JP6620923B2 - (Meth) acrylate resin and resist member - Google Patents

(Meth) acrylate resin and resist member Download PDF

Info

Publication number
JP6620923B2
JP6620923B2 JP2015114863A JP2015114863A JP6620923B2 JP 6620923 B2 JP6620923 B2 JP 6620923B2 JP 2015114863 A JP2015114863 A JP 2015114863A JP 2015114863 A JP2015114863 A JP 2015114863A JP 6620923 B2 JP6620923 B2 JP 6620923B2
Authority
JP
Japan
Prior art keywords
mass
parts
meth
acrylate resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015114863A
Other languages
Japanese (ja)
Other versions
JP2017002128A (en
Inventor
駿介 山田
駿介 山田
弘司 林
弘司 林
亀山 裕史
裕史 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2015114863A priority Critical patent/JP6620923B2/en
Publication of JP2017002128A publication Critical patent/JP2017002128A/en
Application granted granted Critical
Publication of JP6620923B2 publication Critical patent/JP6620923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、硬化物における耐熱性が高く、現像性にも優れる(メタ)アクリレート樹脂、これを含有する硬化性組成物とその硬化物、及びレジスト部材に関する。   The present invention relates to a (meth) acrylate resin having high heat resistance in a cured product and excellent developability, a curable composition containing the resin, a cured product thereof, and a resist member.

プリント配線基板用のソルダーレジストには、光硬化型アルカリ現像性樹脂組成物が広く用いられており、少ない露光量で硬化すること、アルカリ現像性に優れること、硬化物における耐熱性が高いこと、基材密着性に優れること、誘電特性に優れるなど、数多くの要求性能がある。これらの要求特性の中でも、特に基本的かつ重要な性能としては、はんだ実装に耐え得る高い耐熱性を有すること、光感度が高い、乾燥管理幅が広いなど、現像性に優れることが挙げられる。   For solder resists for printed wiring boards, photo-curable alkali-developable resin compositions are widely used, and are cured with a small exposure amount, excellent in alkali developability, high heat resistance in the cured product, There are many required performances such as excellent substrate adhesion and excellent dielectric properties. Among these required characteristics, particularly basic and important performances include high heat resistance that can withstand solder mounting, high photosensitivity, and excellent developability such as a wide drying control range.

このようなソルダーレジスト材料として、例えば、ビスフェノールFノボラック型エポキシ樹脂、アクリル酸、及び酸無水物を反応させて得られる感光性樹脂組成物が知られているが、プリント配線基板製造工程の効率化等により、耐熱性や現像性に対する要求レベルはますます高まっており、一層の性能向上が求められている(特許文献1参照)。   As such a solder resist material, for example, a photosensitive resin composition obtained by reacting bisphenol F novolac type epoxy resin, acrylic acid, and acid anhydride is known. As a result, the required level of heat resistance and developability is increasing, and further performance improvement is required (see Patent Document 1).

特開2004−133060号公報JP 2004-133060 A

したがって、本発明が解決しようとする課題は、硬化物における耐熱性が高く、現像性にも優れる(メタ)アクリレート樹脂、これを含有する硬化性組成物とその硬化物、及びレジスト部材を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a (meth) acrylate resin having high heat resistance in a cured product and excellent developability, a curable composition containing the same, a cured product thereof, and a resist member. There is.

本発明者らは、上記課題を解決するため鋭意検討を行った結果、フェノール性水酸基含有化合物の2核体を原料として得られるノボラック樹脂のポリグリシジルエーテルを不飽和モノカルボン酸及び酸無水物と反応させて得られる(メタ)アクリレート樹脂は、硬化物における耐熱性が高い上、レジスト材料として用いた場合の光感度に優れ、乾燥管理幅が広いなど、現像性に優れることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that polyglycidyl ether of a novolak resin obtained using a dinuclear compound of a phenolic hydroxyl group-containing compound as a raw material and an unsaturated monocarboxylic acid and an acid anhydride. The (meth) acrylate resin obtained by reaction is found to have excellent developability such as high heat resistance in a cured product, excellent photosensitivity when used as a resist material, and a wide dry management range. It came to complete.

即ち、本発明は、ノボラック型樹脂(a)のポリグリシジルエーテル(A)、不飽和モノカルボン酸(B)、及びジカルボン酸無水物(C)を反応させて得られる(メタ)アクリレート樹脂であって、前記ノボラック型樹脂(a)が、フェノール性水酸基含有化合物(x)の2核体とホルムアルデヒドとを重縮合させて得られるものであることを特徴とする(メタ)アクリレート樹脂に関する。   That is, the present invention is a (meth) acrylate resin obtained by reacting a polyglycidyl ether (A), an unsaturated monocarboxylic acid (B), and a dicarboxylic acid anhydride (C) of a novolak resin (a). The novolac resin (a) is obtained by polycondensation of a dinuclear phenolic hydroxyl group-containing compound (x) and formaldehyde.

本発明はさらに、前記(メタ)アクリレート樹脂と、光重合開始剤とを含有する硬化性組成物に関する。   The present invention further relates to a curable composition containing the (meth) acrylate resin and a photopolymerization initiator.

本発明はさらに、前記(メタ)アクリレート樹脂と、光重合開始剤とを含有するソルダーレジスト材料に関する。   The present invention further relates to a solder resist material containing the (meth) acrylate resin and a photopolymerization initiator.

本発明はさらに、前記硬化性組成物を硬化させてなる硬化物に関する。   The present invention further relates to a cured product obtained by curing the curable composition.

本発明はさらに、前記ソルダーレジスト材料を用いてなるレジスト部材に関する。   The present invention further relates to a resist member using the solder resist material.

本発明によれば、硬化物における耐熱性が高く、現像性にも優れる(メタ)アクリレート樹脂、これを含有する硬化性組成物とその硬化物、及びレジスト部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat resistance in hardened | cured material is high, and the (meth) acrylate resin which is excellent also in developability, the curable composition containing this, its hardened | cured material, and a resist member can be provided.

図1は、実施例1で得られた(メタ)アクリレート樹脂(1)のGPCチャート図である。1 is a GPC chart of the (meth) acrylate resin (1) obtained in Example 1. FIG.

以下、本発明を詳細に説明する。
本発明の(メタ)アクリレート樹脂は、ノボラック型樹脂(a)のポリグリシジルエーテル(A)、不飽和モノカルボン酸(B)、及びジカルボン酸無水物(C)を反応させて得られる(メタ)アクリレート樹脂であって、前記ノボラック型樹脂(a)が、フェノール性水酸基含有化合物(x)の2核体とホルムアルデヒドとを重縮合させて得られるものであることを特徴とする。
Hereinafter, the present invention will be described in detail.
The (meth) acrylate resin of the present invention is obtained by reacting the polyglycidyl ether (A) of the novolak resin (a), the unsaturated monocarboxylic acid (B), and the dicarboxylic acid anhydride (C) (meth). It is an acrylate resin, wherein the novolac resin (a) is obtained by polycondensation of a dinuclear phenolic hydroxyl group-containing compound (x) and formaldehyde.

通常、ノボラック樹脂はフェノール性水酸基含有化合物(x)とホルムアルデヒドとから直接製造されるものであるが、本願発明では先にフェノール性水酸基含有化合物(x)の2核体を製造し、これを更にホルムアルデヒドと反応させてノボラック樹脂を得る。このようにして得られるノボラック樹脂を原料として得られる本願発明の(メタ)アクリレート樹脂は、硬化物における耐熱性が高く、現像性にも優れる特徴を有する。   Normally, the novolak resin is directly produced from the phenolic hydroxyl group-containing compound (x) and formaldehyde. In the present invention, a binuclear body of the phenolic hydroxyl group-containing compound (x) is first produced, Reaction with formaldehyde gives a novolac resin. The (meth) acrylate resin of the present invention obtained by using the novolak resin thus obtained as a raw material has the characteristics of high heat resistance in the cured product and excellent developability.

更に、硬化物における耐熱性が高く、現像性にも優れる効果がより顕著となることから、本願発明の(メタ)アクリレート樹脂は、分子量分布(Mw/Mn)の値が4.20以下であることが好ましく、4.00以下があることがより好ましい。また、その重量平均分子量(Mw)は5,000〜10,000の範囲であることが好ましく、6,500〜8,000の範囲であることが特に好ましい。   Furthermore, since the effect of having high heat resistance in the cured product and excellent developability becomes more remarkable, the (meth) acrylate resin of the present invention has a molecular weight distribution (Mw / Mn) value of 4.20 or less. Preferably, there is 4.00 or less. The weight average molecular weight (Mw) is preferably in the range of 5,000 to 10,000, particularly preferably in the range of 6,500 to 8,000.

