JP6619203B2 - Ophthalmic imaging equipment - Google Patents

Ophthalmic imaging equipment Download PDF

Info

Publication number
JP6619203B2
JP6619203B2 JP2015212806A JP2015212806A JP6619203B2 JP 6619203 B2 JP6619203 B2 JP 6619203B2 JP 2015212806 A JP2015212806 A JP 2015212806A JP 2015212806 A JP2015212806 A JP 2015212806A JP 6619203 B2 JP6619203 B2 JP 6619203B2
Authority
JP
Japan
Prior art keywords
light
optical system
eye
image
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015212806A
Other languages
Japanese (ja)
Other versions
JP2017080146A (en
Inventor
祥聖 森口
祥聖 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2015212806A priority Critical patent/JP6619203B2/en
Priority to PCT/JP2016/080888 priority patent/WO2017073414A1/en
Publication of JP2017080146A publication Critical patent/JP2017080146A/en
Application granted granted Critical
Publication of JP6619203B2 publication Critical patent/JP6619203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Description

この発明は、眼科撮影装置に関する。   The present invention relates to an ophthalmologic photographing apparatus.

光コヒーレンストモグラフィ(Optiacl Coherence Tomography:以下、OCT)は、被測定物体の表面形態や内部形態を表す画像の形成に利用される。OCTを用いて取得されたOCT画像には、被測定物体以外の物体からの反射やコヒーレンスリバイバル現象に起因したアーチファクトが現れることがある。これらアーチファクトは、注目部位に重なって現れたり、セグメンテーション処理等の画像処理の結果に影響を及ぼしたりする場合がある。   Optical coherence tomography (hereinafter referred to as OCT) is used to form an image representing the surface form and internal form of a measured object. In an OCT image acquired using OCT, artifacts due to reflection from an object other than the object to be measured and a coherence revival phenomenon may appear. These artifacts may appear overlapping the site of interest or may affect the results of image processing such as segmentation processing.

例えば、OCT画像を取得するための干渉光学系を構成する光学部材に対して減反射コーティングを施すことにより、被測定物体以外の物体からの反射に起因したアーチファクトを除去する場合がある。また、コヒーレンスリバイバル現象の発生が抑制されるように光源からの光に対して位相変調を行うことで、アーチファクトを除去する手法が知られている(特許文献1)。   For example, an artifact caused by reflection from an object other than the object to be measured may be removed by applying an anti-reflection coating to an optical member constituting an interference optical system for acquiring an OCT image. In addition, there is known a technique for removing artifacts by performing phase modulation on light from a light source so that the occurrence of a coherence revival phenomenon is suppressed (Patent Document 1).

米国特許出願公開第2014/0029015号明細書US Patent Application Publication No. 2014/0029015

しかしながら、光学部材に対して減反射コーティングを施した場合でも、反射を完全に抑制することは困難である。また、特許文献1に開示された手法では、光学系を構成する光学部材の種類やその配置等の光学的条件に応じた設計が必要になり、光学系や制御系の設計が複雑化する。   However, even when an anti-reflection coating is applied to the optical member, it is difficult to completely suppress reflection. Further, the technique disclosed in Patent Document 1 requires a design according to the optical conditions such as the type of optical members constituting the optical system and the arrangement thereof, and the design of the optical system and the control system is complicated.

一般に、コヒーレンス長が長くなるほど被測定物体以外の物体からの反射に起因したアーチファクトがOCT画像に現れやすくなる。また、コヒーレンスリバイバル間隔が短くなるほどコヒーレンスリバイバル現象に起因したアーチファクトがOCT画像に現れやすくなる。従って、コヒーレンス長が長い光源やコヒーレンスリバイバル間隔が短い光源を用いる場合にはOCT画像の画質の劣化を招きやすくなり、前述のアーチファクトを除去するための新たな技術が求められる。   In general, the longer the coherence length, the more likely artifacts due to reflection from an object other than the object to be measured appear in the OCT image. Further, as the coherence revival interval becomes shorter, artifacts due to the coherence revival phenomenon are more likely to appear in the OCT image. Accordingly, when a light source having a long coherence length or a light source having a short coherence revival interval is used, the image quality of the OCT image is likely to be deteriorated, and a new technique for removing the above-described artifact is required.

本発明は、このような問題を解決するためになされたものであり、その目的は、干渉光学系を用いて取得された画像に現れるアーチファクトを除去するための新たな技術を提供することにある。   The present invention has been made to solve such a problem, and an object thereof is to provide a new technique for removing artifacts appearing in an image acquired using an interference optical system. .

実施形態の眼科撮影装置は、対物レンズと、干渉光学系と、画像形成部と、解析部と、移動機構と、制御部とを含む。干渉光学系は、光源からの光を測定光と参照光とに分割し、測定光を対物レンズを介して被検眼に入射させ、被検眼から出射し対物レンズを通過した測定光の戻り光と参照光との干渉光を検出する。画像形成部は、干渉光学系により取得された干渉光の検出結果に基づいて被検眼の画像を形成する。解析部は、対物レンズと被検眼との相対位置が異なる状態で干渉光学系により取得された2以上の検出結果に基づく2以上の画像を解析することにより、2以上の画像中の対応する位置に描出されたノイズを除去する。移動機構は、対物レンズ及び干渉光学系を一体的に移動させる。制御部は、移動機構を制御することにより上記の2以上の検出結果を干渉光学系に取得させる。
また、実施形態の眼科撮影装置は、対物レンズと、干渉光学系と、画像形成部と、解析部とを含む。干渉光学系は、光源からの光を測定光と参照光とに分割し、測定光を対物レンズを介して被検眼に入射させ、被検眼から出射し対物レンズを通過した測定光の戻り光と参照光との干渉光を検出する。画像形成部は、干渉光学系により取得された干渉光の検出結果に基づいて被検眼の画像を形成する。解析部は、対物レンズと被検眼との相対位置が異なる状態で干渉光学系により取得された2以上の検出結果に基づく2以上の画像を解析することにより、2以上の画像中の対応する位置に描出されたノイズを除去する。解析部は、上記の2以上の画像における対応画素のそれぞれの画素値が第1閾値以上であり、かつ、これら画素値の変動幅が第2閾値以下であるか否かを判定し、その判定結果に基づいてノイズを特定する。
The ophthalmologic photographing apparatus according to the embodiment includes an objective lens, an interference optical system, an image forming unit, an analysis unit, a moving mechanism, and a control unit . The interference optical system divides the light from the light source into measurement light and reference light, makes the measurement light incident on the subject's eye via the objective lens, and returns the measurement light that has exited the subject eye and passed through the objective lens. Detect interference light with reference light. The image forming unit forms an image of the eye to be examined based on the detection result of the interference light acquired by the interference optical system. The analysis unit analyzes two or more images based on two or more detection results acquired by the interference optical system in a state where the relative positions of the objective lens and the eye to be examined are different, thereby corresponding positions in the two or more images. Remove the noise drawn in. The moving mechanism moves the objective lens and the interference optical system integrally. The control unit controls the moving mechanism to cause the interference optical system to acquire the above two or more detection results.
The ophthalmologic photographing apparatus according to the embodiment includes an objective lens, an interference optical system, an image forming unit, and an analysis unit. The interference optical system divides the light from the light source into measurement light and reference light, makes the measurement light incident on the subject's eye via the objective lens, and returns the measurement light that has exited the subject eye and passed through the objective lens. Detect interference light with reference light. The image forming unit forms an image of the eye to be examined based on the detection result of the interference light acquired by the interference optical system. The analysis unit analyzes two or more images based on two or more detection results acquired by the interference optical system in a state where the relative positions of the objective lens and the eye to be examined are different, thereby corresponding positions in the two or more images. Remove the noise drawn in. The analysis unit determines whether each pixel value of the corresponding pixel in the two or more images is equal to or greater than a first threshold value, and a fluctuation range of these pixel values is equal to or less than a second threshold value. Identify the noise based on the results.

この発明によれば、干渉光学系を用いて取得された画像に現れるアーチファクトを除去するための新たな技術を提供することが可能になる。   According to the present invention, it is possible to provide a new technique for removing artifacts appearing in an image acquired using an interference optical system.

実施形態に係る眼科撮影装置の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of an ophthalmology photographing instrument concerning an embodiment. 実施形態に係る眼科撮影装置の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of an ophthalmology photographing instrument concerning an embodiment. 実施形態に係る眼科撮影装置の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of an ophthalmology photographing instrument concerning an embodiment. 実施形態の比較例に係る眼科撮影装置の動作を説明するための概略図である。It is the schematic for demonstrating operation | movement of the ophthalmologic imaging device which concerns on the comparative example of embodiment. 実施形態に係る眼科撮影装置の動作例のフローを表すフロー図である。It is a flowchart showing the flow of the operation example of the ophthalmologic imaging device which concerns on embodiment. 実施形態の第1変形例に係る眼科撮影装置の動作例のフローを表すフロー図である。It is a flowchart showing the flow of the operation example of the ophthalmologic imaging apparatus which concerns on the 1st modification of embodiment. 実施形態の第2変形例に係る眼科撮影装置を説明するための概略図である。It is the schematic for demonstrating the ophthalmologic imaging device which concerns on the 2nd modification of embodiment.

この発明の実施形態の一例について、図面を参照しながら詳細に説明する。この発明に係る眼科撮影装置は、光干渉断層計の機能を有し、被検眼に対してOCTを実行する。このOCTは、例えば眼底や前眼部など、被検眼の任意の部位に対して実行される。   An example of an embodiment of the present invention will be described in detail with reference to the drawings. The ophthalmologic imaging apparatus according to the present invention has a function of an optical coherence tomography and performs OCT on the eye to be examined. This OCT is performed on any part of the eye to be examined, such as the fundus or the anterior segment.

この明細書では、OCTによって取得される画像をOCT画像と総称することがある。また、ノイズをアーチファクトと同一視して表記する場合がある。また、この明細書において引用された文献の記載内容を、以下の実施形態の内容として援用することが可能である。   In this specification, images acquired by OCT may be collectively referred to as OCT images. In some cases, noise is described as being the same as an artifact. Moreover, it is possible to use the description content of the literature referred in this specification as the content of the following embodiment.

以下の実施形態では、フーリエドメインタイプのOCTを実行可能な眼科撮影装置について説明する。特に、実施形態に係る眼科撮影装置は、スウェプトソースタイプのOCTの手法を適用可能である。なお、スウェプトソースタイプ以外のタイプ、例えばスペクトラルドメインタイプのOCTを実行可能な眼科撮影装置に対して、この発明に係る構成を適用することも可能である。また、以下の実施形態ではOCT装置と眼底カメラとを組み合わせた装置について説明する。しかしながら、眼底カメラ以外のモダリティ、例えばSLO(Scanning Laser Ophthalmoscope)、スリットランプ、眼科手術用顕微鏡、光凝固装置などに、実施形態に係る構成を有するOCT装置を組み合わせることも可能である。また、実施形態に係る構成を、単体のOCT装置に組み込むことも可能である。   In the following embodiment, an ophthalmologic imaging apparatus capable of executing Fourier domain type OCT will be described. In particular, the ophthalmologic photographing apparatus according to the embodiment can apply a swept source type OCT technique. Note that the configuration according to the present invention can also be applied to an ophthalmic imaging apparatus capable of executing a type other than the swept source type, for example, a spectral domain type OCT. In the following embodiments, an apparatus combining an OCT apparatus and a fundus camera will be described. However, it is also possible to combine the OCT apparatus having the configuration according to the embodiment with a modality other than the fundus camera, for example, SLO (Scanning Laser Ophthalmoscope), slit lamp, ophthalmic surgical microscope, photocoagulation apparatus, and the like. In addition, the configuration according to the embodiment can be incorporated into a single OCT apparatus.

