JP6618007B2 - Method for producing fuel oil base material - Google Patents
Method for producing fuel oil base material Download PDFInfo
- Publication number
- JP6618007B2 JP6618007B2 JP2015224645A JP2015224645A JP6618007B2 JP 6618007 B2 JP6618007 B2 JP 6618007B2 JP 2015224645 A JP2015224645 A JP 2015224645A JP 2015224645 A JP2015224645 A JP 2015224645A JP 6618007 B2 JP6618007 B2 JP 6618007B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- fuel oil
- oil base
- catalyst
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、燃料油基材の製造方法に関する。 The present invention relates to a method for producing a fuel oil base material.
地球温暖化や化石資源の枯渇といった問題から、化石燃料に替わる再生可能エネルギーの利用促進が提唱されている。再生可能エネルギーとしては、太陽光、風力、地熱等の自然エネルギーの利用のほか、植物資源を含む生物由来の資源(いわゆる、バイオマス)の利用も検討されており、これらの実用化に向けた技術開発が近年盛んに行なわれている。 Because of problems such as global warming and depletion of fossil resources, the use of renewable energy instead of fossil fuels has been proposed. As renewable energy, in addition to the use of natural energy such as sunlight, wind power, geothermal, etc., the use of biological resources including plant resources (so-called biomass) is also being studied. Development has been actively done in recent years.
バイオマスの利用においては、微細藻類が生産する油脂を燃料として利用することが注目されている。これは、バイオマスを利用する場合、食料との競合が問題視されるが、微細藻類であれば農地を必要としないことから食料との競合が緩和されることや、微細藻類が生産する単位面積当たりの油脂の量が、陸生植物のそれと比べて1桁程度高い等の利点が期待されるからである。このように、微細藻類が生産する油脂からバイオ燃料を製造することは、諸問題の解決のための有力な手段として考えられている。 In the use of biomass, attention has been paid to the use of fats and oils produced by microalgae as fuel. When using biomass, competition with food is regarded as a problem, but if it is microalgae, it does not require farmland, so competition with food is eased, and the unit area produced by microalgae This is because the advantage is expected that the amount of perishable oil is about an order of magnitude higher than that of terrestrial plants. Thus, producing biofuel from fats and oils produced by microalgae is considered as an effective means for solving various problems.
一方、油脂を利用したバイオ燃料としては、油脂をそのまま利用する方法(SVO;Straight Vegetable Oil)やエステル交換反応により軽油の物性に近づける方法(FAME;Fatty Acid Methyl Ester)等が既に存在している。しかしこれらの方法により得られる燃料は、既存の石油系燃料とは異なるため、エンジン内で様々な問題が生じており、また、普及においても新たなインフラを整備する必要がある等の課題がある。このような観点から、バイオマスから製造された燃料も、その性状は既存の石油系燃料と同品質であり、既存の燃料と容易に混合可能な燃料(ドロップイン燃料(Drop−in fuel))であることが望まれている。特に、燃料品質規格が厳しく、他の燃料への代替が難しいジェット燃料では、バイオマスを水素化脱酸素し完全な炭化水素油(石油系燃料と同品質なドロップイン燃料)としたバイオ燃料のASTM認証化が航空機メーカー主導で進められるなど、その要請が特に顕著である。 On the other hand, as biofuels using fats and oils, there are already methods for using fats and oils as they are (SVO; Straight Vegetable Oil) and methods for bringing them closer to the properties of light oil by transesterification (FAME; Fatty Acid Methyl Ester). . However, since the fuel obtained by these methods is different from the existing petroleum fuel, various problems have occurred in the engine, and there is a problem that it is necessary to develop a new infrastructure for the spread. . From this point of view, the fuel produced from biomass is of the same quality as existing petroleum-based fuels and can be easily mixed with existing fuels (Drop-in fuel). It is hoped that there will be. In particular, for jet fuels with strict fuel quality standards that are difficult to replace with other fuels, biomass biofuels are hydrodeoxygenated to complete hydrocarbon oils (drop-in fuels of the same quality as petroleum-based fuels). The request is particularly prominent, with certification being led by aircraft manufacturers.
動植物油脂からジェット燃料や軽油を製造する方法は既に知られている。
例えば、特許文献1及び2には、動植物油脂由来の含酸素炭化水素化合物を含有する原料油を、第一の触媒を用いて水素化処理した後、第二の触媒を用いて水素化異性化する航空燃料油基材の製造方法が開示されている。
Methods for producing jet fuel and diesel oil from animal and vegetable oils and fats are already known.
For example, in Patent Documents 1 and 2, a raw material oil containing an oxygen-containing hydrocarbon compound derived from animal and plant fats and oils is hydrotreated using a first catalyst and then hydroisomerized using a second catalyst. A method of manufacturing an aviation fuel base material is disclosed.
また、非特許文献1乃至3には、スクアランやボトリオコッセンなどの動植物油脂由来の炭化水素化合物を、Ru/CeO2触媒、CoMo触媒、アルミナ−ベータゼオライトにNiMoを担持した触媒等を用いて水素化分解するバイオ燃料の製造方法が開示されている。 In Non-Patent Documents 1 to 3, hydrocarbon compounds derived from animal and vegetable oils and fats such as squalane and botryococcene are hydrogenated using a Ru / CeO 2 catalyst, a CoMo catalyst, a catalyst in which NiMo is supported on alumina-beta zeolite, and the like. A method for producing a biofuel for degradation is disclosed.
しかしながら、特許文献1及び2に記載の航空燃料油基材の製造方法では、第一工程の水素化脱酸素工程において、水や二酸化炭素などの副生物が生成するため、凝縮水中に塩素が溶け込み装置腐食の原因となるという問題がある。 However, in the method for producing an aviation fuel base material described in Patent Documents 1 and 2, by-products such as water and carbon dioxide are generated in the hydrodeoxygenation step of the first step, so chlorine dissolves in the condensed water. There is a problem of causing corrosion of the device.
一方、非特許文献1乃至3では、原料油として、酸素原子を含有しない動植物油脂由来の炭化水素化合物を用いているため、特許文献1及び2のような水素化脱酸素工程を必要とせず、水や二酸化炭素などの副生物が生じない。
しかしながら、いずれも得られるバイオ燃料において、ジェット燃料及び軽油の選択率が低く、更なる改良が望まれている。
On the other hand, in Non-Patent Documents 1 to 3, since a hydrocarbon compound derived from animal and plant oils and fats that do not contain oxygen atoms is used as the raw material oil, the hydrodeoxygenation step as in Patent Documents 1 and 2 is not required, By-products such as water and carbon dioxide are not generated.
However, the biofuels obtained from both have low selectivity for jet fuel and light oil, and further improvements are desired.
本発明は、このような実情に鑑みてなされたものであり、ジェット留分及び軽油留分の得率が高い、燃料油基材の製造方法を提供することを目的とする。 This invention is made | formed in view of such a situation, and it aims at providing the manufacturing method of a fuel oil base material with the high yield of a jet fraction and a light oil fraction.
本発明者らは、上記の課題を解決するべく鋭意検討した結果、特定の触媒前駆体を還元してなる触媒を用いることにより、上記課題を解決することを見出した。
本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a catalyst obtained by reducing a specific catalyst precursor.
The present invention has been completed based on such findings.