なお、本発明において分子量及び分子量分布は下記条件のゲルパーミエーションクロマトグラフ(GPC)にて測定される値である。   In the present invention, the molecular weight and molecular weight distribution are values measured by gel permeation chromatography (GPC) under the following conditions.

測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G5000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G5000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
Detector: RI (Differential refraction diameter)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.

(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).

本発明で用いる前記フェノール性水酸基含有化合物(x)は、例えば、フェノール、レゾルシン、ナフトール、ビフェノール、ビスフェノール、及びこれらの化合物の芳香核上の水素原子がアルキル基やアルコキシ基、ハロゲン原子等で置換された誘導体等が挙げられる。これらの化合物はそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。中でも、最終的に得られる(メタ)アクリレート樹脂において、硬化物における耐熱性が高く、現像性にも優れることから、フェノール性水酸基含有化合物としてフェノール、又はフェノールの芳香核上の水素原子がアルキル基やアルコキシ基、ハロゲン原子等で置換された誘導体を用いることが好ましい。   The phenolic hydroxyl group-containing compound (x) used in the present invention is, for example, phenol, resorcin, naphthol, biphenol, bisphenol, and hydrogen atoms on the aromatic nucleus of these compounds are substituted with alkyl groups, alkoxy groups, halogen atoms, etc. And the like. These compounds may be used alone or in combination of two or more. Among them, in the finally obtained (meth) acrylate resin, since the heat resistance in the cured product is high and the developability is also excellent, phenol or a hydrogen atom on the aromatic nucleus of the phenol is an alkyl group as a phenolic hydroxyl group-containing compound. It is preferable to use a derivative substituted with an alkoxy group, a halogen atom or the like.

前記フェノール性水酸基含有化合物(x)の2核体は、例えば、前記フェノール性水酸基含有化合物(x)とホルムアルデヒドとを、適当な酸触媒の存在下、100〜200℃の温度条件で反応させて得られる。前記ホルムアルデヒドはホルマリンやパラアルデヒドの状態で用いても良い。また、両者の反応割合は、フェノール性水酸基含有化合物(x)1モルに対し、ホルムアルデヒドを0.01〜0.7モルの範囲で用いることが好ましい。反応は必要に応じて有機溶剤中で行っても良い。ここで用いる有機溶剤は、前記温度条件下で使用可能な有機溶剤であれば特に限定されるものではなく、具体的には、メチルセロソルブ、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトン等が挙げられる。これら有機溶剤を用いる場合には反応原料の総質量に対し10〜500質量%の範囲で用いることが好ましい。反応終了後は、水洗又は中和処理を行った後、減圧加熱条件下で未反応原料や有機溶剤、副生成物を留去し、2核体成分の含有量をGPCチャート図の面積比から算出される値で95%以上とすることが好ましい。   The dinuclear body of the phenolic hydroxyl group-containing compound (x) is obtained, for example, by reacting the phenolic hydroxyl group-containing compound (x) and formaldehyde in the presence of a suitable acid catalyst at a temperature of 100 to 200 ° C. can get. The formaldehyde may be used in the form of formalin or paraaldehyde. Moreover, as for the reaction ratio of both, it is preferable to use formaldehyde in the range of 0.01-0.7 mol with respect to 1 mol of phenolic hydroxyl-containing compounds (x). You may perform reaction in an organic solvent as needed. The organic solvent used here is not particularly limited as long as it is an organic solvent that can be used under the above temperature conditions. Specific examples include methyl cellosolve, ethyl cellosolve, toluene, xylene, and methyl isobutyl ketone. . When using these organic solvents, it is preferable to use in the range of 10-500 mass% with respect to the total mass of a reaction raw material. After completion of the reaction, after washing with water or neutralization, unreacted raw materials, organic solvents and by-products are distilled off under reduced pressure heating conditions, and the content of the binuclear component is determined from the area ratio of the GPC chart. The calculated value is preferably 95% or more.

また、フェノール性水酸基含有化合物(x)がフェノールである場合、その2核体は所謂ビスフェノールFである。したがって、フェノール性水酸基含有化合物(x)の2核体として、市販のビスフェノールFのうち2核体純度の高いものを用いても良い。具体的には、2核体の含有量がGPCチャート図の面積比から算出される値で95%以上であることが好ましい。   Further, when the phenolic hydroxyl group-containing compound (x) is phenol, the dinuclear body is so-called bisphenol F. Therefore, as the dinuclear body of the phenolic hydroxyl group-containing compound (x), a commercially available bisphenol F having a high binuclear purity may be used. Specifically, the content of the binuclear body is preferably 95% or more as a value calculated from the area ratio of the GPC chart.

次いで、前記フェノール性水酸基含有化合物(x)の2核体から前記ノボラック型樹脂(a)を得る方法は、例えば、前記フェノール性水酸基含有化合物(x)の2核体とホルムアルデヒドとを、適当な酸触媒の存在下、90〜200℃の温度条件で反応させる方法が挙げられる。前記ホルムアルデヒドはホルマリンやパラアルデヒドの状態で用いても良い。また、両者の反応割合は、フェノール性水酸基含有化合物(x)の2核体1モルに対し、ホルムアルデヒドを0.01〜0.9モルの範囲で用いることが好ましい。反応は必要に応じて有機溶剤中で行っても良い。ここで用いる有機溶剤は、前記温度条件下で使用可能な有機溶剤であれば特に限定されるものではなく、具体的には、水、ブタノール、メチルセロソルブ、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトン等が挙げられる。これら有機溶剤を用いる場合には反応原料の総質量に対し10〜500質量%の範囲で用いることが好ましい。反応終了後は、水洗又は中和処理を行った後、減圧加熱条件下で未反応原料や有機溶剤、副生成物を留去し、目的のノボラック型樹脂(a)を得ることができる。   Subsequently, the method for obtaining the novolak-type resin (a) from the dinuclear body of the phenolic hydroxyl group-containing compound (x) is, for example, by appropriately combining the binuclear body of the phenolic hydroxyl group-containing compound (x) with formaldehyde. The method of making it react on the temperature conditions of 90-200 degreeC in presence of an acid catalyst is mentioned. The formaldehyde may be used in the form of formalin or paraaldehyde. Moreover, as for the reaction ratio of both, it is preferable to use formaldehyde in the range of 0.01-0.9 mol with respect to 1 mol of dinuclear bodies of a phenolic hydroxyl group containing compound (x). You may perform reaction in an organic solvent as needed. The organic solvent used here is not particularly limited as long as it is an organic solvent that can be used under the above temperature conditions, and specifically, water, butanol, methyl cellosolve, ethyl cellosolve, toluene, xylene, methyl isobutyl ketone. Etc. When using these organic solvents, it is preferable to use in the range of 10-500 mass% with respect to the total mass of a reaction raw material. After completion of the reaction, washing with water or neutralization is performed, and then unreacted raw materials, organic solvents and by-products are distilled off under reduced pressure and heating conditions to obtain the desired novolak resin (a).