[構成]
図1に示すように、眼科撮影装置1は、眼底カメラユニット2、OCTユニット100及び演算制御ユニット200を含んで構成される。眼底カメラユニット2は、従来の眼底カメラとほぼ同様の光学系を有する。OCTユニット100には、OCTを実行するための光学系が設けられている。演算制御ユニット200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。
[Constitution]
As shown in FIG. 1, the ophthalmologic photographing apparatus 1 includes a fundus camera unit 2, an OCT unit 100, and an arithmetic control unit 200. The retinal camera unit 2 has almost the same optical system as a conventional retinal camera. The OCT unit 100 is provided with an optical system for executing OCT. The arithmetic control unit 200 includes a computer that executes various arithmetic processes and control processes.

〔眼底カメラユニット〕
図1に示す眼底カメラユニット2には、被検眼Eの眼底Efの表面形態を表す2次元画像(眼底像)を取得するための光学系が設けられている。眼底像には、観察画像や撮影画像などが含まれる。観察画像は、例えば、近赤外光を用いて所定のフレームレートで形成されるモノクロの動画像である。撮影画像は、例えば、可視光をフラッシュ発光して得られるカラー画像、または近赤外光若しくは可視光を照明光として用いたモノクロの静止画像であってもよい。眼底カメラユニット2は、これら以外の画像、例えばフルオレセイン蛍光画像やインドシアニングリーン蛍光画像や自発蛍光画像などを取得可能に構成されていてもよい。
[Fundus camera unit]
The fundus camera unit 2 shown in FIG. 1 is provided with an optical system for obtaining a two-dimensional image (fundus image) representing the surface form of the fundus oculi Ef of the eye E to be examined. The fundus image includes an observation image and a captured image. The observation image is, for example, a monochrome moving image formed at a predetermined frame rate using near infrared light. The captured image may be, for example, a color image obtained by flashing visible light, or a monochrome still image using near infrared light or visible light as illumination light. The fundus camera unit 2 may be configured to be able to acquire images other than these, for example, a fluorescein fluorescent image, an indocyanine green fluorescent image, a spontaneous fluorescent image, and the like.

眼底カメラユニット2には、被検者の顔を支持するための顎受けや額当てが設けられている。更に、眼底カメラユニット2には、照明光学系10と撮影光学系30が設けられている。照明光学系10は眼底Efに照明光を照射する。撮影光学系30は、この照明光の眼底反射光を撮像装置(CCDイメージセンサ(単にCCDと呼ぶことがある)35、38)に導く。また、撮影光学系30は、OCTユニット100からの測定光を被検眼Eに導くとともに、被検眼Eを経由した測定光をOCTユニット100に導く。   The retinal camera unit 2 is provided with a chin rest and a forehead support for supporting the subject's face. Further, the fundus camera unit 2 is provided with an illumination optical system 10 and a photographing optical system 30. The illumination optical system 10 irradiates the fundus oculi Ef with illumination light. The photographing optical system 30 guides the fundus reflection light of the illumination light to an imaging device (CCD image sensor (sometimes simply referred to as a CCD) 35, 38). The imaging optical system 30 guides the measurement light from the OCT unit 100 to the eye E and guides the measurement light passing through the eye E to the OCT unit 100.

照明光学系10の観察光源11は、例えばハロゲンランプまたはLED(Light Emitting Diode)により構成される。観察光源11から出力された光(観察照明光)は、曲面状の反射面を有する反射ミラー12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ17、18、絞り19及びリレーレンズ20を経由する。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efを照明する。   The observation light source 11 of the illumination optical system 10 is composed of, for example, a halogen lamp or an LED (Light Emitting Diode). The light (observation illumination light) output from the observation light source 11 is reflected by the reflection mirror 12 having a curved reflection surface, passes through the condensing lens 13, passes through the visible cut filter 14, and is converted into near infrared light. Become. Further, the observation illumination light is once converged in the vicinity of the photographing light source 15, reflected by the mirror 16, and passes through the relay lenses 17 and 18, the diaphragm 19 and the relay lens 20. Then, the observation illumination light is reflected at the peripheral portion (region around the hole portion) of the aperture mirror 21, passes through the dichroic mirror 46, and is refracted by the objective lens 22 to illuminate the fundus oculi Ef.

観察照明光の眼底反射光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過し、合焦レンズ31を経由し、ミラー32により反射される。更に、この眼底反射光は、ハーフミラー33Aを透過し、ダイクロイックミラー33により反射され、集光レンズ34によりCCDイメージセンサ35の受光面に結像される。CCDイメージセンサ35は、例えば所定のフレームレートで眼底反射光を検出する。表示装置3には、CCDイメージセンサ35により検出された眼底反射光に基づく画像(観察画像)が表示される。なお、撮影光学系30のピントが前眼部に合わせられている場合、被検眼Eの前眼部の観察画像が表示される。   The fundus reflection light of the observation illumination light is refracted by the objective lens 22, passes through the dichroic mirror 46, passes through the hole formed in the central region of the perforated mirror 21, passes through the dichroic mirror 55, and is a focusing lens. It is reflected by the mirror 32 via 31. Further, the fundus reflection light passes through the half mirror 33A, is reflected by the dichroic mirror 33, and forms an image on the light receiving surface of the CCD image sensor 35 by the condenser lens. The CCD image sensor 35 detects fundus reflected light at a predetermined frame rate, for example. On the display device 3, an image (observation image) based on fundus reflection light detected by the CCD image sensor 35 is displayed. When the photographing optical system 30 is focused on the anterior segment, an observation image of the anterior segment of the eye E is displayed.

撮影光源15は、例えばキセノンランプまたはLEDにより構成される。撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。撮影照明光の眼底反射光は、観察照明光のそれと同様の経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、集光レンズ37によりCCDイメージセンサ38の受光面に結像される。表示装置3には、CCDイメージセンサ38により検出された眼底反射光に基づく画像(撮影画像)が表示される。なお、観察画像を表示する表示装置3と撮影画像を表示する表示装置3は、同一のものであってもよいし、異なるものであってもよい。また、被検眼Eを赤外光で照明して同様の撮影を行う場合には、赤外の撮影画像が表示される。また、撮影光源としてLEDを用いることも可能である。   The imaging light source 15 is configured by, for example, a xenon lamp or an LED. The light (imaging illumination light) output from the imaging light source 15 is applied to the fundus oculi Ef through the same path as the observation illumination light. The fundus reflection light of the imaging illumination light is guided to the dichroic mirror 33 through the same path as that of the observation illumination light, passes through the dichroic mirror 33, is reflected by the mirror 36, and is reflected by the condenser lens 37 of the CCD image sensor 38. An image is formed on the light receiving surface. On the display device 3, an image (captured image) based on fundus reflection light detected by the CCD image sensor 38 is displayed. Note that the display device 3 that displays the observation image and the display device 3 that displays the captured image may be the same or different. In addition, when similar imaging is performed by illuminating the eye E with infrared light, an infrared captured image is displayed. It is also possible to use an LED as a photographing light source.

LCD(Liquid Crystal Display)39は、固視標や視力測定用指標を表示する。固視標は被検眼Eを固視させるための指標であり、眼底撮影時やOCT計測時などに使用される。   An LCD (Liquid Crystal Display) 39 displays a fixation target and an eyesight measurement index. The fixation target is an index for fixing the eye E to be examined, and is used at the time of fundus photographing or OCT measurement.

LCD39から出力された光は、その一部がハーフミラー33Aにて反射され、ミラー32に反射され、合焦レンズ31及びダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。LCD39の画面上における固視標の表示位置を変更することにより、被検眼Eの固視位置を変更できる。   A part of the light output from the LCD 39 is reflected by the half mirror 33A, reflected by the mirror 32, passes through the focusing lens 31 and the dichroic mirror 55, passes through the hole of the perforated mirror 21, and reaches the dichroic. The light passes through the mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef. By changing the display position of the fixation target on the screen of the LCD 39, the fixation position of the eye E can be changed.

更に、眼底カメラユニット2には、従来の眼底カメラと同様にアライメント光学系50とフォーカス光学系60が設けられている。アライメント光学系50は、被検眼Eに対する装置光学系の位置合わせ(アライメント)を行うための指標(アライメント指標)を生成する。フォーカス光学系60は、被検眼Eに対してフォーカス(ピント)を合わせるための指標(スプリット指標)を生成する。   Further, the fundus camera unit 2 is provided with an alignment optical system 50 and a focus optical system 60 as in a conventional fundus camera. The alignment optical system 50 generates an index (alignment index) for performing alignment (alignment) of the apparatus optical system with respect to the eye E. The focus optical system 60 generates an index (split index) for focusing on the eye E to be examined.

アライメント光学系50のLED51から出力された光(アライメント光)は、絞り52、53及びリレーレンズ54を経由してダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により被検眼Eの角膜に投影される。   The light (alignment light) output from the LED 51 of the alignment optical system 50 is reflected by the dichroic mirror 55 via the apertures 52 and 53 and the relay lens 54, passes through the hole of the aperture mirror 21, and reaches the dichroic mirror 46. And is projected onto the cornea of the eye E by the objective lens 22.

アライメント光の角膜反射光は、対物レンズ22、ダイクロイックミラー46及び上記孔部を経由し、その一部がダイクロイックミラー55を透過し、合焦レンズ31を通過し、ミラー32により反射され、ハーフミラー33Aを透過し、ダイクロイックミラー33に反射され、集光レンズ34によりCCDイメージセンサ35の受光面に投影される。CCDイメージセンサ35による受光像(アライメント指標)は、観察画像とともに表示装置3に表示される。ユーザは、従来の眼底カメラと同様の操作を行ってアライメントを実施する。また、演算制御ユニット200がアライメント指標の位置を解析して光学系を移動させることによりアライメントを行ってもよい(オートアライメント機能)。   The cornea-reflected light of the alignment light passes through the objective lens 22, the dichroic mirror 46, and the hole, part of which passes through the dichroic mirror 55, passes through the focusing lens 31, and is reflected by the mirror 32. The light passes through 33A, is reflected by the dichroic mirror 33, and is projected onto the light receiving surface of the CCD image sensor 35 by the condenser lens. The light reception image (alignment index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image. The user performs alignment by performing the same operation as that of a conventional fundus camera. Further, the arithmetic control unit 200 may perform alignment by analyzing the position of the alignment index and moving the optical system (auto-alignment function).

フォーカス調整を行う際には、照明光学系10の光路上に反射棒67の反射面が斜設される。フォーカス光学系60のLED61から出力された光(フォーカス光)は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65に反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。   When performing the focus adjustment, the reflecting surface of the reflecting rod 67 is obliquely provided on the optical path of the illumination optical system 10. The light (focus light) output from the LED 61 of the focus optical system 60 passes through the relay lens 62, is separated into two light beams by the split indicator plate 63, passes through the two-hole aperture 64, and is reflected by the mirror 65. The light is focused on the reflecting surface of the reflecting bar 67 by the condenser lens 66 and reflected. Further, the focus light passes through the relay lens 20, is reflected by the perforated mirror 21, passes through the dichroic mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.

