JP6618386B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP6618386B2
JP6618386B2 JP2016032854A JP2016032854A JP6618386B2 JP 6618386 B2 JP6618386 B2 JP 6618386B2 JP 2016032854 A JP2016032854 A JP 2016032854A JP 2016032854 A JP2016032854 A JP 2016032854A JP 6618386 B2 JP6618386 B2 JP 6618386B2
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
material layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016032854A
Other languages
Japanese (ja)
Other versions
JP2017152176A (en
Inventor
文洋 川村
文洋 川村
健児 小原
健児 小原
伸 田中
伸 田中
淳子 西山
淳子 西山
成則 青柳
成則 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Japan Ltd
Original Assignee
Envision AESC Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envision AESC Japan Ltd filed Critical Envision AESC Japan Ltd
Priority to JP2016032854A priority Critical patent/JP6618386B2/en
Publication of JP2017152176A publication Critical patent/JP2017152176A/en
Application granted granted Critical
Publication of JP6618386B2 publication Critical patent/JP6618386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質電池、特にリチウムイオン二次電池に関する。   The present invention relates to a non-aqueous electrolyte battery, particularly a lithium ion secondary battery.

非水電解質電池は、ハイブリッド自動車や電気自動車等を含む自動車用電池として実用化されている。このような車載電源用電池としてリチウムイオン二次電池が使用されている。リチウムイオン二次電池は、出力特性、エネルギー密度、容量、寿命、高温安定性等の種々の特性を併せ持つことが要求されている。特に電池の過充電時の安全性を向上するために、電池構造や、電極、ならびに電解液に様々な改良が図られている。   Nonaqueous electrolyte batteries have been put to practical use as automobile batteries including hybrid cars and electric cars. Lithium ion secondary batteries are used as such on-vehicle power supply batteries. Lithium ion secondary batteries are required to have various characteristics such as output characteristics, energy density, capacity, lifetime, and high temperature stability. In particular, various improvements have been made to the battery structure, the electrodes, and the electrolytic solution in order to improve safety during overcharging of the battery.

たとえば、特許文献1には、電池の過充電時の電圧上昇や安全性を向上するために、電解質としてLi1212−xを用いることが提案されている。特許文献1では、Li1212−xは電池の過充電時にレドックスシャトル機構を発現して安全性を向上させることができるとされている。特許文献1のほかにも、電池の過充電時の安全性を高めるために特定の電解質を用いたり、粘性の高い電解液を用いたりする試みは多くなされている。 For example, Patent Document 1 proposes to use Li 2 B 12 F x Z 12-x as an electrolyte in order to improve voltage rise and safety during battery overcharge. In Patent Document 1, Li 2 B 12 F x Z 12-x is said to be capable of improving the safety by developing a redox shuttle mechanism when the battery is overcharged. In addition to Patent Document 1, many attempts have been made to use a specific electrolyte or a highly viscous electrolytic solution in order to improve safety during overcharging of the battery.

WO2013−54676号WO2013-54676

電池の安全性を高めるために特定の電解質を用いたり、粘度が高い電解液を用いたりすると、電池の出力が低下してしまうという問題がある。特に車両用電池のように、高出力充放電特性が求められる用途において、出力の低下は大きな問題となりうる。また、常温および低温環境下での電池の出力をともに向上させることは非常に難しい。電解液の粘性が低い常温下では、発電素子内に存在するリチウム塩が多いほど電池の抵抗値が下がるが、電解液の粘性が高い低温下では、発電素子内に存在するリチウム塩が多いと電池の抵抗値が上昇してしまうからである。   If a specific electrolyte is used in order to enhance the safety of the battery or an electrolytic solution having a high viscosity is used, there is a problem that the output of the battery is lowered. Particularly in applications where high output charge / discharge characteristics are required, such as a vehicle battery, a decrease in output can be a major problem. In addition, it is very difficult to improve both the battery output under normal temperature and low temperature environments. At room temperature where the viscosity of the electrolyte is low, the more lithium salt is present in the power generation element, the lower the resistance value of the battery, but at low temperatures where the viscosity of the electrolyte is high, This is because the resistance value of the battery increases.

そこで、本発明は、特に低温下での出力特性に優れたリチウムイオン二次電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a lithium ion secondary battery that is excellent in output characteristics particularly at low temperatures.

本発明の実施形態におけるリチウムイオン二次電池は、正極活物質層が正極集電体に配置された正極と、負極活物質層が負極集電体に配置された負極と、セパレータと、電解液と、を含む発電要素を、外装体内部に含むリチウムイオン二次電池である。ここで負極活物質層内に存在するリチウム塩の量は、0.36〜0.52モル/Lの範囲であり、電解液は、プロピレンカーボネートを含み、リチウムイオン二次電池の出力と容量との比(W/Wh)の値は35〜80であることを特徴とする。   A lithium ion secondary battery according to an embodiment of the present invention includes a positive electrode in which a positive electrode active material layer is disposed on a positive electrode current collector, a negative electrode in which a negative electrode active material layer is disposed on a negative electrode current collector, a separator, and an electrolyte solution Is a lithium ion secondary battery including a power generation element including the inside of the exterior body. Here, the amount of the lithium salt present in the negative electrode active material layer is in the range of 0.36 to 0.52 mol / L, and the electrolyte contains propylene carbonate, and the output and capacity of the lithium ion secondary battery The value of the ratio (W / Wh) is 35-80.

本発明のリチウムイオン二次電池は、低温下において高電流密度(すなわち高レート)での充放電が可能な高容量電池である。   The lithium ion secondary battery of the present invention is a high capacity battery that can be charged and discharged at a high current density (that is, a high rate) at low temperatures.

図1は、本発明の一の実施形態のリチウムイオン二次電池を表す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a lithium ion secondary battery according to an embodiment of the present invention.

本発明の実施形態を以下に説明する。実施形態において正極とは、正極活物質と、バインダーと、必要な場合導電助剤との混合物を金属箔等の正極集電体に塗布または圧延および乾燥して正極活物質層を形成した薄板状あるいはシート状の電池部材である。負極とは、負極活物質と、バインダーと、必要な場合導電助剤との混合物を負極集電体に塗布して負極活物質層を形成した薄板状あるいはシート状の電池部材である。セパレータとは、正極と負極とを隔離して負極・正極間のリチウムイオンの伝導性を確保するための膜状の電池部材である。電解液とは、イオン性物質を溶媒に溶解させた電気伝導性のある溶液のことであり、本実施形態においては特に非水電解液を用いることができる。正極と負極とセパレータと電解液とを含む発電要素とは、電池の主構成部材の一単位であり、通常、正極と負極とがセパレータを介して積層されて、この積層物が電解液に浸漬されている。   Embodiments of the present invention will be described below. In the embodiment, the positive electrode is a thin plate in which a positive electrode active material layer is formed by applying or rolling and drying a mixture of a positive electrode active material, a binder, and, if necessary, a conductive additive on a positive electrode current collector such as a metal foil. Or it is a sheet-like battery member. The negative electrode is a thin plate-like or sheet-like battery member in which a negative electrode active material layer is formed by applying a mixture of a negative electrode active material, a binder, and, if necessary, a conductive additive to a negative electrode current collector. The separator is a film-like battery member for separating the positive electrode and the negative electrode and ensuring the conductivity of lithium ions between the negative electrode and the positive electrode. The electrolytic solution is an electrically conductive solution in which an ionic substance is dissolved in a solvent. In this embodiment, a nonaqueous electrolytic solution can be used in particular. The power generation element including the positive electrode, the negative electrode, the separator, and the electrolytic solution is a unit of the main constituent member of the battery. Usually, the positive electrode and the negative electrode are laminated via the separator, and this laminate is immersed in the electrolytic solution. Has been.