すなわち、本発明は、以下の[1]〜[6]を提供する。
[1]酸化チタンとアルミナとを含有する担体に、周期表第6族金属のうち少なくとも1種を担持させた触媒前駆体を還元処理してなる触媒を用いて、動植物由来の炭化水素化合物を含む原料油を水素化分解する、燃料油基材の製造方法。
[2]前記周期表第6族金属が、モリブデンである、上記[1]に記載の燃料油基材の製造方法。
[3]前記担体が、更にニッケル又はコバルトを担持する、上記[1]又は[2]に記載の燃料油基材の製造方法。
[4]前記担体が、更にリンを担持する、上記[1]〜[3]の何れかに記載の燃料油基材の製造方法。
[5]前記動植物由来の炭化水素化合物が、スクアレン、ボトリオコッセン、ファルネセン、及びこれらの水素化物よりなる群から選択される少なくとも1種である、上記[1]〜[4]の何れかに記載の燃料油基材の製造方法。
[6]原料油を水素化分解する前に、該原料油を水素化処理する、上記[1]〜[5]の何れかに記載の燃料油基材の製造方法。
That is, the present invention provides the following [1] to [6].
[1] Using a catalyst obtained by reducing a catalyst precursor in which at least one of Group 6 metals of the periodic table is supported on a carrier containing titanium oxide and alumina, a hydrocarbon compound derived from animals and plants is used. A method for producing a fuel oil base material, comprising hydrocracking a raw material oil.
[2] The method for producing a fuel oil base material according to [1], wherein the Group 6 metal of the periodic table is molybdenum.
[3] The method for producing a fuel oil base material according to the above [1] or [2], wherein the carrier further carries nickel or cobalt.
[4] The method for producing a fuel oil base material according to any one of [1] to [3], wherein the carrier further carries phosphorus.
[5] The animal or plant-derived hydrocarbon compound according to any one of [1] to [4], wherein the hydrocarbon compound is at least one selected from the group consisting of squalene, botryococcene, farnesene, and hydrides thereof. Manufacturing method of fuel oil base material.
[6] The method for producing a fuel oil base material according to any one of the above [1] to [5], wherein the raw material oil is hydrotreated before hydrocracking the raw material oil.
本発明によれば、ジェット留分及び軽油留分の得率が高い、燃料油基材の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a fuel oil base material with the high yield of a jet fraction and a light oil fraction can be provided.
本実施形態の燃料油基材の製造方法は、酸化チタンとアルミナとを含有する担体に、周期表第6族金属のうち少なくとも1種を担持させた触媒前駆体を還元処理してなる触媒を用いて、動植物由来の炭化水素化合物を含む原料油を水素化分解することを特徴とする。 The method for producing a fuel oil base material according to this embodiment includes a catalyst obtained by reducing a catalyst precursor in which at least one of Group 6 metals of the periodic table is supported on a carrier containing titanium oxide and alumina. It is characterized by hydrocracking raw material oil containing hydrocarbon compounds derived from animals and plants.
本実施形態で用いる原料油は、動植物由来の炭化水素化合物を含む。動植物由来の炭化水素化合物は、直鎖状であっても分岐鎖を有するものであってもよいが、低温流動性の観点から、分岐鎖を有するものが好ましい。また、炭素数は好ましくは10〜35、より好ましくは15〜35であり、中でも、スクアレン、ボトリオコッセン、ファルネセン、及びこれらの水素化物よりなる群から選択される少なくとも1種であることが好ましい。
なお、上記化合物は1種を単独で用いても2種以上を組み合わせて用いてもよい。
The raw material oil used in the present embodiment includes a hydrocarbon compound derived from animals and plants. The animal and plant derived hydrocarbon compounds may be linear or branched, but those having branched chains are preferred from the viewpoint of low-temperature fluidity. Moreover, carbon number becomes like this. Preferably it is 10-35, More preferably, it is 15-35, and it is preferable that it is at least 1 sort (s) selected from the group which consists of squalene, botryococcene, farnesene, and these hydrides among them.
In addition, the said compound may be used individually by 1 type, or may be used in combination of 2 or more type.
本実施形態で用いる触媒は、酸化チタンとアルミナとを含有する担体に、周期表第6族金属のうち少なくとも1種を担持させた触媒前駆体を還元処理してなる。
アルミナとしては、γ−アルミナが好ましい。アルミナの平均細孔は、50Å以上150Å以下の範囲のものが好ましく、60Å以上140Å以下の範囲のものがより好ましい。形状については、粉体でもよく、円柱、三つ葉、四つ葉などの成形体でもよい。工業的に使用する場合には、大きな反応器中で使用するため、圧損がつかないように成形体を用いることが好ましい。
The catalyst used in this embodiment is obtained by reducing a catalyst precursor in which at least one of Group 6 metals of the periodic table is supported on a support containing titanium oxide and alumina.
As alumina, γ-alumina is preferable. The average pores of alumina are preferably in the range of 50 to 150 mm, more preferably in the range of 60 to 140 mm. The shape may be a powder or a molded body such as a cylinder, a three-leaf, or a four-leaf. When used industrially, since it is used in a large reactor, it is preferable to use a molded body so as not to cause pressure loss.
酸化チタンは、アナターゼ型構造、ルチル型構造、非晶質構造のいずれでもよいが、表面積を大きくする観点から、アナターゼ型構造、非晶質構造が好ましい。 Titanium oxide may have an anatase type structure, a rutile type structure, or an amorphous structure, but from the viewpoint of increasing the surface area, an anatase type structure or an amorphous structure is preferable.
前記担体を構成するアルミナ及び酸化チタンの質量比(アルミナ/酸化チタン)は、活性を高める観点から、好ましくは99/1〜80/20、より好ましくは98/2〜85/15、更に好ましくは97/3〜90/10である。
また、触媒前駆体中に含まれる酸化チタンの含有量は、本発明の効果を発揮する観点から、触媒前駆体全量に対して、好ましくは1〜12質量%、より好ましくは1〜9質量%、更に好ましくは2〜6質量%である。
The mass ratio of alumina and titanium oxide constituting the carrier (alumina / titanium oxide) is preferably 99/1 to 80/20, more preferably 98/2 to 85/15, and still more preferably from the viewpoint of increasing activity. 97/3 to 90/10.
The content of titanium oxide contained in the catalyst precursor is preferably 1 to 12% by mass, more preferably 1 to 9% by mass, based on the total amount of the catalyst precursor, from the viewpoint of exhibiting the effects of the present invention. More preferably, it is 2 to 6% by mass.
前記担体の製造方法としては、例えば、酸化チタンとアルミナ粉末とをスラリー化して混合する方法、それぞれの水酸化物を混合する方法、アルミナにチタンの水溶液を含浸する方法などが挙げられる。また、前記の混合または含浸後に、300〜600℃で焼成することが好ましい。 Examples of the method for producing the carrier include a method of slurrying and mixing titanium oxide and alumina powder, a method of mixing respective hydroxides, and a method of impregnating alumina with an aqueous solution of titanium. Moreover, it is preferable to bake at 300-600 degreeC after the said mixing or impregnation.
周期表第6族金属としては、モリブデン、タングステンが好ましく、モリブデンがより好ましい。
前記担体に担持されるモリブデン化合物としては、三酸化モリブデン、モリブデン酸アンモニウム等が好ましく、タングステン化合物としては、三酸化タングステン、タングステン酸アンモニウム等が好ましい。
前記担体に前記化合物を担持する方法としては、特に限定されず、通常、含浸法が用いられる。
As the Group 6 metal of the periodic table, molybdenum and tungsten are preferable, and molybdenum is more preferable.