前記ノボラック型樹脂(a)のポリグリシジルエーテル(A)は、例えば、前記ノボラック型樹脂(a)とエピクロルヒドリンとを、塩基触媒の存在下、20〜120℃の温度範囲で反応させる方法により製造することができる。反応は必要に応じて有機溶媒中で行っても良く、例えば、プロピルアルコールやブタノール等のアルコール化合物、メチルエチルケトン、シクロヘキサノン等のケトン化合物、セロソルブ溶媒等が挙げられる。両者の反応割合は、前記ノボラック型樹脂(a)が有するフェノール性水酸基のモル数に対し、エピハロヒドリンを2〜10モルとなる割合であることが好ましい。また、塩基性触媒は例えばアルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられ、固体として用いても、水溶液として用いても良い。塩基触媒を水溶液として使用する場合は、水とエピハロヒドリンとが共沸する温度・圧力条件とし、水及びエピハロヒドリンを留出させ、分液後エピハロヒドリンを反応系中に戻す方法でもよい。塩基性触媒の添加量はフェノール性水酸基のモル数に対し0.9〜2.0モルの範囲で用いることが好ましく、一括添加でも分割添加でも良い。反応終了後は、生成物を水洗した後、加熱減圧条件下で未反応のエピハロヒドリンや有機溶媒等を留去し、目的のポリグリシジルエーテル(A)を得ることができる。   The polyglycidyl ether (A) of the novolac resin (a) is produced, for example, by a method in which the novolac resin (a) and epichlorohydrin are reacted in the temperature range of 20 to 120 ° C. in the presence of a base catalyst. be able to. The reaction may be performed in an organic solvent as necessary, and examples thereof include alcohol compounds such as propyl alcohol and butanol, ketone compounds such as methyl ethyl ketone and cyclohexanone, and cellosolve solvents. The reaction ratio between the two is preferably such that the epihalohydrin is 2 to 10 moles with respect to the number of moles of the phenolic hydroxyl group of the novolak resin (a). Examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. The basic catalyst may be used as a solid or an aqueous solution. When the base catalyst is used as an aqueous solution, it may be a temperature / pressure condition in which water and epihalohydrin are azeotropically distilled, water and epihalohydrin are distilled off, and after separation, the epihalohydrin is returned to the reaction system. The addition amount of the basic catalyst is preferably in the range of 0.9 to 2.0 moles relative to the number of moles of the phenolic hydroxyl group, and may be added all at once or in divided portions. After completion of the reaction, the product is washed with water, and then unreacted epihalohydrin, organic solvent, and the like are distilled off under heating and reduced pressure conditions to obtain the desired polyglycidyl ether (A).

本発明で用いる不飽和モノカルボン酸(B)は、一分子中に(メタ)アクリロイル基とカルボキシ基とを有する化合物が挙げられ、例えば、アクリル酸や、メタクリル酸が挙げられる。不飽和モノカルボン酸(B)はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。   Examples of the unsaturated monocarboxylic acid (B) used in the present invention include compounds having a (meth) acryloyl group and a carboxy group in one molecule, and examples thereof include acrylic acid and methacrylic acid. The unsaturated monocarboxylic acid (B) may be used alone or in combination of two or more.

本発明で用いるジカルボン酸無水物(C)は、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸化合物の酸無水物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、硬化物における耐熱性に優れる(メタ)アクリレート樹脂となることから、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸等、分子構造中に環状構造を有する化合物の酸無水物が好ましい。また、現像性に優れる(メタ)アクリレート樹脂となることから、コハク酸無水物が好ましい。   Examples of the dicarboxylic acid anhydride (C) used in the present invention include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, and phthalic acid. And acid anhydrides of dicarboxylic acid compounds such as isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and methylhexahydrophthalic acid. These may be used alone or in combination of two or more. Above all, since it becomes a (meth) acrylate resin with excellent heat resistance in cured products, cyclic structures in the molecular structure such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, etc. An acid anhydride of a compound having Moreover, since it becomes (meth) acrylate resin excellent in developability, a succinic anhydride is preferable.

本発明において、(メタ)アクリレート樹脂の各原料成分の反応方法は特に限定されないが、例えば、前記ノボラック型樹脂(a)のポリグリシジルエーテル(A)と不飽和モノカルボン酸(B)とを反応させて中間体を得、次いで、前記ジカルボン酸無水物(C)を反応させる方法が挙げられる。   In the present invention, the reaction method of each raw material component of the (meth) acrylate resin is not particularly limited. For example, the polyglycidyl ether (A) of the novolak resin (a) is reacted with the unsaturated monocarboxylic acid (B). To obtain an intermediate, and then reacting the dicarboxylic acid anhydride (C).

前記ノボラック型樹脂(a)のポリグリシジルエーテル(A)と不飽和モノカルボン酸(B)との反応は、例えば、有機溶媒中、エステル化反応触媒と、酸化防止剤、重合禁止剤との存在下で、100〜150℃の温度範囲で5〜12時間程度反応させる方法が挙げられる。また、両者の反応割合は、前記ポリグリシジルエーテル(A)中のエポキシ基1モルに対し、前記不飽和モノカルボン酸(B)を0.8〜1.2モルの範囲で用いることが好ましい。   The reaction between the polyglycidyl ether (A) of the novolak resin (a) and the unsaturated monocarboxylic acid (B) is, for example, the presence of an esterification reaction catalyst, an antioxidant, and a polymerization inhibitor in an organic solvent. Below, the method of making it react for about 5 to 12 hours in the temperature range of 100-150 degreeC is mentioned. Moreover, as for the reaction ratio of both, it is preferable to use the said unsaturated monocarboxylic acid (B) in 0.8-1.2 mol with respect to 1 mol of epoxy groups in the said polyglycidyl ether (A).

次いで、得られた中間体と前記ジカルボン酸無水物(C)との反応は、例えば、得られた中間体を含有する反応系中にジカルボン酸無水物(C)を添加し、90〜120℃の温度範囲で1〜5時間程度反応させる方法が挙げられる。ジカルボン酸無水物(C)の反応割合は、前記ポリグリシジルエーテル(A)中のエポキシ基1モルに対し0.2〜0.9モルの範囲であることが好ましい。   Next, the reaction between the obtained intermediate and the dicarboxylic acid anhydride (C) is performed, for example, by adding the dicarboxylic acid anhydride (C) to the reaction system containing the obtained intermediate, and 90 to 120 ° C. The method of making it react for about 1 to 5 hours in this temperature range is mentioned. The reaction rate of the dicarboxylic acid anhydride (C) is preferably in the range of 0.2 to 0.9 mol with respect to 1 mol of the epoxy group in the polyglycidyl ether (A).

本発明の硬化性組成物は、前記(メタ)アクリレート樹脂と光重合開始剤とを含有する。前記光重合開始剤は、例えば、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシル−フェニルケトン、2−メチル−2−モルホリノ(4−チオメチルフェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノンの如きアセトフェノン系;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテルの如きベンゾイン類;2,4,6−トリメチルベンゾインジフェニルホスフィンオキシドの如きアシルホスフィンオキシド系;ベンジル、メチルフェニルグリオキシエステル等の分子内結合開裂型光重合開始剤や、ベンゾフェノン、o−ベンゾイル安息香酸メチル−4−フェニルベンゾフェノン、4,4′−ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4−ベンゾイル−4′−メチル−ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3′,4,4′−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,3′−ジメチル−4−メトキシベンゾフェノンの如きベンゾフェノン系;2−イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントンの如きチオキサントン系;ミヒラ−ケトン、4,4′−ジエチルアミノベンゾフェノンの如きアミノベンゾフェノン系;10−ブチル−2−クロロアクリドン、2−エチルアンスラキノン、9,10−フェナンスレンキノン、カンファーキノン等の分子内水素引き抜き型光重合開始剤が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。   The curable composition of this invention contains the said (meth) acrylate resin and a photoinitiator. Examples of the photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methyl. Propan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propane Acetophenone series such as -1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone; benzoins such as benzoin, benzoin methyl ether, benzoin isopropyl ether; 2,4,6-trimethyl Of benzoin diphenylphosphine oxide Acyl phosphine oxides; intramolecular bond cleavage photopolymerization initiators such as benzyl and methylphenylglyoxyesters, benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4'-dichlorobenzophenone, hydroxybenzophenone 4-benzoyl-4'-methyl-diphenyl sulfide, acrylated benzophenone, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone Benzophenone series; thioxanthone series such as 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; Michler-ketone, 4,4'-diethylaminobenzo Such amino benzophenone Enon; 10-butyl-2-chloro acridone, 2-ethyl anthraquinone, 9,10-phenanthrenequinone, and intramolecular hydrogen abstraction type photopolymerization initiator such as camphor quinone. These may be used alone or in combination of two or more.

