JP6619039B2 - Powder material for additive manufacturing used in the binder jet method - Google Patents

Powder material for additive manufacturing used in the binder jet method Download PDF

Info

Publication number
JP6619039B2
JP6619039B2 JP2018046456A JP2018046456A JP6619039B2 JP 6619039 B2 JP6619039 B2 JP 6619039B2 JP 2018046456 A JP2018046456 A JP 2018046456A JP 2018046456 A JP2018046456 A JP 2018046456A JP 6619039 B2 JP6619039 B2 JP 6619039B2
Authority
JP
Japan
Prior art keywords
powder
raw material
binder
jet method
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018046456A
Other languages
Japanese (ja)
Other versions
JP2019157217A (en
Inventor
欽之 加藤
欽之 加藤
和樹 花見
和樹 花見
泰拓 島田
泰拓 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Yakin Kogyo Co Ltd
Original Assignee
Osaka Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Yakin Kogyo Co Ltd filed Critical Osaka Yakin Kogyo Co Ltd
Priority to JP2018046456A priority Critical patent/JP6619039B2/en
Publication of JP2019157217A publication Critical patent/JP2019157217A/en
Application granted granted Critical
Publication of JP6619039B2 publication Critical patent/JP6619039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、三次元物体成形用の積層造形用粉末材料に係り、特にバインダジェット法に用いる粉末材料において微細な粒度ながら積層が容易となる微細粉末材料に関する。   The present invention relates to an additive manufacturing powder material for forming a three-dimensional object, and more particularly to a fine powder material that can be easily laminated while having a fine particle size in a powder material used in a binder jet method.

積層造形法による三次元物体の成形法として、原料粉末(金属粉や合金粉、あるいはセラミックス粉)をパウダーベッド上に積層しながら、一層を積層するごとにレーザビームや電子ビームをその一層の原料粉末に選択的に照射して直接焼結することを繰り返して、焼結部分を結合させ目的の三次元形状として得る選択焼結法が開発されている。しかしこの選択焼結法は、設備コストが高いことや限定された粒度範囲の粉末の使用が必須のためそれに伴う原料粉末の価格が高いことなどが原因で、普及が進んでいないのが現状である。そこで選択焼結法に代わり安価に実施可能な積層造形法として、バインダジェット法による焼結体の製造方法が提案、開発され、実用化が図られてきている(特許文献1、2等参照)。   As a method of forming a three-dimensional object by the additive manufacturing method, a raw material powder (metal powder, alloy powder, or ceramic powder) is laminated on a powder bed, and a laser beam or an electron beam is added to the raw material each time one layer is laminated. A selective sintering method has been developed in which powder is selectively irradiated and directly sintered to combine the sintered portions to obtain a desired three-dimensional shape. However, this selective sintering method is not widely used due to the high equipment cost and the use of powder with a limited particle size range, which is accompanied by the high price of raw material powder. is there. Therefore, as a layered manufacturing method that can be carried out at low cost instead of selective sintering, a method of manufacturing a sintered body by the binder jet method has been proposed, developed, and put into practical use (see Patent Documents 1 and 2). .

バインダジェット法は、選択焼結法におけるレーザビームや電子ビームの照射に代えて、積層した原料粉末にバインダを選択的に印刷して原料粉末とバインダとの結合体を造形するもので、この後その結合体を焼結して三次元の焼結体を得る。このようなバインダジェット法は、選択焼結法と比べて簡便に焼結体が得られるとともに設備の点でコストを大幅に低減することができるという利点がある。また、原料粉末とバインダの結合体をパウダーベッド上に幾層にも重ねて造形することができるという効率的な点も、選択焼結法では得られない利点である。   In the binder jet method, instead of the laser beam or electron beam irradiation in the selective sintering method, a binder is selectively printed on the laminated raw material powder to form a combined body of the raw material powder and the binder. The combined body is sintered to obtain a three-dimensional sintered body. Such a binder jet method has an advantage that a sintered body can be easily obtained as compared with the selective sintering method and the cost can be greatly reduced in terms of equipment. Further, an efficient point that the combined body of the raw material powder and the binder can be formed in layers on the powder bed is also an advantage that cannot be obtained by the selective sintering method.

特開2005−120475号公報JP 2005-120475 A 特開2014−522331号公報JP 2014-522331 A

原料粉末は、パウダーベッド上に均質な状態、すなわち密度が均一、かつ高密度で積層されることが焼結体の品質向上の面から望ましい。そのためには、上記選択焼結法で使用されているような流動性等の動的特性に優れた粉末の使用が必要になる。そのような粉末は、粒径が22〜50μm、あるいは50〜120μmといった粒度範囲の粉末である。この程度の粒度範囲の粉末は、流動性や充填性が高く、パウダーベッド上に均質、かつ高密度に積層することが可能である。しかし、粒度が粗いことから、後工程で焼結するバインダジェット法では使用しにくく、また、通常の工業的な粉末冶金における焼結工程において工業部品として必要な相対密度95%以上を確保することが困難であった。   The raw material powder is desirably laminated on the powder bed in a homogeneous state, that is, with a uniform density and a high density, from the viewpoint of improving the quality of the sintered body. For that purpose, it is necessary to use a powder excellent in dynamic characteristics such as fluidity as used in the selective sintering method. Such powder is a powder having a particle size range of 22 to 50 μm, or 50 to 120 μm. The powder having such a particle size range has high fluidity and filling property, and can be laminated on the powder bed in a uniform and high density. However, since the particle size is coarse, it is difficult to use in the binder jet method in which sintering is performed in the subsequent process, and a relative density of 95% or more required as an industrial part in the sintering process in ordinary industrial powder metallurgy is ensured. It was difficult.

