JP6619978B2 - Chemical conversion treatment agent, film manufacturing method, film-coated metal material and painted metal material - Google Patents

Chemical conversion treatment agent, film manufacturing method, film-coated metal material and painted metal material Download PDF

Info

Publication number
JP6619978B2
JP6619978B2 JP2015175128A JP2015175128A JP6619978B2 JP 6619978 B2 JP6619978 B2 JP 6619978B2 JP 2015175128 A JP2015175128 A JP 2015175128A JP 2015175128 A JP2015175128 A JP 2015175128A JP 6619978 B2 JP6619978 B2 JP 6619978B2
Authority
JP
Japan
Prior art keywords
chemical conversion
film
metal material
conversion treatment
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015175128A
Other languages
Japanese (ja)
Other versions
JP2017048448A (en
Inventor
淳 高見
淳 高見
英一 福士
英一 福士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2015175128A priority Critical patent/JP6619978B2/en
Priority to PCT/JP2016/073727 priority patent/WO2017038430A1/en
Priority to TW105127240A priority patent/TW201715083A/en
Publication of JP2017048448A publication Critical patent/JP2017048448A/en
Application granted granted Critical
Publication of JP6619978B2 publication Critical patent/JP6619978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment

Description

金属材料の表面に化成皮膜を形成させる化成処理剤、該化成処理剤を用いて金属材料の表面に化成皮膜を製造する方法及び該方法によって製造された化成皮膜を表面に有する皮膜付き金属材料、並びに該化成皮膜上に塗膜を有する塗装金属材料に関する。   A chemical conversion treatment agent for forming a chemical conversion film on the surface of a metal material, a method for producing a chemical conversion film on the surface of a metal material using the chemical conversion treatment agent, and a metal material with a film having a chemical conversion film produced by the method on the surface, The present invention also relates to a coated metal material having a coating film on the chemical conversion film.

従来、化成処理剤として、クロメート系、リン酸亜鉛系、ジルコニウム系等の処理剤が用いられているが、近年、ビスマスを含む処理剤が提案されている。例えば、特許文献1には、Biイオン10〜1000ppm及び3価Feイオン100〜2000ppmを含有し、[2×Biイオン濃度+3価Feイオン濃度]が500〜3000ppmであり、さらにBi及びFeを可溶化するに充分なキレート剤及び界面活性剤を含有するpH3〜14の水溶液である金属表面処理液が提案されている。この技術によれば、表面清浄化処理(脱脂)と塗装下地処理とを同一工程で行うことができることに加え、当該処理後の塗装工程において優れた塗膜密着性及び耐食性を達成することができる。   Conventionally, chromate-based, zinc phosphate-based, zirconium-based and other treatment agents have been used as chemical conversion treatment agents. Recently, treatment agents containing bismuth have been proposed. For example, Patent Document 1 contains Bi ions of 10 to 1000 ppm and trivalent Fe ions of 100 to 2000 ppm, [2 × Bi ion concentration + trivalent Fe ion concentration] is 500 to 3000 ppm, and Bi and Fe are acceptable. A metal surface treatment solution that is an aqueous solution having a pH of 3 to 14 containing a chelating agent and a surfactant sufficient for solubilization has been proposed. According to this technique, in addition to being able to perform surface cleaning treatment (degreasing) and coating ground treatment in the same process, excellent coating film adhesion and corrosion resistance can be achieved in the coating process after the treatment. .

特開2011−26661号公報JP 2011-26661 A

本発明は、塗装付き廻り性、耐食性及び塗装密着性に優れた化成皮膜を金属材料の表面に形成可能である化成処理剤、該化成処理剤を用いて金属材料の表面に化成皮膜を製造する方法、及び該方法によって製造された化成皮膜を表面に有する皮膜付き金属材料、並びに該化成皮膜上に塗膜を有する塗装金属材料を提供することを目的とする。   The present invention relates to a chemical conversion treatment agent capable of forming a chemical conversion film excellent in revolving properties, corrosion resistance and paint adhesion on the surface of a metal material, and to produce a chemical conversion film on the surface of the metal material using the chemical conversion treatment agent. It is an object of the present invention to provide a method, a coated metal material having a chemical conversion film produced by the method on its surface, and a coated metal material having a coating film on the chemical conversion film.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、溶解型ビスマス成分と、スルホン酸基を有する溶解型有機酸成分と、カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分と、を含有する化成処理剤が、塗装付き廻り性、耐食性及び塗装密着性に優れた化成皮膜を形成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a soluble bismuth component, a soluble organic acid component having a sulfonic acid group, and at least one functional group selected from a carboxyl group and a hydroxyl group. The present inventors have found that a chemical conversion treatment agent containing a soluble organic compound component having a group can form a chemical conversion film having excellent coating coverage, corrosion resistance, and coating adhesion, thereby completing the present invention.

すなわち、本発明は、
(1)金属材料の表面に皮膜を形成させる化成処理剤であって、溶解型ビスマス成分と、スルホン酸基を有する溶解型有機酸成分と、カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分と、を含む化成処理剤;
(2)金属材料の表面に皮膜を製造する方法であって、上記(1)に記載の化成処理剤を前記表面に接触させる接触工程を含む方法;
(3)前記化成処理剤を接触させた前記表面に塗装を行う塗装工程をさらに含む上記(2)に記載の方法;
(4)上記(2)に記載の接触工程によって得られる化成皮膜を前記表面に有する皮膜付き金属材料;
(5)上記(4)に記載の皮膜付き金属材料の表面上に、上記(3)に記載の塗装工程によって形成される塗膜を有する塗装金属材料;
等である。
That is, the present invention
(1) A chemical conversion treatment agent for forming a film on the surface of a metal material, wherein at least one functional group selected from a soluble bismuth component, a soluble organic acid component having a sulfonic acid group, a carboxyl group and a hydroxyl group A chemical conversion treating agent comprising: a dissolved organic compound component having:
(2) A method for producing a film on the surface of a metal material, the method comprising a contact step of bringing the chemical conversion treatment agent according to (1) into contact with the surface;
(3) The method according to the above (2), further comprising a coating step of coating the surface contacted with the chemical conversion treatment agent;
(4) A film-coated metal material having a chemical conversion film obtained by the contact step according to (2) on the surface;
(5) A coated metal material having a coating film formed by the coating process according to (3) above on the surface of the coated metal material according to (4) above;
Etc.

本発明によれば、塗装付き廻り性、耐食性及び塗装密着性に優れた化成皮膜を金属材料の表面に形成することができる化成処理剤、該化成処理剤を用いて金属材料の表面に化成皮膜を製造する方法、及び該方法によって製造された化成皮膜を表面に有する皮膜付き金属材料、並びに該化成皮膜上に塗膜を有する塗装金属材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the chemical conversion treatment agent which can form on the surface of a metal material the chemical conversion film excellent in the revolving property with coating, corrosion resistance, and coating adhesion, The chemical conversion film on the surface of a metal material using this chemical conversion treatment agent , A coated metal material having a chemical conversion film produced by the method on the surface, and a coated metal material having a coating film on the chemical conversion film.

本発明における化成処理剤は、
溶解型ビスマス成分と、
スルホン酸基を有する溶解型有機酸成分と、
カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分と、
を含む化成処理剤である。以下、当該化成処理剤(成分、組成、液性)、当該化成処理剤の製造方法、当該化成処理剤の使用方法等、順に説明する。
The chemical conversion treatment agent in the present invention,
A dissolved bismuth component;
A soluble organic acid component having a sulfonic acid group;
A dissolved organic compound component having at least one functional group selected from a carboxyl group and a hydroxyl group;
It is a chemical conversion treatment agent containing. Hereinafter, the said chemical conversion treatment agent (component, composition, liquid property), the manufacturing method of the said chemical conversion treatment agent, the usage method of the said chemical conversion treatment agent, etc. are demonstrated in order.

≪化成処理剤≫
<成分>
(溶解型ビスマス成分)
本発明に係る溶解型ビスマス成分は、剤中で溶解した形態であればどのような形態でもよく、例えば、ビスマスイオンの形態、他の成分(典型的にはスルホン酸基を有する溶解型有機酸成分、及び/又は、カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分)と錯体を形成した形態、を挙げることができる。
≪Chemical conversion treatment agent≫
<Ingredient>
(Dissolved bismuth component)
The dissolved bismuth component according to the present invention may be in any form as long as it is dissolved in the agent. For example, bismuth ion form, other components (typically dissolved organic acid having a sulfonic acid group) The form which formed the complex with the component and / or the soluble type organic compound component which has at least 1 functional group selected from a carboxyl group and a hydroxyl group can be mentioned.