これら光重合開始剤の市販品は、例えば、「イルガキュア−184」、「イルガキュア−149」、「イルガキュア−261」、「イルガキュア−369」、「イルガキュア−500」、「イルガキュア−651」、「イルガキュア−754」、「イルガキュア−784」、「イルガキュア−819」、「イルガキュア−907」、「イルガキュア−1116」、「イルガキュア−1664」、「イルガキュア−1700」、「イルガキュア−1800」、「イルガキュア−1850」、「イルガキュア−2959」、「イルガキュア−4043」、「ダロキュア−1173」(チバスペシャルティーケミカルズ社製)、「ルシリンTPO」(ビーエーエスエフ社製)、「カヤキュア−DETX」、「カヤキュア−MBP」、「カヤキュア−DMBI」、「カヤキュア−EPA」、「カヤキュア−OA」(日本化薬株式会社製)、「バイキュア−10」、「バイキュア−55」(ストウファ・ケミカル社製)、「トリゴナルP1」(アクゾ社製)、「サンドレイ1000」(サンドズ社製)、「ディープ」(アプジョン社製)、「クオンタキュア−PDO」、「クオンタキュア−ITX」、「クオンタキュア−EPD」(ワードブレンキンソップ社製)等が挙げられる。   Commercially available products of these photopolymerization initiators include, for example, “Irgacure-184”, “Irgacure-149”, “Irgacure-261”, “Irgacure-369”, “Irgacure-500”, “Irgacure-651”, “Irgacure”. -754 "," Irgacure-784 "," Irgacure-819 "," Irgacure-907 "," Irgacure-1116 "," Irgacure-1664 "," Irgacure-1700 "," Irgacure-1800 "," Irgacure-1850 " ”,“ Irgacure-2959 ”,“ Irgacure-4043 ”,“ Darocur-1173 ”(manufactured by Ciba Specialty Chemicals),“ Lucirin TPO ”(manufactured by BASF),“ Kayacure-DETX ”,“ Kayacure-MBP ” , "Kayacure- “MBI”, “Kayacure-EPA”, “Kayacure-OA” (manufactured by Nippon Kayaku Co., Ltd.), “Bicure-10”, “Bicure-55” (manufactured by Stofa Chemical), “Trigonal P1” (manufactured by Akzo) ), “Sandray 1000” (Sands), “Deep” (Apjon), “QuantaCure-PDO”, “QuantaCure-ITX”, “QuantaCure-EPD” (WordBlenkinsop), etc. Is mentioned.

前記光重合開始剤の添加量は、例えば、硬化性組成物100質量部に対し、1〜20質量部の範囲で用いる。   The addition amount of the said photoinitiator is used in the range of 1-20 mass parts with respect to 100 mass parts of curable compositions, for example.

本発明の硬化性組成物は、この他、前記(メタ)アクリレート樹脂以外のその他の(メタ)アクリレート化合物や、光増感剤、硬化促進剤、有機溶媒、非反応性樹脂、カーボンナノファイバーやセルロースナノファイバー等の繊維状材料、シリカやジルコニア等の無機微粒子、ポリマー微粒子、カップリング剤、粘着付与剤、消泡剤、レベリング剤、密着助剤、離型剤、滑剤、紫外線吸収剤、酸化防止剤、熱安定剤、可塑剤、難燃剤、顔料、染料等の添加剤成分を含んでいてもよい。   In addition to this, the curable composition of the present invention includes other (meth) acrylate compounds other than the (meth) acrylate resin, photosensitizers, curing accelerators, organic solvents, non-reactive resins, carbon nanofibers, Fibrous materials such as cellulose nanofibers, inorganic fine particles such as silica and zirconia, polymer fine particles, coupling agents, tackifiers, antifoaming agents, leveling agents, adhesion aids, mold release agents, lubricants, UV absorbers, oxidation Additive components such as an inhibitor, a heat stabilizer, a plasticizer, a flame retardant, a pigment, and a dye may be included.

本発明の(メタ)アクリレート樹脂は、硬化物における耐熱性が高く、また、現像性にも優れることから、ソルダーレジスト材料として好適に用いることができる。本発明のソルダーレジスト材料は、前記(メタ)アクリレート樹脂や光重合開始剤の他、硬化剤、硬化促進剤、有機溶媒等の各成分を含んでなる。   Since the (meth) acrylate resin of the present invention has high heat resistance in a cured product and is excellent in developability, it can be suitably used as a solder resist material. The solder resist material of the present invention comprises components such as a curing agent, a curing accelerator, and an organic solvent in addition to the (meth) acrylate resin and the photopolymerization initiator.

前記硬化剤は、前記(メタ)アクリレート樹脂中のカルボキシ基と反応し得る官能基を有するものであれば特に制限されず、例えば、エポキシ樹脂が挙げられる。ここで用いるエポキシ樹脂は、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらのエポキシ樹脂の中でも、硬化物における耐熱性に優れることから、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂が好ましく、軟化点が50〜120℃の範囲であるものが特に好ましい。   The said hardening | curing agent will not be restrict | limited especially if it has a functional group which can react with the carboxy group in the said (meth) acrylate resin, For example, an epoxy resin is mentioned. Examples of the epoxy resin used here include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin. Bisphenol novolak type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol Examples include addition reaction type epoxy resins. These may be used alone or in combination of two or more. Among these epoxy resins, phenolic novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol novolac type epoxy resins, naphthol novolak type epoxy resins, naphthol-phenol co-condensed novolak type epoxy resins are excellent in heat resistance in cured products. Novolak type epoxy resins such as naphthol-cresol co-condensed novolak type epoxy resins are preferred, and those having a softening point in the range of 50 to 120 ° C. are particularly preferred.

前記硬化促進剤は、前記硬化剤の硬化反応を促進するものであり、前記硬化剤としてエポキシ樹脂を用いる場合には、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。硬化促進剤の添加量は、例えば、前記硬化剤100質量部に対し1〜10質量部の範囲で用いる。   The curing accelerator accelerates the curing reaction of the curing agent. When an epoxy resin is used as the curing agent, a phosphorus compound, a tertiary amine, an imidazole, an organic acid metal salt, a Lewis acid, Examples include amine complex salts. These may be used alone or in combination of two or more. The addition amount of a hardening accelerator is used in 1-10 mass parts with respect to 100 mass parts of said hardening | curing agents, for example.

前記有機溶媒は、前記(メタ)アクリレート樹脂や硬化剤等の各種成分を溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、シクロヘキサノン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、メチルセロソルブ、セロソルブアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチルカルビトールアセテート等が挙げられる。   The organic solvent is not particularly limited as long as it can dissolve various components such as the (meth) acrylate resin and the curing agent. For example, acetone, methyl ethyl ketone, cyclohexanone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, methyl Examples include cellosolve, cellosolve acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, and ethyl carbitol acetate.

本発明のソルダーレジスト材料を用いてレジスト部材を得る方法は、例えば、前記ソルダーレジスト材料を基材上に塗布し、60〜100℃程度の温度範囲で有機溶剤を揮発乾燥させた後、所望のパターンが形成されたフォトマスクを通して紫外線や電子線等にて露光させ、アルカリ水溶液にて未露光部を現像し、更に140〜180℃程度の温度範囲で加熱硬化させる方法が挙げられる。   A method for obtaining a resist member using the solder resist material of the present invention is, for example, by applying the solder resist material on a substrate and evaporating and drying an organic solvent in a temperature range of about 60 to 100 ° C. Examples include a method in which an exposed portion is exposed to ultraviolet rays, an electron beam, or the like through a photomask on which a pattern is formed, an unexposed portion is developed with an alkaline aqueous solution, and further heated and cured in a temperature range of about 140 to 180 ° C.

以下に、実施例および比較例をもって本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例で得た(メタ)アクリレート樹脂の分子量及び分子量分布は、下記条件のゲルパーミエーションクロマトグラフ(GPC)にて測定した。   The molecular weight and molecular weight distribution of the (meth) acrylate resin obtained in the examples were measured by gel permeation chromatograph (GPC) under the following conditions.

測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G5000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “HXL-L” manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G5000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
Detector: RI (Differential refraction diameter)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.

(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).

実施例で得た(メタ)アクリレート樹脂の酸価はJIS K 0070(1992)の中和滴定法にて測定した。   The acid value of the (meth) acrylate resin obtained in the examples was measured by the neutralization titration method of JIS K 0070 (1992).