そこで、粒度が細かい原料粉末を均一な密度で積層することが求められた。しかし、粒度が細かいと付着性が高くなることから流動性が低くなって均質に積層しにくいという問題が生じ、このため、現状では流動性の高い上記のような粒度の粉末を使用せざるを得なかった。このような積層しやすい比較的粗い原料粉末を用いて上記のようにバインダジェット法により粉末を積層した三次元結合体を造形し、その焼結体を得ると、焼結密度は相対密度で80%前後と低密度であった。十分な機械的特性が得られる焼結体の相対密度は95%以上とされるため、このような低密度では機械的特性が不十分であり、工業用部品や機能部品としての用途をなさない。そこで、内部の空孔に銅を溶侵させれば密度を向上させることができるが、そのような焼結体は金属材料的な価値は低く、装飾品等に使用される程度できわめて用途が限定的であった。   Therefore, it has been required to stack raw material powders with fine particle sizes at a uniform density. However, if the particle size is fine, the adhesiveness becomes high, so that there is a problem that the fluidity is low and it is difficult to laminate uniformly. For this reason, it is currently necessary to use a powder having the above particle size with high fluidity. I didn't get it. Using such a relatively coarse raw material powder that can be easily laminated, a three-dimensional bonded body in which powders are laminated by the binder jet method as described above is formed, and when the sintered body is obtained, the sintered density is 80 in relative density. The density was as low as around%. Since the relative density of a sintered body that can provide sufficient mechanical properties is 95% or more, such low density results in insufficient mechanical properties and does not serve as industrial or functional parts. . Therefore, the density can be improved if copper is infiltrated into the internal pores, but such a sintered body has a low value as a metal material and is extremely useful for use as a decorative article. It was limited.

本発明は上記事情に鑑みてなされたものであり、微細ながら積層する際の流動性が向上して動的特性が大幅に改善し、これにより原料粉末の均質な積層状態を得ることができ、しかも安価かつ簡便に製造することができるバインダジェット法に用いる積層造形用粉末材料を提供することを目的とする。   The present invention was made in view of the above circumstances, the fluidity when laminating while improving the dynamic characteristics greatly improved, thereby obtaining a homogeneous lamination state of the raw material powder, And it aims at providing the powder material for layered modeling used for the binder jet method which can be manufactured cheaply and simply.

本発明の発明者は、工業的な焼結条件、例えば1350℃前後の焼結温度で初期の相対密度95%以上が得られ、空孔に銅などの溶侵の必要性が生じない微細な粉末を用いながら流動性が確保され、これによって通常の粉末冶金製品と同等の金属あるいはセラミックスからなる高品質な焼結体を得ることができる積層造形用粉末材料を鋭意検討したところ、含有率のほとんどを占める微細な主原料粉末中に、流動化剤として、ナノサイズである超微粒子のSiO粉末(シリカ粉末)やTiO 粉末(チタニア粉末)、あるいはAl粉末(アルミナ粉末)のうちの一種、または二種以上の混合粉末を、ある範囲の添加量で添加することにより、バインダジェット法において原料粉末をパウダーベッド上に積層する際の粉末の動的特性を大幅に改善すること、ならびに従来使用することができなかった微細粉末の均質な積層状態が得られることを見いだした。 The inventor of the present invention can obtain an initial relative density of 95% or more under industrial sintering conditions, for example, a sintering temperature of around 1350 ° C., and does not require the need for infiltration of copper into the pores. Fluidity was ensured while using powder, and when we conducted an earnest study of additive manufacturing powder materials that can obtain high-quality sintered bodies made of metals or ceramics equivalent to ordinary powder metallurgy products, In the fine main raw material powder that occupies most, as a fluidizing agent, nano-sized ultrafine SiO 2 powder (silica powder), TiO 2 powder (titania powder), or Al 2 O 3 powder (alumina powder) Dynamic characteristics of powder when laminating raw material powder on a powder bed in the binder jet method by adding one or two or more of mixed powders in a certain range. It is significantly improved, and was found that a homogeneous stacked state of a fine powder which could not be conventionally used to obtain.

本発明は上記知見に基づいてなされたものであり、本発明の積層造形用粉末材料は、パウダーベッド上にホッパーから横方向に吐出されながら自然落下されつつ供給され、その表面が加圧されて100μm以下の厚さの一層の原料粉末層として繰り返し積層され、該一層の原料粉末層が形成されるごとに、該原料粉末層にバインダが供給されるバインダジェット法に用いる積層造形用粉末材料であって、金属粉末またはセラミックス粉末からなる平均粒径が2〜25μmの主原料粉末中に、一次粒子径が7〜40nmの流動化剤が0.01〜0.15wt%の割合で添加されていることを特徴とする。 The present invention has been made based on the above knowledge, and the additive manufacturing powder material of the present invention is supplied while being naturally dropped while being discharged from a hopper in a lateral direction on a powder bed, and the surface thereof is pressurized. A powder material for additive manufacturing used in the binder jet method in which a single raw material powder layer having a thickness of 100 μm or less is repeatedly laminated and a binder is supplied to the raw material powder layer each time the single raw material powder layer is formed. In addition, a fluidizing agent having a primary particle size of 7 to 40 nm is added at a ratio of 0.01 to 0.15 wt% in a main raw material powder having an average particle size of 2 to 25 μm made of metal powder or ceramic powder. It is characterized by being.

本発明の主原料粉末としては、ステンレス、高速度鋼、ニッケル基耐熱鋼、低炭素鋼等の粉末冶金や金属射出成形法(MIM:Metal Injection Molding)等で使用されている粉末全般、またはアルミナや炭化ケイ素等のセラミック射出成形に使用されている粉末のうちの少なくとも一種、または二種以上の混合粉末が挙げられる。この主原料粉末の平均粒径は、2μm未満では、微細粉末の均質な流動性と積層状態を得ることが困難である。一方、25μm超では、バインダジェット法で得た三次元の粉末成形体を通常の金属粉末の焼結温度で焼結した場合において、焼結密度が工業的に要求される95%以上を確保しにくい。したがって主原料粉末の平均粒径は2〜25μmが適切であり、好ましくは5〜15μm、さらに好ましくは7〜10μmである。   The main raw material powder of the present invention includes all powders used in powder metallurgy such as stainless steel, high-speed steel, nickel-base heat-resisting steel, low-carbon steel, metal injection molding (MIM), or alumina. And at least one of powders used in ceramic injection molding such as silicon carbide, or a mixed powder of two or more. If the average particle size of the main raw material powder is less than 2 μm, it is difficult to obtain a uniform fluidity and a laminated state of the fine powder. On the other hand, if it exceeds 25 μm, when a three-dimensional powder compact obtained by the binder jet method is sintered at the sintering temperature of a normal metal powder, the sintered density is ensured to be 95% or more which is industrially required. Hateful. Therefore, the average particle size of the main raw material powder is suitably 2 to 25 μm, preferably 5 to 15 μm, more preferably 7 to 10 μm.