実施形態のリチウムイオン二次電池は、外装体の内部に該発電要素が含まれて成り、好ましくは、発電要素は該外装体内部に封止されている。封止されているとは、発電要素が外気に触れないように、外装体材料により包まれていることを意味する。すなわち外装体は、発電要素をその内部に封止することが可能な袋形状をしている。   The lithium ion secondary battery of the embodiment is configured such that the power generation element is included in the exterior body, and preferably the power generation element is sealed inside the exterior body. The term “sealed” means that the power generation element is encased in an exterior body material so as not to touch the outside air. That is, the exterior body has a bag shape capable of sealing the power generation element therein.

すべての実施形態において用いることができる正極は、正極活物質を含む正極活物質層が正極集電体に配置された正極を含む。好ましくは、正極は、正極活物質、バインダーおよび場合により導電助剤の混合物をアルミニウム箔などの金属箔からなる正極集電体に塗布または圧延し、乾燥して得た正極活物質層を有している。各実施形態において、正極活物質層は、好ましくはリチウム・ニッケル系複合酸化物を正極活物質として含む。リチウム・ニッケル系複合酸化物とは、一般式LiNiMe(1−y)(ここでMeは、Al、Mn、Na、Fe、Co、Cr、Cu、Zn、Ca、K、Mg、およびPbからなる群より選択される、少なくとも1種以上の金属である。)で表される、リチウムとニッケルとを含有する遷移金属複合酸化物のことである。 The positive electrode that can be used in all embodiments includes a positive electrode in which a positive electrode active material layer including a positive electrode active material is disposed on a positive electrode current collector. Preferably, the positive electrode has a positive electrode active material layer obtained by applying or rolling a mixture of a positive electrode active material, a binder, and optionally a conductive additive to a positive electrode current collector made of a metal foil such as an aluminum foil, and drying. ing. In each embodiment, the positive electrode active material layer preferably contains a lithium / nickel composite oxide as the positive electrode active material. The lithium-nickel based composite oxide is a general formula Li x Ni y Me (1-y) O 2 (where Me is Al, Mn, Na, Fe, Co, Cr, Cu, Zn, Ca, K, It is a transition metal composite oxide containing lithium and nickel, represented by at least one metal selected from the group consisting of Mg and Pb.

正極活物質層は、さらにリチウム・マンガン系複合酸化物を正極活物質として含むことができる。リチウム・マンガン系複合酸化物は、たとえばジグザグ層状構造のマンガン酸リチウム(LiMnO)、スピネル型マンガン酸リチウム(LiMn)等を挙げることができる。リチウム・マンガン系複合酸化物を併用することで、より安価に正極を作製することができる。特に、過充電状態での結晶構造の安定度の点で優れるスピネル型のマンガン酸リチウム(LiMn)を用いることが好ましい。 The positive electrode active material layer can further contain a lithium / manganese composite oxide as a positive electrode active material. Examples of the lithium / manganese composite oxide include a zigzag layered structure lithium manganate (LiMnO 2 ) and spinel type lithium manganate (LiMn 2 O 4 ). By using a lithium-manganese composite oxide in combination, the positive electrode can be produced at a lower cost. In particular, it is preferable to use spinel type lithium manganate (LiMn 2 O 4 ) which is excellent in terms of stability of the crystal structure in an overcharged state.

正極活物質層は、特に、一般式LiNiCoMn(1−y−z)で表される層状結晶構造を有するリチウムニッケルマンガンコバルト複合酸化物を正極活物質として含むことが好ましい。ここで、一般式中のxは1≦x≦1.2であり、yおよびzはy+z<1を満たす正の数であり、yの値が0.5以下である。なお、マンガンの割合が大きくなると単一相の複合酸化物が合成されにくくなるため、1−y−z≦0.4とすることが望ましい。また、コバルトの割合が大きくなると高コストとなり容量も減少するため、z<y、z<1−y−zとすることが望ましい。高容量の電池を得るためには、y>1−y−z、y>zとすることが特に好ましい。 In particular, the positive electrode active material layer may include a lithium nickel manganese cobalt composite oxide having a layered crystal structure represented by a general formula Li x Ni y Co z Mn (1-yz) O 2 as a positive electrode active material. preferable. Here, x in the general formula is 1 ≦ x ≦ 1.2, y and z are positive numbers that satisfy y + z <1, and the value of y is 0.5 or less. Note that when the proportion of manganese increases, it becomes difficult to synthesize a single-phase composite oxide, so 1-yz ≦ 0.4 is desirable. Further, since the cost increases and the capacity decreases when the proportion of cobalt increases, it is desirable to satisfy z <y and z <1-yz. In order to obtain a high capacity battery, it is particularly preferable to satisfy y> 1-yz and y> z.

正極活物質層に場合により用いられる導電助剤として、カーボンナノファイバー等のカーボン繊維、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、黒鉛、メゾポーラスカーボン、フラーレン類、カーボンナノチューブ等の炭素材料が挙げられる。その他、正極活物質層には増粘剤、分散剤、安定剤等の、電極形成のために一般的に用いられる電極添加剤を適宜使用することができる。   Carbon fibers such as carbon nanofibers, carbon blacks such as acetylene black and ketjen black, activated carbon, graphite, mesoporous carbon, fullerenes, carbon nanotubes and other carbon materials as conductive aids optionally used in the positive electrode active material layer Is mentioned. In addition, electrode additives generally used for electrode formation, such as thickeners, dispersants, and stabilizers, can be appropriately used for the positive electrode active material layer.

正極活物質層に用いられるバインダーとして、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ポリアニリン類、ポリチオフェン類、ポリアセチレン類、ポリピロール類等の導電性ポリマー、スチレンブタジエンラバー(SBR)、ブタジエンラバー(BR)、クロロプレンラバー(CR)、イソプレンラバー(IR)、アクリロニトリルブラジエンラバー(NBR)等の合成ゴム、あるいはカルボキシメチルセルロース(CMC)、キサンタンガム、グアーガム、ペクチン等の多糖類を用いることができる。   As binders used for the positive electrode active material layer, conductive resins such as fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyvinyl fluoride (PVF), polyanilines, polythiophenes, polyacetylenes, polypyrroles, etc. Polymer, synthetic rubber such as styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile bradiene rubber (NBR), or carboxymethylcellulose (CMC), xanthan gum, guar gum Polysaccharides such as pectin can be used.