製造例1 ポリグリシジルエーテル(A−1)の製造
温度計、滴下ロート、冷却管、分留管、窒素導入管、撹拌機を取り付けたフラスコに、イオン交換水180質量部、ビスフェノールF(群栄化学工業株式会社製「BPF−HG」GPCチャート図の面積比から算出される純度99%)600質量部を入れて溶解させ、85℃まで昇温した。次いで、シュウ酸1.8質量部を仕込み、窒素を吹き込みながら100℃に昇温した。42%ホルムアルデヒド水溶液160.7質量部を30分かけて滴下し、3時間反応を継続した。2時間かけて102℃まで昇温させ、更に2時間かけて180℃まで昇温した。加熱減圧条件下で水蒸気を吹き込むことによって余剰のフェノールを除去し、ノボラック型樹脂(a−1)を得た。
Production Example 1 Production of polyglycidyl ether (A-1) A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, a nitrogen inlet tube, and a stirrer was charged with 180 parts by mass of ion-exchanged water, bisphenol F (Gundei) Chemicals Co., Ltd. “BPF-HG” (99% purity calculated from area ratio of GPC chart) 99 parts by mass) were added and dissolved, and the temperature was raised to 85 ° C. Next, 1.8 parts by mass of oxalic acid was charged, and the temperature was raised to 100 ° C. while blowing nitrogen. 160.7 parts by mass of 42% aqueous formaldehyde solution was added dropwise over 30 minutes, and the reaction was continued for 3 hours. The temperature was raised to 102 ° C. over 2 hours, and further raised to 180 ° C. over 2 hours. Excess phenol was removed by blowing water vapor under heating and decompression conditions to obtain a novolac resin (a-1).

窒素導入管、冷却管、温度計、および撹拌機をセットしたフラスコに、先で得たノボラック型樹脂(a−1)105質量部、エピクロルヒドリン463質量部、n−ブタノール139質量部、及びテトラエチルベンジルアンモニウムクロライド2質量部を仕込み、溶解させた。65℃に昇温した後、共沸する圧力まで減圧し、49%水酸化ナトリウム水溶液90質量部を5時間かけて滴下した。滴下後、共沸による留出分をディーンスタークトラップで分離し、水層を除去して油層のみを反応系中に戻しながら30分間反応を行った。未反応のエピクロルヒドリンを減圧蒸留により留出させ、得られた粗生成物にメチルエチルケトン63質量部とn−ブタノール190質量部を加えて溶解したのち、10%水酸化ナトリウム水溶液10質量部を添加して80℃まで昇温し、2時間反応させた。反応物を水161質量部で水洗し、洗浄液のPHが中性を示すまで同様の水洗処理を3回行った。共沸による脱水操作を行い、精密濾過後、溶媒を減圧条件下で留去して、常温半固形のポリグリシジルエーテル(A−1)を得た。ポリグリシジルエーテル(A−1)のエポキシ当量は186g/当量であった。   In a flask equipped with a nitrogen introduction tube, a cooling tube, a thermometer, and a stirrer, 105 parts by mass of the previously obtained novolak resin (a-1), 463 parts by mass of epichlorohydrin, 139 parts by mass of n-butanol, and tetraethylbenzyl 2 parts by mass of ammonium chloride was charged and dissolved. After raising the temperature to 65 ° C., the pressure was reduced to an azeotropic pressure, and 90 parts by mass of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. After dropping, the azeotropic distillate was separated with a Dean-Stark trap, the aqueous layer was removed, and the reaction was carried out for 30 minutes while returning only the oil layer to the reaction system. Unreacted epichlorohydrin is distilled by distillation under reduced pressure, and after 63 parts by mass of methyl ethyl ketone and 190 parts by mass of n-butanol are dissolved in the resulting crude product, 10 parts by mass of a 10% aqueous sodium hydroxide solution are added. The temperature was raised to 80 ° C. and reacted for 2 hours. The reaction product was washed with 161 parts by mass of water, and the same water washing treatment was performed three times until the pH of the washing liquid became neutral. A dehydration operation by azeotropy was performed, and after microfiltration, the solvent was distilled off under reduced pressure to obtain a normal temperature semi-solid polyglycidyl ether (A-1). The epoxy equivalent of polyglycidyl ether (A-1) was 186 g / equivalent.

製造例2 ポリグリシジルエーテル(A−2)の製造
温度計、滴下ロート、冷却管、分留管、窒素導入管、撹拌機を取り付けたフラスコに、イオン交換水180質量部、ビスフェノールF(本州化学工業株式会社製「BPF−D」GPCチャート図の面積比から算出される純度98%)600質量部を加えて溶解させ、85℃まで昇温した。シュウ酸1.8質量部を仕込み、窒素を吹き込みながら100℃に昇温した。42%ホルムアルデヒド水溶液160.7質量部を30分かけて滴下し、3時間反応を継続した。2時間かけて102℃まで昇温させ、更に2時間かけて180℃まで昇温した。加熱減圧条件下で水蒸気を吹き込むことによって余剰のフェノールを除去し、ノボラック型樹脂(a−2)を得た。
Production Example 2 Production of polyglycidyl ether (A-2) 180 parts by mass of ion-exchanged water, bisphenol F (Honshu Chemical Co., Ltd.) in a flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, a nitrogen inlet tube, and a stirrer 600 parts by mass) (purity 98% calculated from area ratio of “BPF-D” GPC chart made by Kogyo Co., Ltd.) was added and dissolved, and the temperature was raised to 85 ° C. 1.8 parts by mass of oxalic acid was charged, and the temperature was raised to 100 ° C. while blowing nitrogen. 160.7 parts by mass of 42% aqueous formaldehyde solution was added dropwise over 30 minutes, and the reaction was continued for 3 hours. The temperature was raised to 102 ° C. over 2 hours, and further raised to 180 ° C. over 2 hours. Excess phenol was removed by blowing water vapor under heating and decompression conditions to obtain a novolac resin (a-2).

窒素導入管、冷却管、温度計、および撹拌機をセットしたフラスコに、先で得たノボラック型樹脂(a−1)105質量部、エピクロルヒドリン463質量部、n−ブタノール139質量部、及びテトラエチルベンジルアンモニウムクロライド2質量部を仕込み、溶解させた。65℃に昇温した後、共沸する圧力まで減圧し、49%水酸化ナトリウム水溶液90質量部を5時間かけて滴下した。滴下後、共沸による留出分をディーンスタークトラップで分離し、水層を除去して油層のみを反応系中に戻しながら30分間反応を行った。未反応のエピクロルヒドリンを減圧蒸留により留出させ、得られた粗生成物にメチルエチルケトン63質量部とn−ブタノール190質量部を加えて溶解したのち、10%水酸化ナトリウム水溶液10質量部を添加して80℃まで昇温し、2時間反応させた。反応物を水161質量部で水洗し、洗浄液のPHが中性を示すまで同様の水洗処理を3回行った。共沸による脱水操作を行い、精密濾過後、溶媒を減圧条件下で留去して、常温半固形のポリグリシジルエーテル(A−2)を得た。ポリグリシジルエーテル(A−2)のエポキシ当量は186g/当量であった。   In a flask equipped with a nitrogen introduction tube, a cooling tube, a thermometer, and a stirrer, 105 parts by mass of the previously obtained novolak resin (a-1), 463 parts by mass of epichlorohydrin, 139 parts by mass of n-butanol, and tetraethylbenzyl 2 parts by mass of ammonium chloride was charged and dissolved. After raising the temperature to 65 ° C., the pressure was reduced to an azeotropic pressure, and 90 parts by mass of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. After dropping, the azeotropic distillate was separated with a Dean-Stark trap, the aqueous layer was removed, and the reaction was carried out for 30 minutes while returning only the oil layer to the reaction system. Unreacted epichlorohydrin is distilled by distillation under reduced pressure, and after 63 parts by mass of methyl ethyl ketone and 190 parts by mass of n-butanol are dissolved in the resulting crude product, 10 parts by mass of a 10% aqueous sodium hydroxide solution are added. The temperature was raised to 80 ° C. and reacted for 2 hours. The reaction product was washed with 161 parts by mass of water, and the same water washing treatment was performed three times until the pH of the washing liquid became neutral. A dehydration operation by azeotropy was performed, and after microfiltration, the solvent was distilled off under reduced pressure conditions to obtain a room temperature semi-solid polyglycidyl ether (A-2). The epoxy equivalent of polyglycidyl ether (A-2) was 186 g / equivalent.

実施例1 (メタ)アクリレート樹脂(1)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート130質量部を入れ、製造例1で得たポリグリシジルエーテル(A−1)372質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン1.8質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸148質量部、トリフェニルフォスフィン2.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。その後、エチルカルビトールアセテート159質量部、テトラヒドロ無水フタル酸109質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(1)溶液を得た。(メタ)アクリレート樹脂(1)の酸価は65mgKOH/g、数平均分子量(Mn)は1,838、重量平均分子量(Mw)は7,173、分子量分布(Mw/Mn)は3.90であった。
Example 1 Production of (Meth) acrylate Resin (1) Solution In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 130 parts by mass of ethyl carbitol acetate was added, and the polyglycidyl ether obtained in Production Example 1 ( A-1) After dissolving 372 parts by mass and adding 1.8 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor, 148 parts by mass of acrylic acid, triphenylphosphine 2 .6 parts by mass was added, and the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Thereafter, 159 parts by mass of ethyl carbitol acetate and 109 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (1) solution. The acid value of the (meth) acrylate resin (1) is 65 mgKOH / g, the number average molecular weight (Mn) is 1,838, the weight average molecular weight (Mw) is 7,173, and the molecular weight distribution (Mw / Mn) is 3.90. there were.