また、本発明の主原料粉末に添加する流動化剤は、SiO粉末、TiO 粉末、Al粉末のうちの一種、または二種以上の混合粉末が好適に用いられる。これら流動化剤は、ナノサイズの超微粒子粉末であって、その一次粒子径は、7nm未満では、粒子の凝集が生じて主原料粉末との混合時に均質な分散状態が得られない。一方、40nm超では、製造する上で球状のナノ粒子が不規則化するため主原料粉末に対する潤滑効果(流動化効果)が低下する。したがって流動化剤の一次粒子径は7〜40nmが適切であり、好ましくは7〜30nm、さらに好ましくは10〜20nmである。 In addition, as the fluidizing agent to be added to the main raw material powder of the present invention, one kind of SiO 2 powder, TiO 2 powder , Al 2 O 3 powder, or a mixed powder of two or more kinds is preferably used. These fluidizing agents are nano-sized ultrafine particle powders, and if the primary particle diameter is less than 7 nm, particles are aggregated and a homogeneous dispersion state cannot be obtained when mixed with the main raw material powder. On the other hand, if it exceeds 40 nm, spherical nanoparticles become irregular in production, and therefore the lubrication effect (fluidization effect) on the main raw material powder decreases. Therefore, the primary particle size of the fluidizing agent is suitably 7 to 40 nm, preferably 7 to 30 nm, and more preferably 10 to 20 nm.

また、上記流動化剤の添加量は、0.01wt%未満では、流動性を改善させる効果がなく、適切な積層状態が得られない。一方、0.15wt%超では、積層時にホッパーからの適切な切り出しができず流体状となってホッパーから流失するおそれがある。ホッパーから流出すると適切な積層状態が得られず、成形そのものがなされない。したがって流動化剤の添加量は0.01〜0.15wt%が適切であり、好ましくは0.02〜0.07wt%、さらに好ましくは0.025〜0.05wt%である。   Moreover, if the addition amount of the said fluidizing agent is less than 0.01 wt%, there will be no effect which improves fluidity | liquidity and an appropriate lamination | stacking state will not be obtained. On the other hand, if it exceeds 0.15 wt%, it is not possible to properly cut out from the hopper at the time of stacking, and there is a possibility that it will become fluid and flow out of the hopper. If it flows out of the hopper, an appropriate laminated state cannot be obtained, and the molding itself is not performed. Therefore, the addition amount of the fluidizing agent is suitably 0.01 to 0.15 wt%, preferably 0.02 to 0.07 wt%, more preferably 0.025 to 0.05 wt%.

さらに本発明の積層造形用粉末材料は、応力伝達率が75%以上であることを特徴とする。   Furthermore, the powder material for additive manufacturing of the present invention is characterized in that the stress transmission rate is 75% or more.

本発明の積層造形用粉末材料によれば、微細ながら積層する際の流動性が向上して動的特性が大幅に改善し、これにより原料粉末の均質な積層状態を得ることができ、しかも安価かつ簡便に製造することができるといった効果を奏する。また、本発明の積層造形用粉末材料を用いてバインダジェット法により三次元成形体を造形し、その成形体を焼結して得られる焼結体は、緻密かつ均質な金属組織を有することにより十分な機械的特性を備えた高品質なものとなる。   According to the additive manufacturing powder material of the present invention, the fluidity when laminating is improved, and the dynamic characteristics are greatly improved, whereby a homogeneous lamination state of the raw material powder can be obtained, and at a low cost. In addition, there is an effect that it can be easily manufactured. In addition, a sintered body obtained by forming a three-dimensional molded body by the binder jet method using the additive manufacturing powder material of the present invention and sintering the molded body has a dense and homogeneous metal structure. High quality with sufficient mechanical properties.

本発明の一実施形態に係る三次元焼結体の成形方法の工程を模式的に示す図である。It is a figure which shows typically the process of the shaping | molding method of the three-dimensional sintered compact concerning one Embodiment of this invention. 図1に示すホッパーによる原料粉末の積層の状況を示す断面図である。It is sectional drawing which shows the condition of the lamination | stacking of the raw material powder by the hopper shown in FIG. 実施例1の焼結体の金属組織を示す顕微鏡写真である。2 is a photomicrograph showing the metal structure of the sintered body of Example 1. 比較例1の焼結体の金属組織を示す顕微鏡写真である。2 is a photomicrograph showing the metal structure of a sintered body of Comparative Example 1. 比較例2の焼結体の金属組織を示す顕微鏡写真である。5 is a photomicrograph showing the metal structure of a sintered body of Comparative Example 2.

以下、図面を参照して本発明の一実施形態を説明する。
図1は、バインダジェット法で三次元物体を積層造形し、造形した目的形状の結合体を焼結して焼結体を成形する方法の工程を模式的に示している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows the steps of a method of forming a sintered body by laminating and modeling a three-dimensional object by a binder jet method, and sintering a bonded body having a target shape.

図1に示す焼結体の成形方法は、はじめに、図1(A)に示すように、所定の面積を有する水平にセットされたパウダーベッド11上に、ホッパー12から原料粉末Pを自然落下させつつ供給して敷き詰め、所定厚さの一層の原料粉末層PLを形成する。原料粉末層PLは、図2に示すように、ホッパー12と連動して移動するローラ13により表面が加圧されることで、平坦、かつ均一な厚さになるよう均される。一層の原料粉末層PLの厚さは例えば40〜50μm程度とされるが、概ね100μm以下の範囲で適宜に設定される。   In the method for forming a sintered body shown in FIG. 1, first, as shown in FIG. 1 (A), raw powder P is naturally dropped from a hopper 12 onto a horizontally set powder bed 11 having a predetermined area. Then, the raw material powder layer PL having a predetermined thickness is formed. As shown in FIG. 2, the raw material powder layer PL is leveled to have a flat and uniform thickness by pressing the surface with a roller 13 that moves in conjunction with the hopper 12. The thickness of one raw material powder layer PL is, for example, about 40 to 50 μm, and is appropriately set within a range of about 100 μm or less.

次に、図1(B)に示すように、積層した原料粉末層PLに、インクジェットディスペンサ14からバインダBを選択的に噴出させる。バインダBの噴出を受けた部分の原料粉末PはバインダBによって結合し硬化する。インクジェットディスペンサ14は、目的とする三次元の焼結体の形状に応じた三次元データに基づきコンピュータ制御されて、原料粉末層PL上を駆動させられる。   Next, as shown in FIG. 1 (B), the binder B is selectively ejected from the inkjet dispenser 14 to the laminated raw material powder layer PL. The part of the raw material powder P that has received the ejection of the binder B is bonded and cured by the binder B. The ink jet dispenser 14 is driven on the raw material powder layer PL under computer control based on the three-dimensional data corresponding to the shape of the target three-dimensional sintered body.