(スルホン酸基を有する溶解型有機酸成分)
本発明に係るスルホン酸基を有する溶解型有機酸成分は、剤中で溶解した形態であればどのような形態でもよく、例えば、非解離の状態、イオンの形態、他の成分(典型的には溶解型ビスマス成分)と錯体や可溶性化合物(例えばエステル等)を形成した形態、を挙げることができる。
(Dissolved organic acid component having a sulfonic acid group)
The dissolved organic acid component having a sulfonic acid group according to the present invention may be in any form as long as it is dissolved in the agent, for example, non-dissociated state, ionic form, other components (typically May be a form in which a complex or soluble compound (such as an ester) is formed with a soluble bismuth component).

(カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分)
本発明に係るカルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分は、剤中で溶解した形態であればどのような形態でもよく、例えば、非解離の状態、イオンの形態、他の成分(典型的には溶解型ビスマス成分)と錯体や可溶性化合物(例えばエステル等)を形成した形態、を挙げることができる。
(Dissolved organic compound component having at least one functional group selected from a carboxyl group and a hydroxyl group)
The dissolved organic compound component having at least one functional group selected from a carboxyl group and a hydroxyl group according to the present invention may be in any form as long as it is dissolved in the agent, for example, non-dissociated state, ion And a form in which a complex or a soluble compound (for example, ester) is formed with another component (typically, a dissolved bismuth component).

<液性>
本発明に係る化成処理剤のpHは、特に制限されるものではないが、例えば、2.0以上9.0以下であることが好ましく、2.5以上6.5以下であることがより好ましい。pHが当該範囲内であると、より優れた塗装付き廻り性、耐食性及び塗装密着性を有する皮膜を形成可能となる。ここで、本明細書でのpHは、pHメーターを用い、25℃での剤について測定した値である。
<Liquid>
The pH of the chemical conversion treatment agent according to the present invention is not particularly limited, but is preferably 2.0 or more and 9.0 or less, and more preferably 2.5 or more and 6.5 or less. . When the pH is within the above range, it is possible to form a film having better coating-around property, corrosion resistance, and coating adhesion. Here, pH in this specification is the value measured about the agent in 25 degreeC using the pH meter.

<長期液安定性>
本発明における化成処理剤は、長期間(少なくとも30日間)、液が安定で分解しないことが好ましい。特に塩化物イオンや硫酸イオンは、一般的な水道水や地下水にも含まれるため、これらが混入しても、液が分解しないで長期間安定であることが望ましい。
<Long-term liquid stability>
It is preferable that the chemical conversion treatment agent in the present invention is stable and does not decompose for a long period (at least 30 days). In particular, since chloride ions and sulfate ions are also contained in general tap water and groundwater, it is desirable that even if they are mixed, the liquid does not decompose and is stable for a long period of time.

上記液安定性を確認する手法として、処理剤に塩化物イオン及び硫酸イオンを添加し、一定時間(少なくとも30日間)経過後、液性状(例えば、沈殿物が生じていないか目視で確認。)を評価する手法(耐アニオン成分評価試験)が適している。   As a method for confirming the liquid stability, chloride ions and sulfate ions are added to the treatment agent, and after a certain period of time (at least 30 days), the liquid properties (for example, visually confirm that precipitates are not formed). A method for evaluating the above (an anion-resistant component evaluation test) is suitable.

≪化成処理剤の製造方法≫
本発明に係る化成処理剤は、例えば、溶解型ビスマス成分源と、スルホン酸基を有する溶解型有機酸成分源と、カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分源と、を液体媒体に配合することにより製造可能であるが、必要に応じて、他の成分を配合してもよい。
≪Method for producing chemical conversion treatment agent≫
The chemical conversion treating agent according to the present invention includes, for example, a soluble bismuth component source, a soluble organic acid component source having a sulfonic acid group, and a soluble organic compound having at least one functional group selected from a carboxyl group and a hydroxyl group Although it can manufacture by mix | blending a component source with a liquid medium, you may mix | blend another component as needed.

<原料>
(溶解型ビスマス源)
溶解型ビスマス源として、ビスマス原子を含有するものであれば特に制限されるものではなく、例えば、酸化ビスマス、水酸化ビスマス、塩化ビスマス、塩化酸化ビスマス、硫酸ビスマス、メタンスルホン酸ビスマス、エタンスルホン酸ビスマス、よう化ビスマス、硫化ビスマス、テルル酸ビスマス、チタン酸ビスマス、オキシ硝酸ビスマス、硝酸ビスマス等の、化成処理剤中でビスマスイオン又はビスマス錯イオンを形成し得るものが挙げられる。なお、これら成分は複数用いてもよい。
<Raw material>
(Dissolved bismuth source)
The dissolved bismuth source is not particularly limited as long as it contains bismuth atoms. For example, bismuth oxide, bismuth hydroxide, bismuth chloride, bismuth chloride oxide, bismuth sulfate, bismuth methanesulfonate, ethanesulfonic acid Examples thereof include bismuth ions, bismuth iodide, bismuth sulfide, bismuth tellurate, bismuth titanate, bismuth oxynitrate, and bismuth nitrate that can form bismuth ions or bismuth complex ions in the chemical conversion treating agent. A plurality of these components may be used.

(スルホン酸基を有する溶解型有機酸成分源)
スルホン酸基を有する溶解型有機酸成分源としては、当該成分が水溶性である場合にはそのまま、当該成分が水難溶性又は不溶性である場合には水溶性塩{当該塩を形成するカチオン性対イオンとしては、例えば、アルカリ金属(ナトリウム、カリウム、リチウム等)イオン、アルカリ土類金属(マグネシウム、カルシウム、バリウム等)イオン等の金属イオン、アンモニウムイオン等を挙げることができる}を用いればよい。スルホン酸基を有する溶解型有機酸成分源としては、1以上のスルホン酸基を含有するものであれば特に制限されるものではなく、例えば、アルキルスルホン酸、ヒドロキシアルキルスルホン酸、フルオロメタンスルホン酸、トリフルオロメタンスルホン酸、ビニルスルホン酸、タウリン等の低分子量化合物(分子量が2000以下のもの)、又はそれらの塩{例えば、アルカリ金属塩(ナトリウム塩、カリウム塩、リチウム塩等)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩、バリウム塩)等の金属塩、アンモニウム塩等を挙げることができる}が挙げられる。特に好適な有機酸は、アルキルスルホン酸、ヒドロキシアルキルスルホン酸等の低分子量化合物(分子量が2000以下のもの)又はそれらの塩{例えば、アルカリ金属塩(ナトリウム塩、カリウム塩、リチウム塩等)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩、バリウム塩)等の金属塩、アンモニウム塩等を挙げることができる}であり、例えば、メタンスルホン酸、エタンスルホン酸、1−プロパンスルホン酸、2−プロパンスルホン酸、1−ブタンスルホン酸、2−ブタンスルホン酸、1−ペンタンスルホン酸、2−ペンタンスルホン酸、3−ペンタンスルホン酸、1−ヘキサンスルホン酸、2−ヘキサンスルホン酸、3−ヘキサンスルホン酸、ヒドロキシメタンスルホン酸、2−ヒドロキシエタン−1−スルホン酸(イセチオン酸)、2−ヒドロキシプロパン−1−スルホン酸、1−ヒドロキシプロパン−2−スルホン酸、3−ヒドロキシプロパン−1−スルホン酸、2−ヒドロキシブタン−1−スルホン酸、4−ヒドロキシブタン−1−スルホン酸、2−ヒドロキシペンタン−1−スルホン酸、5−ヒドロキシペンタン−1−スルホン酸、2−ヒドロキシヘキサン−1−スルホン酸、6−ヒドロキシヘキサン−1−スルホン酸等、又はそれらの塩{例えば、アルカリ金属塩(ナトリウム塩、カリウム塩、リチウム塩等)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩、バリウム塩)等の金属塩、アンモニウム塩等を挙げることができる}が挙げられる。なお、これら成分は複数用いてもよい。
(Source of dissolved organic acid component having a sulfonic acid group)
The source of the soluble organic acid component having a sulfonic acid group is, as such, when the component is water-soluble, as it is, when the component is poorly water-soluble or insoluble, a water-soluble salt {cationic pair that forms the salt As the ions, for example, metal ions such as alkali metal (sodium, potassium, lithium, etc.) ions, alkaline earth metal (magnesium, calcium, barium, etc.) ions, ammonium ions, etc. may be used. The source of the soluble organic acid component having a sulfonic acid group is not particularly limited as long as it contains one or more sulfonic acid groups. For example, alkylsulfonic acid, hydroxyalkylsulfonic acid, fluoromethanesulfonic acid , Trifluoromethanesulfonic acid, vinylsulfonic acid, taurine and other low molecular weight compounds (with a molecular weight of 2000 or less), or salts thereof (for example, alkali metal salts (sodium salt, potassium salt, lithium salt, etc.), alkaline earths Metal salts such as metal salts (magnesium salt, calcium salt, barium salt), ammonium salts, etc. can be mentioned}. Particularly suitable organic acids are low molecular weight compounds such as alkyl sulfonic acids and hydroxyalkyl sulfonic acids (having a molecular weight of 2000 or less) or salts thereof (for example, alkali metal salts (sodium salts, potassium salts, lithium salts, etc.), Metal salts such as alkaline earth metal salts (magnesium salts, calcium salts, barium salts), ammonium salts, etc.}, for example, methanesulfonic acid, ethanesulfonic acid, 1-propanesulfonic acid, 2- Propanesulfonic acid, 1-butanesulfonic acid, 2-butanesulfonic acid, 1-pentanesulfonic acid, 2-pentanesulfonic acid, 3-pentanesulfonic acid, 1-hexanesulfonic acid, 2-hexanesulfonic acid, 3-hexanesulfone Acid, hydroxymethanesulfonic acid, 2-hydroxyethane-1-sulfonic acid (a Thionic acid), 2-hydroxypropane-1-sulfonic acid, 1-hydroxypropane-2-sulfonic acid, 3-hydroxypropane-1-sulfonic acid, 2-hydroxybutane-1-sulfonic acid, 4-hydroxybutane-1 -Sulfonic acid, 2-hydroxypentane-1-sulfonic acid, 5-hydroxypentane-1-sulfonic acid, 2-hydroxyhexane-1-sulfonic acid, 6-hydroxyhexane-1-sulfonic acid, etc., or salts thereof { Examples include metal salts such as alkali metal salts (sodium salt, potassium salt, lithium salt, etc.), alkaline earth metal salts (magnesium salt, calcium salt, barium salt), ammonium salts, etc.}. A plurality of these components may be used.

(カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分源)
カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分源としては、当該成分が水溶性である場合にはそのまま、当該成分が水難溶性又は不溶性である場合には水溶性塩{当該塩を形成するカチオン性対イオンとしては、例えば、アルカリ金属(ナトリウム、カリウム、リチウム等)イオン、アルカリ土類金属(マグネシウム、カルシウム、バリウム等)イオン等の金属イオン、アンモニウムイオン等を挙げることができる}を用いればよい。カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分源としては、1以上のカルボキシル基及び/又は1以上の水酸基を含有するものであって、スルホン酸基を有していないものであれば特に制限されるものではなく、例えば、ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、マロン酸、コハク酸、グルタン酸、フマル酸、マレイン酸、アラニン、アルギニン、アスパラギン酸等の1以上のカルボキシル基を有する有機化合物;アスコルビン酸、エリソルビン酸等の1以上の水酸基を有する有機化合物;乳酸、グルコン酸、ヘプトグルコン酸、ガラクトン酸、グリセリン酸、グリコール酸等の1以上の水酸基と1つのカルボキシル基を有する有機化合物;リンゴ酸、酒石酸、クエン酸、イソクエン酸、フマル酸等の1以上の水酸基と2以上のカルボキシル基を有する有機化合物;等の低分子量化合物(分子量が2000以下のもの)、又はそれらの塩{例えば、アルカリ金属塩(ナトリウム塩、カリウム塩、リチウム塩等)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩、バリウム塩)等の金属塩、アンモニウム塩等を挙げることができる}が挙げられる。なお、これら成分は、複数用いてもよい。
(Dissolved organic compound component source having at least one functional group selected from a carboxyl group and a hydroxyl group)
As a source of a soluble organic compound component having at least one functional group selected from a carboxyl group and a hydroxyl group, when the component is water-soluble, it remains as it is, and when the component is poorly water-soluble or insoluble, it is water-soluble. Salt {Cationic counterions forming the salt include, for example, metal ions such as alkali metal (sodium, potassium, lithium, etc.) ions, alkaline earth metal (magnesium, calcium, barium, etc.) ions, ammonium ions, etc. Can be used}. The soluble organic compound component source having at least one functional group selected from a carboxyl group and a hydroxyl group is one containing one or more carboxyl groups and / or one or more hydroxyl groups and having a sulfonic acid group It is not particularly limited as long as it is not, for example, formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, fumaric acid, maleic acid, alanine, arginine, aspartic acid, etc. An organic compound having one or more carboxyl groups; an organic compound having one or more hydroxyl groups such as ascorbic acid or erythorbic acid; and one or more hydroxyl groups such as lactic acid, gluconic acid, heptogluconic acid, galactonic acid, glyceric acid, or glycolic acid; Organic compound having one carboxyl group; malic acid, tartaric acid, citric acid, isocitric acid Organic compounds having one or more hydroxyl groups and two or more carboxyl groups such as fumaric acid; low molecular weight compounds such as those having a molecular weight of 2000 or less, or salts thereof (for example, alkali metal salts (sodium salt, potassium salt, Lithium salts, etc.), metal salts such as alkaline earth metal salts (magnesium salts, calcium salts, barium salts), ammonium salts, etc.}. A plurality of these components may be used.

なお、本発明の化成処理剤は、スルホン酸基を有する溶解型有機酸成分源、並びに、カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分源以外の錯化剤の配合は実質的に不要である。   The chemical conversion treating agent of the present invention is a complexing agent other than a soluble organic acid component source having a sulfonic acid group and a soluble organic compound component source having at least one functional group selected from a carboxyl group and a hydroxyl group. Is substantially unnecessary.

(液体媒体)
本発明の化成処理剤は水系表面処理剤である。ここで本明細書において「水系」とは、溶媒として、水単独もしくは水と水溶性溶剤(例えば、ジメチルスルホキシド、ピリジン、アルコール類等)の混合溶媒を用いたものを指すが、飽和脂肪族アルコール、具体的には、飽和脂肪族モノアルコール、飽和脂肪族ジアルコール、飽和脂肪族トリアルコール等の水溶性溶剤を含まない溶媒、特に水のみの溶媒を用いたものであることが好ましい。すなわち、本発明の化成処理剤は、上記飽和脂肪族アルコールの水溶性溶剤を含まないものであることが好ましい。なお、混合溶媒の場合、溶媒分の50質量%以上が水であると良い。
(Liquid medium)
The chemical conversion treatment agent of the present invention is an aqueous surface treatment agent. As used herein, “aqueous” refers to a solvent using water alone or a mixed solvent of water and a water-soluble solvent (for example, dimethyl sulfoxide, pyridine, alcohols, etc.), but a saturated aliphatic alcohol. Specifically, it is preferable to use a solvent that does not contain a water-soluble solvent such as saturated aliphatic monoalcohol, saturated aliphatic dialcohol, saturated aliphatic trialcohol, particularly a solvent containing only water. That is, it is preferable that the chemical conversion treatment agent of the present invention does not contain the water-soluble solvent of the saturated aliphatic alcohol. In the case of a mixed solvent, 50% by mass or more of the solvent content is preferably water.

<組成>
本発明に係る化成処理剤に配合させる溶解型ビスマス源は、ビスマス換算質量濃度として、好適には5〜2000ppmであり、より好適には、10〜500ppmである。スルホン酸基を有する溶解型有機酸成分源は、好適には化成処理剤におけるビスマスの3〜500モル倍、より好適には10〜300モル倍である。カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分源は、好適には化成処理剤におけるビスマスの1〜300モル倍、より好適には5〜200モル倍である。上記各種成分が当該範囲内であると、より優れた塗装付き廻り性、耐食性及び塗装密着性を有する皮膜を形成可能となる。
<Composition>
The dissolved bismuth source to be blended in the chemical conversion treating agent according to the present invention is preferably 5 to 2000 ppm, more preferably 10 to 500 ppm as a bismuth-converted mass concentration. The source of the soluble organic acid component having a sulfonic acid group is preferably 3 to 500 mol times, more preferably 10 to 300 mol times bismuth in the chemical conversion treatment agent. The dissolved organic compound component source having at least one functional group selected from a carboxyl group and a hydroxyl group is preferably 1 to 300 mol times, more preferably 5 to 200 mol times bismuth in the chemical conversion treatment agent. When the above-mentioned various components are within the above ranges, it becomes possible to form a film having more excellent paintability, corrosion resistance, and paint adhesion.