実施例2 (メタ)アクリレート樹脂(2)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート130質量部を入れ、製造例1で得たポリグリシジルエーテル(A−1)372質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン1.8質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸148質量部、トリフェニルフォスフィン2.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。その後、エチルカルビトールアセテート159質量部、テトラヒドロ無水フタル酸155質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(2)溶液を得た。(メタ)アクリレート樹脂(2)の酸価は85mgKOH/g、数平均分子量(Mn)は1,840、重量平均分子量(Mw)は7,286、分子量分布(Mw/Mn)は3.96であった。
Example 2 Production of (Meth) acrylate Resin (2) Solution In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 130 parts by mass of ethyl carbitol acetate was added, and the polyglycidyl ether obtained in Production Example 1 ( A-1) After dissolving 372 parts by mass and adding 1.8 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor, 148 parts by mass of acrylic acid, triphenylphosphine 2 .6 parts by mass was added, and the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Thereafter, 159 parts by mass of ethyl carbitol acetate and 155 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (2) solution. The acid value of the (meth) acrylate resin (2) is 85 mgKOH / g, the number average molecular weight (Mn) is 1,840, the weight average molecular weight (Mw) is 7,286, and the molecular weight distribution (Mw / Mn) is 3.96. there were.

実施例3 (メタ)アクリレート樹脂(3)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート130質量部を入れ、製造例2で得たポリグリシジルエーテル(A−2)372質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン1.8質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸148質量部、トリフェニルフォスフィン2.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。その後、エチルカルビトールアセテート159質量部、テトラヒドロ無水フタル酸109質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(3)溶液を得た。(メタ)アクリレート樹脂(3)の酸価は65mgKOH/g、数平均分子量(Mn)は1,822、重量平均分子量(Mw)は7,154、分子量分布(Mw/Mn)は3.93であった。
Example 3 Production of (Meth) acrylate Resin (3) Solution In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 130 parts by mass of ethyl carbitol acetate was added, and the polyglycidyl ether obtained in Production Example 2 ( A-2) After dissolving 372 parts by mass and adding 1.8 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor, 148 parts by mass of acrylic acid, triphenylphosphine 2 .6 parts by mass was added, and the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Thereafter, 159 parts by mass of ethyl carbitol acetate and 109 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (3) solution. The acid value of the (meth) acrylate resin (3) is 65 mgKOH / g, the number average molecular weight (Mn) is 1,822, the weight average molecular weight (Mw) is 7,154, and the molecular weight distribution (Mw / Mn) is 3.93. there were.

実施例4 (メタ)アクリレート樹脂(4)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート130質量部を入れ、製造例2で得たポリグリシジルエーテル(A−2)372質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン1.8質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸148質量部、トリフェニルフォスフィン2.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。その後、エチルカルビトールアセテート159質量部、テトラヒドロ無水フタル酸155質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(4)溶液を得た。(メタ)アクリレート樹脂(4)の酸価は85mgKOH/g、数平均分子量(Mn)は1,833、重量平均分子量(Mw)は7,295、分子量分布(Mw/Mn)は3.98であった。
Example 4 Production of (Meth) acrylate Resin (4) Solution A flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 130 parts by mass of ethyl carbitol acetate, and the polyglycidyl ether obtained in Production Example 2 ( A-2) After dissolving 372 parts by mass and adding 1.8 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor, 148 parts by mass of acrylic acid, triphenylphosphine 2 .6 parts by mass was added, and the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Thereafter, 159 parts by mass of ethyl carbitol acetate and 155 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (4) solution. The acid value of the (meth) acrylate resin (4) is 85 mgKOH / g, the number average molecular weight (Mn) is 1,833, the weight average molecular weight (Mw) is 7,295, and the molecular weight distribution (Mw / Mn) is 3.98. there were.

実施例5 (メタ)アクリレート樹脂(5)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート130質量部を入れ、製造例1で得たポリグリシジルエーテル(A−1)372質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン1.8質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸148質量部、トリフェニルフォスフィン2.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。その後、エチルカルビトールアセテート122質量部、無水コハク酸67質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(5)溶液を得た。(メタ)アクリレート樹脂(5)の酸価は65mgKOH/g、数平均分子量(Mn)は1,814、重量平均分子量(Mw)は6,983、分子量分布(Mw/Mn)は3.85であった。
Example 5 Production of (Meth) acrylate Resin (5) Solution In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 130 parts by mass of ethyl carbitol acetate was added, and the polyglycidyl ether obtained in Production Example 1 ( A-1) After dissolving 372 parts by mass and adding 1.8 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor, 148 parts by mass of acrylic acid, triphenylphosphine 2 .6 parts by mass was added, and the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Thereafter, 122 parts by mass of ethyl carbitol acetate and 67 parts by mass of succinic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (5) solution. The acid value of the (meth) acrylate resin (5) is 65 mgKOH / g, the number average molecular weight (Mn) is 1,814, the weight average molecular weight (Mw) is 6,983, and the molecular weight distribution (Mw / Mn) is 3.85. there were.

実施例6 (メタ)アクリレート樹脂(6)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート130質量部を入れ、製造例1で得たポリグリシジルエーテル(A−1)372質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン1.8質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸148質量部、トリフェニルフォスフィン2.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。その後、エチルカルビトールアセテート132質量部、無水コハク酸92質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(6)溶液を得た。(メタ)アクリレート樹脂(6)の酸価は85mgKOH/g、数平均分子量(Mn)は1,819、重量平均分子量(Mw)は7,095、分子量分布(Mw/Mn)は3.90であった。
Example 6 Production of (Meth) acrylate Resin (6) Solution In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 130 parts by mass of ethyl carbitol acetate was added, and the polyglycidyl ether obtained in Production Example 1 ( A-1) After dissolving 372 parts by mass and adding 1.8 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor, 148 parts by mass of acrylic acid, triphenylphosphine 2 .6 parts by mass was added, and the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Thereafter, 132 parts by mass of ethyl carbitol acetate and 92 parts by mass of succinic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (6) solution. The acid value of the (meth) acrylate resin (6) is 85 mgKOH / g, the number average molecular weight (Mn) is 1,819, the weight average molecular weight (Mw) is 7,095, and the molecular weight distribution (Mw / Mn) is 3.90. there were.

実施例7 (メタ)アクリレート樹脂(7)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート130質量部を入れ、製造例2で得たポリグリシジルエーテル(A−2)372質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン1.8質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸148質量部、トリフェニルフォスフィン2.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。その後、エチルカルビトールアセテート122質量部、無水コハク酸67質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(7)溶液を得た。(メタ)アクリレート樹脂(7)の酸価は65mgKOH/g、数平均分子量(Mn)は1,798、重量平均分子量(Mw)は6,976、分子量分布(Mw/Mn)は3.88であった。
Example 7 Production of (Meth) acrylate Resin (7) Solution In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 130 parts by mass of ethyl carbitol acetate was added, and the polyglycidyl ether obtained in Production Example 2 ( A-2) After dissolving 372 parts by mass and adding 1.8 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor, 148 parts by mass of acrylic acid, triphenylphosphine 2 .6 parts by mass was added, and the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Thereafter, 122 parts by mass of ethyl carbitol acetate and 67 parts by mass of succinic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (7) solution. The acid value of the (meth) acrylate resin (7) is 65 mgKOH / g, the number average molecular weight (Mn) is 1,798, the weight average molecular weight (Mw) is 6,976, and the molecular weight distribution (Mw / Mn) is 3.88. there were.