次に、選択的にバインダBで結合させられた最初の原料粉末層PLの上に、再びホッパー12から原料粉末Pを供給するとともにローラ13で平坦化し、二層目の原料粉末層PLを積層する。次いで、二層目の原料粉末層PLに、インクジェットディスペンサ14からバインダBを選択的に噴出させ、原料粉末をバインダによって結合させる。このように、選択的にバインダBによる結合部分が形成された原料粉末層PL上に原料粉末Pを積層して次の原料粉末層PLを形成し、次いでその原料粉末層PLにバインダBを選択的に噴出させるという工程を多数回繰り返して、多層の原料粉末層PLの内部に、バインダBと原料粉末Pとの結合体Gを造形する(図1(C)に示す)。一体の三次元結合体を造形するため、上下に隣接して重畳する原料粉末層PLは少なくとも部分的にバインダBの供給部分が重畳して互いに結合し、これにより上下に連続する結合体Gが造形される。   Next, the raw material powder P is again supplied from the hopper 12 and flattened by the roller 13 on the first raw material powder layer PL selectively bonded by the binder B, and the second raw material powder layer PL is laminated. To do. Next, the binder B is selectively ejected from the inkjet dispenser 14 to the second raw material powder layer PL, and the raw material powder is bonded by the binder. In this way, the raw material powder P is laminated on the raw material powder layer PL on which the bonding portion by the binder B is selectively formed to form the next raw material powder layer PL, and then the binder B is selected for the raw material powder layer PL. The process of spraying is repeated many times to form a combined body G of the binder B and the raw material powder P in the multilayer raw material powder layer PL (shown in FIG. 1C). In order to form an integral three-dimensional combined body, the raw material powder layers PL that are adjacently overlapped at the top and bottom are at least partially overlapped with each other by the supply part of the binder B, and thereby the combined body G that is vertically continuous is formed. Modeled.

次に、図1(D)に示すように、上記結合体Gを原料粉末層PLの内部から取り出す。結合体Gを原料粉末層PLの内部から取り出すには、結合体Gを囲んでおりバインダが印刷されておらず結合されていない積層された原料粉末Pを、例えば吸入ノズルを用いて吸入するなどの方法で除去することができる。バインダBで結合されていない原料粉末Pの除去方法はこれに限られず適宜方法が選択される。次いで、取り出した結合体Gを所定の焼結条件で焼結し、焼結体を得る。   Next, as shown in FIG. 1D, the combined body G is taken out from the raw material powder layer PL. In order to take out the combined body G from the inside of the raw material powder layer PL, the stacked raw material powder P surrounding the combined body G and having no binder printed and not combined is sucked using, for example, an intake nozzle. It can be removed by this method. The removal method of the raw material powder P not bonded with the binder B is not limited to this, and a method is appropriately selected. Next, the taken out combined body G is sintered under predetermined sintering conditions to obtain a sintered body.

以上が本実施形態に係るバインダジェット法を用いた三次元形状の焼結体の成形方法である。続いて、上記原料粉末PおよびバインダBについて詳細を説明する。   The above is the method for forming a three-dimensional sintered body using the binder jet method according to the present embodiment. Subsequently, the raw material powder P and the binder B will be described in detail.

[原料粉末]
原料粉末は、微細な主原料粉末中に、流動化剤として、超微粒子のSiO粉末、TiO 粉末、Al粉末のうちの一種、または二種以上の混合粉末を微量添加したものとする。
[Raw material powder]
The raw material powder is a fine main raw material powder in which a small amount of one of ultrafine SiO 2 powder, TiO 2 powder , Al 2 O 3 powder or a mixture of two or more powders is added as a fluidizing agent. And

・主原料粉末
主原料粉末としては、金属粉末またはセラミックス粉末が用いられる。金属粉末としては、ステンレス、高速度鋼、ニッケル基耐熱鋼、低炭素鋼等の粉末冶金や金属射出成形法(MIM:Metal Injection Molding)等で使用されている粉末全般が挙げられる。また、セラミックス粉末としては、アルミナや炭化ケイ素等が挙げられる。
-Main raw material powder As the main raw material powder, metal powder or ceramic powder is used. Examples of the metal powder include all powders used in powder metallurgy such as stainless steel, high-speed steel, nickel-base heat-resisting steel, low-carbon steel, and metal injection molding (MIM). Examples of the ceramic powder include alumina and silicon carbide.

主原料粉末の粒度は、平均粒径が2〜25μmのものが用いられる。これは、2μm未満では、微細粉末の均質な流動性と積層状態を得ることが困難であり、25μm超では、バインダジェット法で得た三次元の粉末成形体を通常の金属粉末の焼結温度で焼結した場合において、焼結密度が工業的に要求される95%以上を確保しにくいという理由からである。この範囲中では、5〜15μmが好ましく、7〜10μmがさらに好ましい。例えば−22μmと表記される平均粒径が10μm程度の粉末、あるいは−15μmと表記される平均粒径が7.5μm程度の粉末が市販されており、これらが好適であって入手可能である。   The main raw material powder having an average particle diameter of 2 to 25 μm is used. If it is less than 2 μm, it is difficult to obtain a uniform fluidity and a laminated state of the fine powder, and if it exceeds 25 μm, the three-dimensional powder compact obtained by the binder jet method is used for sintering the normal metal powder. This is because it is difficult to ensure a sintered density of 95% or more, which is industrially required, in the case of sintering at a low temperature. In this range, 5 to 15 μm is preferable, and 7 to 10 μm is more preferable. For example, a powder having an average particle diameter of about 10 μm expressed as −22 μm or a powder having an average particle diameter of about 7.5 μm expressed as −15 μm is commercially available, and these are suitable and available.

・流動化剤
本発明の流動化剤の粒度は、一次粒子径が7〜40nmのものが用いられる。これは、7nm未満では、粒子の凝集が生じて主原料粉末との混合時に均質な分散状態が得られず、40nm超では、製造する上で球状のナノ粒子が不規則化するため主原料粉末に対する潤滑効果が低下するという理由からである。この範囲中では、7〜30nmが好ましく、10〜20nmがさらに好ましい。本発明の流動化剤としては、上記のようにSiO粉末、TiO 粉末、Al粉末のうちの一種、または二種以上の混合粉末が用いられ、これらはいずれのものも同等の効果を示す。
-Fluidizing agent As the particle size of the fluidizing agent of the present invention, those having a primary particle diameter of 7 to 40 nm are used. This is because if the particle size is less than 7 nm, particles are aggregated and a homogeneous dispersion state cannot be obtained when mixed with the main material powder. If it exceeds 40 nm, spherical nanoparticles become irregular in manufacturing, and the main material powder. This is because the lubricating effect on the surface is reduced. In this range, 7 to 30 nm is preferable, and 10 to 20 nm is more preferable. As the fluidizing agent of the present invention, as described above, one of SiO 2 powder, TiO 2 powder , Al 2 O 3 powder, or two or more mixed powders are used, and these are equivalent to each other. Show the effect.