The molybdenum compound supported on the carrier is preferably molybdenum trioxide, ammonium molybdate, or the like, and the tungsten compound is preferably tungsten trioxide, ammonium tungstate, or the like.
The method for supporting the compound on the carrier is not particularly limited, and an impregnation method is usually used.
前記担体は、更にニッケル又はコバルトを担持することが好ましく、中でもニッケルが好ましい。担持する方法としては、通常、含浸法が用いられる。
前記担体に担持されるニッケル化合物としては、炭酸ニッケル、塩基性炭酸ニッケル、硝酸ニッケル等が好ましく、コバルト化合物としては、炭酸コバルト、塩基性炭酸コバルト、硝酸コバルト等が好ましい。
The carrier preferably further supports nickel or cobalt, and nickel is particularly preferable. As a method for supporting, an impregnation method is usually used.
The nickel compound supported on the carrier is preferably nickel carbonate, basic nickel carbonate, nickel nitrate or the like, and the cobalt compound is preferably cobalt carbonate, basic cobalt carbonate or cobalt nitrate.
前記担体に担持される金属としては、モリブデンとニッケル、モリブデンとコバルトの組み合わせが好ましく、モリブデンとニッケルの組み合わせがより好ましい。 The metal supported on the carrier is preferably a combination of molybdenum and nickel or molybdenum and cobalt, and more preferably a combination of molybdenum and nickel.
前記担体は、更にリンを担持することが好ましい。担持する方法としては、通常、含浸法が用いられる。
前記担体に担持されるリン化合物としては、五酸化リン、正リン酸等の各種リン酸が好ましい。
The carrier preferably further supports phosphorus. As a method for supporting, an impregnation method is usually used.
As the phosphorus compound supported on the carrier, various phosphoric acids such as phosphorus pentoxide and orthophosphoric acid are preferable.
触媒前駆体全量に対する担持量は、酸化物基準で、モリブデン及びタングステンの少なくともいずれか一方が、好ましくは10〜40質量%、より好ましくは15〜35質量%であり、ニッケル及びコバルトの少なくともいずれか一方が、好ましくは1〜10質量%、より好ましくは3〜8質量%であり、リンが好ましくは1〜10質量%、より好ましくは2〜6質量%である。
なお、上記担持量は触媒前駆体を構成する元素が全て室温かつ空気中で安定な酸化物であるという前提で求めている。例えば、モリブデン(Mo)は三酸化モリブデン(MoO3)、ニッケル(Ni)は酸化ニッケル(NiO)、コバルト(Co)は酸化第一コバルト(CoO)、リン(P)は五酸化二リン(P2O5)、アルミニウム(Al)は酸化アルミニウム(Al2O3)、チタン(Ti)は酸化チタン(IV)(TiO2)と考える。その上で全体の質量を100質量%としてそれぞれの成分の質量を担持量としている。
The supported amount with respect to the total amount of the catalyst precursor is, based on the oxide, at least one of molybdenum and tungsten is preferably 10 to 40% by mass, more preferably 15 to 35% by mass, and at least one of nickel and cobalt. One is preferably 1 to 10% by mass, more preferably 3 to 8% by mass, and phosphorus is preferably 1 to 10% by mass, more preferably 2 to 6% by mass.
The supported amount is determined on the assumption that all the elements constituting the catalyst precursor are oxides that are stable at room temperature and in air. For example, molybdenum (Mo) is molybdenum trioxide (MoO 3 ), nickel (Ni) is nickel oxide (NiO), cobalt (Co) is cobaltous oxide (CoO), and phosphorus (P) is diphosphorus pentoxide (P 2 O 5 ), aluminum (Al) is considered aluminum oxide (Al 2 O 3 ), and titanium (Ti) is considered titanium oxide (IV) (TiO 2 ). In addition, the total mass is 100 mass%, and the mass of each component is the loading amount.
本実施形態で用いる触媒は、前記担体に前記化合物を担持させた触媒前駆体を還元処理することにより得られる。
還元処理は、水素化分解反応器の中で反応前に実施することができる。また還元用の装置を用いて還元し、その後水素化分解反応器に触媒を移すことも可能である。後者の場合、空気に触れない様に、水素あるいは窒素等の雰囲気下で触媒を移動させるか、あるいは有機溶媒、液体燃料、反応原料で触媒を濡らした状態で抜出しと反応器への充填を実施する方法がある。空気に触れる場合は、出来る限りそれを短時間に抑え、直ちに反応器中で反応原料等を用い、液封することも一つの方法である。また、水素還元後、徐々に空気に触れさせて触媒の金属表面を不動態化した後に反応器に移動させる方法も可能である。
還元処理は、得られる触媒の使用直前に行うことが好ましい。反応器内で還元する場合は通常は必然的に水素化分解反応直前の還元となるが、還元用の装置で還元後に触媒を抜き出して移動し、水素化分解反応器に充填する場合は反応直前とはならない場合も生じる。この場合は、前記の空気に触れない状況や不動態化が保たれていれば特に問題はない。
また、還元処理は、水素雰囲気下で、温度300〜500℃、反応時間1〜36時間の条件で行うことが好ましい。この水素は窒素などの不活性なガスで希釈されたものでも問題ない。
The catalyst used in this embodiment can be obtained by reducing the catalyst precursor in which the compound is supported on the carrier.
The reduction treatment can be carried out in the hydrocracking reactor before the reaction. It is also possible to reduce using a reduction device and then transfer the catalyst to the hydrocracking reactor. In the latter case, move the catalyst in an atmosphere such as hydrogen or nitrogen so that it is not exposed to air, or extract and fill the reactor with the catalyst wet with an organic solvent, liquid fuel, or reaction raw material. There is a way to do it. In the case of touching the air, it is also one method to keep it as short as possible and immediately use a reaction raw material or the like in the reactor and liquid-seal it. In addition, after hydrogen reduction, a method in which the metal surface of the catalyst is passivated by gradually contacting with air and then transferred to the reactor is also possible.
The reduction treatment is preferably performed immediately before using the resulting catalyst. In the case of reduction in the reactor, usually the reduction immediately before the hydrocracking reaction is inevitably performed. However, when the catalyst is extracted and moved after the reduction by the reducing device, and the catalyst is charged into the hydrocracking reactor, it is immediately before the reaction. In some cases, it may not be possible. In this case, there is no particular problem as long as the air is not touched or the passivation is maintained.
Further, the reduction treatment is preferably performed under conditions of a temperature of 300 to 500 ° C. and a reaction time of 1 to 36 hours in a hydrogen atmosphere. There is no problem even if this hydrogen is diluted with an inert gas such as nitrogen.
前記触媒を用いて、前記原料油を水素化分解することにより、ジェット留分及び軽油留分を高得率で含む燃料油基材を得ることができる。
水素化分解は、水素分圧が3MPa以上15MPa以下、液空間速度(LHSV)が0.2hr−1以上3.0hr−1以下、反応温度が200℃以上450℃以下で実施することが好ましい。
なお、水素分圧は、3MPa以上10MPa以下であることがより好ましく、液空間速度は、0.3hr−1以上2.0hr−1以下であることがより好ましく、反応温度は、370℃以上450℃以下であることがより好ましい。
A fuel oil base material containing a jet fraction and a light oil fraction with high yield can be obtained by hydrocracking the raw material oil using the catalyst.