フォーカス光の眼底反射光は、アライメント光の角膜反射光と同様の経路を通ってCCDイメージセンサ35により検出される。CCDイメージセンサ35による受光像(スプリット指標)は、観察画像とともに表示装置3に表示される。演算制御ユニット200は、従来と同様に、スプリット指標の位置を解析して合焦レンズ31及びフォーカス光学系60を移動させてピント合わせを行う(オートフォーカス機能)。また、スプリット指標を視認しつつ手動でピント合わせを行ってもよい。   The fundus reflection light of the focus light is detected by the CCD image sensor 35 through the same path as the cornea reflection light of the alignment light. A light reception image (split index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image. The arithmetic control unit 200 analyzes the position of the split index and moves the focusing lens 31 and the focus optical system 60 to perform focusing as in the conventional case (autofocus function). Alternatively, focusing may be performed manually while visually checking the split indicator.

ダイクロイックミラー46は、眼底撮影用の光路からOCT用の光路を分岐させている。ダイクロイックミラー46は、OCTに用いられる波長帯の光を反射し、眼底撮影用の光を透過させる。このOCT用の光路には、OCTユニット100側から順に、コリメータレンズユニット40と、光路長変更部41と、光スキャナ42と、合焦レンズ43と、ミラー44と、リレーレンズ45とが設けられている。   The dichroic mirror 46 branches the optical path for OCT from the optical path for fundus imaging. The dichroic mirror 46 reflects light in a wavelength band used for OCT and transmits light for fundus photographing. In this OCT optical path, a collimator lens unit 40, an optical path length changing unit 41, an optical scanner 42, a focusing lens 43, a mirror 44, and a relay lens 45 are provided in this order from the OCT unit 100 side. ing.

光路長変更部41は、図1に示す矢印の方向に移動可能とされ、OCT用の光路の光路長を変更する。この光路長の変更は、被検眼Eの眼軸長に応じた光路長の補正や、干渉状態の調整などに利用される。光路長変更部41は、例えばコーナーキューブと、これを移動する機構とを含んで構成される。   The optical path length changing unit 41 is movable in the direction of the arrow shown in FIG. 1, and changes the optical path length of the optical path for OCT. This change in the optical path length is used for correcting the optical path length according to the axial length of the eye E or adjusting the interference state. The optical path length changing unit 41 includes, for example, a corner cube and a mechanism for moving the corner cube.

光スキャナ42は、被検眼Eの瞳孔と光学的に共役な位置に配置されている。光スキャナ42は、OCT用の光路を通過する光(測定光LS)の進行方向を変更する。それにより、被検眼Eを測定光LSでスキャンすることができる。光スキャナ42は、例えば、測定光LSをx方向にスキャンするガルバノミラーと、y方向にスキャンするガルバノミラーと、これらを独立に駆動する機構とを含んで構成される。それにより、測定光LSをxy平面上の任意の方向にスキャンすることができる。   The optical scanner 42 is disposed at a position optically conjugate with the pupil of the eye E. The optical scanner 42 changes the traveling direction of the light (measurement light LS) passing through the optical path for OCT. Thereby, the eye E can be scanned with the measurement light LS. The optical scanner 42 includes, for example, a galvanometer mirror that scans the measurement light LS in the x direction, a galvanometer mirror that scans in the y direction, and a mechanism that drives these independently. Thereby, the measurement light LS can be scanned in an arbitrary direction on the xy plane.

〔OCTユニット〕
OCTユニット100の構成の一例を図2に示す。OCTユニット100には、被検眼EのOCT画像を取得するための光学系が設けられている。この光学系は、従来のスウェプトソースタイプのOCT装置と同様の構成を有する。すなわち、この光学系は、波長掃引型(波長走査型)光源からの光を測定光と参照光とに分割し、被検眼Eからの測定光の戻り光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光を検出する干渉光学系である。干渉光学系による干渉光の検出結果(検出信号)は、干渉光のスペクトルを示す信号であり、演算制御ユニット200に送られる。
[OCT unit]
An example of the configuration of the OCT unit 100 is shown in FIG. The OCT unit 100 is provided with an optical system for acquiring an OCT image of the eye E. This optical system has the same configuration as a conventional swept source type OCT apparatus. That is, this optical system divides the light from the wavelength sweep type (wavelength scanning type) light source into the measurement light and the reference light, and returns the return light of the measurement light from the eye E and the reference light via the reference light path. An interference optical system that generates interference light by causing interference and detects the interference light. The detection result (detection signal) of the interference light by the interference optical system is a signal indicating the spectrum of the interference light, and is sent to the arithmetic control unit 200.

光源ユニット101は、一般的なスウェプトソースタイプのOCT装置と同様に、出射光の波長を掃引(走査)可能な波長掃引型(波長走査型)光源を含んで構成される。波長掃引型光源は、共振器を含むレーザ光源を含んで構成される。光源ユニット101は、人眼では視認できない近赤外の波長帯において、出力波長を時間的に変化させる。   The light source unit 101 is configured to include a wavelength sweep type (wavelength scanning type) light source capable of sweeping (scanning) the wavelength of emitted light, as in a general swept source type OCT apparatus. The wavelength sweep type light source includes a laser light source including a resonator. The light source unit 101 temporally changes the output wavelength in the near-infrared wavelength band that cannot be visually recognized by the human eye.

光源ユニット101から出力された光L0は、光ファイバ102により偏波コントローラ103に導かれてその偏光状態が調整される。偏波コントローラ103は、例えばループ状にされた光ファイバ102に対して外部から応力を与えることで、光ファイバ102内を導かれる光L0の偏光状態を調整する。   The light L0 output from the light source unit 101 is guided to the polarization controller 103 by the optical fiber 102 and its polarization state is adjusted. The polarization controller 103 adjusts the polarization state of the light L0 guided through the optical fiber 102, for example, by applying stress from the outside to the looped optical fiber 102.

偏波コントローラ103により偏光状態が調整された光L0は、光ファイバ104によりファイバカプラ105に導かれて測定光LSと参照光LRとに分割される。   The light L0 whose polarization state is adjusted by the polarization controller 103 is guided to the fiber coupler 105 by the optical fiber 104, and is divided into the measurement light LS and the reference light LR.

参照光LRは、光ファイバ110によりコリメータ111に導かれて平行光束となる。平行光束となった参照光LRは、光路長補正部材112及び分散補償部材113を経由し、コーナーキューブ114に導かれる。光路長補正部材112は、参照光LRの光路長(光学距離)と測定光LSの光路長とを合わせるための遅延手段として作用する。分散補償部材113は、参照光LRと測定光LSとの間の分散特性を合わせるための分散補償手段として作用する。   The reference light LR is guided to the collimator 111 by the optical fiber 110 and becomes a parallel light beam. The reference light LR that has become a parallel light beam is guided to the corner cube 114 via the optical path length correction member 112 and the dispersion compensation member 113. The optical path length correction member 112 functions as a delay unit for matching the optical path length (optical distance) of the reference light LR and the optical path length of the measurement light LS. The dispersion compensation member 113 functions as a dispersion compensation means for matching the dispersion characteristics between the reference light LR and the measurement light LS.

コーナーキューブ114は、コリメータ111により平行光束となった参照光LRの進行方向を逆方向に折り返す。コーナーキューブ114に入射する参照光LRの光路と、コーナーキューブ114から出射する参照光LRの光路とは平行である。また、コーナーキューブ114は、参照光LRの入射光路及び出射光路に沿う方向に移動可能とされている。この移動により参照光LRの光路の長さが変更される。   The corner cube 114 folds the traveling direction of the reference light LR that has become a parallel light beam by the collimator 111 in the reverse direction. The optical path of the reference light LR incident on the corner cube 114 and the optical path of the reference light LR emitted from the corner cube 114 are parallel. The corner cube 114 is movable in a direction along the incident optical path and the outgoing optical path of the reference light LR. By this movement, the length of the optical path of the reference light LR is changed.

なお、図1及び図2に示す構成においては、測定光LSの光路(測定光路、測定アーム)の長さを変更するための光路長変更部41と、参照光LRの光路(参照光路、参照アーム)の長さを変更するためのコーナーキューブ114の双方が設けられているが、これらのうちのいずれか一方が設けられていてもよい。また、これら以外の光学部材を用いて、測定光路長と参照光路長との差を変更することも可能である。   1 and 2, the optical path length changing unit 41 for changing the length of the optical path (measurement optical path, measurement arm) of the measurement light LS and the optical path (reference optical path, reference) of the reference light LR. Both corner cubes 114 for changing the length of the arm) are provided, but either one of them may be provided. It is also possible to change the difference between the measurement optical path length and the reference optical path length using optical members other than these.

コーナーキューブ114を経由した参照光LRは、分散補償部材113及び光路長補正部材112を経由し、コリメータ116によって平行光束から集束光束に変換されて光ファイバ117に入射し、偏波コントローラ118に導かれて参照光LRの偏光状態が調整される。   The reference light LR that has passed through the corner cube 114 passes through the dispersion compensation member 113 and the optical path length correction member 112, is converted from a parallel light beam into a focused light beam by the collimator 116, enters the optical fiber 117, and is guided to the polarization controller 118. Accordingly, the polarization state of the reference light LR is adjusted.

偏波コントローラ118は、例えば、偏波コントローラ103と同様の構成を有する。偏波コントローラ118により偏光状態が調整された参照光LRは、光ファイバ119によりアッテネータ120に導かれて、演算制御ユニット200の制御の下で光量が調整される。アッテネータ120により光量が調整された参照光LRは、光ファイバ121によりファイバカプラ122に導かれる。   For example, the polarization controller 118 has the same configuration as the polarization controller 103. The reference light LR whose polarization state is adjusted by the polarization controller 118 is guided to the attenuator 120 by the optical fiber 119, and the light quantity is adjusted under the control of the arithmetic control unit 200. The reference light LR whose light amount has been adjusted by the attenuator 120 is guided to the fiber coupler 122 by the optical fiber 121.

一方、ファイバカプラ105により生成された測定光LSは、光ファイバ127により導かれ、コリメータレンズユニット40により平行光束とされる。平行光束にされた測定光LSは、光路長変更部41、光スキャナ42、合焦レンズ43、ミラー44、及びリレーレンズ45を経由してダイクロイックミラー46に到達する。そして、測定光LSは、ダイクロイックミラー46により反射され、対物レンズ22により屈折されて被検眼Eに照射される。測定光LSは、被検眼Eの様々な深さ位置において散乱(反射を含む)される。このような後方散乱光を含む測定光LSの戻り光は、往路と同じ経路を逆向きに進行してファイバカプラ105に導かれ、光ファイバ128を経由してファイバカプラ122に到達する。   On the other hand, the measurement light LS generated by the fiber coupler 105 is guided by the optical fiber 127 and converted into a parallel light beam by the collimator lens unit 40. The measurement light LS converted into a parallel light beam reaches the dichroic mirror 46 via the optical path length changing unit 41, the optical scanner 42, the focusing lens 43, the mirror 44, and the relay lens 45. Then, the measurement light LS is reflected by the dichroic mirror 46, refracted by the objective lens 22, and irradiated to the eye E. The measurement light LS is scattered (including reflection) at various depth positions of the eye E. The return light of the measurement light LS including such backscattered light travels in the reverse direction on the same path as the forward path, is guided to the fiber coupler 105, and reaches the fiber coupler 122 via the optical fiber 128.