すべての実施形態において用いることができる負極は、負極活物質を含む負極活物質層が負極集電体に配置された負極を含む。好ましくは、負極は、負極活物質、バインダーおよび場合により導電助剤の混合物を銅箔などの金属箔からなる負極集電体に塗布または圧延し、乾燥して得た負極活物質層を有している。各実施形態において、負極活物質が、黒鉛を含む。特に負極活物質層に黒鉛がを含まれると、電池の残容量(SOC)が低いときにも電池の出力を向上させることができるというメリットがある。黒鉛は、六方晶系六角板状結晶の炭素材料であり、石墨、グラファイト等と称されることがある。黒鉛は粒子の形態であることが好ましい。また、負極活物質として、非晶質炭素が含まれていてもよく、場合により黒鉛と非晶質炭素との混合物を用いてもよい。非晶質炭素とは、部分的に黒鉛に類似するような構造を有していてもよい、微結晶がランダムにネットワークした構造をとった、全体として非晶質である炭素材料のことである。非晶質炭素として、カーボンブラック、コークス、活性炭、カーボンファイバー、ハードカーボン、ソフトカーボン、メソポーラスカーボン等が挙げられる。非晶質炭素は粒子の形状をしていることが好ましい。上記の黒鉛粒子と非晶質炭素粒子とをともに含む混合炭素材を用いると、電池の回生性能が向上する。   The negative electrode that can be used in all embodiments includes a negative electrode in which a negative electrode active material layer containing a negative electrode active material is disposed on a negative electrode current collector. Preferably, the negative electrode has a negative electrode active material layer obtained by applying or rolling a mixture of a negative electrode active material, a binder, and optionally a conductive additive to a negative electrode current collector made of a metal foil such as copper foil, and drying. ing. In each embodiment, the negative electrode active material includes graphite. In particular, when graphite is contained in the negative electrode active material layer, there is an advantage that the output of the battery can be improved even when the remaining capacity (SOC) of the battery is low. Graphite is a carbon material of hexagonal hexagonal plate crystal, and is sometimes referred to as graphite or graphite. The graphite is preferably in the form of particles. Further, as the negative electrode active material, amorphous carbon may be contained, and in some cases, a mixture of graphite and amorphous carbon may be used. Amorphous carbon is a carbon material that has a structure in which microcrystals are randomly networked and may be partially similar to graphite, and is entirely amorphous. . Examples of the amorphous carbon include carbon black, coke, activated carbon, carbon fiber, hard carbon, soft carbon, and mesoporous carbon. The amorphous carbon is preferably in the form of particles. When a mixed carbon material containing both the above graphite particles and amorphous carbon particles is used, the battery regeneration performance is improved.

負極活物質層に場合により用いられる導電助剤として、カーボンナノファイバー等のカーボン繊維、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、メゾポーラスカーボン、フラーレン類、カーボンナノチューブ等の炭素材料が挙げられる。その他、負極活物質層には増粘剤、分散剤、安定剤等の、電極形成のために一般的に用いられる電極添加剤を適宜使用することができる。   Examples of conductive aids that are optionally used in the negative electrode active material layer include carbon fibers such as carbon nanofibers, carbon blacks such as acetylene black and ketjen black, carbon materials such as activated carbon, mesoporous carbon, fullerenes, and carbon nanotubes. It is done. In addition, electrode additives generally used for electrode formation, such as a thickener, a dispersant, and a stabilizer, can be appropriately used for the negative electrode active material layer.

負極活物質層に用いられるバインダーとして、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ポリアニリン類、ポリチオフェン類、ポリアセチレン類、ポリピロール類等の導電性ポリマー、スチレンブタジエンラバー(SBR)、ブタジエンラバー(BR)、クロロプレンラバー(CR)、イソプレンラバー(IR)、アクリロニトリルブラジエンラバー(NBR)等の合成ゴム、あるいはカルボキシメチルセルロース(CMC)、キサンタンガム、グアーガム、ペクチン等の多糖類を用いることができる。   As a binder used for the negative electrode active material layer, fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyvinyl fluoride (PVF), conductive materials such as polyanilines, polythiophenes, polyacetylenes, and polypyrroles. Polymers, synthetic rubbers such as styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile bradiene rubber (NBR), or carboxymethyl cellulose (CMC), xanthan gum, guar gum Polysaccharides such as pectin can be used.

本明細書のすべての実施形態において用いる電解液は、非水電解液であって、ジメチルカーボネート(以下「DMC」と称する。)、ジエチルカーボネート(以下「DEC」と称する。)、エチルメチルカーボネート(以下「EMC」と称する。)、ジ−n−プロピルカーボネート、ジ−t−プロピルカーボネート、ジ−n−ブチルカーボネート、ジ−イソブチルカーボネート、またはジ−t−ブチルカーボネート等の鎖状カーボネートと、プロピレンカーボネート(以下「PC」と称する。)、エチレンカーボネート(以下「EC」と称する。)等の環状カーボネートとを含む混合物であることが好ましい。電解液は、このようなカーボネート混合物に、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、過塩素酸リチウム(LiClO)等のリチウム塩を溶解させたものである。 The electrolyte used in all embodiments of the present specification is a non-aqueous electrolyte, which is dimethyl carbonate (hereinafter referred to as “DMC”), diethyl carbonate (hereinafter referred to as “DEC”), ethyl methyl carbonate (hereinafter referred to as “DMC”). Hereinafter referred to as "EMC"), chain carbonate such as di-n-propyl carbonate, di-t-propyl carbonate, di-n-butyl carbonate, di-isobutyl carbonate, or di-t-butyl carbonate, and propylene A mixture containing a carbonate (hereinafter referred to as “PC”) and a cyclic carbonate such as ethylene carbonate (hereinafter referred to as “EC”) is preferable. The electrolytic solution is obtained by dissolving a lithium salt such as lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), or lithium perchlorate (LiClO 4 ) in such a carbonate mixture.

電解液は、環状カーボネートと、鎖状カーボネートとを含む混合溶媒であることが好ましい。特にPCは、凝固点が低い溶媒であり、電池の低温時の出力の向上のために好適に用いられ、本実施形態でも電解液にPCを含むことが非常に好ましい。ただしPCは負極活物質として用いられる黒鉛との相性がやや低いことが知られている。ECは極性が高く誘電率が高い溶媒であり、リチウムイオン二次電池用電解液の構成成分として広く用いられる。ただしECは融点(凝固点)が高く、室温で固体であるため、ハンドリングがやや困難である。DMCは拡散係数が大きく粘度が低い溶媒である。ただしDMCは融点(凝固点)が高いため、電解液が低温下で固まる可能性がある。EMCもDMCと同様拡散係数が大きく粘度が低い溶媒である。このように、電解液の構成成分はそれぞれに異なる特性を有しており、電池の低温時の出力を向上させるためにはこれらのバランスを考慮して適切な混合溶媒として用いることが重要である。   The electrolytic solution is preferably a mixed solvent containing a cyclic carbonate and a chain carbonate. In particular, PC is a solvent having a low freezing point, and is suitably used for improving the output of the battery at a low temperature. In this embodiment as well, it is very preferable that the electrolyte contains PC. However, it is known that PC has a slightly low compatibility with graphite used as a negative electrode active material. EC is a solvent having a high polarity and a high dielectric constant, and is widely used as a constituent component of an electrolytic solution for a lithium ion secondary battery. However, since EC has a high melting point (freezing point) and is a solid at room temperature, handling is somewhat difficult. DMC is a solvent having a large diffusion coefficient and low viscosity. However, since DMC has a high melting point (freezing point), the electrolytic solution may solidify at a low temperature. Similarly to DMC, EMC is a solvent having a large diffusion coefficient and low viscosity. As described above, the constituent components of the electrolytic solution have different characteristics, and in order to improve the output at low temperature of the battery, it is important to use them as an appropriate mixed solvent in consideration of these balances. .