流動化剤の上記主原料粉末に対する添加量は、0.01〜0.15wt%とされる。これは、0.01wt%未満では、流動性を改善させる効果がなく、0.15wt%超では、積層時にホッパーからの適切な切り出しができず流体状となってホッパーから流失し、適切な積層、ひいては成形が不可能になるおそれがあるからである。この範囲中では、0.02〜0.07wt%が好ましく、0.025〜0.05wt%がさらに好ましい。   The amount of the fluidizing agent added to the main raw material powder is 0.01 to 0.15 wt%. If it is less than 0.01 wt%, there is no effect of improving the fluidity, and if it exceeds 0.15 wt%, it cannot be properly cut out from the hopper at the time of stacking, and it flows out of the hopper as a fluid, and the appropriate stacking is performed. As a result, there is a possibility that molding may become impossible. In this range, 0.02 to 0.07 wt% is preferable, and 0.025 to 0.05 wt% is more preferable.

[バインダ]
バインダは、エチレングリコールを10〜25%含む混合溶液や、エチレングリコールモノブチルエーテルを2.5〜10%含む混合溶液等が用いられるが、これらに限定はされず、適宜なものが選択される。
[Binder]
As the binder, a mixed solution containing 10 to 25% ethylene glycol, a mixed solution containing 2.5 to 10% ethylene glycol monobutyl ether, or the like is used, but the binder is not limited thereto, and an appropriate one is selected.

表1に示すように、平均粒径が10μm(−22μm)のSUS316Lを主原料粉末とし、この主原料粉末中に一次粒子径が30nmのシリカ粉末(AEROSIL(登録商標)RX300・日本アエロジル(株))を0.025wt%および0.15wt%添加した粉末を、それぞれ実施例1、2の原料粉末とした。これに対し、平均粒径が10μm(−22μm)のSUS316Lの粉末のみを比較例1の原料粉末とし、平均粒径が35μm(22−53μm)のSUS316Lの粉末のみを比較例2の原料粉末とした。すなわち、比較例1は実施例1、2とSUS316Lの粒度は微細で同じであるがシリカ粉末の添加が無し、比較例2は実施例1、2よりもSUS316Lの粒度が大きくてシリカ粉末の添加が無し、というものである。   As shown in Table 1, SUS316L having an average particle size of 10 μm (−22 μm) is used as a main raw material powder, and silica powder (AEROSIL (registered trademark) RX300, Nippon Aerosil Co., Ltd.) having a primary particle size of 30 nm is contained in the main raw material powder. )) Was added as 0.025 wt% and 0.15 wt% powders of Examples 1 and 2, respectively. On the other hand, only the powder of SUS316L having an average particle size of 10 μm (−22 μm) is used as the raw material powder of Comparative Example 1, and only the powder of SUS316L having an average particle size of 35 μm (22-53 μm) is used as the raw material powder of Comparative Example 2. did. That is, Comparative Example 1 has the same particle size of SUS316L as in Examples 1 and 2, but no addition of silica powder. Comparative Example 2 has a larger particle size of SUS316L than Examples 1 and 2, and the addition of silica powder. There is no.

Figure 0006619039
Figure 0006619039

1.流動性を評価する粉体動摩擦角、応力伝達率、圧縮率の測定
実施例1、2および比較例1、2の原料粉末を、JIS−Z8835に準拠する流動性評価装置(粉末層せん断力測定装置NS−S500型、ナノシーズ社製)を用い、粉体動摩擦角、応力伝達率、圧縮率を測定した。粉体動摩擦角はその数値が小さいほど流動性がよく、応力伝達率はその数値が大きいほど流動性がよく、圧縮率はその数値が小さいほど流動性がよい。これらの結果を表1に併記する。なお、実験条件として、実験用セルは内径30mmのSUS製セルを用い、粉体層に負荷する垂直荷重は30N、60N、90Nの3条件とした。応力伝達率は、30Nの荷重試験で得られた数値を用いた。サンプル量は30gとし、特別な前処理は行わず測定に供した。
1. Measurement of fluid dynamic friction angle, stress transmission rate, and compressibility for evaluating fluidity The raw material powders of Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to a fluidity evaluation device (powder layer shear force measurement) based on JIS-Z8835. Using a device NS-S500, manufactured by Nano Seeds Co., Ltd., the powder dynamic friction angle, the stress transmission rate, and the compression rate were measured. The smaller the numerical value of the powder dynamic friction angle, the better the fluidity. The larger the numerical value, the better the fluidity, and the smaller the numerical value, the better the fluidity. These results are also shown in Table 1. As experimental conditions, a SUS cell having an inner diameter of 30 mm was used as the experimental cell, and the vertical loads applied to the powder layer were three conditions of 30N, 60N, and 90N. As the stress transfer rate, a numerical value obtained by a 30N load test was used. The sample amount was 30 g, and was used for measurement without any special pretreatment.

表1に示すように、比較例1の粉末は実施例1、2の粉末と比較して粉体動摩擦角が大きく流動性が悪い。これは、実施例1、2において、流動化剤の効果が得られ、圧密時の流動性が向上していることが考えられる。比較例2においては、実施例1、2および比較例1に比べて、粒子径が大きいために粉体動摩擦角が小さくなり、他の例に比較してよい流動性が得られている。   As shown in Table 1, the powder of Comparative Example 1 has a large powder dynamic friction angle and poor fluidity compared to the powders of Examples 1 and 2. In Examples 1 and 2, it is conceivable that the effect of the fluidizing agent is obtained and the fluidity during consolidation is improved. In Comparative Example 2, compared with Examples 1 and 2 and Comparative Example 1, since the particle diameter is large, the powder dynamic friction angle becomes small, and good fluidity is obtained as compared with other examples.