ファイバカプラ122は、光ファイバ128を介して入射された測定光LSと、光ファイバ121を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバカプラ122は、所定の分岐比(例えば1:1)で、測定光LSと参照光LRとの干渉光を分岐することにより、一対の干渉光LCを生成する。ファイバカプラ122から出射した一対の干渉光LCは、それぞれ光ファイバ123、124により検出器125に導かれる。   The fiber coupler 122 combines (interferes) the measurement light LS incident through the optical fiber 128 and the reference light LR incident through the optical fiber 121 to generate interference light. The fiber coupler 122 branches the interference light between the measurement light LS and the reference light LR at a predetermined branching ratio (for example, 1: 1), thereby generating a pair of interference lights LC. The pair of interference lights LC emitted from the fiber coupler 122 are guided to the detector 125 by optical fibers 123 and 124, respectively.

検出器125は、例えば一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを有し、これらによる検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode)である。検出器125は、その検出結果(検出信号)をDAQ(Data Acquisition System)130に送る。DAQ130には、光源ユニット101からクロックKCが供給される。クロックKCは、光源ユニット101において、波長掃引型光源により所定の波長範囲内で掃引(走査)される各波長の出力タイミングに同期して生成される。光源ユニット101は、例えば、各出力波長の光L0を分岐することにより得られた2つの分岐光の一方を光学的に遅延させた後、これらの合成光を検出した結果に基づいてクロックKCを生成する。DAQ130は、クロックKCに基づき、検出器125の検出結果をサンプリングする。DAQ130は、サンプリングされた検出器125の検出結果を演算制御ユニット200に送る。演算制御ユニット200は、例えば一連の波長走査毎に(Aライン毎に)、検出器125により得られた検出結果に基づくスペクトル分布にフーリエ変換等を施すことにより、各Aラインにおける反射強度プロファイルを形成する。更に、演算制御ユニット200は、各Aラインの反射強度プロファイルを画像化することにより画像データを形成する。   The detector 125 is, for example, a balanced photodiode that includes a pair of photodetectors that respectively detect a pair of interference lights LC and outputs a difference between detection results obtained by the pair of photodetectors. The detector 125 sends the detection result (detection signal) to a DAQ (Data Acquisition System) 130. The clock 130 is supplied from the light source unit 101 to the DAQ 130. The clock KC is generated in synchronization with the output timing of each wavelength swept (scanned) within a predetermined wavelength range by the wavelength sweep type light source in the light source unit 101. For example, the light source unit 101 optically delays one of the two branched lights obtained by branching the light L0 of each output wavelength, and then generates a clock KC based on the result of detecting these combined lights. Generate. The DAQ 130 samples the detection result of the detector 125 based on the clock KC. The DAQ 130 sends the sampled detection result of the detector 125 to the arithmetic control unit 200. The arithmetic control unit 200 performs a Fourier transform or the like on the spectrum distribution based on the detection result obtained by the detector 125 for each series of wavelength scans (for each A line), for example, thereby obtaining a reflection intensity profile in each A line. Form. Furthermore, the arithmetic control unit 200 forms image data by imaging the reflection intensity profile of each A line.

〔演算制御ユニット〕
演算制御ユニット200の構成について説明する。演算制御ユニット200は、検出器125から入力される検出信号を解析して被検眼EのOCT画像を形成する。そのための演算処理は、従来のスウェプトソースタイプのOCT装置と同様である。
[Calculation control unit]
The configuration of the arithmetic control unit 200 will be described. The arithmetic control unit 200 analyzes the detection signal input from the detector 125 and forms an OCT image of the eye E. The arithmetic processing for this is the same as that of a conventional swept source type OCT apparatus.

また、演算制御ユニット200は、眼底カメラユニット2、表示装置3及びOCTユニット100の各部を制御する。例えば演算制御ユニット200は、被検眼EのOCT画像を表示装置3に表示させる。   The arithmetic control unit 200 controls each part of the fundus camera unit 2, the display device 3, and the OCT unit 100. For example, the arithmetic and control unit 200 displays an OCT image of the eye E on the display device 3.

演算制御ユニット200は、例えば、プロセッサ、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスクドライブ、通信インターフェイスなどを含む。また、演算制御ユニット200は、キーボードやマウス等の操作デバイス(入力デバイス)や、LCD等の表示デバイスを備えていてもよい。プロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路により実現される。ハードディスクドライブ等の記憶装置には、眼科撮影装置1を制御するためのコンピュータプログラムが記憶されている。演算制御ユニット200は、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。   The arithmetic control unit 200 includes, for example, a processor, a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk drive, a communication interface, and the like. The arithmetic control unit 200 may include an operation device (input device) such as a keyboard and a mouse, and a display device such as an LCD. The processor is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (for example, SPLD (Simple Programmable LD). (Field Programmable Gate Array)) or the like. A computer program for controlling the ophthalmologic photographing apparatus 1 is stored in a storage device such as a hard disk drive. The arithmetic control unit 200 implements the functions according to the embodiment by reading and executing a program stored in a storage circuit or a storage device, for example.

〔制御系〕
眼科撮影装置1の制御系の構成について図3を参照しつつ説明する。なお、図3においては、眼科撮影装置1のいくつかの構成要素が省略されており、この実施形態を説明するために特に必要な構成要素が選択的に示されている。
[Control system]
The configuration of the control system of the ophthalmologic photographing apparatus 1 will be described with reference to FIG. In FIG. 3, some components of the ophthalmologic photographing apparatus 1 are omitted, and components particularly necessary for explaining this embodiment are selectively shown.

(制御部)
眼科撮影装置1の制御系は、制御部210を中心に構成される。制御部210は、例えば、前述のプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含んで構成される。制御部210には、主制御部211と記憶部212が設けられている。
(Control part)
The control system of the ophthalmologic photographing apparatus 1 is configured around the control unit 210. The control unit 210 includes, for example, the above-described processor, RAM, ROM, hard disk drive, communication interface, and the like. The control unit 210 is provided with a main control unit 211 and a storage unit 212.

(主制御部)
主制御部211は前述の各種制御を行う。特に、図3に示すように、主制御部211は、眼底カメラユニット2の撮影合焦駆動部31A、CCDイメージセンサ35及び38、LCD39、光路長変更部41、光スキャナ42、OCT合焦駆動部43A及び移動機構駆動部80Aなどを制御する。また、主制御部211は、OCTユニット100の光源ユニット101、参照駆動部114A、検出器125及びDAQ130などを制御する。
(Main control unit)
The main control unit 211 performs the various controls described above. In particular, as shown in FIG. 3, the main control unit 211 includes the imaging focus drive unit 31A, the CCD image sensors 35 and 38, the LCD 39, the optical path length change unit 41, the optical scanner 42, and the OCT focus drive of the fundus camera unit 2. The unit 43A, the moving mechanism driving unit 80A, and the like are controlled. The main control unit 211 controls the light source unit 101, the reference driving unit 114A, the detector 125, the DAQ 130, and the like of the OCT unit 100.

移動機構駆動部80Aは、移動機構80を駆動する。移動機構80は、図1及び図2に示す光学系を一体的に移動させる。移動機構80は、上記の光学系をx方向に移動するための第1移動機構と、上記の光学系をy方向に移動するための第2移動機構と、上記の光学系をz方向に移動するための第3移動機構とを含む。x方向は、対物レンズ22の光軸方向に直交する方向(左右方向)である。y方向は、対物レンズ22の光軸方向に直交する方向(上下方向)である。z方向は、対物レンズ22の光軸方向である。移動機構駆動部80Aは、第1移動機構を駆動する第1駆動部と、第2移動機構を駆動する第2駆動部と、第3移動機構を駆動する第3駆動部とを含む。   The moving mechanism drive unit 80A drives the moving mechanism 80. The moving mechanism 80 moves the optical system shown in FIGS. 1 and 2 integrally. The movement mechanism 80 includes a first movement mechanism for moving the optical system in the x direction, a second movement mechanism for moving the optical system in the y direction, and a movement of the optical system in the z direction. And a third moving mechanism. The x direction is a direction (left-right direction) orthogonal to the optical axis direction of the objective lens 22. The y direction is a direction (vertical direction) orthogonal to the optical axis direction of the objective lens 22. The z direction is the optical axis direction of the objective lens 22. The moving mechanism driving unit 80A includes a first driving unit that drives the first moving mechanism, a second driving unit that drives the second moving mechanism, and a third driving unit that drives the third moving mechanism.

撮影合焦駆動部31Aは、合焦レンズ31を光軸方向に移動させる。それにより、撮影光学系30の合焦位置が変更される。なお、主制御部211は、移動機構駆動部80Aを制御することにより、眼底カメラユニット2に設けられた光学系を移動機構80により3次元的に移動させることができる。この制御は、アライメントやトラッキングにおいて用いられる。トラッキングとは、被検眼Eの運動に合わせて装置光学系を移動させるものである。トラッキングを行う場合には、事前にアライメントとピント合わせが実行される。トラッキングは、被検眼Eを動画撮影して得られる画像に基づき被検眼Eの位置や向きに合わせて装置光学系をリアルタイムで移動させることにより、アライメントとピントが合った好適な位置関係を維持する機能である。   The photographing focus driving unit 31A moves the focusing lens 31 in the optical axis direction. Thereby, the focus position of the photographic optical system 30 is changed. The main control unit 211 can move the optical system provided in the fundus camera unit 2 three-dimensionally by the movement mechanism 80 by controlling the movement mechanism driving unit 80A. This control is used in alignment and tracking. Tracking refers to moving the apparatus optical system in accordance with the movement of the eye E. When tracking is performed, alignment and focusing are performed in advance. Tracking maintains a suitable positional relationship in which alignment and focus are achieved by moving the apparatus optical system in real time according to the position and orientation of the eye E based on an image obtained by taking a moving image of the eye E. It is a function.

OCT合焦駆動部43Aは、測定光路の光軸に沿って合焦レンズ43を移動させる。それにより、測定光LSの合焦位置が変更される。測定光LSの合焦位置は、測定光LSのビームウェストの深さ位置(z位置)に相当する。   The OCT focusing drive unit 43A moves the focusing lens 43 along the optical axis of the measurement optical path. Thereby, the focus position of the measurement light LS is changed. The focus position of the measurement light LS corresponds to the depth position (z position) of the beam waist of the measurement light LS.

参照駆動部114Aは、参照光路に設けられたコーナーキューブ114を移動させる。それにより、参照光路の長さが変更される。なお、前述したように、光路長変更部41と、コーナーキューブ114及び参照駆動部114Aとのいずれか一方のみが設けられた構成であってもよい。   The reference driving unit 114A moves the corner cube 114 provided in the reference optical path. Thereby, the length of the reference optical path is changed. As described above, the optical path length changing unit 41 and only one of the corner cube 114 and the reference driving unit 114A may be provided.

(記憶部)
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、例えば、OCT画像の画像データ、眼底像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。また、記憶部212には、眼科撮影装置1を動作させるための各種プログラムやデータが記憶されている。
(Memory part)
The storage unit 212 stores various data. Examples of the data stored in the storage unit 212 include image data of an OCT image, image data of a fundus image, and eye information to be examined. The eye information includes information about the subject such as patient ID and name, and information about the eye such as left / right eye identification information. The storage unit 212 stores various programs and data for operating the ophthalmologic photographing apparatus 1.