本発明の化成処理剤の製造において、上述したように、他の成分を配合してもよい。他の成分としては、例えば、界面活性剤、エッチング成分、金属成分(例えば、鉄、アルミニウム、亜鉛等;金、銀、銅等のビスマスよりも標準酸化還元電位が貴な金属;原子番号57〜71の元素、スカンジウム、イットリウム等の希土類元素;等)、pH調整剤、オルガノシランを主鎖として有する化合物、樹脂(分子量2000超の繰り返し構造を有する有機化合物)等を挙げることができる。なお、ビスマスよりも標準酸化還元電位が貴な金属、希土類元素、オルガノシランを主鎖として有する化合物、樹脂等については化成処理剤に配合しなくても不可避的に混入する場合もあるため、痕跡量、例えば、ビスマスよりも標準酸化還元電位が貴な金属及び希土類元素であればICP発光分光分析法において、オルガノシランを主鎖として有する化合物及び樹脂であれば液体クロマトグラフィー分析法において、定量下限の50倍程度は存在していることがある。   In the production of the chemical conversion treatment agent of the present invention, as described above, other components may be blended. Other components include, for example, surfactants, etching components, metal components (for example, iron, aluminum, zinc, etc .; metals having a higher standard redox potential than bismuth, such as gold, silver, copper, etc.); 71, rare earth elements such as scandium and yttrium; etc.), a pH adjuster, a compound having organosilane as a main chain, a resin (an organic compound having a repeating structure with a molecular weight exceeding 2000), and the like. Metals, rare earth elements, compounds having organosilane as the main chain, resins, etc. having a standard oxidation-reduction potential higher than that of bismuth may be inevitably mixed without being added to the chemical conversion treatment agent. In the case of metals and rare earth elements having a standard oxidation-reduction potential nobler than bismuth, the lower limit of quantification is determined in ICP emission spectroscopic analysis, and in the case of compounds and resins having organosilane as the main chain, in liquid chromatography analysis. May be about 50 times as large.

(界面活性剤)
界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル等を挙げることができるが、これらに限定されるものではない。なお、本発明の化成処理剤は、界面活性剤を、実使用濃度で、前記化成処理剤1kgに対して400mg以下含むことが好ましい。一般的に化成処理は前工程として、鋼板の防錆油を取り除く脱脂工程がある。しかし実際の脱脂工程では、防錆油が完全に取り除かれずに残存することがある。界面活性剤を含ませることで、残存防錆油を取り除くことが可能となるので、安定的にビスマス皮膜の形成が可能となる。
(Surfactant)
Examples of surfactants include, but are not limited to, polyoxyethylene alkyl ethers. In addition, it is preferable that the chemical conversion treatment agent of this invention contains 400 mg or less of surfactant with the actual use density | concentration with respect to 1 kg of said chemical conversion treatment agents. In general, the chemical conversion treatment includes a degreasing process for removing rust preventive oil from the steel sheet as a pre-process. However, in the actual degreasing process, the rust preventive oil may remain without being completely removed. By including the surfactant, it is possible to remove the remaining rust preventive oil, so that a bismuth film can be stably formed.

(エッチング成分)
エッチング成分としては、例えば、フッ化水素酸、塩化第二鉄、硫酸ヒドロキシルアンモニウム、液体媒体に溶解した際にヨウ素イオンを形成し得るヨウ素化合物等を挙げることができるが、これらに制限されるものではない。なお、これらのエッチング成分は、1種を単独で用いてもよいが、2種以上を組み合わせて用いてもよい。
(Etching component)
Examples of etching components include hydrofluoric acid, ferric chloride, hydroxylammonium sulfate, and iodine compounds that can form iodine ions when dissolved in a liquid medium, but are not limited thereto. is not. In addition, these etching components may be used alone or in combination of two or more.

(金属成分)
金属成分としては、例えば、鉄、アルミニウム、亜鉛等;金、銀、銅等のビスマスよりも標準酸化還元電位が貴な金属;原子番号57〜71の元素、スカンジウム、イットリウム等の希土類元素;等を挙げることができるが、これらに制限されるものではない。なお、これらの成分は、上述したように、本発明の化成処理剤に配合してもよいし、配合しなくてもよい。
(Metal component)
Examples of the metal component include iron, aluminum, zinc and the like; metals having a higher standard redox potential than bismuth such as gold, silver and copper; elements having an atomic number of 57 to 71; rare earth elements such as scandium and yttrium; However, it is not limited to these. In addition, as above-mentioned, these components may be mix | blended with the chemical conversion treatment agent of this invention, and do not need to mix | blend.

金属成分のうち、鉄、アルミニウム、亜鉛等の金属成分に関しては、本発明の化成処理剤を所定の金属材料に継続して使用すると、エッチングにより本発明の化成処理剤に蓄積されることがあるが、これらの金属成分を意図的に配合してもよい。これらの金属成分の供給源としては、例えば、硫酸第一鉄、硫酸第二鉄、硝酸第二鉄、クエン酸第二鉄、乳酸第一鉄、グルコン酸第一鉄、酸化亜鉛、水酸化亜鉛、硫酸亜鉛、硝酸亜鉛、水酸化アルミニウム、硝酸アルミニウム、硫酸アルミニウム等が挙げられる。これら成分は複数用いてもよい。なお、上記3つの金属成分のうち、鉄成分に関しては、本発明の化成処理剤に一定量以上配合させることにより、より優れた耐食性を有する皮膜を形成することができる点で特に有用である。本発明の化成処理剤に鉄成分を配合させる場合、鉄成分の供給源は鉄換算質量濃度で、好適には1ppm以上、より好適には10ppm以上である。この濃度に上限は特に無いが、初期濃度で100ppm以下であると良い。本発明の化成処理剤を継続して利用すると、所定の金属材料からエッチングにより金属成分が蓄積するため、鉄換算質量濃度が100ppm超となることがある。この場合、鉄換算質量濃度に上限は特に無いが、鉄換算質量濃度で20000ppm以下にコントロールすることが好ましい。   Among metal components, regarding metal components such as iron, aluminum, and zinc, if the chemical conversion treatment agent of the present invention is continuously used in a predetermined metal material, it may be accumulated in the chemical conversion treatment agent of the present invention by etching. However, you may mix | blend these metal components intentionally. Examples of sources of these metal components include ferrous sulfate, ferric sulfate, ferric nitrate, ferric citrate, ferrous lactate, ferrous gluconate, zinc oxide, zinc hydroxide. Zinc sulfate, zinc nitrate, aluminum hydroxide, aluminum nitrate, aluminum sulfate and the like. A plurality of these components may be used. Of the above three metal components, the iron component is particularly useful in that it can form a film having more excellent corrosion resistance by being blended with a certain amount or more of the chemical conversion treatment agent of the present invention. When an iron component is added to the chemical conversion treating agent of the present invention, the supply source of the iron component is an iron equivalent mass concentration, preferably 1 ppm or more, more preferably 10 ppm or more. There is no particular upper limit to this concentration, but it is preferable that the initial concentration be 100 ppm or less. If the chemical conversion treatment agent of the present invention is continuously used, a metal component accumulates from a predetermined metal material by etching, and thus the iron equivalent mass concentration may exceed 100 ppm. In this case, there is no particular upper limit to the iron equivalent mass concentration, but it is preferable to control the iron equivalent mass concentration to 20000 ppm or less.

(pH調整剤)
pH調整剤としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア水等をpH上昇剤として使用できる。また、メタンスルホン酸、エタンスルホン酸、硫酸、硝酸等をpH降下剤として使用できる。なお、これらのpH調整剤は複数使用しても良い。
(PH adjuster)
As the pH adjuster, for example, sodium hydroxide, potassium hydroxide, aqueous ammonia and the like can be used as the pH raising agent. Moreover, methanesulfonic acid, ethanesulfonic acid, sulfuric acid, nitric acid, etc. can be used as a pH lowering agent. A plurality of these pH adjusters may be used.

(環境負荷成分フリー)
なお、本発明の化成処理剤は、環境性の向上及び排水性の向上のため、環境負荷元素(フッ素、窒素、リン、硼素等の非金属元素、ニッケル、クロム、スズ等の金属元素)及び環境負荷物質[チオ尿素化合物(チオ尿素を含む。>N−C(=S)−N<の構造を有する化合物を意味する。)]を含まないことが好ましい。なお、この場合、不可避的な混入もあるため、痕跡量、例えば、環境負荷元素であればICP発光分光分析法、環境負荷物質であれば液体クロマトグラフ法における定量下限の50倍程度は存在していることがある。
(Environmental impact component free)
The chemical conversion treatment agent of the present invention has an environmental load element (non-metallic elements such as fluorine, nitrogen, phosphorus and boron, metallic elements such as nickel, chromium and tin) and It is preferable not to contain an environmentally hazardous substance [thiourea compound (including thiourea. Means a compound having a structure of N—C (═S) —N <)]. In this case, since there is inevitable contamination, there is a trace amount, for example, about 50 times the lower limit of quantification in the ICP emission spectroscopic analysis method for environmentally hazardous elements and liquid chromatographic method for environmentally hazardous substances. There may be.