応力伝達率の評価において、実施例1、2の粉末は、比較例1の粉末と比較して応力伝達率が大きくなり流動性がよくなった。比較例1は、SUS製セル壁面との摩擦力が大きく、加えた荷重の応力が伝達しにくい、すなわち流動性が低いことを示しているが、これに対し実施例1、2の粉末は高い応力伝達率を示し、流動化剤により流動性が改善したことを示している。   In the evaluation of the stress transmissibility, the powders of Examples 1 and 2 had higher stress transmissibility and improved fluidity than the powder of Comparative Example 1. Comparative Example 1 shows that the frictional force with the cell wall made of SUS is large and the stress of the applied load is difficult to transmit, that is, the fluidity is low, whereas the powders of Examples 1 and 2 are high. It shows the stress transmission rate and shows that the fluidity is improved by the fluidizing agent.

圧縮率の評価では、比較例1の粉末は実施例1、2の粉末と比較して圧縮率が大きく流動性が悪い。これは、実施例1、2において、同じく流動化剤の効果が得られ、測定を開始する前の(プレスする前の)自然充填状態において、比較例1よりも密度が高くなり、結果として圧縮率が小さな値が得られたと考えられる。つまり、自然充填時の流動性の向上が、流動化剤を添加することにより発現している。   In the evaluation of the compressibility, the powder of Comparative Example 1 has a large compressibility and poor fluidity compared to the powders of Examples 1 and 2. In Examples 1 and 2, the effect of the fluidizing agent is also obtained, and in the natural filling state before starting measurement (before pressing), the density is higher than that of Comparative Example 1, and as a result, compression is performed. It is thought that a small value was obtained. That is, the improvement in fluidity during natural filling is manifested by adding a fluidizing agent.

また、シリカ粉末(流動化剤)は、最大の効果を得るためには適切な添加量が存在し、実施例1は実施例2よりも添加量が少ないにも関わらず、応力伝達率と圧縮率の評価では高い流動性を示している。比較例2は、シリカ粉末が添加されていないものの、主原料粉末の粒子径が大きいために流動性は高くなるが、シリカ粉末を0.15wt%添加した実施例2と同程度となった。これらのことから、流動性の低い平均粒径が10μm(−22μm)のSUS316Lの粉末にシリカ粉末の微粒子を適量添加することで、流動性が向上することが確かめられた。   Further, silica powder (fluidizing agent) has an appropriate addition amount for obtaining the maximum effect, and although Example 1 has a smaller addition amount than Example 2, stress transfer rate and compression are reduced. The rate evaluation shows high liquidity. In Comparative Example 2, although no silica powder was added, the fluidity was high because the particle size of the main raw material powder was large, but it was almost the same as Example 2 in which 0.15 wt% of silica powder was added. From these facts, it was confirmed that the flowability was improved by adding an appropriate amount of fine particles of silica powder to SUS316L powder having an average particle size of 10 μm (−22 μm) with low fluidity.

2.付着力の測定
実施例1、2および比較例1の原料粉末について粒子の付着力の測定を行い、平均粒径が10μm(−22μm)のSUS316Lの粉末に対するSiO粉末の添加がいかに付着力を低減して流動性を高めるかを調べた。測定方法は、日立工機社製の遠心法付着力測定装置(CS150NX)を用い、平均付着力F50(nN)を算出した。その結果を表1に併記する。なお、当該装置による平均付着力の算出原理は次の通りである。
2. Measurement of adhesion force The adhesion force of the particles was measured for the raw material powders of Examples 1 and 2 and Comparative Example 1, and how the addition of SiO 2 powder to the SUS316L powder having an average particle size of 10 μm (−22 μm) It was investigated whether to reduce and increase fluidity. As a measuring method, a centrifugal adhesion measuring device (CS150NX) manufactured by Hitachi Koki Co., Ltd. was used, and an average adhesion F50 (nN) was calculated. The results are also shown in Table 1. The calculation principle of the average adhesion force by the apparatus is as follows.

サンプル(粉末)を付着させた基板(SUS304製の鏡面基板)を高速遠心機にセットして所定回転数で遠心分離し、粒子の分離状態を記録する。この際、粒子に作用する分離力を粒子密度(ρ)、粒子径(d)、回転数、回転半径(r)から算出する。初期の粒子付着量に対して回転後の粒子残留率を画像解析により測定し、50%の粒子が分離する分離力(この場合、分離力は付着力、または摩擦量と同等)を算出し、平均付着力F50を算出する。粒子の残留率Rが50%となる回転角速度ωを算出し、次式より平均付着力F50を算出する。
F50=(π/6)・ρ・d3・r・ω2
A substrate (mirror substrate made of SUS304) on which a sample (powder) is attached is set in a high-speed centrifuge and centrifuged at a predetermined rotation speed, and the particle separation state is recorded. At this time, the separation force acting on the particles is calculated from the particle density (ρ), the particle diameter (d), the rotation speed, and the rotation radius (r). The particle residual rate after rotation is measured by image analysis with respect to the initial particle adhesion amount, and the separation force at which 50% of the particles are separated (in this case, the separation force is equal to the adhesion force or the friction amount) is calculated. An average adhesion force F50 is calculated. The rotational angular velocity ω at which the particle residual ratio R is 50% is calculated, and the average adhesion force F50 is calculated from the following equation.
F50 = (π / 6) · ρ · d3 · r · ω2

表1に示すように、実施例1、2は比較例1と比べそれぞれ粒子付着力がおよそ四分の一、十分の一以下であった。付着力は流動性の向上と密接に関係しており、SiO粉末の添加が流動性を格段に向上させることが確かめられた。また、過剰な添加量により、付着力が低減し過ぎて、積層時にホッパーからの適切な切り出しができず流体状となってホッパーから流失し(フラッシュアウト)、適切な積層、ひいては成形が不可能になるおそれがある。これ以上の付着力の低下は逆に積層には不適切であり、適切な付着力が存在することも確認された。 As shown in Table 1, Examples 1 and 2 each had a particle adhesion force of about one-fourth and one-tenth or less as compared with Comparative Example 1. Adhesive force is closely related to the improvement of fluidity, and it has been confirmed that the addition of SiO 2 powder significantly improves the fluidity. In addition, due to excessive addition amount, the adhesive force is reduced too much, and it is not possible to cut out properly from the hopper at the time of laminating, it becomes fluid and flows out of the hopper (flash out), and proper laminating and eventually molding is impossible There is a risk of becoming. It was also confirmed that a further decrease in adhesion force was inappropriate for laminating, and that there was an appropriate adhesion force.

3.焼結体の評価
実施例1、2および比較例1、2の原料粉末を用いて、図1で模式的に示したようなバインダジェット法により同様形状の三次元結合体を造形し、それら成形体を、真空焼結炉により真空中において1350℃:2時間加熱、という条件で焼結した。
3. Evaluation of Sintered Body Using the raw material powders of Examples 1 and 2 and Comparative Examples 1 and 2, a three-dimensional bonded body having the same shape is formed by the binder jet method as schematically shown in FIG. The body was sintered in a vacuum sintering furnace in a vacuum at 1350 ° C. for 2 hours.