(画像形成部)
画像形成部220は、検出器125(DAQ130)からの検出信号に基づいて、眼底Efの断面像の画像データを形成する。すなわち、画像形成部220は、干渉光学系による干渉光LCの検出結果に基づいて被検眼Eの画像データを形成する。この処理には、従来のスウェプトソースタイプのOCTと同様に、フィルタ処理、FFT(Fast Fourier Transform)などの処理が含まれている。このようにして取得される画像データは、複数のAライン(被検眼E内における各測定光LSの経路)における反射強度プロファイルを画像化することにより形成された一群の画像データを含むデータセットである。
(Image forming part)
The image forming unit 220 forms image data of a cross-sectional image of the fundus oculi Ef based on the detection signal from the detector 125 (DAQ 130). That is, the image forming unit 220 forms image data of the eye E based on the detection result of the interference light LC by the interference optical system. This process includes processes such as filter processing and FFT (Fast Fourier Transform) as in the case of the conventional swept source type OCT. The image data acquired in this way is a data set including a group of image data formed by imaging reflection intensity profiles in a plurality of A lines (paths of the measurement light LS in the eye E). is there.

画質を向上させるために、同じパターンでのスキャンを複数回繰り返して収集された複数のデータセットを重ね合わせる(加算平均する)ことができる。   In order to improve the image quality, it is possible to superimpose (addition average) a plurality of data sets acquired by repeating scanning with the same pattern a plurality of times.

画像形成部220は、例えば、前述の回路基板を含んで構成される。なお、この明細書では、「画像データ」と、それに基づく「画像」とを同一視することがある。また、被検眼Eの部位とその画像とを同一視することもある。   The image forming unit 220 includes, for example, the circuit board described above. In this specification, “image data” and “image” based thereon may be identified. Moreover, the part of the eye E to be examined and the image thereof may be identified.

(データ処理部)
データ処理部230は、画像形成部220により形成されたOCT画像に対して各種のデータ処理(画像処理)や解析処理を施す。例えば、データ処理部230は、画像の輝度補正や分散補正等の補正処理を実行する。また、データ処理部230は、眼底カメラユニット2により得られた画像(眼底像、前眼部像等)に対して各種の画像処理や解析処理を施す。
(Data processing part)
The data processing unit 230 performs various types of data processing (image processing) and analysis processing on the OCT image formed by the image forming unit 220. For example, the data processing unit 230 executes correction processing such as image luminance correction and dispersion correction. Further, the data processing unit 230 performs various types of image processing and analysis processing on the image (fundus image, anterior eye image, etc.) obtained by the fundus camera unit 2.

データ処理部230は、解析部231を含む。解析部231は、上記の解析処理を実行する。同一の計測条件の下で干渉光学系により取得された2以上の干渉光の検出結果に基づく2以上の画像については、アーチファクトの位置が変化することなく、固視微動により眼底における計測部位の位置が変化する。そこで、解析部231は、対物レンズ22と被検眼Eとの相対位置が異なる状態で上記の2以上の画像を解析することにより、2以上の画像中の対応する位置に描出されたノイズを除去する。すなわち、解析部231は、対物レンズ22と被検眼Eとの相対位置が異なる状態で干渉光学系により取得された2以上の干渉光の検出結果に基づき、被検眼の計測部位の像とアーチファクトとを判別し、判別されたアーチファクトだけを被検眼の画像から除去する。   The data processing unit 230 includes an analysis unit 231. The analysis unit 231 executes the analysis process described above. For two or more images based on the detection results of two or more interference lights acquired by the interference optical system under the same measurement condition, the position of the measurement site on the fundus is not affected by the position of the artifact and the eye movement is fixed. Changes. Thus, the analysis unit 231 analyzes the two or more images in a state where the relative positions of the objective lens 22 and the eye E are different, thereby removing noise depicted at corresponding positions in the two or more images. To do. That is, the analysis unit 231 determines the image and artifact of the measurement site of the subject eye based on the detection result of two or more interference lights acquired by the interference optical system in a state where the relative position between the objective lens 22 and the subject eye E is different. And only the determined artifact is removed from the image of the eye to be examined.

この実施形態では、同一の設定が適用された干渉光学系により所定の時間をおいて被検眼Eに対して2以上のOCT計測が実行される。干渉光学系に対する設定には、合焦レンズ43の位置、光スキャナ42によるスキャン長やスキャンパターン、光路長変更部41やコーナーキューブ114による光路長の変更状態、偏波コントローラ103、118による偏光状態などを決定するための設定がある。所定の時間間隔でOCT計測を繰り返し実行することで、固視微動により対物レンズ22と被検眼Eとの相対位置が異なる状態で前述の2以上の検出結果の取得が可能である。   In this embodiment, two or more OCT measurements are performed on the eye E with a predetermined time by the interference optical system to which the same setting is applied. The setting for the interference optical system includes the position of the focusing lens 43, the scan length and scan pattern by the optical scanner 42, the change state of the optical path length by the optical path length changing unit 41 and the corner cube 114, and the polarization state by the polarization controllers 103 and 118. There is a setting to determine. By repeatedly executing the OCT measurement at a predetermined time interval, it is possible to obtain the two or more detection results described above in a state where the relative positions of the objective lens 22 and the eye E are different due to fixation fine movement.

解析部231は、特定部231Aと、除去部231Bとを含む。特定部231Aは、干渉光学系により取得された2以上の画像中のアーチファクト(ノイズ)を特定する。アーチファクトは、所定の閾値以上の強度(輝度)を有し、かつ、相対移動された他の画像における対応領域との強度の変動幅が小さい部分の領域として特定される。例えば、特定部231Aは、取得された2以上の画像中の被検眼の同一部位の画素である対応画素を特定し、特定された対応画素のそれぞれの画素値が第1閾値以上であり、かつ、これら画素値の変動幅が第2閾値以下であるか否かを判定する。特定部231Aは、対応画素のそれぞれの画素値が第1閾値以上であり、かつ、これら画素値の変動幅が第2閾値以下であると判定された対応画素をアーチファクトとして特定する。   The analysis unit 231 includes a specifying unit 231A and a removing unit 231B. The specifying unit 231A specifies an artifact (noise) in two or more images acquired by the interference optical system. The artifact is specified as an area having a strength (luminance) equal to or higher than a predetermined threshold and having a small intensity fluctuation range with a corresponding area in another image that has been relatively moved. For example, the specifying unit 231A specifies a corresponding pixel that is a pixel in the same part of the eye to be examined in the two or more acquired images, each pixel value of the specified corresponding pixel is equal to or greater than a first threshold value, and Then, it is determined whether or not the fluctuation range of these pixel values is equal to or smaller than the second threshold value. The specifying unit 231A specifies, as an artifact, a corresponding pixel in which each pixel value of the corresponding pixel is equal to or greater than the first threshold value and the variation range of these pixel values is equal to or smaller than the second threshold value.

除去部231Bは、既に取得された2以上の画像のいずれかについて、特定部231Aにより特定されたアーチファクトを除去することで、ノイズフリー(アーチファクトフリー)の画像を生成する。   The removing unit 231B generates a noise-free (artifact-free) image by removing the artifact specified by the specifying unit 231A for any of the two or more images already acquired.

また、解析部231は、干渉光学系により取得された2以上の画像のそれぞれを解析することにより黄斑等の被検眼の特徴部位の位置を特定し、特徴部位の位置が異なる2以上の画像を選択し、選択された2以上の画像を用いて上記のアーチファクトの除去を行ってもよい。   Further, the analysis unit 231 identifies the position of the characteristic part of the eye to be examined such as macular by analyzing each of the two or more images acquired by the interference optical system, and extracts two or more images having different positions of the characteristic part. The above artifacts may be removed using two or more selected images.

データ処理部230は、断面像の間の画素を補間する補間処理などの公知の画像処理を実行することにより、被検眼Eのボリュームデータ(ボクセルデータ)を形成することができる。ボリュームデータに基づく画像を表示させる場合、データ処理部230は、このボリュームデータに対してレンダリング処理を施して、特定の視線方向から見たときの擬似的な3次元画像を形成する。   The data processing unit 230 can form volume data (voxel data) of the eye E by performing known image processing such as interpolation processing for interpolating pixels between cross-sectional images. When displaying an image based on volume data, the data processing unit 230 performs a rendering process on the volume data to form a pseudo three-dimensional image when viewed from a specific viewing direction.

データ処理部230は、眼底像とOCT画像との位置合わせを行うことができる。眼底像とOCT画像とが並行して取得される場合には、双方の光学系が同軸であることから、(ほぼ)同時に取得された眼底像とOCT画像とを、撮影光学系30の光軸を基準として位置合わせすることができる。また、眼底像とOCT画像との取得タイミングに関わらず、OCT画像のうち眼底Efの相当する画像領域の少なくとも一部をxy平面に投影して得られる正面画像と、眼底像との位置合わせをすることにより、そのOCT画像とその眼底像とを位置合わせすることも可能である。この位置合わせ手法は、眼底像取得用の光学系とOCT用の光学系とが同軸でない場合においても適用可能である。また、双方の光学系が同軸でない場合であっても、双方の光学系の相対的な位置関係が既知であれば、この相対位置関係を参照して同軸の場合と同様の位置合わせを実行することが可能である。   The data processing unit 230 can perform alignment between the fundus image and the OCT image. When the fundus image and the OCT image are acquired in parallel, since both optical systems are coaxial, the optical axis of the imaging optical system 30 is used to (substantially) simultaneously acquire the fundus image and the OCT image. Can be aligned with reference to. Regardless of the acquisition timing of the fundus image and the OCT image, the front image obtained by projecting at least a part of the image area corresponding to the fundus oculi Ef of the OCT image onto the xy plane is aligned with the fundus image. By doing so, it is possible to align the OCT image and the fundus image. This alignment method is applicable even when the fundus image acquisition optical system and the OCT optical system are not coaxial. Even if both optical systems are not coaxial, if the relative positional relationship between both optical systems is known, the same alignment as in the coaxial case is executed with reference to this relative positional relationship. It is possible.

以上のように機能するデータ処理部230は、例えば、プロセッサ、RAM、ROM、ハードディスクドライブ、回路基板等を含んで構成される。ハードディスクドライブ等の記憶装置には、上記機能をプロセッサに実行させるコンピュータプログラムがあらかじめ格納されている。   The data processing unit 230 that functions as described above includes, for example, a processor, a RAM, a ROM, a hard disk drive, a circuit board, and the like. A storage device such as a hard disk drive stores in advance a computer program that causes the processor to execute the above functions.

(ユーザインターフェイス)
ユーザインターフェイス240には、表示部241と操作部242とが含まれる。表示部241は、前述した演算制御ユニット200の表示デバイスや表示装置3を含んで構成される。操作部242は、前述した演算制御ユニット200の操作デバイスを含んで構成される。操作部242には、眼科撮影装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。また、表示部241は、眼底カメラユニット2の筺体に設けられたタッチパネルなどの各種表示デバイスを含んでいてもよい。
(User interface)
The user interface 240 includes a display unit 241 and an operation unit 242. The display unit 241 includes the display device of the arithmetic control unit 200 and the display device 3 described above. The operation unit 242 includes the operation device of the arithmetic control unit 200 described above. The operation unit 242 may include various buttons and keys provided on the housing of the ophthalmologic photographing apparatus 1 or outside. Further, the display unit 241 may include various display devices such as a touch panel provided in the housing of the fundus camera unit 2.