電解液は、このほか、添加剤として環状カーボネート化合物を含んでいてもよい。添加剤として用いられる環状カーボネートとしてビニレンカーボネート(VC)が挙げられる。また、添加剤としてハロゲンを有する環状カーボネート化合物を用いてもよい。これらの環状カーボネートも、電池の充放電過程において正極ならびに負極の保護被膜を形成する化合物である。特に、上記のジスルホン酸化合物またはジスルホン酸エステル化合物のような硫黄を含む化合物による、リチウム・ニッケル系複合酸化物を含有する正極活物質への攻撃を防ぐことができる化合物である。ハロゲンを有する環状カーボネート化合物として、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネート、クロロエチレンカーボネート、ジクロロエチレンカーボネート、トリクロロエチレンカーボネート等を挙げることができる。ハロゲンを有し不飽和結合を有する環状カーボネート化合物であるフルオロエチレンカーボネートは特に好ましく用いられる。   In addition to this, the electrolytic solution may contain a cyclic carbonate compound as an additive. Vinylene carbonate (VC) is mentioned as a cyclic carbonate used as an additive. Moreover, you may use the cyclic carbonate compound which has a halogen as an additive. These cyclic carbonates are also compounds that form a protective film for the positive electrode and the negative electrode during the charge / discharge process of the battery. In particular, it is a compound that can prevent an attack on a positive electrode active material containing a lithium / nickel composite oxide by a sulfur-containing compound such as the above-mentioned disulfonic acid compound or disulfonic acid ester compound. Examples of the cyclic carbonate compound having halogen include fluoroethylene carbonate (FEC), difluoroethylene carbonate, trifluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, and trichloroethylene carbonate. Fluoroethylene carbonate, which is a cyclic carbonate compound having a halogen and an unsaturated bond, is particularly preferably used.

また、電解液は、添加剤としてジスルホン酸化合物をさらに含んでいてもよい。ジスルホン酸化合物とは、一分子内にスルホ基を2つ有する化合物であり、スルホ基が金属イオンと共に塩を形成したジスルホン酸塩化合物、あるいはスルホ基がエステルを形成したジスルホン酸エステル化合物を包含する。ジスルホン酸化合物のスルホ基の1つまたは2つは、金属イオンと共に塩を形成していてもよく、アニオンの状態であってもよい。ジスルホン酸化合物の例として、メタンジスルホン酸、1,2−エタンジスルホン酸、1,3−プロパンジスルホン酸、1,4−ブタンジスルホン酸、ベンゼンジスルホン酸、ナフタレンジスルホン酸、ビフェニルジスルホン酸、およびこれらの塩(メタンジスルホン酸リチウム、1,3−エタンジスルホン酸リチウム等)、およびこれらのアニオン(メタンジスルホン酸アニオン、1,3−エタンジスルホン酸アニオン等)が挙げられる。またジスルホン酸化合物としてはジスルホン酸エステル化合物が挙げられ、メタンジスルホン酸、1,2−エタンジスルホン酸、1,3−プロパンジスルホン酸、1,4−ブタンジスルホン酸、ベンゼンジスルホン酸、ナフタレンジスルホン酸、またはビフェニルジスルホン酸のアルキルジエステルまたはアリールジエステル等の鎖状ジスルホン酸エステル;ならびにメチレンメタンジスルホン酸エステル、エチレンメタンジスルホン酸エステル、プロピレンメタンジスルホン酸エステル等の環状ジスルホン酸エステルが好ましく用いられる。メチレンメタンジスルホン酸エステル(MMDS)は特に好ましく用いられる。   The electrolytic solution may further contain a disulfonic acid compound as an additive. The disulfonic acid compound is a compound having two sulfo groups in one molecule, and includes a disulfonate compound in which the sulfo group forms a salt with a metal ion, or a disulfonate compound in which the sulfo group forms an ester. . One or two of the sulfo groups of the disulfonic acid compound may form a salt with the metal ion or may be in an anionic state. Examples of disulfonic acid compounds include methanedisulfonic acid, 1,2-ethanedisulfonic acid, 1,3-propanedisulfonic acid, 1,4-butanedisulfonic acid, benzenedisulfonic acid, naphthalenedisulfonic acid, biphenyldisulfonic acid, and these And salts (lithium methanedisulfonate, lithium 1,3-ethanedisulfonate, etc.) and anions thereof (methanedisulfonate anion, 1,3-ethanedisulfonate anion, etc.). Examples of the disulfonic acid compound include disulfonic acid ester compounds, such as methanedisulfonic acid, 1,2-ethanedisulfonic acid, 1,3-propanedisulfonic acid, 1,4-butanedisulfonic acid, benzenedisulfonic acid, naphthalenedisulfonic acid, Alternatively, chain disulfonic acid esters such as alkyl diesters or aryl diesters of biphenyl disulfonic acid; and cyclic disulfonic acid esters such as methylenemethane disulfonic acid ester, ethylenemethane disulfonic acid ester, and propylene methane disulfonic acid ester are preferably used. Methylenemethane disulfonate (MMDS) is particularly preferably used.

すべての実施形態において用いられるセパレータは、オレフィン系樹脂層から構成される。オレフィン系樹脂層は、エチレン、プロピレン、ブテン、ペンテン、へキセンなどのα−オレフィンを重合または共重合させたポリオレフィンから構成される層である。実施形態において、電池温度上昇時に閉塞される空孔を有する構造、すなわち多孔質あるいは微多孔質のポリオレフィンから構成される層であることが好ましい。オレフィン系樹脂層がこのような構造を有していることにより、万一電池温度が上昇しても、セパレータが閉塞して(シャットダウンして)、イオン流を寸断することができる。シャットダウン効果を発揮するためには、多孔質のポリエチレン膜を用いることが非常に好ましい。セパレータは、場合により耐熱性微粒子層を有していてよい。この際、電池の異常発熱を防止するために設けられた耐熱性微粒子層は、耐熱温度が150℃以上の耐熱性を有し、電気化学反応に安定な無機微粒子から構成される。このような無機微粒子として、シリカ、アルミナ(α−アルミナ、β−アルミナ、θ−アルミナ)、酸化鉄、酸化チタン、チタン酸バリウム、酸化ジルコニウムなどの無機酸化物;ベーマイト、ゼオライト、アパタイト、カオリン、スピネル、マイカ、ムライトなどの鉱物を挙げることができる。このように、耐熱層を有するセラミックセパレータを用いることもできる。   The separator used in all the embodiments is composed of an olefin resin layer. The olefin resin layer is a layer composed of polyolefin obtained by polymerizing or copolymerizing α-olefin such as ethylene, propylene, butene, pentene, hexene and the like. In the embodiment, a structure having pores that are closed when the battery temperature rises, that is, a layer composed of a porous or microporous polyolefin is preferable. When the olefin resin layer has such a structure, even if the battery temperature rises, the separator is closed (shut down), and the ion flow can be cut off. In order to exert a shutdown effect, it is very preferable to use a porous polyethylene film. The separator may optionally have a heat-resistant fine particle layer. At this time, the heat-resistant fine particle layer provided for preventing abnormal heat generation of the battery is composed of inorganic fine particles having a heat-resistant temperature of 150 ° C. or more and stable in electrochemical reaction. As such inorganic fine particles, inorganic oxides such as silica, alumina (α-alumina, β-alumina, θ-alumina), iron oxide, titanium oxide, barium titanate, zirconium oxide; boehmite, zeolite, apatite, kaolin, Mention may be made of minerals such as spinel, mica and mullite. Thus, a ceramic separator having a heat-resistant layer can also be used.