3−1.金属組織写真
実施例1、2および比較例1、2の焼結体につき、適宜に研磨して鏡面仕上げした後、腐食させて、金属組織を顕微鏡写真で撮影した。図3〜図5は、それぞれ実施例1、比較例1、2の焼結体の金属組織写真である。
3-1. Metal Structure Photographs The sintered bodies of Examples 1 and 2 and Comparative Examples 1 and 2 were appropriately polished and mirror-finished, then corroded, and the metal structures were photographed with micrographs. 3 to 5 are metal structure photographs of the sintered bodies of Example 1 and Comparative Examples 1 and 2, respectively.

3−2.相対密度
実施例1、2および比較例2の焼結体につき、相対密度をアルキメデス法によって調べた。その結果を表1に併記する。
3-2. Relative density The relative densities of the sintered bodies of Examples 1 and 2 and Comparative Example 2 were examined by the Archimedes method. The results are also shown in Table 1.

4.焼結体の評価
実施例1、2の原料粉末による焼結体は、相対密度が95%と機械的特性として十分な値を示した。また、図3に示すように実施例1の金属組織は微細な結晶が均質な状態で緻密に分布しており、積層の痕跡や欠陥部分もみられない。なお、実施例2の焼結体も相対密度が実施例1と同様であって金属組織も同様に緻密であった。これは、原料粉末の積層工程においてホッパーから供給される原料粉末の流動性が良好で原料粉末が均質に積層されているためであり、粒度が細かいながら緻密かつ均質な金属組織を有する高品質な焼結体が得られている。
4). Evaluation of Sintered Body The sintered bodies of the raw material powders of Examples 1 and 2 showed a relative density of 95% and a sufficient value as mechanical properties. In addition, as shown in FIG. 3, the metal structure of Example 1 is finely distributed with fine crystals in a homogeneous state, and no traces of stacking and defects are observed. The sintered body of Example 2 also had a relative density similar to that of Example 1, and the metal structure was also dense. This is because the raw material powder supplied from the hopper in the raw material powder laminating process has good fluidity and the raw material powder is uniformly laminated, and has a high quality with a fine and homogeneous metal structure even though the particle size is fine. A sintered body is obtained.

一方、比較例1の焼結体は、図4に示すように原料粉末の積層状態は波状を呈して密度分布に偏りが生じており、不規則な組織となっている。これは、原料粉末が細かく、かつシリカ粉末が添加されていないため、積層時の流動性が低く、供給された状態で表面に凹凸が生じており、それをローラで均すことにより均一な密度分布が得られないことに起因する。比較例1のような焼結体は密度分布に偏りがあるため品質に劣り、工業用部品や機能部品としては不十分なものである。なお、このように品質的に不十分な比較例1については相対密度の測定は割愛した。   On the other hand, as shown in FIG. 4, the sintered body of Comparative Example 1 has an irregular structure in which the lamination state of the raw material powder is wavy and the density distribution is uneven. This is because the raw material powder is fine and silica powder is not added, so the fluidity at the time of lamination is low, and irregularities are generated on the surface in the supplied state. This is because the distribution cannot be obtained. The sintered body as in Comparative Example 1 is inferior in quality because of the uneven density distribution, and is insufficient as an industrial part or a functional part. In addition, about the comparative example 1 with insufficient quality in this way, the measurement of the relative density was omitted.

比較例2の焼結体は原料粉末の粒度が粗いため積層時の流動性は良好で、図5に示すように結晶の分布も概ね均一ではあるが、大きな空孔が分散し、相対密度が80%と低い。したがって十分な機械的特性が得られず、工業用部品や機能部品としての用途をなさない。   The sintered body of Comparative Example 2 has good flowability at the time of lamination because the raw material powder is coarse, and the distribution of crystals is almost uniform as shown in FIG. 5, but large pores are dispersed and the relative density is high. As low as 80%. Therefore, sufficient mechanical characteristics cannot be obtained, and the use as an industrial part or a functional part is not achieved.

5.コストについて
実施例1、2および比較例1に用いた平均粒径が10μmのSUS316Lの粉末のように、このレベルの微細な粉末材料は、比較例2の粒度が大きい粉末材料よりも需要が格段に多いため安価である。例えば普及しているMIM(Metal Injection Molding)用の粉末材料がそれに当たる。そしてこのような微細な粉末材料による成形体を焼結する際は、比較例2程度の比較的粒度の大きい粉末材料を用いた場合よりも低い温度で焼結することができ、よって設備にコストをかける必要がないか、あるいは少なくて済む。これらのことから本発明によれば、工業用部品や機能部品となる焼結体を、バインダジェット法で簡便に、かつコストを抑えて製造することができる。
5). Cost As with the SUS316L powder having an average particle diameter of 10 μm used in Examples 1 and 2 and Comparative Example 1, this level of fine powder material has a much higher demand than the powder material of Comparative Example 2 having a large particle size. It is cheap because there are many. For example, a popular powder material for MIM (Metal Injection Molding) corresponds to this. And when sintering a compact made of such a fine powder material, it can be sintered at a lower temperature than the case of using a powder material having a relatively large particle size of about Comparative Example 2, so that the cost of the equipment is reduced. There is no need to spend or less. For these reasons, according to the present invention, a sintered body to be an industrial part or a functional part can be easily produced by the binder jet method at a reduced cost.

本発明は、バインダジェット法により三次元の焼結体を成形する際に利用可能な技術である。   The present invention is a technique that can be used when a three-dimensional sintered body is formed by a binder jet method.