なお、表示部241と操作部242は、それぞれ個別のデバイスとして構成される必要はない。例えばタッチパネルのように、表示機能と操作機能とが一体化されたデバイスを用いることも可能である。その場合、操作部242は、このタッチパネルとコンピュータプログラムとを含んで構成される。操作部242に対する操作内容は、電気信号として制御部210に入力される。また、表示部241に表示されたグラフィカルユーザインターフェイス(GUI)と、操作部242とを用いて、操作や情報入力を行うようにしてもよい。   The display unit 241 and the operation unit 242 do not need to be configured as individual devices. For example, a device in which a display function and an operation function are integrated, such as a touch panel, can be used. In that case, the operation unit 242 includes the touch panel and a computer program. The operation content for the operation unit 242 is input to the control unit 210 as an electrical signal. Further, operations and information input may be performed using the graphical user interface (GUI) displayed on the display unit 241 and the operation unit 242.

OCTユニット100、コリメータレンズユニット40、光路長変更部41、光スキャナ42、合焦レンズ43、ミラー44、及びリレーレンズ45は、この実施形態に係る「干渉光学系」の一例である。   The OCT unit 100, the collimator lens unit 40, the optical path length changing unit 41, the optical scanner 42, the focusing lens 43, the mirror 44, and the relay lens 45 are examples of the “interference optical system” according to this embodiment.

[動作例]
眼科撮影装置1の動作について説明する。
[Operation example]
The operation of the ophthalmologic photographing apparatus 1 will be described.

図4に、実施形態の比較例の説明図を示す。図4は、比較例における眼科撮影装置により得られたOCT画像を模式的に表す。   FIG. 4 is an explanatory diagram of a comparative example of the embodiment. FIG. 4 schematically shows an OCT image obtained by the ophthalmologic imaging apparatus in the comparative example.

比較例における眼科撮影装置では、光スキャナ42による測定光の偏光制御の中心(スキャナ座標系の原点)が対物レンズ22の光軸に一致するように設けられている。このような位置調整は、設計段階や、出荷工程やメンテナンス工程で行われる。それにより、本比較例に係る眼科撮影装置では、被検眼Eの注目部位が対物レンズ22の光軸の位置に配置されるようにアライメントが行われ、光軸を含むスキャンによる撮影頻度が高くなる。   In the ophthalmologic photographing apparatus in the comparative example, the center of the polarization control of the measurement light by the optical scanner 42 (the origin of the scanner coordinate system) is provided so as to coincide with the optical axis of the objective lens 22. Such position adjustment is performed in a design stage, a shipping process, or a maintenance process. Thereby, in the ophthalmologic photographing apparatus according to this comparative example, alignment is performed so that the target region of the eye E to be examined is arranged at the position of the optical axis of the objective lens 22, and the photographing frequency by the scan including the optical axis increases. .

ところが、対物レンズ22の光軸を含むスキャンにより取得されたOCT画像IMG1では、図4に示すように、対物レンズ22のレンズ面の頂点からの反射光がアーチファクトN1として現れる場合がある。例えば、図4に示すように中心窩CFを注目部位とする断層画像を観察する目的で撮影したにもかかわらず、注目部位付近にアーチファクトN1が現れてしまい、画像中の注目部位付近の観察が難しくなる。この現象は、コヒーレンス長が長くなるほど、眼科撮影装置が有する光学系の反射に起因したアーチファクトがOCT画像に現れやすくなる。   However, in the OCT image IMG1 acquired by scanning including the optical axis of the objective lens 22, reflected light from the apex of the lens surface of the objective lens 22 may appear as an artifact N1 as shown in FIG. For example, as shown in FIG. 4, although the image is taken for the purpose of observing a tomographic image with the foveal CF as a target region, an artifact N1 appears near the target region, and the vicinity of the target region in the image is observed. It becomes difficult. In this phenomenon, the longer the coherence length, the more likely artifacts caused by the reflection of the optical system of the ophthalmic imaging apparatus appear in the OCT image.

そこで、実施形態では、上記のように、対物レンズ22と被検眼Eとの相対位置が異なる状態で干渉光学系により取得された2以上の干渉光の検出結果に基づく2以上の画像を解析することによって、2以上の画像中の対応する位置に描出されたノイズが除去される。それにより、光学系の反射だけでなくコヒーレンスリバイバル現象に起因したアーチファクト等のノイズが描出されないOCT画像を取得することが可能になる。特に、撮影頻度が高いOCT画像(対物レンズ22の光軸を含むスキャンにより取得されたOCT画像)において、注目部位付近の詳細な観察が可能になる。   Therefore, in the embodiment, as described above, two or more images based on the detection result of two or more interference lights acquired by the interference optical system in a state where the relative positions of the objective lens 22 and the eye E to be examined are different are analyzed. As a result, noise drawn at corresponding positions in two or more images is removed. This makes it possible to acquire an OCT image in which noise such as artifacts caused by the coherence revival phenomenon as well as reflection of the optical system is not depicted. In particular, in an OCT image having a high imaging frequency (an OCT image acquired by scanning including the optical axis of the objective lens 22), it is possible to perform detailed observation near the region of interest.

図5に、眼科撮影装置1の動作例のフロー図を示す。この動作例には、画像に基づく被検眼Eと装置光学系との位置合わせの処理と、画像に基づくスキャン領域の設定処理とが含まれる。位置合わせの処理には、OCT計測のためのアライメント(オートアライメント)、ピント合わせ(オートフォーカス)、トラッキング(オートトラッキング)が含まれる。   FIG. 5 shows a flowchart of an operation example of the ophthalmologic photographing apparatus 1. This operation example includes a process of aligning the eye E to be examined and the apparatus optical system based on an image, and a scan area setting process based on the image. The alignment processing includes alignment for OCT measurement (auto alignment), focusing (auto focus), and tracking (auto tracking).

(S1)
まず、観察光源11からの照明光(可視カットフィルタ14により近赤外光となる)で眼底Efを連続照明することにより、眼底Efの近赤外動画像の取得を開始する。この近赤外動画像は、連続照明が終了するまでリアルタイムで得られる。この動画像を構成する各フレームの画像は、フレームメモリ(記憶部212)に一時記憶され、データ処理部230に逐次送られる。
(S1)
First, acquisition of a near-infrared moving image of the fundus oculi Ef is started by continuously illuminating the fundus oculi Ef with illumination light from the observation light source 11 (which becomes near-infrared light by the visible cut filter 14). This near-infrared moving image is obtained in real time until the continuous illumination ends. The image of each frame composing the moving image is temporarily stored in the frame memory (storage unit 212) and sequentially sent to the data processing unit 230.

なお、被検眼Eには、アライメント光学系50によるアライメント指標と、フォーカス光学系60によるスプリット指標とが投影されている。よって、近赤外動画像にはアライメント指標とスプリット指標とが描出されている。これら指標を用いてアライメントやピント合わせを行うことができる。また、被検眼Eには、LCD39による固視標も投影されている。被検者は、この固視標を凝視するように指示を受ける。   Note that an alignment index by the alignment optical system 50 and a split index by the focus optical system 60 are projected onto the eye E to be examined. Therefore, the alignment index and the split index are depicted in the near-infrared moving image. These indices can be used for alignment and focusing. A fixation target by the LCD 39 is also projected onto the eye E. The subject is instructed to stare at the fixation target.

(S2)
データ処理部230は、光学系によって被検眼Eを動画撮影することにより得られるフレームを逐次に解析して、アライメント視標の位置を求め、光学系の移動量を算出する。制御部210は、データ処理部230により算出された光学系の移動量に基づいて移動機構駆動部80Aを制御することにより、オートアライメントを行う。
(S2)
The data processing unit 230 sequentially analyzes frames obtained by taking a moving image of the eye E with the optical system, obtains the position of the alignment target, and calculates the movement amount of the optical system. The control unit 210 performs auto-alignment by controlling the moving mechanism driving unit 80A based on the movement amount of the optical system calculated by the data processing unit 230.

(S3)
データ処理部230は、光学系によって被検眼Eを動画撮影することにより得られるフレームを逐次に解析して、スプリット視標の位置を求め、合焦レンズ31の移動量を算出する。制御部210は、データ処理部230により算出された合焦レンズ31の移動量に基づいて撮影合焦駆動部31Aを制御することにより、オートフォーカスを行う。
(S3)
The data processing unit 230 sequentially analyzes frames obtained by taking a moving image of the eye E with the optical system, obtains the position of the split target, and calculates the movement amount of the focusing lens 31. The control unit 210 performs autofocus by controlling the photographing focus driving unit 31A based on the movement amount of the focusing lens 31 calculated by the data processing unit 230.

(S4)
続いて、制御部210は、オートトラッキングを開始する。具体的には、データ処理部230は、光学系によって被検眼Eを動画撮影することにより逐次に得られるフレームをリアルタイムで解析して、被検眼Eの動き(位置の変化)を監視する。制御部210は、逐次に取得される被検眼Eの位置に合わせて光学系を移動させるように移動機構駆動部80Aを制御する。それにより、被検眼Eの動きに対して光学系をリアルタイムで追従させることができ、アライメントとピントが合った好適な位置関係を維持することが可能となる。
(S4)
Subsequently, the control unit 210 starts auto-tracking. Specifically, the data processing unit 230 analyzes in real time frames obtained sequentially by taking a moving image of the eye E with the optical system, and monitors the movement (position change) of the eye E. The control unit 210 controls the moving mechanism driving unit 80A so as to move the optical system in accordance with the position of the eye E to be sequentially acquired. As a result, the optical system can follow the movement of the eye E in real time, and it is possible to maintain a suitable positional relationship in which the alignment is in focus.

(S5)
制御部210は、近赤外動画像を表示部241にリアルタイムで表示させる。ユーザは、操作部242を用いることにより、この近赤外動画像上にスキャン領域を設定する。設定されるスキャン領域は1次元領域でも2次元領域でもよい。
(S5)
The control unit 210 displays the near-infrared moving image on the display unit 241 in real time. The user sets a scan area on the near-infrared moving image by using the operation unit 242. The scan area to be set may be a one-dimensional area or a two-dimensional area.

なお、測定光LSのスキャン態様や注目部位(視神経乳頭、黄斑部、病変部等)があらかじめ設定されている場合などには、これら設定内容に基づいて制御部210がスキャン領域を設定するように構成することも可能である。具体的には、データ処理部230による画像解析により注目部位を特定し、制御部210が、この注目部位を含むように(例えば、この注目部位が中心に位置するように)所定パターンの領域を設定する。   When the scan mode of the measurement light LS and the region of interest (optic nerve head, macula, lesion, etc.) are set in advance, the control unit 210 sets the scan area based on these settings. It is also possible to configure. Specifically, a region of interest is identified by image analysis by the data processing unit 230, and the control unit 210 defines a region of a predetermined pattern so as to include the region of interest (for example, the region of interest is located at the center). Set.

(S6)
制御部210は、光源ユニット101や光路長変更部41を制御するとともに、S5で設定されたスキャン領域に基づいて光スキャナ42を制御することにより、眼底Efに対する1回目のOCT計測を行う。画像形成部220は、上記のようにクロックKCに基づいて、検出器150により得られた検出信号をサンプリングすることにより得られた収集データに基づいて断層像(画像)を形成する。
(S6)
The control unit 210 controls the light source unit 101 and the optical path length changing unit 41, and controls the optical scanner 42 based on the scan area set in S5, thereby performing the first OCT measurement on the fundus oculi Ef. The image forming unit 220 forms a tomographic image (image) based on the collected data obtained by sampling the detection signal obtained by the detector 150 based on the clock KC as described above.