実施例8 (メタ)アクリレート樹脂(8)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート130質量部を入れ、製造例2で得たポリグリシジルエーテル(A−2)372質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン1.8質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸148質量部、トリフェニルフォスフィン2.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行った。その後、エチルカルビトールアセテート132質量部、無水コハク酸92質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(8)溶液を得た。(メタ)アクリレート樹脂(8)の酸価は85mgKOH/g、数平均分子量(Mn)は1,796、重量平均分子量(Mw)は7,077、分子量分布(Mw/Mn)は3.94であった。
Example 8 Production of (Meth) acrylate Resin (8) Solution In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 130 parts by mass of ethyl carbitol acetate was added, and the polyglycidyl ether obtained in Production Example 2 ( A-2) After dissolving 372 parts by mass and adding 1.8 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor, 148 parts by mass of acrylic acid, triphenylphosphine 2 .6 parts by mass was added, and the esterification reaction was carried out at 120 ° C. for 10 hours while blowing air. Thereafter, 132 parts by mass of ethyl carbitol acetate and 92 parts by mass of succinic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (8) solution. The acid value of the (meth) acrylate resin (8) is 85 mgKOH / g, the number average molecular weight (Mn) is 1,796, the weight average molecular weight (Mw) is 7,077, and the molecular weight distribution (Mw / Mn) is 3.94. there were.

比較製造例1 (メタ)アクリレート樹脂(1’)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート101質量部を入れ、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N−680」エポキシ当量214g/当量)428質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン4質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸144質量部、トリフェニルフォスフィン1.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行なった。その後、エチルカルビトールアセテート311質量部、テトラヒドロ無水フタル酸160質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(1’)溶液を得た。(メタ)アクリレート樹脂(1’)の酸価は85mgKOH/g、数平均分子量(Mn)は2,200、重量平均分子量(Mw)は9,437、分子量分布(Mw/Mn)は4.29であった。
Comparative Production Example 1 Production of (Meth) acrylate Resin (1 ′) Solution In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 101 parts by mass of ethyl carbitol acetate was added, and an ortho-cresol novolac epoxy resin (DIC) "EPICLON N-680" (epoxy equivalent 214g / equivalent) manufactured by KK, 428 parts by mass, 4 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor were added, and then acrylic acid 144 parts by mass and 1.6 parts by mass of triphenylphosphine were added, and an esterification reaction was performed at 120 ° C. for 10 hours while blowing air. Thereafter, 311 parts by mass of ethyl carbitol acetate and 160 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (1 ′) solution. The acid value of the (meth) acrylate resin (1 ′) is 85 mgKOH / g, the number average molecular weight (Mn) is 2,200, the weight average molecular weight (Mw) is 9,437, and the molecular weight distribution (Mw / Mn) is 4.29. Met.

比較製造例2 (メタ)アクリレート樹脂(2’)溶液の製造
温度計、攪拌器、及び還流冷却器を備えたフラスコに、エチルカルビトールアセテート130質量部を入れ、ビスフェノールFノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N−570」エポキシ当量187g/当量)374質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン2質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸144質量部、トリフェニルフォスフィン1.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行なった。その後、エチルカルビトールアセテート208質量部、テトラヒドロ無水フタル酸109質量部を加え110℃で2.5時間反応させ、(メタ)アクリレート樹脂(2’)溶液を得た。(メタ)アクリレート樹脂(2’)の酸価は65mgKOH/g、数平均分子量(Mn)は1,853、重量平均分子量(Mw)は7,868、分子量分布(Mw/Mn)は4.25であった。
Comparative Production Example 2 Production of (Meth) acrylate Resin (2 ′) Solution In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 130 parts by mass of ethyl carbitol acetate was added, and bisphenol F novolac epoxy resin (DIC) "EPICLON N-570" (Epoxy equivalent: 187 g / equivalent), 374 parts by mass, 2 parts by mass of dibutylhydroxytoluene as an antioxidant and 0.4 parts by mass of methoquinone as a thermal polymerization inhibitor were added, and then acrylic acid 144 parts by mass and 1.6 parts by mass of triphenylphosphine were added, and an esterification reaction was performed at 120 ° C. for 10 hours while blowing air. Thereafter, 208 parts by mass of ethyl carbitol acetate and 109 parts by mass of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain a (meth) acrylate resin (2 ′) solution. The acid value of the (meth) acrylate resin (2 ′) is 65 mg KOH / g, the number average molecular weight (Mn) is 1,853, the weight average molecular weight (Mw) is 7,868, and the molecular weight distribution (Mw / Mn) is 4.25. Met.

実施例9〜16、比較例1、2
実施例1〜8及び比較製造例1、2で得た(メタ)アクリレート樹脂溶液を用いて下記要領で硬化性組成物及び硬化物を調整し、各種評価試験を行った。結果を表1に示す。
Examples 9 to 16, Comparative Examples 1 and 2
Using the (meth) acrylate resin solutions obtained in Examples 1 to 8 and Comparative Production Examples 1 and 2, curable compositions and cured products were prepared in the following manner, and various evaluation tests were performed. The results are shown in Table 1.

硬化物の耐熱性評価
[硬化性組成物の調整]
(メタ)アクリレート樹脂溶液100質量部、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製『EPICLON N−680』)24質量部、光重合開始剤として2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン(BASF社製『イルガキュア907』)5.0質量部、硬化促進剤として2−エチル−4−メチルイミダゾール0.5質量部、有機溶剤としてエチルカルビトールアセテート13質量部を配合し、ロールミルにより混錬して硬化性組成物を得た。
Evaluation of heat resistance of cured product [adjustment of curable composition]
100 parts by weight of a (meth) acrylate resin solution, 24 parts by weight of an orthocresol novolak type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation) as a curing agent, and 2-methyl-1- (4-methylthio as a photopolymerization initiator Phenyl) -2-morpholinopropan-1-one ("IRGACURE 907" manufactured by BASF) 5.0 parts by mass, 0.5 part by mass of 2-ethyl-4-methylimidazole as a curing accelerator, and ethylcarby as an organic solvent 13 parts by mass of tall acetate was blended and kneaded by a roll mill to obtain a curable composition.

[硬化物の作成]
先で得た硬化性組成物をガラス基板上に厚さ50μmとなるように塗布し、80℃で30分間乾燥させた。次いで、メタルハライドランプを用いて750mJ/cmの紫外線を照射した後、150℃で1時間加熱し、硬化物を得た。
[Creation of cured product]
The curable composition obtained above was applied on a glass substrate to a thickness of 50 μm and dried at 80 ° C. for 30 minutes. Subsequently, after irradiating 750 mJ / cm < 2 > of ultraviolet-rays using the metal halide lamp, it heated at 150 degreeC for 1 hour and obtained hardened | cured material.

[ガラス転移温度の測定]
硬化物をガラス基板から剥離し、6mm×36mmの試験片を切り出し、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、引張り法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。
[Measurement of glass transition temperature]
The cured product was peeled off from the glass substrate, and a 6 mm × 36 mm test piece was cut out. Minutes), the temperature at which the change in elastic modulus was the maximum (the tan δ change rate was the largest) was evaluated as the glass transition temperature.

光感度及び乾燥管理幅の評価
[硬化性組成物の調整]
(メタ)アクリレート樹脂溶液100質量部、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製『EPICLON N−680』)24質量部、光重合開始剤として2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン(BASF社製『イルガキュア907』)5.0質量部、硬化促進剤として2−エチル−4−メチルイミダゾール0.5質量部、有機溶剤としてエチルカルビトールアセテート13質量部、顔料としてフタロシアニングリーン0.65質量部を配合し、ロールミルにより混錬して硬化性組成物を得た。
Evaluation of photosensitivity and drying control width [adjustment of curable composition]
100 parts by weight of a (meth) acrylate resin solution, 24 parts by weight of an orthocresol novolak type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation) as a curing agent, and 2-methyl-1- (4-methylthio as a photopolymerization initiator Phenyl) -2-morpholinopropan-1-one ("IRGACURE 907" manufactured by BASF) 5.0 parts by mass, 0.5 part by mass of 2-ethyl-4-methylimidazole as a curing accelerator, and ethylcarby as an organic solvent 13 parts by mass of tall acetate and 0.65 parts by mass of phthalocyanine green as a pigment were blended and kneaded by a roll mill to obtain a curable composition.