ここで、実施形態のリチウムイオン電池の負極活物質層内には、電解液に由来するリチウム塩が存在している。このリチウム塩の存在量が、0.36〜0.52モル/Lとなっていることが好ましい。ここで「負極活物質層内に存在するリチウム塩の量」とは、実質的には負極活物質に存在する空孔の割合と電解液のリチウム塩濃度との積となる。すなわち、電解液は負極活物質層内の空孔(空隙)部分に存在するため、負極活物質層の体積のうち空孔体積部分のみを考慮すればよい。負極活物質層内に存在するリチウム塩を増加させるには、いくつかの方法が考えられる。まず、負極活物質層の空孔体積を増やすことが挙げられる。負極活物質層に存在する空孔(空隙)が多ければ、より多くの電解液が負極活物質層に入り込むことができるためである。一方、電解液に高濃度のリチウム塩を溶解させることにより、負極活物質層内に存在するリチウム塩を増加させることができる。負極活物質層内に存在するリチウム塩の量が0.36〜0.52モル/Lの範囲にあると、電池の直流抵抗値が低減し高入出力による電池の充放電が可能となる。   Here, a lithium salt derived from the electrolytic solution is present in the negative electrode active material layer of the lithium ion battery of the embodiment. The abundance of the lithium salt is preferably 0.36 to 0.52 mol / L. Here, “the amount of the lithium salt present in the negative electrode active material layer” is substantially the product of the ratio of the vacancies present in the negative electrode active material and the lithium salt concentration of the electrolyte. That is, since the electrolytic solution exists in the void (void) portion in the negative electrode active material layer, only the void volume portion of the volume of the negative electrode active material layer needs to be considered. In order to increase the lithium salt present in the negative electrode active material layer, several methods are conceivable. First, increasing the pore volume of the negative electrode active material layer can be mentioned. This is because if the number of voids (voids) present in the negative electrode active material layer is large, more electrolytic solution can enter the negative electrode active material layer. On the other hand, the lithium salt present in the negative electrode active material layer can be increased by dissolving a high concentration lithium salt in the electrolytic solution. When the amount of the lithium salt present in the negative electrode active material layer is in the range of 0.36 to 0.52 mol / L, the direct current resistance value of the battery is reduced, and the battery can be charged / discharged with high input / output.

特に、負極活物質層の厚さ(T)の平方根(ルートT)あたりのリチウム塩の量が、0.064〜0.092モル/(L・μm 1/2 )であることが好ましい。ここで「負極活物質層の厚さ(T)の平方根(ルートT)あたりのリチウム塩の量」とは、実質的には負極活物質に存在する空孔率と、電解液のリチウム塩濃度と、負極活物質層の厚さの平方根との積となる。先に説明したとおり、電解液は負極活物質層内の空孔(空隙)部分に存在するため、負極活物質層の体積のうち空孔体積部分に存在するリチウム塩の量を考慮すればよい。また、高電流密度による充放電時の負極活物質層においては、電極反応に関与できる負極活物質層の擬似的な厚さは、実質的には、リチウムイオンの拡散可能距離であると云える。電池の発電素子中の電解液の濃度は巨視的には均一である。しかし電池の充放電中には正負極間でリチウムイオンの移動が起こっており、電極表面および電極内部においては微視的に電解液の濃度分布が生じていると考えられる。定常状態時に必要なリチウムイオンの量と、最大出力による放電時に必要なリチウムイオンの量は異なるから、電解液の拡散を考える場合は、系が非定常状態(すなわち拡散における濃度が時間に関して変わる場合)にあるとして考えなければならない。つまり電極内部における電解液の拡散状態は、フィックの第2法則の拡散方程式で表される。フィックの第2法則の拡散方程式は、濃度の時間変化が位置と濃度の2階微分に比例するという式であり、これによると、負極活物質層の厚さの平方根負極活物質層の厚さの平方根が、電解液が拡散できる厚さに影響すると推測することができる。本実施形態では、負極活物質層の厚さ(T)の平方根(ルートT)あたりのリチウム塩の量が、0.064〜0.092モル/(L・μm 1/2 )であると、電池の直流抵抗値が低減し高入出力による電池の充放電が可能となることを見出した。 In particular, the amount of lithium salt per square root (root T) of the thickness (T) of the negative electrode active material layer is preferably 0.064 to 0.092 mol / (L · μm 1/2 ). Here, “the amount of the lithium salt per square root (root T) of the thickness (T) of the negative electrode active material layer” substantially means the porosity present in the negative electrode active material and the lithium salt concentration of the electrolytic solution. And the square root of the thickness of the negative electrode active material layer. As described above, since the electrolyte is present in the void (void) portion in the negative electrode active material layer, the amount of lithium salt present in the void volume portion of the volume of the negative electrode active material layer may be taken into consideration. . In addition, in the negative electrode active material layer at the time of charging / discharging at a high current density, the pseudo thickness of the negative electrode active material layer that can participate in the electrode reaction can be said to be substantially a diffusible distance of lithium ions. . The concentration of the electrolyte in the battery power generation element is macroscopically uniform. However, during the charging / discharging of the battery, lithium ions move between the positive and negative electrodes, and it is considered that a concentration distribution of the electrolytic solution occurs microscopically on the electrode surface and inside the electrode. Since the amount of lithium ions required during steady state and the amount of lithium ions required during discharge at maximum power are different, when considering diffusion of electrolyte, the system is in an unsteady state (ie, the concentration in diffusion varies with time) ) Must be considered. That is, the diffusion state of the electrolyte solution inside the electrode is expressed by Fick's second law diffusion equation. Fick's second law diffusion equation is that the change in concentration with time is proportional to the second derivative of position and concentration. According to this, the thickness of the negative active material layer is the thickness of the square root negative active material layer. It can be inferred that the square root of affects the thickness at which the electrolyte can diffuse. In this embodiment, when the amount of the lithium salt per square root (root T) of the thickness (T) of the negative electrode active material layer is 0.064 to 0.092 mol / (L · μm 1/2 ), It has been found that the direct current resistance of the battery is reduced and the battery can be charged and discharged with high input / output.