≪化成処理剤の使用方法≫
<適用対象>
本発明に用いることのできる、金属材料は、限定されないが、特にビスマスよりも標準酸化還元電位の卑な金属が好ましく、例えば、鉄(例えば、冷間圧延鋼板、熱間圧延鋼板、高張力鋼板、工具鋼、合金工具鋼、球状化黒鉛鋳鉄、ねずみ鋳鉄等)、めっき材料、例えば、亜鉛めっき材(例えば、電気亜鉛めっき、溶融亜鉛めっき、合金化溶解亜鉛めっき、電気亜鉛合金めっき等)、アルミニウム材(例えば、1000系、2000系、3000系、4000系、5000系、6000系、アルミニウム鋳物、アルミニウム合金鋳物、ダイキャスト材等)が挙げられる。
≪How to use chemical conversion treatment agent≫
<Applicable object>
The metal material that can be used in the present invention is not limited, but a base metal having a standard oxidation-reduction potential is more preferable than bismuth, for example, iron (for example, cold rolled steel sheet, hot rolled steel sheet, high tensile steel sheet , Tool steel, alloy tool steel, spheroidal graphite cast iron, gray cast iron, etc.), plating materials, for example, galvanized materials (eg, electrogalvanized, hot dip galvanized, alloyed galvannealed, electrogalvanized alloy plated, etc.), Examples thereof include aluminum materials (for example, 1000 series, 2000 series, 3000 series, 4000 series, 5000 series, 6000 series, aluminum castings, aluminum alloy castings, die cast materials, etc.).

<プロセス(皮膜の製造方法)>
本発明における皮膜の製造方法は、金属材料の表面に皮膜を製造する方法であって、金属材料の表面に本発明の化成処理剤を接触させる接触工程を含む。当該接触方法としては、例えば、電流を流して行う電解処理法、あるいは、浸漬処理法、スプレー処理法、流しかけ処理法等の電流を流さないで行う処理法が挙げられる。
<Process (film production method)>
The method for producing a film in the present invention is a method for producing a film on the surface of a metal material, and includes a contact step of bringing the chemical conversion treatment agent of the present invention into contact with the surface of the metal material. Examples of the contact method include an electrolytic treatment method performed by passing an electric current, or a treatment method performed without flowing an electric current, such as an immersion treatment method, a spray treatment method, and a pouring treatment method.

上記金属材料と化成処理剤との接触温度は10℃以上60℃未満が好ましく、20℃以上50℃未満がより好ましいが、これらの温度に制限されるものではない。また、上記金属材料と化成処理剤との接触時間は30〜300秒が好ましく、60〜180秒がより好ましいが、これらの処理時間に制限されるものではない。   The contact temperature between the metal material and the chemical conversion treatment agent is preferably 10 ° C. or more and less than 60 ° C., more preferably 20 ° C. or more and less than 50 ° C., but is not limited to these temperatures. Further, the contact time between the metal material and the chemical conversion treatment agent is preferably 30 to 300 seconds, more preferably 60 to 180 seconds, but the treatment time is not limited thereto.

本発明における金属材料の化成処理工程には後工程があっても良い。例えば、酸洗工程、アルカリ洗工程、水洗工程、クロメート化成処理、リン酸亜鉛化成処理工程、ジルコニウム化成処理工程、リン鉄化成処理工程、乾燥工程等が挙げられる。また、これら後工程が複数あっても良い。   There may be a post-process in the chemical conversion treatment step of the metal material in the present invention. For example, a pickling process, an alkali washing process, a water washing process, a chromate chemical conversion treatment, a zinc phosphate chemical conversion treatment step, a zirconium chemical conversion treatment step, a phosphorous iron chemical conversion treatment step, a drying step and the like can be mentioned. Further, there may be a plurality of these post processes.

本発明における皮膜の製造方法は、上記接触工程前に、前工程を行ってもよい。前工程としては、例えば、酸洗工程、脱脂工程、アルカリ洗工程、クロメート化成処理工程、リン酸亜鉛、リン酸鉄等を用いたリン酸塩化成処理工程、ジルコニウム化成処理工程、チタン化成処理工程、ハフニウム化成処理工程、バナジウム化成処理工程、乾燥工程等が挙げられる。これらの前工程は複数組み合わせて行ってもよい。より具体的には、上記接触工程前に、第1の化成前処理工程としてリン酸塩化成処理工程を行い、続いて、クロメート化成処理工程、ジルコニウム化成処理工程、チタン化成処理工程、ハフニウム化成処理工程、バナジウム化成処理工程等の第2の化成前処理工程を行ってもよい。   In the method for producing a film in the present invention, a pre-process may be performed before the contact process. Examples of the previous process include a pickling process, a degreasing process, an alkali washing process, a chromate chemical conversion treatment process, a phosphate chemical conversion treatment process using zinc phosphate, iron phosphate, a zirconium chemical conversion treatment process, and a titanium chemical conversion treatment process. , Hafnium chemical conversion treatment process, vanadium chemical conversion treatment process, drying process and the like. A plurality of these pre-processes may be performed in combination. More specifically, a phosphate chemical conversion treatment step is performed as a first chemical conversion treatment step before the contact step, followed by a chromate chemical conversion treatment step, a zirconium chemical conversion treatment step, a titanium chemical conversion treatment step, and a hafnium chemical conversion treatment. You may perform 2nd chemical conversion pretreatment processes, such as a process and a vanadium chemical conversion treatment process.

本発明における皮膜の製造方法は、上記接触工程後に、上記後工程後に、あるいは、上記第2の化成処理工程後に、塗料を用いた塗装工程を行ってもよい。塗装方法は特に限定されず、従来公知の方法、例えば、転がし塗り、電着塗装(例えば、カチオン電着塗装)、スプレー塗装、ホットスプレー塗装、エアレススプレー塗装、静電塗装、ローラーコーティング、カーテンフローコーティング、ハケ塗り、バーコーティング等の方法を適用することができる。   In the method for producing a film in the present invention, a coating step using a paint may be performed after the contact step, after the post step, or after the second chemical conversion treatment step. The coating method is not particularly limited, and conventionally known methods such as rolling coating, electrodeposition coating (for example, cationic electrodeposition coating), spray coating, hot spray coating, airless spray coating, electrostatic coating, roller coating, curtain flow Methods such as coating, brushing, and bar coating can be applied.

上記塗装に用いる塗料としては、例えば、油性塗料、繊維素誘導体塗料、フェノール樹脂塗料、アルキド樹脂塗料、アミノアルキド樹脂塗料、尿素樹脂塗料、不飽和樹脂塗料、ビニル樹脂塗料、アクリル樹脂塗料、エポキシ樹脂塗料、ポリウレタン樹脂塗料、シリコン樹脂塗料、フッ素樹脂塗料、さび止めペイント、防汚塗料、粉体塗料、カチオン電着塗料、アニオン電着塗料、水系塗料等が挙げられる。また、これら複数を用いたり組み合わせたりしてもよい。   Examples of the paint used for the above-mentioned painting include oil-based paints, fibrin derivative paints, phenol resin paints, alkyd resin paints, aminoalkyd resin paints, urea resin paints, unsaturated resin paints, vinyl resin paints, acrylic resin paints, and epoxy resins. Examples thereof include paints, polyurethane resin paints, silicon resin paints, fluororesin paints, rust preventive paints, antifouling paints, powder paints, cationic electrodeposition paints, anionic electrodeposition paints, and water-based paints. A plurality of these may be used or combined.

上記塗料を硬化乾燥させる手法としては、例えば、自然乾燥、減圧乾燥、対流型熱乾燥(例えば、自然対流型熱乾燥、強制対流型熱乾燥)、輻射型乾燥(例えば、近赤外線乾燥、遠赤外線乾燥)、紫外線硬化乾燥、電子線硬化乾燥、ベーポキュア等が挙げられる。また、これら複数を用いたり組み合わせたりしてもよい。   Examples of methods for curing and drying the paint include natural drying, reduced pressure drying, convective heat drying (for example, natural convection heat drying, forced convection heat drying), and radiation drying (for example, near infrared drying, far infrared radiation). Drying), ultraviolet curing drying, electron beam curing drying, vapor curing and the like. A plurality of these may be used or combined.

上記の塗装プロセスにより得られる塗膜は、単層であっても複層であってもよい。複層である場合、得られる塗膜は、それぞれ異なる塗装手段、塗料、硬化乾燥手段であってもよい。   The coating film obtained by the above coating process may be a single layer or multiple layers. When it is a multilayer, the obtained coating film may be different coating means, paints, and curing and drying means.

なお、上記塗装工程として、電着塗料を用いた電着塗装方法を適用する場合には、その前工程である、上記接触工程、上記後工程(特に各種化成処理工程)、あるいは、上記第2の化成処理工程で用いる化成処理剤中のナトリウムイオン濃度を質量基準で500ppm未満に制御することが好ましい。また、本発明における皮膜の製造方法が複数の工程を含む場合には、各工程後にそれぞれ水洗工程を含んでいてもよいが、一部又は全部の水洗工程を省略してもよい。   In addition, when applying the electrodeposition coating method using an electrodeposition paint as the said coating process, the said contact process, the said post process (especially various chemical conversion treatment processes), or the said 2nd process which is the front process. It is preferable to control the sodium ion concentration in the chemical conversion treatment agent used in the chemical conversion treatment step to less than 500 ppm on a mass basis. Moreover, when the manufacturing method of the membrane | film | coat in this invention includes a some process, after each process, the water washing process may be included, respectively, but one part or all the water washing process may be abbreviate | omitted.

