battery information processing system
JP7063255B2 (en) * 2018-12-06 2022-05-09 トヨタ自動車株式会社 Battery information processing system
CN110556595B (en) * 2019-08-21 2020-09-04 国网江苏省电力有限公司经济技术研究院 Method for predicting quality unbalance of lithium iron phosphate battery safety management system for energy storage
CN110762794B (en) * 2019-10-31 2021-07-20 广东美的制冷设备有限公司 Power supply voltage determining method and device, compressor and air conditioner
JP2022014361A (en) * 2020-07-06 2022-01-19 プライムアースEvエナジー株式会社 Method for determining deterioration in lithium ion secondary battery and device for determining deterioration in lithium ion secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544687B2 (en) * 2008-03-31 2014-07-09 株式会社豊田中央研究所 State detection method for lithium ion secondary battery and state detection apparatus for lithium ion secondary battery
JP5160523B2 (en) * 2009-11-04 2013-03-13 本田技研工業株式会社 Electric car
JP4888577B2 (en) * 2010-04-12 2012-02-29 トヨタ自動車株式会社 Non-aqueous electrolyte type lithium ion secondary battery system, method for determining lithium deposition in the system, and vehicle equipped with the system
JP5770563B2 (en) * 2011-08-23 2015-08-26 トヨタ自動車株式会社 Vehicle power supply system
JP6246539B2 (en) * 2012-09-20 2017-12-13 積水化学工業株式会社 Storage battery management device, storage battery management method and program
JP6040684B2 (en) * 2012-09-28 2016-12-07 富士通株式会社 Secondary battery state evaluation device, secondary battery state evaluation method, and secondary battery state evaluation program

Also Published As

Publication number Publication date
JP2018081796A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6624458B2 (en) Battery control system
US10254346B2 (en) SOC estimation device for secondary battery
EP2700966B1 (en) Apparatus and method for estimating battery state
US10012700B2 (en) Electric storage apparatus
JP5382208B2 (en) Deterioration estimation device and degradation estimation method for storage element
JP5790219B2 (en) Battery status detection device
US9634498B2 (en) Electrical storage system and equalizing method
EP2341597A1 (en) Failure diagnosis circuit, power supply device, and failure diagnosis method
JP3659068B2 (en) Battery management device
EP2058891B1 (en) Charging control device for a storage battery
US10490864B2 (en) Deterioration degree calculating method, control method, and control device for lithium ion secondary battery
CA2831568C (en) Method for determining remaining lifetime
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
WO2015011534A2 (en) Control device and control method for electrical storage device
JP2014003826A (en) Cell system and control method
JP2013168285A (en) Battery system and method for controlling charge/discharge of nonaqueous secondary battery
JP7326237B2 (en) Determination device, power storage system, determination method, and determination program for multiple batteries
JP2009037962A (en) Abnormality detection device and abnormality detection method of secondary battery
JP2020043084A (en) Electricity storage element management device, electricity storage element module, vehicle, and electricity storage element management method
JP6722387B2 (en) Life estimation device
JP2015061505A (en) Power storage system
CN108535653B (en) Storage battery internal resistance estimation method and device
CN113016099B (en) Battery control device
JP2018085278A (en) Control system
JP2018077960A (en) Charge control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R151 Written notification of patent or utility model registration

Ref document number: 6624458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151