ここで、実施形態にかかるリチウムイオン二次電池の構成例を、図面を用いて説明する。図1はリチウムイオン二次電池の断面図の一例を表す。リチウムイオン二次電池10は、主な構成要素として、負極集電体11、負極活物質層13、セパレータ17、正極集電体12、正極活物質層15を含む。図1では、負極集電体11の両面に負極活物質層13が設けられ、正極集電体12の両面に正極活物質層15が設けられているが、各々の集電体の片面上のみに活物質層を形成することもできる。負極集電体11、正極集電体12、負極活物質層13、正極活物質層15、及びセパレータ17が一つの電池の構成単位、すなわち発電要素である(図中、単電池19)。このような単電池19を、セパレータ17を介して複数積層する。各負極集電体11から延びる延出部を負極リード25上に一括して接合し、各正極集電体12から延びる延出部を正極リード27上に一括して接合してある。なお正極リードとしてアルミニウム板、負極リードとして銅板が好ましく用いられ、場合により他の金属(たとえばニッケル、スズ、はんだ)または高分子材料による部分コーティングを有していてもよい。正極リードおよび負極リードはそれぞれ正極および負極に溶接される。このように複数の単電池を積層してできた電池は、溶接された負極リード25および正極リード27を外側に引き出す形で、外装体29により包装される。外装体29の内部には電解液31が注入されている。外装体29は、周縁部が熱融着した形状をしている。   Here, the structural example of the lithium ion secondary battery concerning embodiment is demonstrated using drawing. FIG. 1 shows an example of a cross-sectional view of a lithium ion secondary battery. The lithium ion secondary battery 10 includes a negative electrode current collector 11, a negative electrode active material layer 13, a separator 17, a positive electrode current collector 12, and a positive electrode active material layer 15 as main components. In FIG. 1, the negative electrode active material layer 13 is provided on both surfaces of the negative electrode current collector 11 and the positive electrode active material layer 15 is provided on both surfaces of the positive electrode current collector 12, but only on one side of each current collector. An active material layer can also be formed. The negative electrode current collector 11, the positive electrode current collector 12, the negative electrode active material layer 13, the positive electrode active material layer 15, and the separator 17 are constituent units of one battery, that is, a power generation element (unit cell 19 in the figure). A plurality of such unit cells 19 are stacked via the separator 17. The extending portion extending from each negative electrode current collector 11 is collectively bonded onto the negative electrode lead 25, and the extending portion extending from each positive electrode current collector 12 is collectively bonded to the positive electrode lead 27. An aluminum plate is preferably used as the positive electrode lead, and a copper plate is preferably used as the negative electrode lead, and in some cases, it may have a partial coating with another metal (for example, nickel, tin, solder) or a polymer material. The positive electrode lead and the negative electrode lead are welded to the positive electrode and the negative electrode, respectively. A battery formed by laminating a plurality of single cells in this manner is packaged by an outer package 29 so that the welded negative electrode lead 25 and positive electrode lead 27 are drawn out to the outside. An electrolytic solution 31 is injected into the exterior body 29. The exterior body 29 has a shape in which the peripheral edge portion is heat-sealed.

実施形態にかかるリチウムイオン二次電池の出力と容量との比(W/Wh)は、35〜80であることが好ましい。このような範囲の出力容量比を有するリチウムイオン電池は、特に車両積載用電池、あるいは定置型電池として都合よく用いられる。   The ratio (W / Wh) between the output and capacity of the lithium ion secondary battery according to the embodiment is preferably 35-80. A lithium ion battery having an output capacity ratio in such a range is conveniently used particularly as a vehicle-mounted battery or a stationary battery.

<負極の作製>
負極活物質として、負極活物質として、BET比表面積3m/gの天然黒鉛粉末を用いた。この黒鉛粉末と、導電助剤としてBET比表面積62m/gのカーボンブラック粉末(以下、「CB」と称する。)(TIMCAL製、SC65)と、バインダー樹脂としてフッ化ビニリデン樹脂(以下「PVDF」と称する。)(クレハ製、#7200)を、固形分質量比で黒鉛:導電助剤:バインダー=93:2:5の割合で混合し溶媒であるN−メチルピロリドン(以下、「NMP」と称する。)に添加した。これらの材料を均一に混合、分散させてスラリーを作製した。得られたスラリーを、負極集電体となる厚み10μmの銅箔上に乾燥後重量が片面あたり4.1mg/cmとなるように塗布した。次いで、125℃にて10分間、電極を加熱し、NMPを蒸発させることにより負極活物質層を形成した。さらに、負極活物質層の空孔率が40%となるように電極をプレスして、負極集電体の片面上に負極活物質層を塗布した負極を作製した。
<Production of negative electrode>
As the negative electrode active material, natural graphite powder having a BET specific surface area of 3 m 2 / g was used as the negative electrode active material. This graphite powder, carbon black powder having a BET specific surface area of 62 m 2 / g (hereinafter referred to as “CB”) (made by TIMCAL, SC65) as a conductive auxiliary agent, and vinylidene fluoride resin (hereinafter referred to as “PVDF” as a binder resin). (Made by Kureha, # 7200) in a solid content mass ratio of graphite: conductive aid: binder = 93: 2: 5 and mixed with N-methylpyrrolidone (hereinafter referred to as “NMP”) as a solvent. Added). These materials were uniformly mixed and dispersed to prepare a slurry. The obtained slurry was applied onto a 10 μm thick copper foil serving as a negative electrode current collector so that the weight after drying was 4.1 mg / cm 2 per side. Next, the electrode was heated at 125 ° C. for 10 minutes to evaporate NMP, thereby forming a negative electrode active material layer. Furthermore, the electrode was pressed so that the porosity of the negative electrode active material layer was 40%, and a negative electrode in which the negative electrode active material layer was applied on one side of the negative electrode current collector was produced.

<正極の作製>
平均粒径8μmのリチウム・ニッケル系複合酸化物(ニッケル・コバルト・マンガン酸リチウム(「NCM523」、すなわちニッケル:コバルト:マンガン=5:2:3))と、導電助剤としてBET比表面積62m/gのCB(TIMCAL製、SC65)と、バインダー樹脂としてPVDF(クレハ製、#7200)とを、固形分質量比でNCM523:CB:PVDFが90:5:5の割合となるように混合し、溶媒であるNMPに添加した。さらに、この混合物に有機系水分捕捉剤として無水シュウ酸(分子量90)を、上記混合物からNMPを除いた固形分100質量部に対して0.03質量部添加した上で遊星方式の分散混合を30分間実施することで、これらの材料を均一に分散させてスラリーを作製した。得られたスラリーを、正極集電体となる厚み12μmのアルミニウム箔上に乾燥後重量が片面あたり6mg/cmとなるように塗布した。次いで、125℃にて10分間、電極を加熱し、NMPを蒸発させることにより正極活物質層を形成した。さらに、正極活物質層の空孔率が30%となるように電極をプレスして、正極集電体の片面上に正極活物質層を塗布した正極を作製した。
<Preparation of positive electrode>
Lithium / nickel composite oxide (nickel / cobalt / lithium manganate (“NCM523”, ie, nickel: cobalt: manganese = 5: 2: 3)) having an average particle diameter of 8 μm and a BET specific surface area of 62 m 2 as a conductive aid / G CB (manufactured by TIMCAL, SC65) and PVDF (manufactured by Kureha, # 7200) as a binder resin are mixed so that NCM523: CB: PVDF is in a ratio of 90: 5: 5 in terms of solid content mass ratio. To the NMP solvent. Further, oxalic anhydride (molecular weight 90) as an organic moisture scavenger was added to this mixture in an amount of 0.03 parts by mass with respect to 100 parts by mass of the solid content obtained by removing NMP from the above mixture, followed by planetary dispersion mixing. By carrying out for 30 minutes, these materials were disperse | distributed uniformly and the slurry was produced. The obtained slurry was applied on a 12 μm thick aluminum foil serving as a positive electrode current collector so that the weight after drying was 6 mg / cm 2 per side. Next, the electrode was heated at 125 ° C. for 10 minutes to evaporate NMP, thereby forming a positive electrode active material layer. Furthermore, the electrode was pressed so that the porosity of the positive electrode active material layer was 30%, and a positive electrode in which the positive electrode active material layer was applied on one side of the positive electrode current collector was produced.

<セパレータ>
耐熱微粒子としてアルミナを用いた耐熱微粒子層とポリプロピレンからなる厚さ25μmのセラミックセパレータを使用した。
<Separator>
A 25 μm-thick ceramic separator made of polypropylene and a heat-resistant fine particle layer using alumina as the heat-resistant fine particles was used.