The hydrogenolysis is preferably carried out at a hydrogen partial pressure of 3 MPa to 15 MPa, a liquid hourly space velocity (LHSV) of 0.2 hr −1 to 3.0 hr −1 , and a reaction temperature of 200 ° C. to 450 ° C.
The hydrogen partial pressure is more preferably 3 MPa to 10 MPa, the liquid space velocity is more preferably 0.3 hr −1 to 2.0 hr −1 , and the reaction temperature is 370 ° C. to 450 ° C. It is more preferable that it is below ℃.
原料油を水素化分解する前に、該原料油を水素化処理することもできる。水素化処理は、上述の水素化分解と同じ条件で行うことができるが、例えば、温度条件を50℃以上150℃以下の低い温度で実施すると、反応速度を下げ、水素化時の発熱を抑制することができ、好ましい。 Prior to hydrocracking the feedstock, the feedstock can be hydrotreated. The hydrogenation treatment can be performed under the same conditions as the above-mentioned hydrocracking. However, for example, if the temperature condition is carried out at a low temperature of 50 ° C. or higher and 150 ° C. or lower, the reaction rate is reduced and the heat generation during hydrogenation is suppressed. Can be preferred.
前記水素化分解後に、必要に応じて蒸留することにより、更に必要とする燃料油基材を分留することができる。 After the hydrocracking, the necessary fuel oil base material can be fractionally distilled by distillation as necessary.
このようにして得られる燃料油基材は、ジェット留分得率、軽油留分得率共に高い方が好ましい。また、それぞれの割合(ジェット留分と軽油留分の比)は製造者の要求によりある程度変えることが可能である。反応条件を過酷(例えば高温・高圧・低SV)にすると軽油留分に対するジェット留分の割合は増える。ただしその場合、ジェット留分得率と軽油留分得率の合計は下がる傾向が出るので、適当な条件を採用することが必要である。原料転化率は高い方がよいが、原料転化率を高くするには、反応条件を過酷にする必要があるので、ナフサ等の価値の低い軽い留分が生成しやすくなる。それを避けるためには、未反応の原料をリサイクルすることで軽い留分の生成を抑えつつ、トータルとしての転化率を向上させることが可能である。 The fuel oil base material thus obtained preferably has a high jet fraction yield and a light oil fraction yield. In addition, each ratio (ratio of jet fraction and light oil fraction) can be changed to some extent according to the requirements of the manufacturer. When the reaction conditions are severe (for example, high temperature, high pressure, and low SV), the ratio of the jet fraction to the light oil fraction increases. However, in that case, the sum of the jet fraction yield and the light oil fraction yield tends to decrease, so it is necessary to adopt appropriate conditions. A higher raw material conversion rate is better, but in order to increase the raw material conversion rate, it is necessary to make the reaction conditions harsh, so that a light fraction with low value such as naphtha is likely to be generated. In order to avoid this, it is possible to improve the total conversion rate while suppressing the production of light fractions by recycling unreacted raw materials.
ここで、ジェット留分得率、軽油留分得率、及び原料転化率は以下のように定義した。
(1)ジェット留分得率(質量%)=[(生成物中の炭素数10〜14の炭化水素化合物全質量)/(原料油の全質量)]×100
(2)軽油留分得率(質量%)=[(生成物中の炭素数15〜22の炭化水素化合物全質量)/(原料油の全質量)]×100
(3)原料転化率(質量%)=[1−(未反応の原料油質量)/(原料油の全質量)]×100
Here, the jet fraction yield, the light oil fraction yield, and the raw material conversion were defined as follows.
(1) Jet fraction yield (% by mass) = [(total mass of hydrocarbon compound having 10 to 14 carbon atoms in product) / (total mass of feedstock)] × 100
(2) Gas oil fraction yield (mass%) = [(total mass of hydrocarbon compound having 15 to 22 carbon atoms in product) / (total mass of feedstock)] × 100
(3) Raw material conversion (mass%) = [1- (unreacted raw oil mass) / (total mass of raw oil)] × 100
本実施形態の製造方法により得られる燃料油基材を、燃料油組成物基準で好ましくは5容量%以上100容量%以下、より好ましくは10容量%以上100容量%以下含むことにより、燃料油組成物を得ることができる。燃料油組成物は、必要に応じて、石油系留分、燃料油組成物に適用可能な添加剤などが含まれていてもよい。また、規制・規格により石油系留分との混合が義務付けられ、その混合割合も決められた場合は、それに従うことで対応することができる。 The fuel oil composition obtained by the production method of the present embodiment is preferably 5% by volume or more and 100% by volume or less, more preferably 10% by volume or more and 100% by volume or less, based on the fuel oil composition, so that the fuel oil composition is contained. You can get things. The fuel oil composition may contain petroleum-based fractions, additives applicable to the fuel oil composition, and the like as necessary. In addition, if regulations and standards require mixing with petroleum-based fractions and the mixing ratio is also determined, it can be handled by following them.
燃料油組成物としては、軽油、ジェット燃料、ガソリン等が好ましく、特に、軽油、ジェット燃料が好ましい。 As a fuel oil composition, light oil, jet fuel, gasoline, etc. are preferable, and especially light oil and jet fuel are preferable.
以下、実施例及び比較例を挙げて本発明を具体的に説明する。なお、本発明は、実施例に記載の形態に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, this invention is not limited to the form as described in an Example.
実施例及び比較例のオートクレーブ反応において、ジェット留分得率、及び軽油留分得率は段落[0031]に記載の通り、下記式により算出した。
(1)ジェット留分得率(質量%)=[(生成物中の炭素数10〜14の炭化水素化合物全質量)/(原料油の全質量)]×100
(2)軽油留分得率(質量%)=[(生成物中の炭素数15〜22の炭化水素化合物全質量)/(原料油の全質量)]×100
In the autoclave reactions of Examples and Comparative Examples, the jet fraction yield and the light oil fraction yield were calculated by the following formulas as described in paragraph [0031].