≪皮膜付き金属材料及び塗装金属材料≫
本発明に係る皮膜付き金属材料は、金属材料の表面に、本発明の化成処理剤を接触させることにより製造することができる。本発明の化成処理剤によって形成された化成皮膜の乾燥質量は、ビスマス量として40mg/m以上800mg/m未満であることが好ましく、100mg/m以上400mg/m未満であることがより好ましい。
≪Metal material with coating and painted metal material≫
The metal material with a film according to the present invention can be produced by bringing the chemical conversion treatment agent of the present invention into contact with the surface of the metal material. Dry weight of the chemical conversion coating formed by chemical conversion treatment agent of the present invention is that it is less than 40 mg / m 2 or more 800 mg / m 2 as the bismuth content is preferably less than 100 mg / m 2 or more 400 mg / m 2 More preferred.

本発明の化成処理剤によって形成された化成皮膜におけるビスマス量は、化成皮膜を濃硝酸にて溶解し、原子吸光分析やICP発光分光分析により測定する手法や、金属材料ごと蛍光X線分析により測定する手法、により測定することができる。特に蛍光X線分析は操作が簡便であることから好ましい。また、蛍光X線分析は、測定領域を狭く絞ることで(例えば測定領域10mmΦ)、同一試験片の複数の箇所のビスマス量を計測することが可能であり、この手法はビスマス量の均一性評価に利用できる。   The amount of bismuth in the chemical conversion film formed by the chemical conversion treatment agent of the present invention is measured by dissolving the chemical conversion film in concentrated nitric acid and measuring it by atomic absorption analysis or ICP emission spectral analysis, or by measuring each metal material by fluorescent X-ray analysis. It can be measured by the technique to do. In particular, the fluorescent X-ray analysis is preferable because the operation is simple. In addition, X-ray fluorescence analysis can measure the amount of bismuth at a plurality of locations on the same specimen by narrowing down the measurement region (for example, measurement region 10 mmΦ). Available to:

本発明の皮膜付き金属材料は、上記化成皮膜上あるいは上記化成皮膜下に、クロメート化成皮膜、リン酸塩化成皮膜、ジルコニウム化成皮膜、チタン化成皮膜、ハフニウム化成皮膜、バナジウム化成皮膜を有していてもよいし、これらのうち、2種以上の皮膜を有していてもよい。   The metal material with a film of the present invention has a chromate chemical film, a phosphate chemical film, a zirconium chemical film, a titanium chemical film, a hafnium chemical film, or a vanadium chemical film on or under the chemical film. Moreover, you may have 2 or more types of membrane | film | coats among these.

本発明の塗装金属材料は、上記皮膜付き金属材料の表面、すなわち、上記化成皮膜上、あるいは、該化成皮膜上に形成された、クロメート化成皮膜、リン酸塩化成皮膜、ジルコニウム化成皮膜、チタン化成皮膜、ハフニウム化成皮膜、又はバナジウム化成皮膜の上に、塗膜を有する。なお、該塗膜は、上記塗料を用いた塗装工程によって形成することができる。   The coated metal material of the present invention comprises a surface of the metal material with a film, that is, the chemical conversion film, or a chromate chemical conversion film, a phosphate chemical conversion film, a zirconium chemical conversion film, a titanium chemical conversion film formed on the chemical conversion film. A coating film is provided on the coating film, the hafnium chemical conversion film, or the vanadium chemical conversion film. In addition, this coating film can be formed by the coating process using the said coating material.

<金属材料>
金属材料は、冷間圧延鋼板(以下「CRS材」と略する)、合金亜鉛めっき鋼板(亜鉛目付量45g/m;両面とも、以下「GA材」と略する)、及びA6061アルミニウム合金板(以下「AL材」と略す)を用いた。これらの金属材料は、株式会社パルテック製のものを用いた。
<Metal material>
The metal materials are cold-rolled steel plate (hereinafter abbreviated as “CRS material”), alloy galvanized steel plate (zinc basis weight 45 g / m 2 ; both sides are hereinafter abbreviated as “GA material”), and A6061 aluminum alloy plate (Hereinafter abbreviated as “AL material”). These metal materials were manufactured by Partec Co., Ltd.

<試薬、原料>
本実施例においては、硝酸ビスマスとして、硝酸ビスマス(III)五水和物を、酸化ビスマスとして、酸化ビスマス(III)を、アスコルビン酸として、L−Ascorbic Acidを、クエン酸として、無水クエン酸を、酒石酸として、L(+)−酒石酸を、イセチオン酸として、2−ヒドロキシエタンスルホン酸ナトリウムを、界面活性剤として、ポリオキシエチレンアルキル(C12とC13のアルキル基を含む)エーテル(HLB14.0)を、硫酸第一鉄として、硫酸鉄(II)七水和物を、それぞれ用いた。
<Reagents, raw materials>
In this example, bismuth nitrate, bismuth nitrate pentahydrate, bismuth oxide, bismuth oxide (III), ascorbic acid, L-Ascorbic Acid, citric acid, and anhydrous citric acid as bismuth nitrate. , L (+)-tartaric acid as tartaric acid, sodium 2-hydroxyethanesulfonate as isethionic acid, polyoxyethylene alkyl (including C12 and C13 alkyl groups) ether (HLB14.0) as surfactant And ferrous sulfate heptahydrate were used as ferrous sulfate, respectively.

<化成処理剤の作製>
上記の試薬・原料を用いて、表1に示すように、各成分を所定量配合した後、水酸化ナトリウムで所定のpHに調整することにより、各実施例及び各比較例の化成処理剤を作製した。なお、表1における「有機酸(スルホン酸)」とはスルホン酸基を含む有機酸成分源を、「有機化合物」とはカルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する有機化合物成分源を、それぞれ示す。
<Production of chemical conversion treatment agent>
Using the above-described reagents and raw materials, as shown in Table 1, after blending each component in a predetermined amount, the chemical conversion treatment agent of each Example and each Comparative Example is adjusted by adjusting to a predetermined pH with sodium hydroxide. Produced. In Table 1, “organic acid (sulfonic acid)” is an organic acid component source containing a sulfonic acid group, and “organic compound” is an organic compound component having at least one functional group selected from a carboxyl group and a hydroxyl group. Each source is indicated.

<ビスマス皮膜を有する金属材料(ビスマス皮膜付き金属材料)の製造>
それぞれの金属材料の表面に、脱脂剤(日本パーカライジング社製FC−E2001)を43℃で120秒間スプレーすることにより防錆油を取り除いた。その後、30秒間スプレー水洗することで、残存する脱脂剤を取り除いた。続いて、各実施例及び各比較例の化成処理剤に各金属材料を35℃で120秒間浸漬し、各金属材料の表面全面にビスマス皮膜を形成した。得られたビスマス皮膜を有する金属材料を水道水、脱イオン水の順で洗浄し、40℃で乾燥した。
<Manufacture of metal material with bismuth film (metal material with bismuth film)>
Rust preventive oil was removed by spraying a degreasing agent (FC-E2001 manufactured by Nihon Parkerizing Co., Ltd.) at 43 ° C. for 120 seconds on the surface of each metal material. Thereafter, the remaining degreasing agent was removed by spray water washing for 30 seconds. Subsequently, each metal material was immersed in the chemical conversion treatment agent of each example and each comparative example at 35 ° C. for 120 seconds to form a bismuth film on the entire surface of each metal material. The obtained metal material having a bismuth film was washed in order of tap water and deionized water, and dried at 40 ° C.