<電解液>
エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)を、25:5:70(体積比)で混合した混合非水溶媒に電解質塩としての六フッ化リン酸リチウム(LiPF)を表1に示した各濃度となるように溶解させ、次いで、添加剤としてMMDSを1重量%となるように溶解させた。これらの非水混合溶媒を電解液として各々用いた。
<Electrolyte>
Lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt in a mixed non-aqueous solvent in which ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC) are mixed at 25: 5: 70 (volume ratio) Was dissolved so as to have each concentration shown in Table 1, and then MMDS as an additive was dissolved so as to be 1% by weight. These non-aqueous mixed solvents were used as electrolyte solutions.

<リチウムイオン二次電池の作製>
上記のように作製した正極板をサイズ200mm×140mmの矩形に切り出し、対向する負極板をサイズ204mm×144mmの矩形に切り出した。ポリプロピレン多孔質セパレータの両面に上記負極板と正極板とを両活物質層がセパレータを隔てて重なるように配置したものを10層重ねて電極積層体を得た。そして、電極積層体の箔部分にアルミニウム製の正極リード端子を超音波溶接した。同様に、負極箔部分にニッケル製の負極リード端子を負極板に超音波溶接した。この電極積層体を2枚のアルミニウムラミネートフィルムで包み、長辺の一方を除いて三辺を熱融着により接着した。表1に示す各電解液を電極積層体とセパレータの空孔に対して145%の液量となるように注液して真空含浸させた後、減圧下にて開口部を熱融着により封止することによって、積層型リチウムイオン電池を作成した。この積層型リチウムイオン電池の初充電を行った後、45℃でエージングを数日間行い、表1に表す実施例1〜7、比較例1、2の積層型リチウムイオン電池を得た。
<Production of lithium ion secondary battery>
The positive electrode plate produced as described above was cut into a rectangle having a size of 200 mm × 140 mm, and the opposing negative electrode plate was cut into a rectangle having a size of 204 mm × 144 mm. Ten layers of the above-described negative electrode plate and positive electrode plate arranged on both surfaces of a polypropylene porous separator so that both active material layers overlap with the separator interposed therebetween were obtained to obtain an electrode laminate. And the aluminum-made positive electrode lead terminal was ultrasonically welded to the foil part of the electrode laminated body. Similarly, a nickel negative electrode lead terminal was ultrasonically welded to the negative electrode plate on the negative electrode foil portion. This electrode laminate was wrapped with two aluminum laminate films, and the three sides were bonded together by heat fusion except for one of the long sides. Each electrolytic solution shown in Table 1 was poured into the electrode laminate and separator so as to have a liquid amount of 145%, impregnated with vacuum, and then the opening was sealed by heat sealing under reduced pressure. By stopping, a laminated lithium ion battery was created. After the initial charge of this multilayer lithium ion battery, aging was performed at 45 ° C. for several days, and multilayer lithium ion batteries of Examples 1 to 7 and Comparative Examples 1 and 2 shown in Table 1 were obtained.

<初回充放電効率および電池容量>
初回充放電は、雰囲気温度25℃で、0.1C電流、上限電圧4.2Vでの定電流定電圧(CC−CV)充電を行った。その後、45℃で数日間エージングを行った。その後、3.0Vまで0.2C電流での定電流放電を行った。初回充放電効率は、再度電池電圧4.2VまでCC−CV充電を行い、電池電圧3.0Vまで0.2Cで放電したときの放電電気量と上記の初回充電容量との比(0.2C放電容量/初回充電容量)から求めた。電池の容量(Ah)は、上記の放電容量(4.2Vから3.0Vまで0.2C放電したときの放電電流値と時間の積)であり、Wh容量は、放電出力と時間の積から求めた。
<First charge / discharge efficiency and battery capacity>
The first charging / discharging performed the constant current constant voltage (CC-CV) charge by the atmospheric temperature of 25 degreeC, 0.1C electric current, and the upper limit voltage 4.2V. Thereafter, aging was performed at 45 ° C. for several days. Thereafter, constant current discharge was performed at a current of 0.2 C up to 3.0 V. The initial charge / discharge efficiency is the ratio between the amount of electricity discharged and the initial charge capacity (0.2 C) when CC-CV charge is performed again to a battery voltage of 4.2 V and the battery voltage is discharged at 3.0 C to 3.0 V. (Discharge capacity / initial charge capacity). The capacity (Ah) of the battery is the discharge capacity (the product of discharge current value and time when 0.2 C is discharged from 4.2 V to 3.0 V), and the Wh capacity is calculated from the product of discharge output and time. Asked.

<残容量(SOC)>
残容量(SOC、State of charge)とは、電池の使用電圧範囲における電池の容量に対する充電量を百分率で表した値のことである。本実施例では、電池の使用電圧範囲を3.0V(SOC0%)から4.2V(SOC100%)をSOCの範囲とした。
<Remaining capacity (SOC)>
The remaining capacity (SOC, State of charge) is a value representing the amount of charge with respect to the capacity of the battery in the operating voltage range of the battery as a percentage. In this example, the operating voltage range of the battery was 3.0 V (SOC 0%) to 4.2 V (SOC 100%) as the SOC range.

<SOCの調整>
上記で求めた電池の容量に対し、所望の充電量(SOC)となるように、電池電圧3Vの状態から0.2C電流でCC充電した。この状態で1時間放置した後の電池電圧を所望のSOCにおける電圧値とした。
<SOC adjustment>
CC charging was performed from the state of the battery voltage of 3 V with a current of 0.2 C so as to obtain a desired charge amount (SOC) with respect to the battery capacity obtained above. The battery voltage after standing for 1 hour in this state was defined as the voltage value at the desired SOC.

<電池の最大出力>
SOC50%の電池を25℃で、10秒間、各種レートで放電を行った。電流値を横軸、10秒後の電池電圧を縦軸としたグラフに各放電実験の結果をプロットした。プロットした各点を結び、内外挿法により、所望の下限電圧値(本実施例では電池電圧3V)にあたる電流値をIMaxとした。このIMaxと、開始SOCでの電圧と最終SOCでの電圧との平均値電圧と、を乗じたものを電池の最大出力Wとした。
<Maximum battery output>
An SOC 50% battery was discharged at 25 ° C. for 10 seconds at various rates. The results of each discharge experiment were plotted on a graph with the current value on the horizontal axis and the battery voltage after 10 seconds on the vertical axis. The plotted points were connected, and the current value corresponding to the desired lower limit voltage value (battery voltage 3 V in the present example) was set to I Max by the extrapolation method. The maximum output W of the battery was obtained by multiplying this I Max by the average voltage of the voltage at the start SOC and the voltage at the final SOC.

<出力容量比(W/Wh)>
出力容量比は、上記で測定した最大出力と容量との比(最大出力/容量)で算出した。
<Output capacity ratio (W / Wh)>
The output capacity ratio was calculated by the ratio between the maximum output and the capacity measured above (maximum output / capacity).