(S7)
所定時間が経過すると、制御部210は、S6と同一の計測条件の下で、眼底Efに対する2回目のOCT計測を行う。画像形成部220は、S6と同様にS7において検出器150により得られた検出信号をサンプリングすることにより得られた収集データに基づいて断層像を形成する。
(S7)
When the predetermined time has elapsed, the control unit 210 performs the second OCT measurement on the fundus oculi Ef under the same measurement conditions as in S6. The image forming unit 220 forms a tomographic image based on the collected data obtained by sampling the detection signal obtained by the detector 150 in S7 as in S6.

(S8)
データ処理部230は、解析部231により、S6とS7とにおいて取得された2つの断層像からアーチファクトを特定し、特定されたアーチファクトをいずれかの断層像から除去し、アーチファクトフリーの新たな断層像を生成する。以上で、この動作例は終了となる(エンド)。
(S8)
The data processing unit 230 identifies an artifact from the two tomographic images acquired in S6 and S7 by the analysis unit 231, removes the identified artifact from one of the tomographic images, and creates a new artifact-free tomographic image. Is generated. This is the end of this operation example (end).

なお、S6及びS7において、スキャン態様が3次元スキャンである場合、データ処理部230は、画像形成部220により形成された複数の断層像に基づいて眼底Efの3次元画像を形成することが可能である。   In S6 and S7, when the scan mode is a three-dimensional scan, the data processing unit 230 can form a three-dimensional image of the fundus oculi Ef based on a plurality of tomographic images formed by the image forming unit 220. It is.

[変形例]
(第1変形例)
前述の実施形態では、固視微動により対物レンズ22と被検眼Eとを相対移動させる場合について説明したが、実施形態に係る構成はこれに限定されるものではない。例えば、移動機構80により対物レンズ22及び干渉光学系を一体的に移動させることにより、対物レンズ22と被検眼Eとを相対移動させてもよい。この場合、主制御部211は、対物レンズ22の光軸方向(z方向)に干渉光学系を移動するように移動機構を制御してもよいし、対物レンズ22の光軸に直交する方向(xy方向)に干渉光学系を移動するように移動機構80を制御してもよい。
[Modification]
(First modification)
In the above-described embodiment, the case where the objective lens 22 and the eye E to be examined are relatively moved by fine fixation is described, but the configuration according to the embodiment is not limited to this. For example, the objective lens 22 and the eye E may be relatively moved by integrally moving the objective lens 22 and the interference optical system by the moving mechanism 80. In this case, the main control unit 211 may control the moving mechanism so as to move the interference optical system in the optical axis direction (z direction) of the objective lens 22, or in a direction orthogonal to the optical axis of the objective lens 22 ( The movement mechanism 80 may be controlled to move the interference optical system in the xy direction).

第1変形例に係る眼科撮影装置の構成は前述の実施形態に係る眼科撮影装置1の構成と同様である。以下では、第1変形例について、実施形態との相違点を中心に説明する。   The configuration of the ophthalmic imaging apparatus according to the first modification is the same as the configuration of the ophthalmic imaging apparatus 1 according to the above-described embodiment. Below, a 1st modification is demonstrated centering around difference with embodiment.

図6に、第1変形例に係る眼科撮影装置の動作例のフロー図を示す。図6において図5と同様のステップについては同一の符号を付し、適宜説明を省略する。図6に示すフローが図5に示すフローと異なる点は、S6とS7との間にS11が追加されている点である。   FIG. 6 shows a flowchart of an operation example of the ophthalmologic photographing apparatus according to the first modification. In FIG. 6, the same steps as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted as appropriate. The flow shown in FIG. 6 is different from the flow shown in FIG. 5 in that S11 is added between S6 and S7.

S11では、1回目のOCT計測の終了後に、主制御部211は、対物レンズ22の光軸方向(又はその直交方向)に干渉光学系を移動するように移動機構駆動部80Aを制御することにより対物レンズ22と被検眼Eとを相対移動させる。S11の移動量は、OCT画像の画像化レンジに収まる程度の微少量であってよい。   In S11, after the end of the first OCT measurement, the main control unit 211 controls the moving mechanism driving unit 80A so as to move the interference optical system in the optical axis direction of the objective lens 22 (or the direction orthogonal thereto). The objective lens 22 and the eye E to be examined are relatively moved. The amount of movement in S11 may be a minute amount that is within the imaging range of the OCT image.

S7では、制御部210は、S6と同一の計測条件の下で、S11において被検眼Eに対して相対移動された対物レンズ22及び干渉光学系により、眼底Efに対する2回目のOCT計測を行う。画像形成部220は、S6と同様にS7において検出器150により得られた検出信号をサンプリングすることにより得られた収集データに基づいて断層像を形成する。   In S7, the control unit 210 performs the second OCT measurement on the fundus oculi Ef with the objective lens 22 and the interference optical system moved relative to the eye E in S11 under the same measurement conditions as in S6. The image forming unit 220 forms a tomographic image based on the collected data obtained by sampling the detection signal obtained by the detector 150 in S7 as in S6.

以上のように、眼科撮影装置のワーキングディスタンスを変更したり光学系をxy方向に移動させたりすることで、固視微動と比較して対物レンズ22と被検眼Eとの相対移動の確実性が高まり、高い確度でアーチファクトフリーの画像を取得することが可能になる。   As described above, by changing the working distance of the ophthalmologic photographing apparatus or moving the optical system in the xy direction, the relative movement between the objective lens 22 and the eye E to be examined is more reliable as compared with the fixation fine movement. As a result, an artifact-free image can be acquired with high accuracy.

(第2変形例)
図7に、実施形態の第2変形例における眼科撮影装置の構成の要部を示す。図7では、図1の被検眼Eと対物レンズ22との間のみが図示されている。
(Second modification)
In FIG. 7, the principal part of a structure of the ophthalmologic imaging device in the 2nd modification of embodiment is shown. In FIG. 7, only the portion between the eye E and the objective lens 22 of FIG. 1 is illustrated.

第2変形例に係る眼科撮影装置は、対物レンズ22と被検眼Eとの間に配置可能な前置レンズ23を含む。前置レンズ23は、手動または自動で対物レンズ22と被検眼Eとの間に配置可能である。対物レンズ22と被検眼Eとの間に前置レンズ23が配置された場合、上記の相対移動制御に関して前述の実施形態における「対物レンズ」を「前置レンズ」に置き換えて本発明を適用することが可能である。例えば、対物レンズ22と被検眼Eとの間に前置レンズ23が配置された場合、解析部は、前置レンズ(或いは、前置レンズ及び対物レンズ)と被検眼との相対位置が異なる状態で干渉光学系により取得された2以上の干渉光の検出結果に基づく2以上の画像の解析により、2以上の画像中の対応する位置に描出されたノイズを除去することが可能である。   The ophthalmologic photographing apparatus according to the second modification includes a front lens 23 that can be disposed between the objective lens 22 and the eye E to be examined. The front lens 23 can be manually or automatically disposed between the objective lens 22 and the eye E. When the front lens 23 is disposed between the objective lens 22 and the eye E, the present invention is applied by replacing the “object lens” in the above-described embodiment with the “front lens” in the above-described relative movement control. It is possible. For example, when the front lens 23 is disposed between the objective lens 22 and the eye E, the analysis unit is in a state where the relative positions of the front lens (or the front lens and the objective lens) and the eye to be examined are different. By analyzing two or more images based on the detection result of two or more interference lights acquired by the interference optical system, it is possible to remove noise depicted at corresponding positions in the two or more images.

[効果]
この実施形態に係る眼科撮影装置の効果について説明する。
[effect]
The effect of the ophthalmologic photographing apparatus according to this embodiment will be described.

実施形態に係る眼科撮影装置(眼科撮影装置1)は、対物レンズ(対物レンズ22)と、干渉光学系(OCTユニット100からリレーレンズ45までの光学系)と、画像形成部(画像形成部220)と、解析部(解析部231)とを含む。干渉光学系は、光源(光源ユニット101)からの光(光L0)を測定光(測定光LS)と参照光(参照光LR)とに分割し、測定光を対物レンズを介して被検眼(被検眼E)に入射させ、被検眼から出射し対物レンズを通過した測定光の戻り光と参照光との干渉光(干渉光LC)を検出する。画像形成部は、干渉光学系により取得された干渉光の検出結果に基づいて被検眼の画像を形成する。解析部は、対物レンズと被検眼との相対位置が異なる状態で干渉光学系により取得された2以上の検出結果に基づく2以上の画像を解析することにより、2以上の画像中の対応する位置に描出されたノイズを除去する。   An ophthalmic imaging apparatus (ophthalmic imaging apparatus 1) according to the embodiment includes an objective lens (objective lens 22), an interference optical system (an optical system from the OCT unit 100 to the relay lens 45), and an image forming unit (image forming unit 220). ) And an analysis unit (analysis unit 231). The interference optical system divides light (light L0) from the light source (light source unit 101) into measurement light (measurement light LS) and reference light (reference light LR), and the measurement light passes through the objective lens ( Interference light (interference light LC) between the return light of the measurement light that has entered the eye E), exited from the eye and passed through the objective lens, and the reference light is detected. The image forming unit forms an image of the eye to be examined based on the detection result of the interference light acquired by the interference optical system. The analysis unit analyzes two or more images based on two or more detection results acquired by the interference optical system in a state where the relative positions of the objective lens and the eye to be examined are different, thereby corresponding positions in the two or more images. Remove the noise drawn in.

このような構成によれば、取得された2以上の画像では光学系に起因したノイズの位置が変化しないことを利用して、画像処理により画像中のノイズの位置を特定し、特定されたノイズを画像から除去することが可能になる。それにより、対物レンズの反射光に起因したアーチファクトだけではなく、光学系の状態に応じて発生するコヒーレンスリバイバル現象に起因したアーチファクトの除去も可能になる。   According to such a configuration, using the fact that the position of noise caused by the optical system does not change in two or more acquired images, the position of noise in the image is identified by image processing, and the identified noise Can be removed from the image. Thereby, not only the artifacts caused by the reflected light of the objective lens but also the artifacts caused by the coherence revival phenomenon generated according to the state of the optical system can be removed.

また、実施形態に係る眼科撮影装置は、対物レンズ及び干渉光学系を一体的に移動させる移動機構(移動機構80)と、移動機構を制御することにより2以上の検出結果を干渉光学系に取得させる制御部(制御部210、主制御部211)とを含んでもよい。   In addition, the ophthalmologic photographing apparatus according to the embodiment acquires, in the interference optical system, two or more detection results by controlling the movement mechanism (movement mechanism 80) that integrally moves the objective lens and the interference optical system. Control units (control unit 210, main control unit 211).

このような構成によれば、例えば、アライメント等に用いる移動機構により対物レンズと被検眼とを相対移動させることが可能になり、簡素な構成でノイズフリーの画像を取得することが可能になる。   According to such a configuration, for example, the objective lens and the eye to be examined can be relatively moved by a moving mechanism used for alignment or the like, and a noise-free image can be acquired with a simple configuration.

また、実施形態に係る眼科撮影装置では、制御部は、対物レンズの光軸方向に干渉光学系を移動するように移動機構を制御してもよい。   In the ophthalmologic photographing apparatus according to the embodiment, the control unit may control the moving mechanism so as to move the interference optical system in the optical axis direction of the objective lens.

このような構成によれば、対物レンズと被検眼との相対移動の確実性が高まり、高い確度でノイズフリーの画像を取得することが可能になる。   According to such a configuration, the certainty of relative movement between the objective lens and the eye to be examined is increased, and a noise-free image can be acquired with high accuracy.