(1) Jet fraction yield (% by mass) = [(total mass of hydrocarbon compound having 10 to 14 carbon atoms in product) / (total mass of feedstock)] × 100
(2) Gas oil fraction yield (mass%) = [(total mass of hydrocarbon compound having 15 to 22 carbon atoms in product) / (total mass of feedstock)] × 100
(製造例1.触媒前駆体Aの調製)
特開2010−235944号公報を参照して触媒前駆体Aを調製した。まず、国際公開特許WO2002/049963に基づき、チタン含有水溶液を調製した。500℃で4時間焼成することにより求めた酸化チタン(IV)(TiO2)の割合が85質量%である含水酸化チタン粉末12.7gと70gの純水を、内容積1Lのガラス製ビーカーに入れ、攪拌しスラリー化した。次に、35質量%の過酸化水素水78.7gと26質量%のアンモニア水26.5gとを混合した水溶液を該含水酸化チタンスラリーに添加した。その後、25℃を維持したまま3時間攪拌し、黄緑色で透明なチタン含有水溶液を得た。そこへ、クエン酸第1水和物28.4gを添加した。その後、30℃以下の温度で6時間保持した後、80〜95℃で12時間保持することによりpH6.2で透明なチタン含有水溶液120gを得た。得られたチタン含有水溶液を58.5g分取し、純水で希釈し80ミリリットルとし、細孔容量0.8ミリリットル/gで四葉のγ‐アルミナ100gに、常圧下で含浸(ポアフィリング法)した。その後、ロータリーエバポレータを用い減圧下、70℃で1時間乾燥した後に、120℃で3時間乾燥し、最後に500℃で4時間焼成し、TiO2−5質量%担持アルミナ担体を得た。
(Production Example 1. Preparation of catalyst precursor A)
Catalyst precursor A was prepared with reference to JP 2010-235944 A. First, a titanium-containing aqueous solution was prepared based on International Patent Publication WO2002 / 049963. 12.7 g of hydrous titanium oxide powder in which the ratio of titanium oxide (IV) (TiO 2 ) determined by baking at 500 ° C. for 4 hours is 85% by mass and 70 g of pure water are put into a glass beaker having an internal volume of 1 L. The mixture was stirred and slurried. Next, an aqueous solution obtained by mixing 78.7 g of 35% by mass hydrogen peroxide and 26.5 g of 26% by mass ammonia water was added to the hydrous titanium oxide slurry. Then, it stirred for 3 hours, maintaining 25 degreeC, and obtained the yellow-green and transparent titanium containing aqueous solution. There, 28.4 g of citric acid monohydrate was added. Then, after hold | maintaining at the temperature of 30 degrees C or less for 6 hours, 120 g of transparent titanium containing aqueous solution by pH 6.2 was obtained by hold | maintaining at 80-95 degreeC for 12 hours. 58.5 g of the obtained titanium-containing aqueous solution was taken, diluted with pure water to 80 ml, and impregnated with 100 g of four-leaf γ-alumina with a pore volume of 0.8 ml / g under normal pressure (pore filling method) did. Then, after drying for 1 hour at 70 ° C. under reduced pressure using a rotary evaporator, it was dried for 3 hours at 120 ° C. and finally calcined for 4 hours at 500 ° C. to obtain a TiO 2 -5 mass% supported alumina carrier.
次に、500℃で4時間焼成することにより求めた酸化ニッケル(NiO)の割合が58.4質量%である塩基性炭酸ニッケル75.3g(NiOとして44.0g)、三酸化モリブデン220g、正リン酸34.5g(P2O5として29.3g)に、純水を250ミリリットル加え、攪拌しながら80℃で溶解し、室温にて冷却後、純水にて264ミリリットルに定容したニッケル・モリブデン含浸液を調製した。該含浸液を60ミリリットル採取し、トリエチレングリコール6gを添加して、該TiO2−5質量%担持アルミナ担体100gの吸水量に見合うように、純水にて希釈・定容し、常圧にて含浸した。次いで、70℃で1時間ロータリーエバポレータを用いて減圧下で乾燥した後、120℃で16時間熱処理し、触媒前駆体Aを調製した。触媒前駆体Aは仕込み量換算でアルミナが57質量%、TiO2が3質量%、NiOが6質量%、MoO3が30質量%、P2O5が4質量%であった。 Next, 75.3 g of basic nickel carbonate (44.0 g as NiO) in which the proportion of nickel oxide (NiO) determined by baking at 500 ° C. for 4 hours was 58.4% by mass, 220 g of molybdenum trioxide, 250 ml of pure water was added to 34.5 g of phosphoric acid (29.3 g as P 2 O 5 ), dissolved at 80 ° C. with stirring, cooled to room temperature, and then fixed to 264 ml with pure water.・ Molybdenum impregnation solution was prepared. 60 ml of the impregnating solution was sampled, 6 g of triethylene glycol was added, diluted and constant volume with pure water so as to meet the water absorption of 100 g of the TiO 2 -5 mass% supported alumina carrier, and brought to normal pressure. Impregnated. Next, after drying under reduced pressure using a rotary evaporator at 70 ° C. for 1 hour, heat treatment was performed at 120 ° C. for 16 hours to prepare catalyst precursor A. Catalyst precursor A was 57% by mass of alumina, 3% by mass of TiO 2 , 6% by mass of NiO, 30% by mass of MoO 3 and 4% by mass of P 2 O 5 in terms of charge.
(製造例2.触媒前駆体Bの調製)
ニッケル酸化物(NiO)の割合が58.4質量%である塩基性炭酸ニッケル75.3g(NiOとして44.0g)、三酸化モリブデン220g、正リン酸34.5g(P2O5として29.3g)に、純水を250ミリリットル加え、攪拌しながら80℃で溶解し、室温にて冷却後、純水にて264ミリリットルに定容したニッケル・モリブデン含浸液を調製した。該含浸液を60ミリリットル採取し、トリエチレングリコール6gを添加して、アルミナ担体(市販の擬ベーマイトアルミナ粉末(Cataloid AP、日揮触媒化成(株)製を500℃にて5時間焼成して得られたアルミナ)100gの吸水量に見合うように、純水にて希釈・定容し、常圧にて含浸した。次いで、70℃で1時間ロータリーエバポレータを用いて減圧下で乾燥した後、120℃で16時間熱処理し、触媒前駆体Bを調製した。触媒前駆体Bは仕込み量換算でアルミナが60質量%、NiOが6質量%、MoO3が30質量%、P2O5が4質量%であった。
(Production Example 2. Preparation of catalyst precursor B)
75.3 g of basic nickel carbonate (44.0 g as NiO) having a proportion of nickel oxide (NiO) of 58.4% by mass, 220 g of molybdenum trioxide, 34.5 g of normal phosphoric acid (29. as P 2 O 5) . 3 g), 250 ml of pure water was added and dissolved at 80 ° C. with stirring. After cooling at room temperature, a nickel / molybdenum impregnating solution having a constant volume of 264 ml with pure water was prepared. 60 ml of the impregnating solution was collected, 6 g of triethylene glycol was added, and an alumina carrier (commercially pseudoboehmite alumina powder (Cataloid AP, manufactured by JGC Catalysts & Chemicals Co., Ltd.) was calcined at 500 ° C. for 5 hours. (Alumina) Diluted and constant volume with pure water so as to meet the water absorption of 100 g, impregnated at normal pressure, then dried under reduced pressure using a rotary evaporator at 70 ° C. for 1 hour, then 120 ° C. For 16 hours to prepare catalyst precursor B. Catalyst precursor B is 60% by mass of alumina, 6% by mass of NiO, 30% by mass of MoO 3 and 4% by mass of P 2 O 5 in terms of charge. Met.
(製造例3.触媒前駆体Cの製造)
特開2009−242507号公報を参照して触媒前駆体Cを調製した。まず、合成Na−Yゼオライト(SiO2/Al2O3モル比5.0)をアンモニウム交換し、NH4−Yゼオライトを得た。これを580℃でスチーミング処理してスチーミングゼオライトを得た。10kgのスチーミングゼオライトを純水115Lに懸濁させた後、該懸濁液を75℃に昇温し30分間攪拌した。次いで、この懸濁液に硫酸(和光純薬工業(株)製、硫酸>97%)をイオン交換水で希釈して10質量%硫酸溶液63.7kgを35分間で添加し、さらに濃度0.57モル/Lの硫酸第二鉄溶液(関東化学(株)製、純度70%をイオン交換水に溶解した)11.5kgを10分間で添加し、添加後さらに30分間攪拌した後、濾過、洗浄し、固形分濃度30.5質量%の鉄含有結晶性アルミノシリケートスラリーを得た。
(Production Example 3. Production of catalyst precursor C)
Catalyst precursor C was prepared with reference to JP2009-242507A. First, the synthetic Na—Y zeolite (SiO 2 / Al 2 O 3 molar ratio 5.0) was ammonium-exchanged to obtain NH 4 —Y zeolite. This was steamed at 580 ° C. to obtain a steamed zeolite. After 10 kg of steaming zeolite was suspended in 115 L of pure water, the suspension was heated to 75 ° C. and stirred for 30 minutes. Next, sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., sulfuric acid> 97%) was diluted with ion-exchanged water and 63.7 kg of a 10% by mass sulfuric acid solution was added to the suspension over 35 minutes, and the concentration was further reduced to 0.00. 11.5 kg of a 57 mol / L ferric sulfate solution (manufactured by Kanto Chemical Co., Ltd., 70% purity dissolved in ion-exchanged water) was added over 10 minutes, and after addition, stirring was continued for 30 minutes, followed by filtration. Washing was performed to obtain an iron-containing crystalline aluminosilicate slurry having a solid content concentration of 30.5% by mass.