<Bi付着量測定及び均一性評価>
蛍光X線(株式会社製の波長分散型蛍光X線分析装置:ZSX PrimusII)を用いて、10mmΦの領域にて、上記の方法によって製造した、ビスマス皮膜を有する各金属材料のビスマスに対応するピーク積分値を計測した。その後、既知のビスマス付着量を有する金属材料と得られたピーク積分値の関係式を用いて、ビスマス皮膜を有する各金属材料のビスマス付着量を求めた。なお、ビスマス付着量は、ビスマス皮膜を有する各金属材料の10箇所を無作為に計測し、その平均値を算出することにより求めた。また、ビスマス皮膜を有する各金属材料における、ビスマス付着量の最大値を、ビスマス付着量の最小値で割り、以下の評価基準に従って該金属材料の均一性を評価した。ビスマス皮膜を有する各金属材料の、ビスマス付着量及び均一性の結果を表2に示す。
(評価基準)
◎:1.0以上1.2未満
○:1.2以上1.5未満
×:1.5以上
−:測定不可(ビスマス付着量が定量限界以下のため)
<Bi adhesion measurement and uniformity evaluation>
Peaks corresponding to bismuth of each metal material having a bismuth film produced by the above method in a region of 10 mmΦ using fluorescent X-rays (wavelength dispersive X-ray fluorescence analyzer: ZSX Primus II manufactured by Co., Ltd.) The integral value was measured. Then, the bismuth adhesion amount of each metal material which has a bismuth film | membrane was calculated | required using the relational expression of the metal material which has a known bismuth adhesion amount, and the obtained peak integral value. In addition, the bismuth adhesion amount was calculated | required by measuring 10 places of each metal material which has a bismuth film | membrane at random, and calculating the average value. Further, the maximum value of the bismuth adhesion amount in each metal material having a bismuth film was divided by the minimum value of the bismuth adhesion amount, and the uniformity of the metal material was evaluated according to the following evaluation criteria. Table 2 shows the results of bismuth adhesion and uniformity of each metal material having a bismuth film.
(Evaluation criteria)
◎: 1.0 or more and less than 1.2 ○: 1.2 or more and less than 1.5 ×: 1.5 or more −: Not measurable (because bismuth adhesion amount is below the limit of quantification)

<カチオン電着塗装>
上記の方法によって製造した、ビスマス皮膜を有する各金属材料を陰極とし、電着塗料(関西ペイント製GT−100V)を用いて陰極電解することで塗膜を得た。なお、陰極電解は、180Vの印加電圧及び30.0±0.5℃の液温にて行った。また、塗膜厚が15.0±1.0μmとなるように、電気量を調整し、陰極電解を行った。上記電着後、塗膜の表面を脱イオン水で水洗し、180℃で26分間焼付けを行うことにより、塗膜を有する各金属材料(各試験片)を作製した。
<Cation electrodeposition coating>
A coating film was obtained by cathodic electrolysis using an electrodeposition paint (GT-100V manufactured by Kansai Paint Co., Ltd.) using each metal material having a bismuth film produced by the above method as a cathode. Cathodic electrolysis was performed at an applied voltage of 180 V and a liquid temperature of 30.0 ± 0.5 ° C. Further, the amount of electricity was adjusted so that the coating thickness was 15.0 ± 1.0 μm, and cathode electrolysis was performed. After the electrodeposition, the surface of the coating film was washed with deionized water and baked at 180 ° C. for 26 minutes to prepare each metal material (each test piece) having the coating film.

<耐食性試験1(塩水噴霧試験)>
各試験片にカッターを用いてクロスカットを施し、JIS Z 2371に準じて塩水噴霧試験を1000時間行った。塩水噴霧試験後のカットからの両側最大錆幅を測定し、以下の評価基準に従って耐食性1を評価した。この試験結果を表2に示す。
(評価基準)
◎:0.0mm以上2.0mm未満
○:2.0mm以上4.0mm未満
×:4.0mm以上
<Corrosion resistance test 1 (salt spray test)>
Each test piece was cross-cut using a cutter, and a salt spray test was performed for 1000 hours in accordance with JIS Z 2371. The maximum rust width on both sides from the cut after the salt spray test was measured, and corrosion resistance 1 was evaluated according to the following evaluation criteria. The test results are shown in Table 2.
(Evaluation criteria)
A: 0.0 mm or more and less than 2.0 mm B: 2.0 mm or more and less than 4.0 mm x: 4.0 mm or more

<耐食性試験2(塩温水浸漬試験)>
各試験片にカッターを用いてクロスカットを施し、5.0質量%塩化ナトリウム(純正化学製特級)水溶液に、55℃で240時間浸漬し、続いて水洗及び乾燥を行った。その後、カット部に対してセロテープ(登録商標)を用いたテープ剥離試験を行い、カット部からの両側最大剥離幅を計測し、以下に示す評価基準に従って耐食性2を評価した。この試験結果を表2に示す。
(評価基準)
◎:0.0mm以上2.0mm未満
○:2.0mm以上4.5mm未満
×:4.5mm以上
<Corrosion resistance test 2 (salt warm water immersion test)>
Each test piece was cross-cut using a cutter, immersed in a 5.0 mass% aqueous solution of sodium chloride (special grade made by Junsei Kagaku) at 55 ° C. for 240 hours, followed by washing and drying. Then, the tape peeling test using a cello tape (trademark) was performed with respect to the cut part, the both-sides maximum peeling width from a cut part was measured, and corrosion resistance 2 was evaluated according to the evaluation criteria shown below. The test results are shown in Table 2.
(Evaluation criteria)
◎: 0.0 mm or more and less than 2.0 mm ○: 2.0 mm or more and less than 4.5 mm x: 4.5 mm or more

<塗装密着性試験>
各試験片を脱イオン水に、40℃で240時間浸漬し、続いて水洗及び乾燥を行った。その後、塗膜面にカッターを用いて1mm間隔の平行線11本を縦横それぞれに引いて、100個の碁盤目を作製した。次いで碁盤目部分に対してセロテープ(登録商標)を用いたテープ剥離試験を行い、試験片から剥がれた個数を計測した。計測結果を以下の評価基準に従って、塗装密着性を評価した。この結果を表2に示す。
(評価基準)
◎:0個以上5個未満
○:5個以上15個未満
×:15個以上
<Coating adhesion test>
Each test piece was immersed in deionized water at 40 ° C. for 240 hours, followed by washing and drying. Thereafter, 11 parallel lines at 1 mm intervals were drawn vertically and horizontally using a cutter on the coating surface to produce 100 grids. Next, a tape peeling test using cello tape (registered trademark) was performed on the grid area, and the number of pieces peeled off from the test piece was measured. The coating results were evaluated for the coating results according to the following evaluation criteria. The results are shown in Table 2.
(Evaluation criteria)
◎: 0 or more and less than 5 ○: 5 or more and less than 15 ×: 15 or more

<化成処理剤の耐アニオン成分評価試験>
各実施例及び各比較例の化成処理剤に、塩化物イオンが100mg/kg、硫酸イオンが100mg/kgとなるように、純正化学製特級塩化ナトリウム及び純正化学製特級硫酸ナトリウムを加え、撹拌した。攪拌後、各化成処理剤の外観を目視で観察し、以下の評価基準に従って、アニオン成分に対する耐性(耐アニオン性)を評価した。この結果を表2に示す。
(評価基準)
◎:25℃で888時間静置しても沈殿物が生じていない
○:25℃で168時間静置した際には沈殿物が生じていなかったが、888時間静置させた場合に沈殿物が生じていた
△:化成処理剤調製直後は沈殿物が生じていなかったが、25度で168時間静置させた場合に沈殿物が生じていた
×:化成処理剤調製直後に沈殿物が生じていた
<Anion-resistant component evaluation test of chemical conversion treatment agent>
Pure chemical special grade sodium chloride and pure chemical special grade sodium sulfate were added to the chemical conversion treatment agents of each Example and each Comparative Example, and stirred so that the chloride ion was 100 mg / kg and the sulfate ion was 100 mg / kg. . After stirring, the appearance of each chemical conversion treatment agent was visually observed, and the resistance to anion components (anion resistance) was evaluated according to the following evaluation criteria. The results are shown in Table 2.
(Evaluation criteria)
A: No precipitate was formed after standing at 25 ° C. for 888 hours. ○: No precipitate was formed when left standing at 25 ° C. for 168 hours, but a precipitate was left when left standing for 888 hours. Δ: A precipitate was not formed immediately after the preparation of the chemical conversion treatment agent, but a precipitate was formed when left standing at 25 degrees for 168 hours. X: A precipitate was formed immediately after the preparation of the chemical conversion treatment agent. Had

<塗装付き廻り性試験>
4枚ボックスによるスローイングパワー試験方法(例えば、特開2010−90409号公報の段落0085〜段落0090等を参照)に従い、塗装付き廻り性試験方法を実施した。実施に際し、対極としては、片面(4枚ボックスと対向する面の逆面)を絶縁テープでシールした70×150×0.5mmのステンレス板(SUS304)を用いた。また、塗料(関西ペイント社製「GT−100V」)の液面を、ビスマス皮膜を有する金属材料及び対極が90mm浸漬される位置に調整した。塗料の温度は30℃に保持し、塗料はスターラーにて撹拌した。
<Roundness test with paint>
According to a throwing power test method using a four-sheet box (see, for example, paragraphs 0085 to 0090 of Japanese Patent Application Laid-Open No. 2010-90409, etc.), a paint-around test method was performed. In implementation, a 70 × 150 × 0.5 mm stainless steel plate (SUS304) having one surface (the opposite surface to the surface facing the four boxes) sealed with an insulating tape was used as the counter electrode. Further, the liquid level of the paint (“GT-100V” manufactured by Kansai Paint Co., Ltd.) was adjusted to a position where the metal material having the bismuth film and the counter electrode were immersed by 90 mm. The temperature of the paint was kept at 30 ° C., and the paint was stirred with a stirrer.