また、実施形態に係る眼科撮影装置では、制御部は、対物レンズの光軸に直交する方向に干渉光学系を移動するように移動機構を制御してもよい。   In the ophthalmologic photographing apparatus according to the embodiment, the control unit may control the moving mechanism so as to move the interference optical system in a direction orthogonal to the optical axis of the objective lens.

このような構成によれば、対物レンズと被検眼との相対移動の確実性が高まり、高い確度でノイズフリーの画像を取得することが可能になる。   According to such a configuration, the certainty of relative movement between the objective lens and the eye to be examined is increased, and a noise-free image can be acquired with high accuracy.

また、実施形態に係る眼科撮影装置では、2以上の検出結果は、同一の設定が適用された干渉光学系により取得されてもよい。   In the ophthalmologic photographing apparatus according to the embodiment, two or more detection results may be acquired by an interference optical system to which the same setting is applied.

このような構成によれば、同一の条件で干渉光学系により2以上の検出結果を取得することが可能になるため、ノイズの部分とそれ以外の部分とを高精度に判別することができ、ノイズフリーの高画質の画像を取得すること可能になる。   According to such a configuration, since it becomes possible to acquire two or more detection results by the interference optical system under the same conditions, it is possible to determine the noise portion and the other portions with high accuracy, It becomes possible to acquire noise-free high-quality images.

また、実施形態に係る眼科撮影装置では、解析部は、2以上の画像における対応画素のそれぞれの画素値が第1閾値以上であり、かつ、これら画素値の変動幅が第2閾値以下であるか否かを判定し、その判定結果に基づいてノイズを特定してもよい。   In the ophthalmologic photographing apparatus according to the embodiment, the analysis unit has a pixel value of each of corresponding pixels in two or more images that is equal to or greater than a first threshold value, and a fluctuation range of these pixel values is equal to or less than a second threshold value. It may be determined whether or not, and noise may be specified based on the determination result.

このような構成によれば、簡素な制御でノイズを高精度に特定することが可能になる。   According to such a configuration, it is possible to specify noise with high accuracy by simple control.

以上に説明した構成は、この発明を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を適宜に施すことが可能である。適用される構成は、例えば目的に応じて選択される。また、適用される構成に応じ、当業者にとって自明の作用効果や、本明細書において説明された作用効果が得られる。   The configuration described above is merely an example for favorably implementing the present invention. Therefore, arbitrary modifications (omitted, replacement, addition, etc.) within the scope of the present invention can be made as appropriate. The configuration to be applied is selected according to the purpose, for example. In addition, depending on the configuration to be applied, a function and effect obvious to those skilled in the art and the function and effect described in this specification can be obtained.

前述の実施形態の変形例では、OCTの被測定物体が被検眼(眼底)である場合について説明したが、前述の実施形態の変形例は被検眼以外の被測定物体に対してOCTを実行するものに適用可能である。被測定物体は生体部位でなくてもよい。   In the modified example of the above-described embodiment, the case where the object to be measured by OCT is the eye to be examined (fundus) has been described. However, the modified example of the above-described embodiment performs OCT on the measured object other than the eye to be examined. Applicable to things. The object to be measured need not be a living body part.

1 眼科撮影装置
2 眼底カメラユニット
22 対物レンズ
23 前置レンズ
100 OCTユニット
200 演算制御ユニット
210 制御部
211 主制御部
212 記憶部
220 画像形成部
230 データ処理部
231 解析部
E 被検眼
DESCRIPTION OF SYMBOLS 1 Ophthalmic imaging device 2 Fundus camera unit 22 Objective lens 23 Prefix lens 100 OCT unit 200 Arithmetic control unit 210 Control part 211 Main control part 212 Storage part 220 Image formation part 230 Data processing part 231 Analysis part E Eye to be examined

Claims (6)

対物レンズと、
光源からの光を測定光と参照光とに分割し、前記測定光を前記対物レンズを介して被検眼に入射させ、前記被検眼から出射し前記対物レンズを通過した前記測定光の戻り光と前記参照光との干渉光を検出する干渉光学系と、
前記干渉光学系により取得された前記干渉光の検出結果に基づいて前記被検眼の画像を形成する画像形成部と、
前記対物レンズと前記被検眼との相対位置が異なる状態で前記干渉光学系により取得された2以上の検出結果に基づく2以上の画像を解析することにより、前記2以上の画像中の対応する位置に描出されたノイズを除去する解析部と、
前記対物レンズ及び前記干渉光学系を一体的に移動させる移動機構と、
前記移動機構を制御することにより前記2以上の検出結果を前記干渉光学系に取得させる制御部と、
を含む眼科撮影装置。
An objective lens;
Splitting light from a light source into measurement light and reference light, causing the measurement light to enter the eye to be examined via the objective lens, and returning light of the measurement light that has exited from the eye to be examined and passed through the objective lens; An interference optical system for detecting interference light with the reference light;
An image forming unit that forms an image of the eye to be examined based on a detection result of the interference light acquired by the interference optical system;
Corresponding positions in the two or more images by analyzing two or more images based on two or more detection results acquired by the interference optical system in a state where the relative positions of the objective lens and the eye to be examined are different. An analysis unit that removes the noise depicted in
A moving mechanism for integrally moving the objective lens and the interference optical system;
A control unit that causes the interference optical system to acquire the two or more detection results by controlling the moving mechanism;
Ophthalmologic imaging device.
前記制御部は、前記対物レンズの光軸方向に前記干渉光学系を移動するように前記移動機構を制御する
ことを特徴とする請求項1に記載の眼科撮影装置。
The ophthalmologic photographing apparatus according to claim 1, wherein the control unit controls the moving mechanism so as to move the interference optical system in an optical axis direction of the objective lens.
前記制御部は、前記対物レンズの光軸に直交する方向に前記干渉光学系を移動するように前記移動機構を制御する
ことを特徴とする請求項1に記載の眼科撮影装置。
The ophthalmologic photographing apparatus according to claim 1, wherein the control unit controls the moving mechanism so as to move the interference optical system in a direction orthogonal to an optical axis of the objective lens.
前記2以上の検出結果は、同一の設定が適用された前記干渉光学系により取得される
ことを特徴とする請求項1〜請求項3のいずれか一項に記載の眼科撮影装置。
The ophthalmologic photographing apparatus according to any one of claims 1 to 3, wherein the two or more detection results are acquired by the interference optical system to which the same setting is applied.
前記解析部は、前記2以上の画像における対応画素のそれぞれの画素値が第1閾値以上であり、かつ、これら画素値の変動幅が第2閾値以下であるか否かを判定し、その判定結果に基づいて前記ノイズを特定する
ことを特徴とする請求項1〜請求項4のいずれか一項に記載の眼科撮影装置。
The analysis unit determines whether each pixel value of the corresponding pixel in the two or more images is equal to or greater than a first threshold value, and a fluctuation range of these pixel values is equal to or less than a second threshold value. The ophthalmic imaging apparatus according to any one of claims 1 to 4, wherein the noise is specified based on a result.
対物レンズと、An objective lens;
光源からの光を測定光と参照光とに分割し、前記測定光を前記対物レンズを介して被検眼に入射させ、前記被検眼から出射し前記対物レンズを通過した前記測定光の戻り光と前記参照光との干渉光を検出する干渉光学系と、Splitting light from a light source into measurement light and reference light, causing the measurement light to enter the eye to be examined via the objective lens, and returning light of the measurement light that has exited from the eye to be examined and passed through the objective lens; An interference optical system for detecting interference light with the reference light;
前記干渉光学系により取得された前記干渉光の検出結果に基づいて前記被検眼の画像を形成する画像形成部と、An image forming unit that forms an image of the eye to be examined based on the detection result of the interference light acquired by the interference optical system;
前記対物レンズと前記被検眼との相対位置が異なる状態で前記干渉光学系により取得された2以上の検出結果に基づく2以上の画像を解析することにより、前記2以上の画像中の対応する位置に描出されたノイズを除去する解析部と、Corresponding positions in the two or more images by analyzing two or more images based on two or more detection results acquired by the interference optical system in a state where the relative positions of the objective lens and the eye to be examined are different. An analysis unit that removes the noise depicted in
を含み、Including
前記解析部は、前記2以上の画像における対応画素のそれぞれの画素値が第1閾値以上であり、かつ、これら画素値の変動幅が第2閾値以下であるか否かを判定し、その判定結果に基づいて前記ノイズを特定する、眼科撮影装置。The analysis unit determines whether each pixel value of the corresponding pixel in the two or more images is equal to or greater than a first threshold value, and a fluctuation range of these pixel values is equal to or less than a second threshold value. An ophthalmologic photographing apparatus that identifies the noise based on a result.
JP2015212806A 2015-10-29 2015-10-29 Ophthalmic imaging equipment Active JP6619203B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015212806A JP6619203B2 (en) 2015-10-29 2015-10-29 Ophthalmic imaging equipment
PCT/JP2016/080888 WO2017073414A1 (en) 2015-10-29 2016-10-19 Ophthalmological imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212806A JP6619203B2 (en) 2015-10-29 2015-10-29 Ophthalmic imaging equipment

Publications (2)

Publication Number Publication Date
JP2017080146A JP2017080146A (en) 2017-05-18
JP6619203B2 true JP6619203B2 (en) 2019-12-11

Family

ID=58630090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212806A Active JP6619203B2 (en) 2015-10-29 2015-10-29 Ophthalmic imaging equipment

Country Status (2)

Country Link
JP (1) JP6619203B2 (en)
WO (1) WO2017073414A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6736397B2 (en) * 2016-07-15 2020-08-05 キヤノン株式会社 Optical tomographic imaging apparatus, method of operating optical tomographic imaging apparatus, and program
CN108403079A (en) * 2018-02-26 2018-08-17 执鼎医疗科技(杭州)有限公司 A kind of confocal imaging system based on OCT

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9033510B2 (en) * 2011-03-30 2015-05-19 Carl Zeiss Meditec, Inc. Systems and methods for efficiently obtaining measurements of the human eye using tracking

Also Published As

Publication number Publication date
JP2017080146A (en) 2017-05-18
WO2017073414A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
JP6619202B2 (en) Ophthalmic imaging equipment
US10016124B2 (en) Data processing method and OCT apparatus
JP6469413B2 (en) Data processing method and OCT apparatus
JP6776076B2 (en) OCT device
JP6585897B2 (en) Ophthalmic imaging equipment
EP3821791A1 (en) Ophthalmologic imaging apparatus
JP7096392B2 (en) Ophthalmic equipment
JP6431400B2 (en) Ophthalmic imaging apparatus and ophthalmic apparatus
JP6619203B2 (en) Ophthalmic imaging equipment
WO2016189890A1 (en) Ophthalmologic imaging apparatus
JP6779674B2 (en) OCT device
JP6809926B2 (en) Ophthalmic equipment
JP2018192082A (en) Ophthalmologic apparatus and control method thereof
JP6616659B2 (en) Ophthalmic imaging equipment
JP6431399B2 (en) Ophthalmic imaging equipment
JP6761519B2 (en) Ophthalmologic imaging equipment
JP2019025186A (en) Ophthalmologic apparatus and data collection method
JP7096391B2 (en) Ophthalmic equipment
JP7231366B2 (en) Ophthalmic device and control method for the ophthalmic device
JP2018148942A (en) Ophthalmologic apparatus
JP2018126256A (en) Ophthalmologic apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20161226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191114

R150 Certificate of patent or registration of utility model

Ref document number: 6619203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250