[光感度の測定]
先で得た硬化性組成物をガラス基板上に厚さ50μmとなるように塗布し、80℃で30分乾燥させた。次いで、コダック社製のステップタブレットNo.2を介し、メタルハライドランプを用いて750mJ/cmの紫外線を照射した。これを1質量%の炭酸ナトリウム水溶液で180秒現像し、残存した段数で評価した。残存段数が多いほど光感度が高い。
[Measurement of light sensitivity]
The curable composition obtained above was applied on a glass substrate to a thickness of 50 μm and dried at 80 ° C. for 30 minutes. Next, Step Tablet No. 2 was irradiated with ultraviolet rays of 750 mJ / cm 2 using a metal halide lamp. This was developed with a 1% by mass aqueous sodium carbonate solution for 180 seconds and evaluated by the number of remaining steps. The greater the number of remaining stages, the higher the photosensitivity.

[乾燥管理幅の測定]
先で得た硬化性組成物をガラス基板上に厚さ50μmとなるように塗布し、80℃での乾燥時間がそれぞれ30分、40分、50分、60分、70分、80分、90分、100分であるサンプルを作成した。これらを1質量%の炭酸ナトリウム水溶液で180秒現像し、残渣が残らなかったサンプルの80℃乾燥時間を乾燥管理幅として評価した。乾燥管理幅が長いほどアルカリ現像性に優れる。
[Measurement of drying control width]
The curable composition obtained above was applied on a glass substrate so as to have a thickness of 50 μm, and the drying time at 80 ° C. was 30 minutes, 40 minutes, 50 minutes, 60 minutes, 70 minutes, 80 minutes, 90 respectively. A sample that was 100 minutes was created. These were developed with a 1% by weight aqueous sodium carbonate solution for 180 seconds, and the 80 ° C. drying time of the sample in which no residue remained was evaluated as the dry control width. The longer the drying control width, the better the alkali developability.

Figure 0006620923
Figure 0006620923

Claims (5)

ノボラック型樹脂(a)のポリグリシジルエーテル(A)、不飽和モノカルボン酸(B)、及びジカルボン酸無水物(C)を反応させて得られる(メタ)アクリレート樹脂であって、
前記ノボラック型樹脂(a)が、フェノール性水酸基含有化合物(x)の2核体とホルムアルデヒドとを重縮合させて得られるものであり、
前記フェノール性水酸基含有化合物(x)の2核体のGPCチャート図の面積比から算出される純度が、95%以上であり、
前記フェノール性水酸基含有化合物(x)がフェノールであり、
前記ポリグリシジルエーテル(A)と前記不飽和モノカルボン酸(B)との反応割合が、前記ポリグリシジルエーテル(A)中のエポキシ基1モルに対し、前記不飽和モノカルボン酸(B)が0.8〜1.2モルの範囲であり、
前記(メタ)アクリレート樹脂の分子量分布(Mw/Mn)の値が、4.0以下であることを特徴とする(メタ)アクリレート樹脂。
A (meth) acrylate resin obtained by reacting the polyglycidyl ether (A) of the novolac resin (a), the unsaturated monocarboxylic acid (B), and the dicarboxylic anhydride (C),
The novolac resin (a) is obtained by polycondensation of a phenolic hydroxyl group-containing compound (x) dinuclear body and formaldehyde,
The purity calculated from the area ratio of the GPC chart of the binuclear body of the phenolic hydroxyl group-containing compound (x) is 95% or more,
The phenolic hydroxyl group-containing compound (x) is phenol,
The reaction ratio of the polyglycidyl ether (A) and the unsaturated monocarboxylic acid (B) is such that the unsaturated monocarboxylic acid (B) is 0 with respect to 1 mol of the epoxy group in the polyglycidyl ether (A). In the range of 8 to 1.2 moles,
The (meth) acrylate resin is characterized in that the molecular weight distribution (Mw / Mn) of the (meth) acrylate resin is 4.0 or less.
請求項1記載の(メタ)アクリレート樹脂と、光重合開始剤とを含有する硬化性組成物。 The claims 1 Symbol placement of (meth) acrylate resin, a curable composition containing a photopolymerization initiator. 請求項1記載の(メタ)アクリレート樹脂と、光重合開始剤とを含有するソルダーレジスト材料。 Solder resist material containing the claims 1 Symbol placement of (meth) acrylate resin, and a photopolymerization initiator. 請求項記載の硬化性組成物を硬化して得られる硬化物。 A cured product obtained by curing the curable composition according to claim 2 . 請求項記載のソルダーレジスト材料を用いてなるレジスト部材。 A resist member comprising the solder resist material according to claim 3 .
JP2015114863A 2015-06-05 2015-06-05 (Meth) acrylate resin and resist member Active JP6620923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114863A JP6620923B2 (en) 2015-06-05 2015-06-05 (Meth) acrylate resin and resist member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114863A JP6620923B2 (en) 2015-06-05 2015-06-05 (Meth) acrylate resin and resist member

Publications (2)

Publication Number Publication Date
JP2017002128A JP2017002128A (en) 2017-01-05
JP6620923B2 true JP6620923B2 (en) 2019-12-18

Family

ID=57751448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114863A Active JP6620923B2 (en) 2015-06-05 2015-06-05 (Meth) acrylate resin and resist member

Country Status (1)

Country Link
JP (1) JP6620923B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6789193B2 (en) * 2017-08-09 2020-11-25 太陽インキ製造株式会社 Photosensitive resin compositions, dry films, cured products, and printed wiring boards
TWI784077B (en) * 2017-11-17 2022-11-21 日商迪愛生股份有限公司 Epoxy (meth)acrylate resin composition, curable resin composition, cured product, and method for producing epoxy (meth)acrylate resin composition
CN114730129A (en) * 2020-02-06 2022-07-08 昭和电工株式会社 Photosensitive resin composition and image display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194916A (en) * 1982-05-10 1983-11-14 Sumitomo Bakelite Co Ltd Epoxy resin composition
JP4127010B2 (en) * 2002-10-08 2008-07-30 日立化成工業株式会社 Photosensitive resin composition, photosensitive element using the same, resist pattern forming method and printed wiring board
JP4665444B2 (en) * 2004-06-24 2011-04-06 Dic株式会社 Production method of epoxy resin
CN110058490A (en) * 2011-08-10 2019-07-26 日立化成株式会社 The manufacturing method of photosensitive polymer combination, photosensitive film, permanent resist and permanent resist
WO2014136897A1 (en) * 2013-03-07 2014-09-12 日立化成株式会社 Photosensitive resin composition, dry film using same, printed wiring board, and method for producing printed wiring board

Also Published As

Publication number Publication date
JP2017002128A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6620923B2 (en) (Meth) acrylate resin and resist member
JP6324517B2 (en) Unsaturated group-containing alkali developable resin and solder resist resin material
KR102425174B1 (en) Acid group-containing (meth)acrylate resin and resin material for solder resist
JP6562249B2 (en) (Meth) acrylate resin and resist member
CN115551915A (en) Polymerizable unsaturated group-containing alkali-soluble resin and method for producing same, and photosensitive resin composition and cured product thereof
JP6557155B2 (en) Curable resin and method for producing the same
CN110461900B (en) Acid group-containing (meth) acrylate resin and resin material for solder resist
JP6660575B2 (en) Acid group-containing (meth) acrylate resin and resin material for solder resist
JP6476558B2 (en) Acid group-containing (meth) acrylate resin, method for producing acid group-containing (meth) acrylate resin, curable resin material, cured product thereof, and resist material
JP6819104B2 (en) Unsaturated group-containing alkaline developable resin and resin material for solder resist
JP6597164B2 (en) Photocurable alkali-developable resin composition and cured product thereof
JP6828410B2 (en) Acid group-containing (meth) acrylate resin and resin material for solder resist
KR102516535B1 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
KR102673645B1 (en) Alkali-soluble resin containing an unsaturated group, a photosensitive resin composition containing it as an essential ingredient, and its cured product
JP7183761B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
CN115551914A (en) Epoxy acrylate resin, alkali-soluble resin, resin composition containing same, and cured product thereof
JP6721858B2 (en) Unsaturated group-containing alkali developable resin and resin material for solder resist
JP7228103B2 (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP6406537B2 (en) Method for producing phenol novolac resin, method for producing insulating cured product, and method for producing resist material
JP6476559B2 (en) Acid group-containing (meth) acrylate resin, method for producing acid group-containing (meth) acrylate resin, curable resin material, cured product thereof, and resist material
JP7228093B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7264004B2 (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7215105B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7264003B2 (en) Epoxy (meth)acrylate resin composition, curable resin composition, cured product and article
JP5737054B2 (en) Photosensitive resin composition and cured product thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191106

R151 Written notification of patent or utility model registration

Ref document number: 6620923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250