11…パウダーベッド
12…ホッパー
13…ローラ
14…インクジェットディスペンサ
P…原料粉末
PL…原料粉末層
B…バインダ
G…結合体
DESCRIPTION OF SYMBOLS 11 ... Powder bed 12 ... Hopper 13 ... Roller 14 ... Inkjet dispenser P ... Raw material powder PL ... Raw material powder layer B ... Binder G ... Combined body

Claims (4)

パウダーベッド上にホッパーから横方向に吐出されながら自然落下されつつ供給され、その表面が加圧されて100μm以下の厚さの一層の原料粉末層として繰り返し積層され、該一層の原料粉末層が形成されるごとに、該原料粉末層にバインダが供給されるバインダジェット法に用いる積層造形用粉末材料であって、
金属粉末またはセラミックス粉末からなる平均粒径が2〜25μmの主原料粉末中に、一次粒子径が7〜40nmの流動化剤が0.01〜0.15wt%の割合で添加されていることを特徴とするバインダジェット法に用いる積層造形用粉末材料。
Supplied while being spontaneously dropped while being discharged laterally from the hopper on the powder bed, the surface is pressurized and repeatedly laminated as a single layer powder layer with a thickness of 100 μm or less, forming the single layer powder layer Every time it is done, it is a powder material for additive manufacturing used in the binder jet method in which a binder is supplied to the raw material powder layer,
In a main raw material powder having an average particle diameter of 2 to 25 μm made of metal powder or ceramic powder, a fluidizing agent having a primary particle diameter of 7 to 40 nm is added at a ratio of 0.01 to 0.15 wt%. A powder material for additive manufacturing used in the binder jet method.
前記流動化剤は、SiO粉末、TiO 粉末、Al粉末のうちの一種、または二種以上の混合粉末であることを特徴とする請求項1に記載のバインダジェット法に用いる積層造形用粉末材料。 The lamination used in the binder jet method according to claim 1, wherein the fluidizing agent is one of SiO 2 powder, TiO 2 powder , and Al 2 O 3 powder, or a mixed powder of two or more. Powder material for modeling. 応力伝達率が70%以上、圧縮率が20%以下、粉体動摩擦角が32°以下であることを特徴とする請求項1または2に記載のバインダジェット法に用いる積層造形用粉末材料。   The powder material for additive manufacturing used in the binder jet method according to claim 1 or 2, wherein the stress transmission rate is 70% or more, the compression rate is 20% or less, and the powder dynamic friction angle is 32 ° or less. 前記主原料粉末は、ステンレス、高速度鋼、ニッケル基耐熱鋼、低炭素鋼、アルミナ、炭化ケイ素のうちの少なくとも一種であることを特徴とする請求項1〜3のいずれかに記載のバインダジェット法に用いる積層造形用粉末材料。   The binder jet according to any one of claims 1 to 3, wherein the main raw material powder is at least one of stainless steel, high-speed steel, nickel-base heat-resisting steel, low-carbon steel, alumina, and silicon carbide. Powder material for additive manufacturing used in the process.
JP2018046456A 2018-03-14 2018-03-14 Powder material for additive manufacturing used in the binder jet method Active JP6619039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018046456A JP6619039B2 (en) 2018-03-14 2018-03-14 Powder material for additive manufacturing used in the binder jet method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046456A JP6619039B2 (en) 2018-03-14 2018-03-14 Powder material for additive manufacturing used in the binder jet method

Publications (2)

Publication Number Publication Date
JP2019157217A JP2019157217A (en) 2019-09-19
JP6619039B2 true JP6619039B2 (en) 2019-12-11

Family

ID=67993158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046456A Active JP6619039B2 (en) 2018-03-14 2018-03-14 Powder material for additive manufacturing used in the binder jet method

Country Status (1)

Country Link
JP (1) JP6619039B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395840B2 (en) * 2019-04-09 2023-12-12 セイコーエプソン株式会社 Powder for additive manufacturing and method for producing additively manufactured objects
FR3102996B1 (en) * 2019-11-07 2022-05-13 Commissariat Energie Atomique PART COMPRISING AN OPTIMIZED STEEL MATERIAL AND ITS MANUFACTURING METHOD.
CN114630720A (en) * 2019-11-08 2022-06-14 大同特殊钢株式会社 Powder material
JP7468858B2 (en) * 2020-01-28 2024-04-16 株式会社ナノシーズ Method and apparatus for forming powder layer
JP7231803B2 (en) * 2020-03-03 2023-03-02 祥司 八賀 Metal powder material for additive manufacturing using binder jet method
JP7204793B2 (en) * 2021-02-05 2023-01-16 株式会社ExOne Powder material for additive manufacturing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059753A1 (en) * 1998-05-15 1999-11-25 Höganäs Ab Iron-based metallurgical compositions containing flow agents and methods for using same
JP2004332016A (en) * 2003-05-01 2004-11-25 Seiko Epson Corp Granulated metal powder, manufacturing method therefor, and metal powder
JP2017100292A (en) * 2015-11-30 2017-06-08 株式会社リコー Three-dimensional molding apparatus and three-dimensional molding method

Also Published As

Publication number Publication date
JP2019157217A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6619039B2 (en) Powder material for additive manufacturing used in the binder jet method
JP6933402B2 (en) Tungsten-Carbide / Cobalt Ink Composition for 3D Inkjet Printing
CN106573298B (en) The method for producing cermet or cemented carbide powder
JP6519274B2 (en) Powder material for three-dimensional modeling, three-dimensional modeling material set, three-dimensional model manufacturing apparatus, and method for manufacturing three-dimensional model
CN104550900B (en) The laser sintered manufacturing device with powder, the manufacturing method of works and works
TWI659940B (en) Sintering and shaping method and sintered shaped article
US10711332B2 (en) Additive manufacturing material for powder rapid prototyping manufacturing
US9764987B2 (en) Composite ceramics and ceramic particles and method for producing ceramic particles and bulk ceramic particles
JP6303016B2 (en) Manufacturing method of layered objects
JP2017113952A (en) Molding material to be used for powder laminate molding
WO2018197876A1 (en) Apparatus for and process of additive manufacturing
WO2017110828A1 (en) Molding material for use in powder laminate molding
Diener et al. Literature review: methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing
WO2020002951A1 (en) Powder deposition
JP2017127997A (en) Powder for molding
JP6569269B2 (en) 3D modeling powder material, 3D modeling material set, 3D model manufacturing apparatus, and 3D model manufacturing method
WO2020100756A1 (en) Powder material for use in powder laminate molding, powder laminate molding method using same, and molded article
JP2023040127A (en) Powder material for lamination molding
JP6756994B1 (en) Manufacturing method of powder for additive manufacturing, manufacturing method of additive manufacturing, and manufacturing method of sintered body of additive manufacturing
JP7395840B2 (en) Powder for additive manufacturing and method for producing additively manufactured objects
WO2019038910A1 (en) Evaluation method of powder for laminate molding, and powder for laminate molding
JP7117226B2 (en) Powder material for use in powder additive manufacturing, powder additive manufacturing method using the same, and modeled object
TW202248429A (en) Aluminum powder mixture and method for producing aluminum sintered body
JP7468858B2 (en) Method and apparatus for forming powder layer
KR20100127011A (en) Non-sintering ceramic manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6619039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250