次に、アルミナスラリーの調製を行った。内容積200Lのスチームジャケット付ステンレス容器に、アルミン酸ナトリウム溶液(和光純薬工業(株)製、モル比(Al/NaOH)0.78を水酸化ナトリウムで溶解した水溶液/Al2O3換算濃度5.0質量%)80kgおよび50質量%のグルコン酸溶液(関東化学(株)製、純度50%)240gを入れ、60℃に加熱した。次いで、硫酸アルミニウム溶液(硫酸アルミニウム14―18水和物(和光純薬工業(株)製、純度55wt%)を水に溶解/Al2O3換算濃度2.5質量%)88kgを別容器に準備し、15分間でpH7.2になるように該希釈硫酸アルミニウム溶液を添加し水酸化アルミニウムスラリーを得た。該水酸化アルミニウムスラリーをさらに60℃に保ったまま、60分間熟成した。次いで、本スラリー全量を平板フィルターにより脱水し、60℃の0.3質量%アンモニア水600Lで洗浄し、アルミナケーキとした。 Next, an alumina slurry was prepared. A sodium aluminate solution (Wako Pure Chemical Industries, Ltd., molar ratio (Al / NaOH) 0.78 dissolved in sodium hydroxide) in a stainless steel container with a steam jacket having an internal volume of 200 L / concentration equivalent to Al 2 O 3 (5.0% by mass) 80 kg and 50% by mass of a gluconic acid solution (manufactured by Kanto Chemical Co., Inc., purity 50%) 240 g were added and heated to 60 ° C. Next, 88 kg of aluminum sulfate solution (aluminum sulfate 14-18 hydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 55 wt%) dissolved in water / Al 2 O 3 equivalent concentration 2.5 mass%) in a separate container The diluted aluminum sulfate solution was added so that the pH became 7.2 in 15 minutes to obtain an aluminum hydroxide slurry. The aluminum hydroxide slurry was further aged for 60 minutes while maintaining the temperature at 60 ° C. Next, the entire amount of the slurry was dehydrated with a flat plate filter and washed with 600 L of 0.3 mass% aqueous ammonia at 60 ° C. to obtain an alumina cake.
該アルミナケーキの一部を純水と15質量%のアンモニア水を用い、アルミナ濃度12.0質量%、pH10.5のスラリーを得た。このスラリーを還流器付のステンレス製熟成タンクに入れ攪拌しながら95℃で8時間熟成した。次いで、この熟成スラリーに純水を加え、アルミナ濃度9.0質量%に希釈した後、攪拌機付オートクレーブに移し145℃で5時間熟成した。さらにAl2O3換算濃度で20質量%となるように加熱濃縮すると同時に脱アンモニアし、アルミナスラリーを得た。このようにして調製した鉄含有結晶性アルミノシリケートスラリー(30.5質量%濃度)191gと2625gのアルミナスラリー(20質量%濃度)をニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/16インチサイズ(約1.6mm)の三葉型ペレット状に押し出し成形した。次いで、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄含有結晶性アルミノシリケート/アルミナ(固形分換算質量比)で10/90の担体を得た。 A part of the alumina cake was purified water and 15% by mass of ammonia water to obtain a slurry having an alumina concentration of 12.0% by mass and a pH of 10.5. This slurry was placed in a stainless steel aging tank equipped with a refluxer and aged at 95 ° C. for 8 hours with stirring. Subsequently, pure water was added to the aging slurry, diluted to an alumina concentration of 9.0% by mass, transferred to an autoclave with a stirrer, and aged at 145 ° C. for 5 hours. Further, the mixture was heated and concentrated so as to be 20% by mass in terms of Al 2 O 3, and deammonied at the same time to obtain an alumina slurry. 191 g of the iron-containing crystalline aluminosilicate slurry (30.5 mass% concentration) and 2625 g of alumina slurry (20 mass% concentration) prepared in this way are added to a kneader and concentrated to a concentration that allows extrusion molding while heating and stirring. Then, it was extruded into a trilobal pellet of 1/16 inch size (about 1.6 mm). Subsequently, after drying at 110 degreeC for 16 hours, it baked at 550 degreeC for 3 hours, and obtained the support | carrier of 10/90 by the iron containing crystalline aluminosilicate / alumina (solid content conversion mass ratio).
次いで、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱し、次いでリンゴ酸を加え溶解させた。この溶解液を上記担体に触媒全体に対して仕込みでMoO3として11質量%、NiOとして4質量%になるように含浸し、次いで乾燥させ、550℃で3時間焼成し、触媒前駆体Cを得た。触媒前駆体Cは仕込み量換算でアルミナが76.5質量%、ゼオライトが8.5質量%、NiOが4質量%、MoO3が11質量%であった。 Next, a suspension of molybdenum trioxide and nickel carbonate in pure water was heated to 90 ° C., and then malic acid was added and dissolved. The solution was charged into the above-mentioned carrier with respect to the whole catalyst so that it was impregnated so as to be 11% by mass as MoO 3 and 4% by mass as NiO, then dried and calcined at 550 ° C. for 3 hours to obtain catalyst precursor C. Obtained. Catalyst precursor C was 76.5% by mass of alumina, 8.5% by mass of zeolite, 4% by mass of NiO, and 11% by mass of MoO 3 in terms of charge.
(実施例1)
製造例1で調製した触媒前駆体Aを所定量(0.25g)測り取り、これを流通系反応装置にて水素気流下で還元処理を行い、触媒Aを得た。還元処理中の水素流量を100cc/分とし、水素圧を0.2MPaとした。また、触媒前駆体Aの還元温度は400℃とし、昇温速度を7℃/分、還元時間を2時間とした。
(Example 1)
A predetermined amount (0.25 g) of the catalyst precursor A prepared in Production Example 1 was measured, and this was subjected to a reduction treatment in a hydrogen stream in a flow system reaction apparatus to obtain Catalyst A. The hydrogen flow rate during the reduction treatment was 100 cc / min, and the hydrogen pressure was 0.2 MPa. Further, the reduction temperature of the catalyst precursor A was 400 ° C., the temperature increase rate was 7 ° C./min, and the reduction time was 2 hours.