<電池の直流抵抗>
電池抵抗は、電池の残容量(SOC)50%の電池を用意し、25℃下で10Aでの定電流放電を10秒間行い放電終了時の電圧を測定することにより電池の直流抵抗値(DCR)を求めた。同じく、0℃下で10Aでの定電流放電を10秒間行い放電終了時の電圧を測定することにより電池の直流抵抗値(DCR)を求めた。電池の体積は、JIS Z 8807「固体の密度及び比重の測定法−液中ひょう量法による密度及び比重の測定方法」にしたがい測定した。
<DC resistance of battery>
The battery resistance is determined by preparing a battery with a remaining battery capacity (SOC) of 50%, performing a constant current discharge at 10 A at 25 ° C. for 10 seconds, and measuring the voltage at the end of the discharge to determine the direct current resistance value (DCR of the battery). ) Similarly, the DC resistance value (DCR) of the battery was determined by performing a constant current discharge at 10 A at 0 ° C. for 10 seconds and measuring the voltage at the end of the discharge. The volume of the battery was measured in accordance with JIS Z 8807 “Method for measuring density and specific gravity of solids—Method for measuring density and specific gravity by submerged weighing method”.

上記の実施例1〜7および比較例1、2の積層型リチウムイオン二次電池について、上記の評価を行った結果を表1に示す。なお直流抵抗値は、比較例1にて測定された直流抵抗値に対する相対値である。   Table 1 shows the results of the above evaluations on the stacked lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 and 2. The DC resistance value is a relative value with respect to the DC resistance value measured in Comparative Example 1.

Figure 0006618386
Figure 0006618386

負極活物質層中のリチウム塩の濃度が本発明の規定する範囲内にある電池は、この範囲を満たさない参考例の電池よりも直流抵抗値が低減している。特に低温下(0℃下)での電池抵抗値の低減は、車両用電池としての使用においては大きなメリットとなる。電池の抵抗値が小さくなることで、高入出力による電池の充放電が可能となる。   The battery in which the concentration of the lithium salt in the negative electrode active material layer is within the range defined by the present invention has a lower DC resistance value than the battery of the reference example that does not satisfy this range. In particular, reduction of the battery resistance value at a low temperature (0 ° C.) is a great merit when used as a vehicle battery. By reducing the resistance value of the battery, it is possible to charge and discharge the battery with high input / output.

以上、本発明の実施例について説明したが、上記実施例は本発明の実施形態の一例を示したに過ぎず、本発明の技術的範囲を特定の実施形態あるいは具体的構成に限定する趣旨ではない。   As mentioned above, although the Example of this invention was described, the said Example was only an example of Embodiment of this invention, and in the meaning which limits the technical scope of this invention to specific embodiment or a specific structure. Absent.

10 リチウムイオン二次電池
11 負極集電体
12 正極集電体
13 負極活物質層
15 正極活物質層
17 セパレータ
25 負極リード
27 正極リード
29 外装体
31 電解液
DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery 11 Negative electrode collector 12 Positive electrode collector 13 Negative electrode active material layer 15 Positive electrode active material layer 17 Separator 25 Negative electrode lead 27 Positive electrode lead 29 Exterior body 31 Electrolyte

Claims (4)

正極活物質層が正極集電体に配置された正極と、
負極活物質層が負極集電体に配置された負極と、
セパレータと、
電解液と、
を含む発電要素を、外装体内部に含むリチウムイオン二次電池であって、
該正極活物質が、一般式Li Ni Co Mn (1−y−z) で表される層状結晶構造を有するリチウムニッケルコバルトマンガン複合酸化物のみを含み、
該負極活物質が、黒鉛であり、
該負極活物質層内に存在するリチウム塩の量が、0.36〜0.52モル/Lの範囲であり、
該電解液が、プロピレンカーボネートを含み、
該リチウムイオン二次電池の出力と容量との比(W/Wh)の値が35〜80である、
前記リチウムイオン二次電池。
A positive electrode having a positive electrode active material layer disposed on a positive electrode current collector;
A negative electrode having a negative electrode active material layer disposed on a negative electrode current collector;
A separator;
An electrolyte,
A lithium ion secondary battery including a power generation element including
The positive electrode active material contains only lithium nickel cobalt manganese composite oxide having a layered crystal structure represented by the general formula Li x Ni y Co z Mn (1-yz) O 2
The negative electrode active material is graphite;
The amount of lithium salt present in the negative electrode active material layer is in the range of 0.36 to 0.52 mol / L,
The electrolyte contains propylene carbonate;
The value (W / Wh) of the output and capacity of the lithium ion secondary battery is 35-80.
The lithium ion secondary battery.
該電解液が、エチルメチルカーボネート、ジエチルカーボネートを含む、請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the electrolytic solution contains ethyl methyl carbonate and diethyl carbonate. 該電解液の重量に対する該プロピレンカーボネートの割合が5〜10%である、請求項1または2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1 or 2, wherein a ratio of the propylene carbonate with respect to a weight of the electrolytic solution is 5 to 10%. 該負極活物質層の厚さ(T)の平方根(ルートT)あたりのリチウム塩の量が、0.064〜0.092モル/L・μm 1/2 である、請求項1〜3のいずれかに記載のリチウムイオン二次電池。 The amount of the lithium salt per square root (root T) of the thickness (T) of the negative electrode active material layer is 0.064 to 0.092 mol / L · μm 1/2. A lithium ion secondary battery according to claim 1.
JP2016032854A 2016-02-24 2016-02-24 Lithium ion secondary battery Active JP6618386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032854A JP6618386B2 (en) 2016-02-24 2016-02-24 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032854A JP6618386B2 (en) 2016-02-24 2016-02-24 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017152176A JP2017152176A (en) 2017-08-31
JP6618386B2 true JP6618386B2 (en) 2019-12-11

Family

ID=59739036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032854A Active JP6618386B2 (en) 2016-02-24 2016-02-24 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6618386B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632249B (en) * 2023-07-26 2023-09-29 中创新航科技集团股份有限公司 Lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097415B2 (en) * 2007-03-06 2012-12-12 日立粉末冶金株式会社 Lithium secondary battery
JP5319947B2 (en) * 2008-03-25 2013-10-16 株式会社東芝 Non-aqueous electrolyte battery
JPWO2013128679A1 (en) * 2012-02-29 2015-07-30 新神戸電機株式会社 Lithium ion battery

Also Published As

Publication number Publication date
JP2017152176A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6403278B2 (en) Lithium ion secondary battery
US10388955B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6403277B2 (en) Method for producing lithium ion secondary battery
JP6403285B2 (en) Lithium ion secondary battery
JP6305961B2 (en) Lithium ion secondary battery
US20170338456A1 (en) Lithium Ion Secondary Battery
JP2018006072A (en) Negative electrode of lithium-ion secondary battery
JP6654667B2 (en) Lithium ion secondary battery
JP6580886B2 (en) Lithium ion secondary battery
JP6441778B2 (en) Lithium ion secondary battery
WO2017169417A1 (en) Lithium-ion secondary battery
JP6738865B2 (en) Lithium ion secondary battery
JP6618387B2 (en) Lithium ion secondary battery
JP2017212117A (en) Positive electrode for lithium ion secondary battery
JP6989322B2 (en) Positive electrode for lithium-ion secondary battery
JP6618386B2 (en) Lithium ion secondary battery
JP6578148B2 (en) Lithium ion secondary battery
CN109428083B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6618385B2 (en) Lithium ion secondary battery
JP6650791B2 (en) Negative electrode for lithium ion secondary battery
JP2019057426A (en) Lithium ion secondary battery
JP2019029158A (en) Negative electrode for lithium ion secondary battery
JP6616278B2 (en) Electrode for lithium ion secondary battery
JP7080043B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191112

R150 Certificate of patent or registration of utility model

Ref document number: 6618386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250