このような状態で、対極を陽極とした陰極電解法により、4枚ボックスの、ビスマス皮膜を有する金属材料の表面に塗膜を電解析出させた。
具体的な電解条件は、整流器を用い、所定の電圧にて180秒間陰極電解した。電圧は、4枚ボックスの対極と最も近いビスマス皮膜を有する金属材料の、対極と対向する面の塗膜厚さが20μmになるように調整した。続いて、それぞれのビスマス皮膜を有する金属材料を水洗した後、180℃で26分間焼き付け、塗膜を形成させた。
In such a state, a coating film was electrolytically deposited on the surface of a metal material having a bismuth film in a 4-box by a cathodic electrolysis method using a counter electrode as an anode.
Specific electrolysis conditions were cathodic electrolysis using a rectifier at a predetermined voltage for 180 seconds. The voltage was adjusted so that the coating thickness of the surface facing the counter electrode of the metal material having the bismuth film closest to the counter electrode of the four-sheet box was 20 μm. Subsequently, each metal material having a bismuth film was washed with water and then baked at 180 ° C. for 26 minutes to form a coating film.

そして、対極と最も離れたビスマス皮膜を有する金属材料の対極面側に形成された塗膜の膜厚を、電磁式膜厚計(金属材料がSPC又はGAの場合)又は渦電流式膜厚計(金属材料がALの場合)を用いて測定した。対極と最も離れたビスマス皮膜を有する金属材料の対極面側に形成された塗膜の厚さは、無作為に選んだ10箇所の膜厚を測定し、その平均値を算出することにより得た。得られた塗膜厚を用いて、以下の評価基準に従って塗装付き廻り性を評価した。この結果を表2に示す。
(評価基準)
◎:9μm以上
○:5μm以上9μm未満
×:5μm未満
And the film thickness of the coating film formed on the counter electrode side of the metal material having the bismuth film farthest from the counter electrode is measured by an electromagnetic film thickness meter (when the metal material is SPC or GA) or an eddy current film thickness meter. (When the metal material is AL). The thickness of the coating film formed on the counter electrode side of the metal material having the bismuth film farthest from the counter electrode was obtained by measuring the film thickness at 10 randomly selected locations and calculating the average value. . Using the obtained coating film thickness, the wrapping property with coating was evaluated according to the following evaluation criteria. The results are shown in Table 2.
(Evaluation criteria)
A: 9 μm or more ○: 5 μm or more and less than 9 μm x: Less than 5 μm

Figure 0006619978
Figure 0006619978

Figure 0006619978
Figure 0006619978

Claims (5)

金属材料の表面に皮膜を形成させる化成処理剤であって、
溶解型ビスマス成分と、
スルホン酸基を有する溶解型有機酸成分と、
カルボキシル基及び水酸基から選択される少なくとも1つの官能基を有する溶解型有機化合物成分と、
鉄成分と、
を含む化成処理剤。
A chemical conversion treatment agent for forming a film on the surface of a metal material,
A dissolved bismuth component;
A soluble organic acid component having a sulfonic acid group;
A dissolved organic compound component having at least one functional group selected from a carboxyl group and a hydroxyl group;
Iron components,
Chemical conversion treating agent containing.
金属材料の表面に皮膜を製造する方法であって、
請求項1に記載の化成処理剤を前記表面に接触させる接触工程を含む方法。
A method for producing a film on the surface of a metal material,
A method comprising a contact step of bringing the chemical conversion treatment agent according to claim 1 into contact with the surface.
前記化成処理剤を接触させた前記表面に塗装を行う塗装工程をさらに含む請求項2に記載の方法。   The method according to claim 2, further comprising a coating step of coating the surface contacted with the chemical conversion treatment agent. 請求項2に記載の接触工程によって得られる化成皮膜を前記表面に有する皮膜付き金属材料。   The metal material with a film | membrane which has the chemical conversion film obtained by the contact process of Claim 2 on the said surface. 請求項4に記載の皮膜付き金属材料上に、請求項3に記載の塗装工程によって形成される塗膜を表面に有する塗装金属材料。   The coating metal material which has the coating film formed by the coating process of Claim 3 on the surface on the metal material with a film of Claim 4.
JP2015175128A 2015-09-04 2015-09-04 Chemical conversion treatment agent, film manufacturing method, film-coated metal material and painted metal material Active JP6619978B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015175128A JP6619978B2 (en) 2015-09-04 2015-09-04 Chemical conversion treatment agent, film manufacturing method, film-coated metal material and painted metal material
PCT/JP2016/073727 WO2017038430A1 (en) 2015-09-04 2016-08-12 Chemical conversion treatment agent, method for manufacturing film, metal material with film, and coated metal material
TW105127240A TW201715083A (en) 2015-09-04 2016-08-25 Chemical treatment agent, method for producing coating film, metal material with coating film and coated metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175128A JP6619978B2 (en) 2015-09-04 2015-09-04 Chemical conversion treatment agent, film manufacturing method, film-coated metal material and painted metal material

Publications (2)

Publication Number Publication Date
JP2017048448A JP2017048448A (en) 2017-03-09
JP6619978B2 true JP6619978B2 (en) 2019-12-11

Family

ID=58187311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175128A Active JP6619978B2 (en) 2015-09-04 2015-09-04 Chemical conversion treatment agent, film manufacturing method, film-coated metal material and painted metal material

Country Status (3)

Country Link
JP (1) JP6619978B2 (en)
TW (1) TW201715083A (en)
WO (1) WO2017038430A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109852960A (en) * 2019-03-12 2019-06-07 姜水英 A kind of method of antibacterial functionalized-corrosion-resistant modification of aluminum alloy surface

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ633200A0 (en) * 2000-03-20 2000-04-15 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metallic surface I
JP4901039B2 (en) * 2001-09-27 2012-03-21 石原薬品株式会社 Replacement bismuth plating bath
JP4609703B2 (en) * 2004-12-27 2011-01-12 石原薬品株式会社 Replacement bismuth plating bath for copper-based materials
US20090169903A1 (en) * 2007-12-27 2009-07-02 Kansai Paint Co., Ltd. Process for producing metal substrate with multilayer film, metal substrate with multilayer film obtained by the process, and coated article
US20110073484A1 (en) * 2008-05-29 2011-03-31 Ryosuke Kawagoshi Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same
JP5290079B2 (en) * 2009-07-24 2013-09-18 日本パーカライジング株式会社 Metal surface treatment liquid and metal material surface treatment method
EP2883981A4 (en) * 2012-08-08 2016-05-11 Nihon Parkerizing Metal surface treatment liquid, surface treatment method for metal bases, and metal base obtained by surface treatment method for metal bases

Also Published As

Publication number Publication date
WO2017038430A1 (en) 2017-03-09
TW201715083A (en) 2017-05-01
JP2017048448A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP4373778B2 (en) Metal surface treatment liquid and surface treatment method
US9347134B2 (en) Corrosion resistant metallate compositions
KR20040105617A (en) Method of surface treating metal and metal surface treated thereby
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
KR102297703B1 (en) A chemical conversion treatment agent, a method for producing a chemical conversion film, a metal material with a chemical conversion film, and a coating metal material
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
US5401381A (en) Process for phosphating metallic surfaces
WO2018042980A1 (en) Surface-treated steel sheet, organic resin-coated steel sheet, and container using same
JP2005325402A (en) Surface treatment method for tin or tin based alloy plated steel
JP6619978B2 (en) Chemical conversion treatment agent, film manufacturing method, film-coated metal material and painted metal material
EP2787102B1 (en) Replenisher and method for producing surface-treated steel sheet
JP2005325401A (en) Surface treatment method for zinc or zinc alloy coated steel
JP6566798B2 (en) Surface treatment agent, surface treatment method and surface treatment metal material
KR101726536B1 (en) Supplement, surface-treated metal material, and production method therefor
US11408078B2 (en) Method for the anti-corrosion and cleaning pretreatment of metal components
US3372064A (en) Method for producing black coatings on metal surfaces
EP3318659A1 (en) Surface treatment agent, surface treatment method, and surface treated metal material
TWI733857B (en) Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and method for treatment surface of metal material
US20170073831A1 (en) Composition for direct-current cathodic electrolysis, lubrication-film-equipped metal material, and production method therefor
KR20200054974A (en) 2-step pretreatment of aluminum, especially aluminum casting alloys, including pickling and conversion treatment
JP2006176847A (en) Composition for chemical-conversion-treating zinc or zinc alloy
KR20070061880A (en) Phosphate-treated galvanized steel sheet having excellent resistance to corrosion and blackening
JPH10237667A (en) Zinc phosphate series chemical convertion treating method for aluminum or aluminum alloy and composition for zinc phosphate series chemical convertion treatment
JPWO2019087320A1 (en) Pretreatment agent, pretreatment method, metal material having chemical conversion film and production method thereof, and painted metal material and production method thereof
JP2018095907A (en) Oxide film removal agent, oxide film removal method, surface treatment method, and method for producing metallic material with oxide film removed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6619978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250