水素化分解反応にはスイング式オートクレーブ反応装置を用いた。このバッチ式反応装置は装置全体をスイングさせることにより、高い撹拌効率を達成することができる装置である。この装置のガラス内筒管に所定量(1.35g)のスクアラン(和光純薬工業(株)製)を導入し、ここに触媒Aを液封した。触媒Aを導入した内筒管を反応装置に導入し、密閉した。ここに4.5MPaの水素を張り込み、反応装置に固定した。また、H2/oil比を1004NL/Lとした。反応装置は静止状態で反応温度まで昇温した。反応温度は400℃とし、昇温速度は5℃/分とした。なお、この反応温度での全圧は約7MPaであった。所定の温度に達したことを確認してから反応装置のスイングを開始し、反応を開始した。反応時間は1時間とし、反応時間となったときにスイングを停止し、反応を停止した。
反応終了後、反応装置から反応管を取り出して放冷し、その後ガラス内筒管を回収した。ガラス内筒管中に生成物を6mLの二硫化炭素を用いて溶解させ、生成物の回収を行った。回収した生成物はGC−FID装置を用いて分析を行った。なお、生成したガス留分についてはガラス内筒管の抜き出し時に回収し、GC−TCD装置を用いて分析を行った。
なお、反応結果を表1に示した。
A swing type autoclave reactor was used for the hydrocracking reaction. This batch-type reaction apparatus is an apparatus that can achieve high stirring efficiency by swinging the entire apparatus. A predetermined amount (1.35 g) of squalane (manufactured by Wako Pure Chemical Industries, Ltd.) was introduced into the glass inner tube of this apparatus, and catalyst A was liquid-sealed therein. The inner tube into which the catalyst A was introduced was introduced into the reactor and sealed. 4.5 MPa hydrogen was squeezed here and fixed to the reactor. The H 2 / oil ratio was 1004 NL / L. The reaction apparatus was heated to the reaction temperature in a stationary state. The reaction temperature was 400 ° C., and the heating rate was 5 ° C./min. The total pressure at this reaction temperature was about 7 MPa. After confirming that the predetermined temperature was reached, the swing of the reaction apparatus was started to start the reaction. The reaction time was 1 hour, the swing was stopped when the reaction time was reached, and the reaction was stopped.
After completion of the reaction, the reaction tube was taken out from the reaction apparatus and allowed to cool, and then the glass inner tube was collected. The product was dissolved in a glass inner tube using 6 mL of carbon disulfide, and the product was recovered. The recovered product was analyzed using a GC-FID apparatus. In addition, about the produced | generated gas fraction, it collect | recovered at the time of extraction of a glass inner tube, and analyzed using the GC-TCD apparatus.
The reaction results are shown in Table 1.
(実施例2)
原料のスクアランを1.00g、触媒前駆体Aを0.50g、H2/oil比を1353NL/Lに変更した以外は実施例1と同様にして反応を行った。なお、反応結果を表1に示した。
(Example 2)
The reaction was performed in the same manner as in Example 1 except that the raw material squalane was changed to 1.00 g, the catalyst precursor A was changed to 0.50 g, and the H 2 / oil ratio was changed to 1353 NL / L. The reaction results are shown in Table 1.
(実施例3)
反応温度を360℃に変更した以外は実施例1と同様にして反応を行った。また、反応圧力は、約6.7MPaであった。なお、反応結果を表2に示した。
Example 3
The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was changed to 360 ° C. The reaction pressure was about 6.7 MPa. The reaction results are shown in Table 2.
(実施例4)
実施例1で原料をスクアレン(和光純薬工業(株)製)に替え、H2/oil比を1067NL/Lに変更した以外は実施例1と同様にして反応を行った。なお、反応結果を表3に示した。
Example 4
The reaction was conducted in the same manner as in Example 1 except that the raw material was changed to squalene (manufactured by Wako Pure Chemical Industries, Ltd.) in Example 1 and the H 2 / oil ratio was changed to 1067 NL / L. The reaction results are shown in Table 3.
(比較例1)
製造例2で得られた触媒前駆体Bを所定量(0.25g)測り取り、これを流通系反応装置にて水素気流下で還元処理を行い、触媒Bを得た。還元処理中の水素流量を100cc/分とし、水素圧を0.2MPaとした。また、触媒前駆体Bの還元温度は400℃とし、昇温速度を7℃/分、還元時間を2時間とした。
次いで、触媒として上記で得られた触媒Bを用いた以外は実施例1と同様にして反応を行った。なお、反応結果を表1に示した。
(Comparative Example 1)
A predetermined amount (0.25 g) of the catalyst precursor B obtained in Production Example 2 was measured, and this was subjected to reduction treatment in a flow system reactor under a hydrogen stream, whereby Catalyst B was obtained. The hydrogen flow rate during the reduction treatment was 100 cc / min, and the hydrogen pressure was 0.2 MPa. Further, the reduction temperature of the catalyst precursor B was 400 ° C., the temperature increase rate was 7 ° C./min, and the reduction time was 2 hours.
Next, the reaction was performed in the same manner as in Example 1 except that the catalyst B obtained above was used as the catalyst. The reaction results are shown in Table 1.
(比較例2)
触媒前駆体C0.25gとスクアラン(和光純薬工業(株)製)1.35g、およびジメチルジサルファイド(和光純薬工業(株)製)47.2μLをオートクレーブ用ガラス内筒管に導入した(硫化処理)。
前記内筒管を反応装置に導入し、密閉した。ここに4.5MPaの水素を張り込み、反応装置に固定した。また、H2/oil比を1004NL/Lとした。その後反応装置を250℃まで昇温速度5℃/分にて昇温し、250℃にて60分間温度を保持後、昇温速度5℃/分にて反応温度400℃まで昇温した。それ以外は実施例1と同様に反応を行った。なお、反応結果を表1に示した。
(Comparative Example 2)
Catalyst precursor C 0.25 g, squalane (Wako Pure Chemical Industries, Ltd.) 1.35 g, and dimethyl disulfide (Wako Pure Chemical Industries, Ltd.) 47.2 μL were introduced into an autoclave glass inner tube ( Sulfurization treatment).
The inner tube was introduced into the reactor and sealed. 4.5 MPa hydrogen was squeezed here and fixed to the reactor. The H 2 / oil ratio was 1004 NL / L. Thereafter, the temperature of the reaction apparatus was increased to 250 ° C. at a temperature increase rate of 5 ° C./min, maintained at 250 ° C. for 60 minutes, and then heated to a reaction temperature of 400 ° C. at a temperature increase rate of 5 ° C./min. Otherwise, the reaction was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
(比較例3)
触媒前駆体A0.25gとスクアラン(和光純薬工業(株)製)1.35g、およびジメチルジサルファイド(和光純薬工業(株)製)143.6μLをオートクレーブ用ガラス内筒管に導入した(硫化処理)。
前記内筒管を反応装置に導入し、密閉した。ここに4.5MPaの水素を張り込み、反応装置に固定した。また、H2/oil比を1004NL/Lとした。その後反応装置を250℃まで昇温速度5℃/分にて昇温し、250℃にて60分間温度を保持後、昇温速度5℃/分にて反応温度360℃まで昇温した。この時、反応圧力は、約6.7MPaであった。それ以外は実施例1と同様に反応を行った。なお、反応結果を表2に示した。
(Comparative Example 3)
0.25 g of catalyst precursor A, 1.35 g of squalane (manufactured by Wako Pure Chemical Industries, Ltd.), and 143.6 μL of dimethyl disulfide (manufactured by Wako Pure Chemical Industries, Ltd.) were introduced into an autoclave glass inner tube ( Sulfurization treatment).
The inner tube was introduced into the reactor and sealed. 4.5 MPa hydrogen was squeezed here and fixed to the reactor. The H 2 / oil ratio was 1004 NL / L. Thereafter, the temperature of the reaction apparatus was raised to 250 ° C. at a temperature rising rate of 5 ° C./min, maintained at 250 ° C. for 60 minutes, and then heated to a reaction temperature of 360 ° C. at a temperature rising rate of 5 ° C./min. At this time, the reaction pressure was about 6.7 MPa. Otherwise, the reaction was carried out in the same manner as in Example 1. The reaction results are shown in Table 2.
担体がアルミナのみの比較例1に比べ、担体に酸化チタンが存在する実施例1では、ジェット留分得率及び軽油留分得率の合計得率が高い。また、実施例1より触媒量を多くし、原料量を少なくし、且つ原料に対する水素の割合を多くした実施例2では、反応がより進行し、ジェット留分得率及び軽油留分得率の合計得率が61.5質量%と、実施例1よりも高い結果となった。
一方、担体にゼオライトが存在し、かつ還元処理ではなく硫化処理した触媒を用いた比較例2では、過分解が起こりやすいため、ジェット留分得率及び軽油留分得率の合計得率が5.0質量%と非常に低かった。
次に表2を見る。反応温度を360℃で行ったために実施例3も活性は低いが、還元処理を行わず硫化処理を行った触媒を用いた比較例3では、ジェット留分得率及び軽油留分得率の合計得率が1.1質量%と非常に低かった。
また、表3に示す原料としてスクアレンを用いた実施例4では、非常に高いジェット留分得率及び軽油留分得率が得られた。
Compared with Comparative Example 1 in which the carrier is only alumina, in Example 1 in which titanium oxide is present in the carrier, the total yield of the jet fraction and the light oil fraction is high. Further, in Example 2 in which the amount of catalyst was increased, the amount of raw material was decreased, and the ratio of hydrogen to the raw material was increased as compared with Example 1, the reaction proceeded more and the jet fraction yield and the light oil fraction yield were increased. The total yield was 61.5% by mass, which was higher than that of Example 1.
On the other hand, in Comparative Example 2 in which zeolite was present on the support and a catalyst that had been subjected to sulfurization treatment instead of reduction treatment was likely to be excessively decomposed, the total yield of jet fraction and light oil fraction yield was 5 It was very low as 0.0 mass%.
Next, see Table 2. Example 3 is also less active because the reaction temperature was 360 ° C., but in Comparative Example 3 using a catalyst that was not subjected to reduction treatment and was subjected to sulfurization treatment, the total of the jet fraction and light oil fraction yield was obtained. The yield was as low as 1.1% by mass.
Moreover, in Example 4 which used squalene as a raw material shown in Table 3, the very high jet fraction yield and the light oil fraction yield were obtained.
Claims (7)
動植物由来の炭素数23〜35の炭化水素化合物を含む原料油を水素化分解する、燃料油基材の製造方法。 Using a catalyst formed by reducing a catalyst precursor in which at least one of Group 6 metals of the periodic table is supported on a support containing titanium oxide and alumina,
A method for producing a fuel oil base material, comprising hydrocracking a feedstock containing a hydrocarbon compound having 23 to 35 carbon atoms derived from animals and plants.
動植物由来の炭素数30〜35の炭化水素化合物を含む原料油を水素化分解する、燃料油基材の製造方法。A method for producing a fuel oil base, comprising hydrocracking a feedstock containing a hydrocarbon compound having 30 to 35 carbon atoms derived from animals and plants.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224645A JP6618007B2 (en) | 2015-11-17 | 2015-11-17 | Method for producing fuel oil base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224645A JP6618007B2 (en) | 2015-11-17 | 2015-11-17 | Method for producing fuel oil base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017088819A JP2017088819A (en) | 2017-05-25 |
JP6618007B2 true JP6618007B2 (en) | 2019-12-11 |
Family
ID=58770351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015224645A Active JP6618007B2 (en) | 2015-11-17 | 2015-11-17 | Method for producing fuel oil base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6618007B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5229347A (en) * | 1991-05-08 | 1993-07-20 | Intevep, S.A. | Catalyst for mild hydrocracking of cracked feedstocks and method for its preparation |
JP2015093907A (en) * | 2013-11-11 | 2015-05-18 | 国立大学法人東北大学 | Method for producing hydrocarbon, and hydrogenation catalyst of branched hydrocarbon |
EP3081299B1 (en) * | 2013-12-11 | 2023-08-09 | Idemitsu Kosan Co., Ltd | Catalyst for hydrocracking and hydrocarbon production method |
-
2015
- 2015-11-17 JP JP2015224645A patent/JP6618007B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017088819A (en) | 2017-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4878824B2 (en) | Manufacturing method of environmentally low load type fuel and environmentally low load type fuel | |
JP5866740B2 (en) | Method for producing fuel oil | |
KR101336981B1 (en) | The method of aromatic compounds production using tungsten oxide titania catalyst for hydrodeoxygenation of Guaiacol | |
JP6478206B2 (en) | Hydrocracking catalyst and method of producing hydrocarbon | |
KR20080072080A (en) | Hydrorefining process and hydrorefined oil | |
US20220266234A1 (en) | Highly-dispersed hydrogenation catalyst, preparation method thereof, and use thereof in preparation of biofuel from palm oil or other oil | |
CN104722329A (en) | Catalyst for preparing alkane by catalytically hydrogenating biological oil | |
US10793785B2 (en) | Hydrocracking catalyst based on hierarchically porous beta zeolite and method of preparing the same and method of preparing bio-jet fuel from triglyceride-containing biomass using the same | |
JP6181538B2 (en) | FUEL OIL BASE, PROCESS FOR PRODUCING THE SAME, AND FUEL OIL COMPOSITION | |
CN110935473B (en) | Hydrodeoxygenation catalyst and preparation method and application thereof | |
JP5920672B2 (en) | Method for producing fuel oil | |
WO2021027019A1 (en) | Preparation method for silicoaluminophosphate supported hydrogenation catalyst having porous structure and application thereof in preparation of biofuel | |
CN107303489B (en) | Double-bond saturation and hydrodeoxygenation catalyst and preparation method and application thereof | |
JP6618007B2 (en) | Method for producing fuel oil base material | |
CN105749927A (en) | Non-sulfide catalyst and use thereof in hydrogenation upgrading of biological oils/greases | |
CN102423712A (en) | Preparation method of high-activity inferior diesel oil hydrorefining catalyst | |
RU2496580C1 (en) | Method of preparing hydroskimming catalyst | |
RU2602278C1 (en) | Catalyst and process of hydrodeoxygenation of vegetal raw materials and its application | |
CN115770580B (en) | Multifunctional hydrogenation catalyst for preparing aviation kerosene component through one-step hydrogenation of grease and preparation method thereof | |
JP6742020B2 (en) | Process for producing hydrocarbon composition and catalyst | |
RU2652990C1 (en) | Catalyst and method for producing transport fuel components of hydrocarbon composition using such catalyst | |
KR102253138B1 (en) | Catalyst for dehydration of glycerin, preparing method thereof and production method of acrolein using the catalyst | |
Trisunaryanti et al. | Hydrodeoxygenation of Refined Palm Kernel Oil Into Bioavtur Using Spray-Dry Impregnated Activated Carbon Supported-Mo Catalysts | |
FI20226143A1 (en) | Catalyst composition with redox-active support for simultaneous oxygen and nitrogen removal | |
CN115999558A (en) | Alloy oxide composite material, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190514 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191015 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191101 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6618007 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |