JP6614549B2 - Bearing capacity estimation device - Google Patents

Bearing capacity estimation device Download PDF

Info

Publication number
JP6614549B2
JP6614549B2 JP2015207232A JP2015207232A JP6614549B2 JP 6614549 B2 JP6614549 B2 JP 6614549B2 JP 2015207232 A JP2015207232 A JP 2015207232A JP 2015207232 A JP2015207232 A JP 2015207232A JP 6614549 B2 JP6614549 B2 JP 6614549B2
Authority
JP
Japan
Prior art keywords
ground
maximum
strain
stress
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015207232A
Other languages
Japanese (ja)
Other versions
JP2017078659A (en
Inventor
一広 金田
浩之 山崎
悟 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2015207232A priority Critical patent/JP6614549B2/en
Publication of JP2017078659A publication Critical patent/JP2017078659A/en
Application granted granted Critical
Publication of JP6614549B2 publication Critical patent/JP6614549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、支持力推定装置に係り、特に、地震が発生した場合の地盤の支持力を推定する支持力推定装置を関する。   The present invention relates to a support force estimation device, and more particularly to a support force estimation device that estimates a support force of a ground when an earthquake occurs.

地盤上に構造物を建築する際、地震が発生すると地盤の強度が変化するため、地震が発生した場合の地盤の強度を前もって推定することで地震が発生した場合の地盤の支持力を算定することが求められている。従来、地震が発生した場合の地盤の強度を推定する場合には、地盤の地震応答解析等の詳細解析を行っていたが、地盤の詳細解析には手間と時間を要する。なお、構造物は、事務所ビル、学校等の建築構造物、橋や道路の橋脚等の土木構造物を含む概念である。   When building a structure on the ground, since the strength of the ground changes when an earthquake occurs, the strength of the ground in the event of an earthquake is estimated in advance to calculate the bearing capacity of the ground in the event of an earthquake. It is demanded. Conventionally, when estimating the strength of the ground when an earthquake occurs, detailed analysis such as seismic response analysis of the ground has been performed, but detailed analysis of the ground requires time and effort. The structure is a concept including an architectural structure such as an office building or a school, and a civil engineering structure such as a bridge or a road pier.

このような問題に対応する従来技術として、地盤改良に先立ち、推定対象の地盤特性と同等仕様の供試体を作成し、供試体に対して室内実験を行ってせん断波速度と強度との関係データを定式化して回帰曲線を求め、回帰曲線に地盤改良が進行する地盤で求めたせん断波速度の測定結果を適用して原位置での改良後の地盤の強度を推定する推定方法が提案されている(例えば、特許文献1及び2)。   Prior to ground improvement, as a conventional technology to deal with such problems, a specimen having the same specifications as the ground characteristics to be estimated was created, and a laboratory experiment was conducted on the specimen, and data on the relationship between shear wave velocity and strength were obtained. An estimation method has been proposed in which the regression curve is obtained by formulating and the measurement result of the shear wave velocity obtained on the ground where the ground improvement is progressing is applied to the regression curve to estimate the ground strength after the improvement in the original position. (For example, Patent Documents 1 and 2).

特許4496480号公報Japanese Patent No. 4496480 特許4120809号公報Japanese Patent No. 4120809

上記の従来技術は、地盤のせん断波速度を測定して地盤改良による地盤の強度を推定するのみで、地震が発生した場合の地盤の支持力を算定するものではない。   The above prior art only measures the shear wave velocity of the ground and estimates the strength of the ground due to ground improvement, and does not calculate the bearing capacity of the ground when an earthquake occurs.

本発明は、上記事実を考慮し、地震が発生した場合の地盤の支持力を算定することができる支持力推定装置を提供することを目的とする。   In view of the above facts, an object of the present invention is to provide a bearing capacity estimation device capable of calculating the bearing capacity of the ground when an earthquake occurs.

上記目的を達成するために、本発明に係る支持力推定装置は、地盤定数が異なる複数の地盤から採取した供試体を用いて、地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地盤の強度変化率と、の対応関係を前記複数の地盤毎に導出する第1導出手段と、推定対象地盤の地盤定数を用いて、想定される地震波形を入力して地震応答解析により前記推定対象地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかを導出する第2導出手段と、前記第1導出手段により導出された前記対応関係と、前記応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、を用いて、前記推定対象地盤の前記地震波形を有する地震が発生した場合の強度を推定する推定手段と、前記推定手段により推定された前記推定対象地盤の前記地震が発生した場合の強度から、前記推定対象地盤の前記地震が発生した場合の支持力を算定する算定手段と、を備えている。   In order to achieve the above object, the bearing capacity estimation device according to the present invention uses a specimen collected from a plurality of grounds having different ground constants, and uses the ground stress, maximum stress, strain, maximum strain, energy and maximum energy. Using the first deriving means for deriving the correspondence relationship between any one of the above and the strength change rate of the ground for each of the plurality of grounds and the ground constant of the ground to be estimated, and inputting an assumed earthquake waveform to receive an earthquake response Second derivation means for deriving any one of stress, maximum stress, strain, maximum strain, energy and maximum energy of the estimation target ground by analysis, the correspondence relationship derived by the first derivation means, the stress, An estimation means for estimating an intensity when an earthquake having the earthquake waveform of the estimation target ground occurs using any one of maximum stress, strain, maximum strain, energy, and maximum energy. , And a, a calculating means for calculating the bearing capacity of the case from the intensity when the earthquake of the estimated target ground deduced, that the earthquake of the estimated target ground is generated by the estimating means.

この支持力推定装置によれば、第1導出手段により、地盤定数が異なる複数の地盤の供試体を用いて、地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地盤の強度変化率と、の対応関係が前記複数の地盤毎に導出される。また、第2導出手段により、原地盤の地盤定数を用いて、地震波形を入力して地震応答解析により前記推定対象地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかが導出される。   According to this bearing capacity estimation device, the first derivation means uses a plurality of ground specimens having different ground constants, and the ground stress, maximum stress, strain, maximum strain, energy and maximum energy, The corresponding relationship with the intensity change rate is derived for each of the plurality of grounds. Further, the second derivation means inputs the seismic waveform using the ground constant of the original ground, and any one of stress, maximum stress, strain, maximum strain, energy, and maximum energy of the estimation target ground by seismic response analysis is obtained. Derived.

このように、本発明の支持力推定装置によれば、地盤定数が異なる複数の地盤の供試体を用いて導出された地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地盤の強度変化率と、の対応関係と、推定対象地盤に地震が発生した場合の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、を用いて、推定対象地盤に地震が発生した場合の強度を推定し、推定対象地盤に地震が発生した場合の支持力を算定する。この結果、本発明では、地震が発生した場合の地盤の支持力を簡易に算定することができる。   As described above, according to the bearing capacity estimation device of the present invention, any one of ground stress, maximum stress, strain, maximum strain, energy, and maximum energy derived using a plurality of ground specimens having different ground constants is used. , Using the relationship between the ground strength change rate and the stress, maximum stress, strain, maximum strain, energy, and maximum energy when an earthquake occurs in the ground to be estimated. Estimate the strength when an earthquake occurs, and calculate the bearing capacity when an earthquake occurs on the estimated ground. As a result, in the present invention, the bearing capacity of the ground when an earthquake occurs can be easily calculated.

なお、本発明の支持力推定装置は、前記推定手段は、前記対応関係と、前記推定対象地盤上の構造物の重さに応じて調整した前記応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地震応答解析により得られた加速度から換算した慣性力と、を用いて、前記推定対象地盤の前記地震の発生時の強度を推定するようにしても良い。これにより、地盤上に構造物がある場合でも、構造物の周囲の地盤から、地震が発生した場合の構造物直下の地盤の支持力を簡易に算定することができる。   In the bearing capacity estimation device according to the present invention, the estimation unit adjusts the stress, the maximum stress, the strain, the maximum strain, the energy, and the stress adjusted according to the correspondence and the weight of the structure on the estimation target ground. You may make it estimate the intensity | strength at the time of the occurrence of the said earthquake of the said estimation object ground using either the maximum energy and the inertia force converted from the acceleration obtained by the earthquake response analysis. Thereby, even when there is a structure on the ground, the bearing capacity of the ground directly under the structure when an earthquake occurs can be easily calculated from the ground around the structure.

本発明によれば、地震が発生した場合の地盤の支持力を簡易に算定することができる。   According to the present invention, it is possible to easily calculate the bearing capacity of the ground when an earthquake occurs.

実施形態に係る支持力推定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the supporting force estimation apparatus which concerns on embodiment. 実施形態に係る不揮発性メモリの構成を示す模式図である。It is a schematic diagram which shows the structure of the non-volatile memory which concerns on embodiment. 実施形態に係る推定処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the estimation process program which concerns on embodiment. 地盤のせん断剛性Gとせん断歪みγとの関係を示すG−γ曲線と減衰率hとせん断歪みγとの関係を示すh−γ曲線とを示す線図である。It is a diagram which shows the G-gamma curve which shows the relationship between the shear rigidity G of a ground, and the shear strain (gamma), and the h-gamma curve which shows the relationship between the damping factor h and the shear strain (gamma). 実施形態に係る繰り返し歪みの片振幅と地盤強度との関係の一例を示すグラフである。It is a graph which shows an example of the relation between the half amplitude of repetitive distortion and ground strength concerning an embodiment. 実施形態に係る繰り返し歪みの片振幅と地盤強度との関係の別例を示すグラフである。It is a graph which shows another example of the relation between the half amplitude of repetitive distortion and ground strength concerning an embodiment. 実施形態に係る繰り返し歪み及び繰り返し回数と地盤強度との関係の一例を示すチャートである。It is a chart which shows an example of the relationship between repetitive distortion which concerns on embodiment, the frequency | count of repetition, and ground strength. 実施形態に係る原地盤の地盤定数の導出方法を説明するための模式図である。It is a mimetic diagram for explaining the derivation method of the ground constant of the original ground concerning an embodiment. 地震動の地震波形を表す入力加速度波形の時刻歴の一例を示すグラフである。It is a graph which shows an example of the time history of the input acceleration waveform showing the earthquake waveform of an earthquake motion. 実施形態に係る原地盤の支持力の算定方法を説明するための模式図である。It is a schematic diagram for demonstrating the calculation method of the bearing capacity of the raw ground which concerns on embodiment. 実施形態に係る支持力推定装置において、原地盤の直上に構造物が建設されている場合の、原地盤の支持力の算定方法を説明するための模式図である。It is a schematic diagram for demonstrating the calculation method of the supporting force of an original ground in case the structure is constructed just above the original ground in the supporting force estimation apparatus which concerns on embodiment. 本実施形態の実施例で用いた解析メッシュを示す模式図である。It is a schematic diagram which shows the analysis mesh used in the Example of this embodiment. 本実施形態の実施例で用いた地震動の地震波形を表す入力加速度波形の時刻歴を示すグラフである。It is a graph which shows the time history of the input acceleration waveform showing the earthquake waveform of the ground motion used in the Example of this embodiment. 本実施形態の実施例で推定した地盤の深度と地盤の最大せん断歪みとの関係を表すグラフである。It is a graph showing the relationship between the depth of the ground estimated in the Example of this embodiment, and the maximum shear strain of the ground. 本実施形態の実施例で推定した地盤の地震前の地盤強度と地盤の地震後の地盤強度との関係を示す模式図である。It is a schematic diagram which shows the relationship between the ground strength before the earthquake of the ground estimated in the Example of this embodiment, and the ground strength after the earthquake of the ground. 本実施形態の実施例で地盤の支持力を算定する際に用いた解析メッシュを示す模式図である。It is a schematic diagram which shows the analysis mesh used when calculating the supporting force of the ground in the Example of this embodiment. 本実施形態の実施例で地震応答解析を行った際の地盤の地震後の支持力の解析結果を示す図である。It is a figure which shows the analysis result of the bearing capacity after the earthquake of the ground at the time of performing an earthquake response analysis in the Example of this embodiment.

以下、図面を参照して、本発明を実施するための形態について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

本実施形態に係る支持力推定装置10は、地震が発生した場合でも地盤が破壊されずに耐えることができるのか否かを評価するために、構造物が建設されていない地盤、及び構造物が建設された地盤の支持力を前もって算定する。   In order to evaluate whether or not the ground can be endured without being destroyed even when an earthquake occurs, the bearing capacity estimation device 10 according to the present embodiment has a ground on which no structure is constructed, and the structure Calculate the bearing capacity of the constructed ground in advance.

そのため、本実施形態に係る支持力推定装置10は、地盤定数が異なる複数の地盤の供試体を用いて、地震が発生した場合に地盤に作用する力として繰り返し回数、繰り返し歪み、及び繰り返し応力の少なくとも1つを供試体に与えることで地震を模擬的に再現して、地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地盤の強度変化率と、の対応関係を複数の地盤毎に導出する。また、支持力推定装置10は、推定対象地盤の地盤定数を用いて、地震波形を入力して地震応答解析により推定対象地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかを導出する。   Therefore, the bearing capacity estimation apparatus 10 according to the present embodiment uses a plurality of ground specimens having different ground constants, and the number of repetitions, repeated strains, and repeated stresses as forces acting on the ground when an earthquake occurs. By giving at least one specimen to the specimen, the earthquake is simulated and the relationship between the ground stress, maximum stress, strain, maximum strain, energy and maximum energy and the strength change rate of the ground is shown. Derived for each of multiple grounds. Further, the bearing capacity estimation device 10 inputs any seismic waveform using the ground constant of the estimation target ground, and any one of stress, maximum stress, strain, maximum strain, energy, and maximum energy of the estimation target ground by the seismic response analysis. Is derived.

また、支持力推定装置10は、地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地盤の強度変化率と、の対応関係と、地震波形に対する地盤応答解析により導出した、推定対象地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、を用いて、推定対象地盤に地震が発生した場合の強度を推定する。さらに、支持力推定装置10は、推定した推定対象地盤に地震が発生した場合の強度から、推定対象地盤に地震が発生した場合の支持力を算定する。   Further, the bearing capacity estimation device 10 is derived from the correspondence between the ground stress, the maximum stress, the strain, the maximum strain, the energy and the maximum energy and the strength change rate of the ground, and the ground response analysis with respect to the seismic waveform. The strength when an earthquake occurs in the estimation target ground is estimated using any of the stress, maximum stress, strain, maximum strain, energy, and maximum energy of the estimation target ground. Furthermore, the bearing capacity estimation apparatus 10 calculates the bearing capacity when an earthquake occurs on the estimation target ground from the strength when an earthquake occurs on the estimated estimation target ground.

なお、本実施形態では、原地盤を推定対象地盤として説明する。また、本実施形態では、「歪み」は、主歪み、せん断歪み等の総称を言い、「応力」は、平均応力、主応力、せん断応力等の総称を言い、「エネルギー」は、歪みと応力とを掛け合わせて半分に減じたものを言う。   In the present embodiment, the original ground is described as the estimation target ground. In this embodiment, “strain” is a generic term for principal strain, shear strain, etc., “stress” is a generic term for average stress, principal stress, shear stress, etc., and “energy” is strain and stress. Multiply with and reduce to half.

図1に示すように、本実施形態に係る支持力推定装置10は、装置全体を制御するコントローラ12を備えている。また、コントローラ12は、後述する推定処理を含む各種処理を実行するCPU(Central Processing Unit)14、及び 、CPU14の処理に使用されるプログラム及び 各種情報を記憶するROM(Read Only Memory)16を備えている。また、コントローラ12は、CPU14の作業領域として一時的に各種データを記憶するRAM(Random Access Memory)18、及び、CPU14の処理に使用される各種プログラム及び各種情報を記憶する不揮発性メモリ20を備えている。更に、コントローラ12は、支持力推定装置10に接続された外部装置に対するデータの入出力を行うI/Oインタフェース22を備えている。I/Oインタフェース22には、ユーザにより操作される操作部24、各種情報を表示する表示部26、及び、外部装置との通信を行う通信部28が接続されている。   As shown in FIG. 1, the support force estimation apparatus 10 according to this embodiment includes a controller 12 that controls the entire apparatus. The controller 12 also includes a CPU (Central Processing Unit) 14 that executes various processes including an estimation process, which will be described later, and a ROM (Read Only Memory) 16 that stores programs used for the processing of the CPU 14 and various information. ing. The controller 12 also includes a RAM (Random Access Memory) 18 that temporarily stores various data as a work area of the CPU 14, and a non-volatile memory 20 that stores various programs and various information used for processing of the CPU 14. ing. Further, the controller 12 includes an I / O interface 22 for inputting / outputting data to / from an external device connected to the supporting force estimation device 10. Connected to the I / O interface 22 are an operation unit 24 operated by a user, a display unit 26 that displays various types of information, and a communication unit 28 that communicates with an external device.

また、図2に示すように、不揮発性メモリ20には、後述する推定処理を行うための情報として、後述するM個の第1強度変化情報30−1乃至第M強度変化情報30−M、及び、原地盤の地盤定数情報32が記憶されると共に、解析対象とする地震の地震波形を示す地震波形情報34が予め記憶されている。   As shown in FIG. 2, the nonvolatile memory 20 includes M pieces of first intensity change information 30-1 to M-th intensity change information 30-M, which will be described later, as information for performing an estimation process, which will be described later. And the ground constant information 32 of the original ground is stored, and earthquake waveform information 34 indicating the earthquake waveform of the earthquake to be analyzed is stored in advance.

次に、図3を参照して、一例としてユーザによる実行指示が入力された場合に、本実施形態に係る支持力推定装置10のCPU14により実行される推定処理の動作について説明する。なお、推定処理のプログラムは、不揮発性メモリ20に予め記憶されていて、CPU14が推定処理のプログラムを読み出して実行することにより、上記のハードウェア資源とプログラムとが協働し、推定処理による機能が実現される。   Next, with reference to FIG. 3, the operation of the estimation process executed by the CPU 14 of the support force estimation apparatus 10 according to the present embodiment when an execution instruction is input by the user will be described as an example. Note that the estimation processing program is stored in advance in the nonvolatile memory 20, and the above-described hardware resources and the program cooperate with each other when the CPU 14 reads out and executes the estimation processing program. Is realized.

始めに、ステップS101では、地盤定数が異なる複数のサンプル地盤の載荷試験の結果を取得する。   First, in step S101, the result of the loading test of a plurality of sample grounds having different ground constants is acquired.

地盤定数が異なる複数の地盤では、地盤毎に、せん断歪みγとせん断剛性Gとの関係が異なっている。一例として図4に、地盤のせん断剛性Gとせん断歪みγとの関係を示すG−γ曲線、及び、地盤のせん断剛性Gの減衰率hとせん断歪みγとの関係を示すh−γ曲線を、地盤定数が異なる地盤毎に示した。すなわち、図4に示すように、地盤に同じせん断歪みγを与えた場合でも、地盤の地盤定数によって地盤のせん断剛性Gの減衰率hが異なり、当然、地盤の強度も異なってくる。   In a plurality of grounds having different ground constants, the relationship between the shear strain γ and the shear rigidity G is different for each ground. As an example, FIG. 4 shows a G-γ curve showing the relationship between the shear stiffness G of the ground and the shear strain γ, and an h-γ curve showing the relationship between the damping rate h of the ground shear stiffness G and the shear strain γ. It is shown for each ground with different ground constants. That is, as shown in FIG. 4, even when the same shear strain γ is applied to the ground, the attenuation rate h of the ground shear stiffness G varies depending on the ground constant of the ground, and naturally the strength of the ground also varies.

そこで、本実施形態では、地盤定数が異なる複数の地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと地盤強度との対応関係を調査するために、地盤定数が異なる複数の地盤から採取した土の供試体の各々に対して、実験室で載荷試験を行った結果を取得する。   Therefore, in the present embodiment, in order to investigate the correspondence between the stress, the maximum stress, the strain, the maximum strain, the energy and the maximum energy of a plurality of grounds having different ground constants and the ground strength, a plurality of ground constants having different ground constants are used. Obtain the results of a loading test in the laboratory for each of the soil specimens collected from the ground.

本実施形態では、例えば、密度が等しい地盤であっても、粘土が多い地盤と砂土が多い地盤とでは地盤強度が異なることを考慮し、地盤定数として地盤密度の指標、及び地盤強度の指標を用いる。しかし、地盤定数の指標はこれに限らず、地盤密度、地盤強度、飽和度、細粒分含有率、均等係数、曲率係数、土のコンシステンシー等のうちの何れか1つを用いても良く、又は複数を組み合わせて用いても良い。   In the present embodiment, for example, even if the ground has the same density, considering that the ground strength is different between the clay-rich ground and the sand-rich ground, the ground density index and the ground strength index are considered as ground constants. Is used. However, the index of the ground constant is not limited to this, and any one of ground density, ground strength, saturation, fine particle content, uniformity coefficient, curvature coefficient, soil consistency, etc. may be used. Or a combination of a plurality of them may be used.

また、本実施形態では、各々の供試体について、繰り返し応力幅又は繰り返し歪み幅、及び繰り返し回数を変更しつつ繰り返し載荷試験を行った後に、単調載荷試験により土の室内要素試験を行う。繰り返し歪み幅を変更する際には、歪み幅を、例えば、供試体の幅の1[%]、5[%]、10[%]と変更しつつ載荷試験を行う。繰り返し回数を変更する場合は、予め定めた幅の歪みを例えば5回、10[回]、20[回]、100[回]と変更しつつ載荷試験を行う。単調載荷試験では、供試体がせん断破壊するまで等体積あるいは等圧力下で一定の応力又は歪みを加え続けることにより、地盤強度を計測する。   Moreover, in this embodiment, after performing a repeated loading test for each specimen while changing the repeated stress width or the repeated strain width and the number of repetitions, a soil indoor element test is performed by a monotonous loading test. When changing the strain width repeatedly, the loading test is performed while changing the strain width to, for example, 1 [%], 5 [%], and 10 [%] of the width of the specimen. When changing the number of repetitions, the loading test is performed while changing the distortion of a predetermined width to, for example, 5 times, 10 [times], 20 [times], and 100 [times]. In the monotonic loading test, the ground strength is measured by continuously applying a constant stress or strain under an equal volume or an equal pressure until the specimen undergoes shear failure.

なお、繰り返し応力幅を変更する際には、応力幅を、例えば、初期応力の1[%]、5[%]、10[%]と変更しつつ載荷試験を行う。あるいは、応力幅を、例えば、地盤の強度σfに対して例えば0.1σf、0.2σf、0.5σfのように変更しつつ載荷試験を行う。   When the stress width is repeatedly changed, the loading test is performed while changing the stress width to, for example, 1 [%], 5 [%], and 10 [%] of the initial stress. Alternatively, the loading test is performed while changing the stress width to, for example, 0.1σf, 0.2σf, 0.5σf with respect to the strength σf of the ground.

なお、地盤定数が異なる複数の地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと地盤強度との対応関係を調査する方法はこれに限らず、地盤の応力又は最大応力と地盤強度との対応関係、地盤の歪み又は最大歪みと地盤強度との対応関係、及び地盤のエネルギー又は最大エネルギーと地盤強度との対応関係の何れかが得られる方法であれば、他の方法であっても良い。   In addition, the method of investigating the correspondence relationship between the ground strength and any of the stress, maximum stress, strain, maximum strain, energy, and maximum energy of a plurality of grounds having different ground constants is not limited to this, and the stress of the ground or the maximum stress Any other method can be used as long as it can obtain any one of the relationship between the ground strength, the ground strain or the maximum strain and the ground strength, and the ground energy or the maximum energy and the ground strength. There may be.

また、地盤の支持力を求める際の載荷試験の手法としては、例えば、非圧密非排水状態で軸圧縮されるときの地盤強度及び変形特性を求める場合、地盤工学会基準として定められている下記の参考例1に開示されている手法を採用することができる。   In addition, as a loading test method when obtaining the bearing capacity of the ground, for example, when obtaining ground strength and deformation characteristics when axially compressed in a non-consolidated and undrained state, the following are set as the standards of the Geotechnical Society The technique disclosed in Reference Example 1 can be adopted.

[参考例1]
「土の非圧密比排水三軸圧縮試験方法」, JGS0521-2000.
[Reference Example 1]
"Soil non-consolidation drainage triaxial compression test method", JGS0521-2000.

また、例えば、せん断箱内で一次元圧密した土の体積を一定に保った状態で、垂直力を加える方向と直交する一つの面でせん断し、定体積せん断強さを求める場合、地盤工学会基準として定められている下記の参考例2に開示されている手法を採用することができる。   In addition, for example, when the constant volume shear strength is obtained by shearing on one surface perpendicular to the direction in which the normal force is applied with the volume of the one-dimensionally consolidated soil kept constant in the shear box, The technique disclosed in Reference Example 2 below, which is defined as a standard, can be employed.

[参考例2]
「土の圧密定体積一面せん断試験方法」, JGS0560-2000
[Reference Example 2]
"Consolidation constant volume single surface shear test method of soil", JGS0560-2000

また、例えば、等方応力状態で密圧された土に対して、繰り返し三軸試験装置を用いて、非排水状態における繰り返し軸差応力の片振幅又は繰り返し応力振幅比と所定の両振幅軸歪み並びに所定の過剰間隙水圧に達するまでの繰り返し載荷回数との関係を求める場合、地盤工学会基準として定められている下記の参考例3に開示されている手法を採用することができる。   In addition, for example, for soil that is densely pressed in an isotropic stress state, using a repeated triaxial test device, the single amplitude or repeated stress amplitude ratio of the repeated axial differential stress in the undrained state and the predetermined both amplitude axial strain And when calculating | requiring the relationship with the frequency | count of repeated loading until it reaches | attains a predetermined excess pore water pressure, the method currently disclosed by the following reference example 3 established as a geotechnical society standard can be employ | adopted.

[参考例3]
「土の繰り返し非排水三軸試験方法」, JGS0541-2000
[Reference Example 3]
"Repeated soil undrained triaxial test method", JGS0541-2000

次のステップS103では、各々の供試体について、応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、強度変化率と、の対応関係を導出する。なお、ここでいう強度変化率は、付加を与える前の地盤強度を1とした場合の強度変化率である。   In the next step S103, for each specimen, a correspondence relationship between any one of stress, maximum stress, strain, maximum strain, energy and maximum energy and the intensity change rate is derived. In addition, the intensity change rate here is an intensity change rate when the ground strength before adding is set to 1.

本実施形態では、例えば、地盤定数が異なる複数(例えば、M個)の地盤の供試体の各々について、載荷実験により得られた結果から、最大歪みと強度変化率との対応関係を示す関係式を導出する。そして、M個の地盤毎に、最大歪みと強度変化率との対応関係を示す情報を第1強度変化情報30−1乃至第M強度変化情報30−Mとして不揮発性メモリ20に記憶する。   In the present embodiment, for example, for each of a plurality of (for example, M) ground specimens having different ground constants, a relational expression indicating a correspondence relationship between the maximum strain and the strength change rate from the result obtained by the loading experiment. Is derived. Then, for each of the M grounds, information indicating a correspondence relationship between the maximum strain and the intensity change rate is stored in the nonvolatile memory 20 as the first intensity change information 30-1 to the Mth intensity change information 30-M.

関係式を導出する際には、実験の結果から、一例として図5A及び図5Bに示すように、繰り返し歪みの片振幅と地盤強度との対応関係を表す近似式を最小二乗法等により作成する。なお、繰り返し歪みの片振幅と地盤強度との対応関係において、地盤定数によっては、図5Aに示すように、最大歪みの片振幅が大きくなるにつれて地盤強度が低下する場合もあれば、図5Bに示すように、最大歪みの片振幅が大きくなるにつれて地盤強度が上昇する場合もある。   When deriving the relational expression, as shown in FIG. 5A and FIG. 5B as an example, an approximate expression representing the correspondence between the half amplitude of the repeated strain and the ground strength is created from the experimental results by the least square method or the like. . As shown in FIG. 5A, in the correspondence between the single amplitude of repeated strain and the ground strength, as shown in FIG. 5A, the ground strength may decrease as the maximum amplitude of the maximum strain increases. As shown, the ground strength may increase as the half amplitude of the maximum strain increases.

本実施形態では、単調載荷時の強度は、地盤工学会基準で定められているように、荷重と変位量との関係あるいは応力と歪み量との関係で、変位量又は歪み量がピークとなる時の荷重又は応力、あるいは、変位量又は歪み量が15%となる時の荷重又は応力とする。しかし、単調載荷時の強度はこれに限定されず、変位量又は歪み量が例えば20%となる時の荷重又は応力等、適宜変更するができる。   In this embodiment, the strength at the time of monotonic loading has a peak displacement amount or strain amount due to the relationship between the load and the displacement amount or the relationship between the stress and the strain amount, as defined by the Geotechnical Society standards. The load or stress at the time, or the load or stress when the displacement or strain is 15%. However, the strength at the time of monotonous loading is not limited to this, and can be appropriately changed, such as a load or a stress when the amount of displacement or strain becomes 20%, for example.

また、上述した対応関係を導出する際に、繰り返し歪みの片振幅の代わりに、繰り返し応力の応力振幅比を用いても良い。繰り返し応力の応力振幅比を用いる場合には、繰り返し応力の振幅比と地盤強度との対応関係を表す近似式を最小二乗法等により作成する。   Further, when deriving the above-described correspondence relationship, a stress amplitude ratio of repetitive stress may be used instead of the single amplitude of repetitive strain. When the stress amplitude ratio of the repeated stress is used, an approximate expression representing the correspondence relationship between the amplitude ratio of the repeated stress and the ground strength is created by the least square method or the like.

あるいは、上述した対応関係を導出する際に、繰り返し歪みの片振幅の代わりに、繰り返し回数を用いて良い。繰り返し回数を用いる場合には、繰り返し回数と地盤強度との対応関係を表す近似式を最小二乗法等により作成する。   Alternatively, when deriving the above-described correspondence, the number of repetitions may be used instead of the single amplitude of the repeated distortion. When the number of repetitions is used, an approximate expression representing the correspondence between the number of repetitions and the ground strength is created by the least square method or the like.

あるいは、上述した対応関係を導出する際に、繰り返し歪みの片振幅の代わりに、エネルギーのエネルギー振幅比を用いて良い。エネルギー振幅比を用いる場合には、エネルギー振幅比と地盤強度との対応関係を表す近似式を最小二乗法等により作成する。   Alternatively, when deriving the above-described correspondence, the energy amplitude ratio of energy may be used instead of the half amplitude of repeated distortion. In the case of using the energy amplitude ratio, an approximate expression representing the correspondence between the energy amplitude ratio and the ground strength is created by the least square method or the like.

また、最大歪みと強度変化率との対応関係に代わりに応力又は最大応力と強度変化率との対応関係を求める場合には、最大歪みと強度変化率との対応関係を求める場合と同様に、例えば、地盤定数が異なる複数の地盤の供試体の各々について、載荷実験により得られた結果から、応力又は最大応力と強度変化率との対応関係を示す関係式を導出する。   Further, instead of the correspondence between the maximum strain and the strength change rate, when obtaining the correspondence between the stress or the maximum stress and the strength change rate, as in the case of obtaining the correspondence between the maximum strain and the strength change rate, For example, for each of a plurality of ground specimens having different ground constants, a relational expression indicating a correspondence relationship between the stress or the maximum stress and the strength change rate is derived from the result obtained by the loading experiment.

また、最大歪みと強度変化率との対応関係に代わりにエネルギー又は最大エネルギーと強度変化率との対応関係を求める場合には、最大歪みと強度変化率との対応関係を求める場合と同様に、例えば、地盤定数が異なる複数の地盤の供試体の各々について、載荷実験により得られた結果から、エネルギー又は最大エネルギーと強度変化率との対応関係を示す関係式を導出する。   Further, instead of the correspondence between the maximum strain and the intensity change rate, when obtaining the correspondence between the energy or the maximum energy and the intensity change rate, as in the case of obtaining the correspondence between the maximum strain and the intensity change rate, For example, for each of a plurality of ground specimens having different ground constants, a relational expression indicating a correspondence relationship between energy or maximum energy and intensity change rate is derived from the result obtained by the loading experiment.

また、歪み又は最大歪みと強度変化率との対応関係を示す関係式を作成する代わりに、一例として図6に示すように、繰り返し歪み及び繰り返し回数と強度変化率との対応関係を示すチャートを導出しても良い。図6に示す例では、繰り返し歪みを変更した場合と、繰り返し回数を変更した場合について、地盤強度の変化率が示される。例えば、繰り返し回数を5回として、繰り返し歪みを1%とした場合、強度変化率が98%となり、繰り返し回数を5回として、繰り返し歪みを5%とした場合、強度変化率が95%となる。なお、ここでの強度変化率は、繰り返し履歴を受けていない地盤の強度に対するものである。   In addition, instead of creating a relational expression showing the correspondence between the strain or maximum strain and the intensity change rate, as shown in FIG. 6 as an example, a chart showing the correspondence between the repeated strain and the number of repetitions and the intensity change rate is shown. It may be derived. In the example shown in FIG. 6, the change rate of the ground strength is shown for the case where the repeated strain is changed and the case where the number of repetitions is changed. For example, when the number of repetitions is 5 and the repetition strain is 1%, the intensity change rate is 98%, and when the number of repetitions is 5 and the repetition strain is 5%, the intensity change rate is 95%. . In addition, the intensity change rate here is with respect to the intensity | strength of the ground which has not received the repetition history.

また、本実施形態では、応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、強度変化率と、の対応関係を用いるが、これに限らない。例えば、歪みの平均値、歪みの中央値等と強度変化率の対応関係を用いても良い。また、例えば、応力の平均値、応力の中央値等と強度変化率との対応関係を用いても良い。また、例えば、エネルギーの平均値、エネルギーの中央値等と強度変化率との対応関係を用いても良い。   Further, in the present embodiment, a correspondence relationship between any one of stress, maximum stress, strain, maximum strain, energy, and maximum energy and the intensity change rate is used, but the present invention is not limited thereto. For example, a correspondence relationship between an average value of strain, a median value of strain, and the like and an intensity change rate may be used. Further, for example, a correspondence relationship between an average value of stress, a median value of stress, and the intensity change rate may be used. Further, for example, a correspondence relationship between an average value of energy, a median value of energy, and the like and an intensity change rate may be used.

次のステップS105では、原地盤の地震が発生していない場合の地盤定数を取得する。   In the next step S105, the ground constant when the earthquake of the original ground has not occurred is acquired.

本実施形態では、ボーリングによって取得した、地盤の支持力の算定の対象とする原地盤の土を用いて地盤定数を取得する。この際、上述したサンプル地盤の供試体の場合と同様に、地盤定数として、地盤の密度の指標、及び地盤の地盤強度の指標を用いる。   In the present embodiment, the ground constant is acquired using the soil of the original ground, which is the target of calculation of the bearing capacity of the ground, acquired by boring. At this time, as in the case of the sample ground specimen described above, an index of the density of the ground and an index of the ground strength of the ground are used as the ground constant.

また、本実施形態では、一例として図7に示すように、ボーリングにより取得した原地盤の供試体50を、深さ方向(垂直方向)に複数(例えば、N個)の分割領域50−1、50−2、…、50−(N−1)、50−Nに分割して、複数の分割領域50−1、50−2、…、50−(N−1)、50−N毎に、地盤定数を取得する。   Moreover, in this embodiment, as shown in FIG. 7 as an example, a plurality of (for example, N) divided regions 50-1 in the depth direction (vertical direction) of the specimen 50 of the original ground obtained by boring, 50-2,..., 50- (N-1), 50-N, and divided into a plurality of divided regions 50-1, 50-2, ..., 50- (N-1), 50-N, Get the ground constant.

そして、複数の分割領域50−1、50−2、…、50−(N−1)、50−N毎の地盤定数を示す情報を、原地盤の地盤定数情報32として、不揮発性メモリ20に記憶する。   Then, information indicating the ground constant for each of the plurality of divided regions 50-1, 50-2,..., 50- (N-1), 50-N is stored in the nonvolatile memory 20 as ground constant information 32 of the original ground. Remember.

次のステップS107では、解析対象とする地震の地震波形を示す地震波形情報を取得する。本実施形態では、不揮発性メモリ20に記憶されている地震波形情報34を読み出すことにより、地震波形情報を取得する。地震波形は、一例として図8に示すように、時間と加速度とで表される。なお、本実施形態では、発生することが予想される地震の地震波形情報を取得するが、これに限らず、地震発生後に地盤強度の低下を判定するために、既に発生した地震の地震波形情報を取得しても良い。   In the next step S107, earthquake waveform information indicating the earthquake waveform of the earthquake to be analyzed is acquired. In the present embodiment, the earthquake waveform information is acquired by reading the earthquake waveform information 34 stored in the nonvolatile memory 20. As an example, the seismic waveform is represented by time and acceleration as shown in FIG. In this embodiment, earthquake waveform information of an earthquake that is expected to occur is acquired, but not limited to this, in order to determine a decrease in ground strength after an earthquake has occurred, earthquake waveform information of an earthquake that has already occurred You may get

次のステップS109では、取得した地震波形情報によって示される地震波形を入力して1次元柱状モデルの地震応答解析により原地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかを導出する。   In the next step S109, the seismic waveform indicated by the acquired seismic waveform information is input, and any one of the stress, maximum stress, strain, maximum strain, energy and maximum energy of the original ground is analyzed by the seismic response analysis of the one-dimensional columnar model. To derive.

本実施形態では、一例として図9に示すように、例えば、分割領域50−1、50−2、…、50−(N−1)、50−N毎に、地盤定数に基づいて、原地盤の最大歪みを導出する。   In this embodiment, as shown in FIG. 9 as an example, for example, for each of the divided areas 50-1, 50-2,..., 50- (N-1), 50-N, based on the ground constant, The maximum distortion is derived.

なお、地震応答解析の手法は、地震波形を入力して地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかを導出することができる手法であれば如何なる手法であっても良い。地震応答解析の手法としては、例えば、公知の手法である、等価線形化法による地盤振動解析プログラムである「SHAKE」による手法、盛土、不整形地盤等の地盤応答解析、及び地盤と構造物との動的相互作用の解析プログラムである「FLUSH」による手法等を用いることができる。また、ここでも、応力又は最大応力の代わりに、応力の平均値、中央値及び最大値の何れかを用いても良い。また、歪み又は最大歪みの代わりに、歪みの平均値、中央値及び最大値の何れかを用いても良い。また、エネルギー又は最大エネルギーの代わりに、エネルギーの平均値、中央値及び最大値の何れかを用いても良い。   Any seismic response analysis method can be used as long as it can derive any of ground stress, maximum stress, strain, maximum strain, energy and maximum energy by inputting an earthquake waveform. good. As a method of the earthquake response analysis, for example, a known method, a method based on a ground vibration analysis program “SHAKE” using an equivalent linearization method, a ground response analysis such as embankment and irregular ground, and a ground and a structure A method using “FLUSH”, which is a dynamic interaction analysis program, can be used. Again, instead of the stress or the maximum stress, any one of an average value, a median value, and a maximum value of the stress may be used. Further, instead of the distortion or the maximum distortion, any one of an average value, a median value, and a maximum value of the distortion may be used. Further, instead of energy or maximum energy, any one of an average value, median value, and maximum value of energy may be used.

次のステップS111では、ステップS103で導出したサンプル地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、サンプル地盤の強度変化率と、の対応関係と、ステップS109で導出した原地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかとから、入力した地震波形を有する地震が発生した場合の原地盤の地盤強度を推定する。   In the next step S111, the correspondence between the stress of the sample ground, the maximum stress, the strain, the maximum strain, the energy and the maximum energy derived in step S103, and the strength change rate of the sample ground, and the derived in step S109. From the stress of the original ground, the maximum stress, the strain, the maximum strain, the energy, and the maximum energy, the ground strength of the original ground when an earthquake having the input earthquake waveform occurs is estimated.

本実施形態では、一例として図9に示すように、例えば、分割領域50−1、50−2、…、50−(N−1)、50−N毎に、地盤定数に基づいて、最大歪みと強度変化率との対応関係を抽出する。そして、分割領域50−1、50−2、…、50−(N−1)、50−N毎に、ステップS109で導出した原地盤の最大歪みと、ステップS103で導出した最大歪みと強度変化率との対応関係とから、入力した地震波形を有する地震が発生した場合の原地盤の地盤強度を推定する。   In the present embodiment, as shown in FIG. 9 as an example, for example, for each of the divided regions 50-1, 50-2,..., 50- (N−1), 50-N, the maximum distortion is based on the ground constant. And the correspondence between the intensity change rate. Then, for each of the divided regions 50-1, 50-2,..., 50- (N-1), 50-N, the maximum distortion of the original ground derived in step S109 and the maximum distortion and intensity change derived in step S103. The ground strength of the original ground when an earthquake with the input seismic waveform occurs is estimated from the correspondence with the rate.

あるいは、分割領域50−1、50−2、…、50−(N−1)、50−N毎に、ステップS109で導出した原地盤の応力又は最大応力と、ステップS103で導出した応力又は最大応力と強度変化率との対応関係とから、入力した地震波形を有する地震が発生した場合の原地盤の地盤強度を推定する。   Alternatively, for each of the divided regions 50-1, 50-2, ..., 50- (N-1), 50-N, the stress or maximum stress of the original ground derived in step S109 and the stress or maximum derived in step S103. From the correspondence between the stress and the rate of change in strength, the ground strength of the original ground when an earthquake having the input seismic waveform occurs is estimated.

あるいは、分割領域50−1、50−2、…、50−(N−1)、50−N毎に、ステップS109で導出した原地盤のエネルギー又は最大エネルギーと、ステップS103で導出したエネルギー又は最大エネルギーと強度変化率との対応関係とから、入力した地震波形を有する地震が発生した場合の原地盤の地盤強度を推定する。   Alternatively, for each of the divided regions 50-1, 50-2, ..., 50- (N-1), 50-N, the energy or maximum energy of the original ground derived in step S109 and the energy or maximum derived in step S103. The ground strength of the original ground when an earthquake having the input seismic waveform occurs is estimated from the correspondence relationship between the energy and the intensity change rate.

次のステップS113では、ステップS111で推定した、地震が発生した場合の原地盤の地盤強度から、地震が発生した場合の原地盤の支持力を算定して、本推定処理のプログラムの実行を終了する。   In the next step S113, the bearing capacity of the original ground in the event of an earthquake is calculated from the ground strength of the original ground in the event of an earthquake estimated in step S111, and execution of the program of this estimation process is completed. To do.

本実施形態では、一例として図9に示すように、原地盤の分割領域50−1、50−2、…、50−(N−1)、50−Nの各々の地盤強度を用いて、原地盤の支持力を算定する。本実施形態では、円弧すべり解析を行うことにより原地盤の支持力を算定するが、原地盤の支持力の算定方法はこれに限らず、極限つり合い解析、剛塑性解析等を行うことにより、原地盤の支持力を算出しても良い。   In this embodiment, as shown in FIG. 9 as an example, the ground strength of each of the divided areas 50-1, 50-2, ..., 50- (N-1), 50-N of the original ground is used. Calculate the bearing capacity of the ground. In this embodiment, the bearing capacity of the original ground is calculated by performing an arc slip analysis.However, the method of calculating the bearing capacity of the original ground is not limited to this, and by performing an ultimate balance analysis, a rigid plastic analysis, etc. The supporting force of the ground may be calculated.

なお、原地盤の分割領域50−1、50−2、…、50−(N−1)、50−Nの各々の地盤強度を用いる代わりに、原地盤の分割領域50−1、50−2、…、50−(N−1)、50−Nの各々の地盤強度の平均値、中央値、及び最小値の何れかを用いて、簡易に、原地盤の支持力を算定しても良い。   In addition, instead of using the ground strength of each of the divided areas 50-1, 50-2, ..., 50- (N-1), 50-N of the original ground, the divided areas 50-1, 50-2 of the original ground are used. ,..., 50- (N-1), 50-N may be used to easily calculate the bearing capacity of the original ground using one of the average value, median value, and minimum value of the ground strength. .

このように、本実施形態では、原地盤に構造物が建設されていない場合を想定し、原地盤の土の供試体を用いて原地盤の地盤定数を取得する場合について説明した。しかし、一例として図10に示すように、原地盤の直上に構造物60が建設されている場合についても、構造物60の周囲の土の供試体を用いることにより、上述した推定処理を適用することができる。   Thus, in this embodiment, the case where the structure was not built in the original ground was assumed, and the case where the ground constant of the original ground was acquired using the soil ground specimen was explained. However, as shown in FIG. 10 as an example, the estimation process described above is applied by using a soil specimen around the structure 60 even when the structure 60 is constructed immediately above the original ground. be able to.

すなわち、原地盤の直上に構造物60が建設されている場合は、地震が発生していない状態においても、構造物60の重さに応じて原地盤の地盤強度が変化していることが予想される。そのため、構造物が建設されていない地盤で1次元地震応答解析により導出された応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかを原地盤上の構造物60の重さに応じて、重さに対応する分だけ調整し、上述した応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、強度変化率と、の対応関係と、調整した原地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地震応答解析により得られた加速度から換算した慣性力と、を用いて、原地盤の地震の発生時の地盤強度を推定する。あるいは、構造物の重さ分だけ考慮した1次元地震応答解析を実施して、応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、強度変化率と、の対応関係を求め、求めた対応関係と、地震応答解析により得られた加速度から換算した慣性力と、を用いて原地盤の地震の発生時の地盤強度を推定してもよい。   That is, when the structure 60 is constructed immediately above the original ground, it is expected that the ground strength of the original ground changes according to the weight of the structure 60 even in a state where no earthquake occurs. Is done. Therefore, any of stress, maximum stress, strain, maximum strain, energy, and maximum energy derived by one-dimensional seismic response analysis in the ground where no structure is constructed depends on the weight of the structure 60 on the original ground. Then, the amount corresponding to the weight is adjusted, and the corresponding relationship between the stress, maximum stress, strain, maximum strain, energy and maximum energy described above and the strength change rate, and the adjusted stress of the original ground, maximum The ground strength at the time of occurrence of the earthquake in the original ground is estimated using any one of stress, strain, maximum strain, energy and maximum energy and the inertial force converted from the acceleration obtained by the seismic response analysis. Alternatively, a one-dimensional seismic response analysis that considers only the weight of the structure is performed, and a correspondence relationship between any one of stress, maximum stress, strain, maximum strain, energy and maximum energy and the intensity change rate is obtained. The ground strength at the time of occurrence of the earthquake in the original ground may be estimated using the obtained correspondence and the inertia force converted from the acceleration obtained by the earthquake response analysis.

また、原地盤の直上に構造物60が建設されている場合、地震が発生していない状態において、原地盤の深さが浅くなる程、構造物60の重さを受けて地盤強度が大きく変化している。そのため、構造物が建設されていない地盤で1次元地震応答解析により導出された応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかを原地盤上の構造物60の重さに応じて原地盤の深さが浅くなる程、調整量が多くなるように調整し、上述した応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、強度変化率と、の対応関係と、調整した原地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地震応答解析により得られた加速度から換算した慣性力と、を用いて、原地盤の地震の発生時の地盤強度を推定しても良い。   In addition, when the structure 60 is constructed immediately above the original ground, the strength of the ground greatly changes in response to the weight of the structure 60 as the depth of the original ground decreases in a state where no earthquake has occurred. doing. Therefore, any of stress, maximum stress, strain, maximum strain, energy, and maximum energy derived by one-dimensional seismic response analysis in the ground where no structure is constructed depends on the weight of the structure 60 on the original ground. As the depth of the ground becomes shallower, the amount of adjustment is adjusted so that the amount of adjustment increases, and any one of the stress, maximum stress, strain, maximum strain, energy and maximum energy described above and the strength change rate At the time of the occurrence of an earthquake in the original ground, using any of the adjusted original ground stress, maximum stress, strain, maximum strain, energy and maximum energy and the inertial force converted from the acceleration obtained by the seismic response analysis The ground strength may be estimated.

[実施例]
図11に示すように、上述した本実施形態の手法を用いて、解析対象とする対象地盤の1次元地盤モデル(密度1.8t/m、S波速度Vs=100m/s)を深さ方向に10に分割した解析メッシュの下部に、解析対象とする対象地震動を入力することにより、1次元による地震応答解析を行った。なお、対象地震動としては、図12に示す地震動を用いた。
[Example]
As shown in FIG. 11, by using the method of the present embodiment described above, the depth of a one-dimensional ground model (density 1.8 t / m 3 , S wave velocity Vs = 100 m / s) of the target ground to be analyzed. One-dimensional seismic response analysis was performed by inputting the target seismic motion to be analyzed into the lower part of the analysis mesh divided into 10 in the direction. Note that the seismic motion shown in FIG. 12 was used as the target seismic motion.

この地震応答解析の解析結果として、図13に、地盤の深度[m]と、地盤の最大せん断歪み[%]と、の関係を表すグラフを示した。なお、この解析結果において、最大せん断歪みは、解析メッシュの水平方向の長さに対する割合で示している。図13によると、地盤の深度が深くになるに従って、最大せん断歪みが大きくなっていることがわかる。   As an analysis result of this seismic response analysis, FIG. 13 shows a graph representing the relationship between the depth of the ground [m] and the maximum shear strain of the ground [%]. In this analysis result, the maximum shear strain is shown as a ratio to the horizontal length of the analysis mesh. As can be seen from FIG. 13, the maximum shear strain increases as the ground depth increases.

また、地盤の深度[m]と、地盤の最大せん断歪み[%]と、の関係から、下記の(1)式を用いて、対象地盤の地震後の地盤強度を推定した。なお、(1)式におけるSは、地震前の地盤強度であり、Sは、地震後の地盤強度であり、εは、最大せん断歪みである。 Moreover, the ground strength after the earthquake of the target ground was estimated from the relationship between the depth of the ground [m] and the maximum shear strain [%] of the ground using the following equation (1). Note that the S A in equation (1), a ground strength before the earthquake, S B is the ground strength after the earthquake, epsilon is the maximum shear strain.

図14に、地盤の深度[m]と、対象地盤の地震後の地盤強度の推定結果との関係を表すグラフを示した。図14によると、地震前の地盤強度は、深度に依らず一定であるが、地震後の地盤強度は、地盤の深度が深くなるに従って、弱くなっていることがわかる。   In FIG. 14, the graph showing the relationship between the depth [m] of the ground and the estimation result of the ground strength after the earthquake of the target ground is shown. According to FIG. 14, the ground strength before the earthquake is constant regardless of the depth, but it can be seen that the ground strength after the earthquake becomes weaker as the depth of the ground becomes deeper.

このように推定された地盤強度に基づき、図15に示すような解析対象とする対象地盤の解析メッシュを用いて、対象地盤上に構造物の基礎が設けられ、対象地盤に構造物の荷重が載荷されている状態における対象地盤の地震後の支持力を算定するための支持力解析を行った。なお、本実施形態では基礎を直接基礎としているが、基礎は、直接基礎(浅層地盤改良基礎、深層地盤改良基礎)、杭基礎、直接基礎と杭基礎との併用基礎等を含む概念である。   Based on the ground strength estimated in this way, a foundation of the structure is provided on the target ground using an analysis mesh of the target ground as shown in FIG. 15, and the load of the structure is applied to the target ground. The bearing capacity analysis was performed to calculate the bearing capacity of the target ground after the earthquake in the loaded state. In this embodiment, the foundation is directly based, but the foundation is a concept including a direct foundation (shallow ground improvement foundation, deep ground improvement foundation), a pile foundation, a combination foundation of a direct foundation and a pile foundation, and the like. .

図16に、この支持力解析を行った際の対象地盤の地震後の支持力の解析結果を示した。この支持力解析により、対象地盤の地震前の支持力が1573[kPa]であるのに対し、対象地盤の地震後の支持力は1314[kPa]であると算定された。   FIG. 16 shows the analysis results of the bearing capacity of the target ground after the earthquake when this bearing capacity analysis was performed. From this bearing capacity analysis, the bearing capacity of the target ground before the earthquake was 1573 [kPa], whereas the bearing capacity of the target ground after the earthquake was calculated to be 1314 [kPa].

従来の手法では、解析領域全体での地震応答解析を行い、その後に支持力の解析を行う、という作業が発生していたため、解析領域が大きくなればなるほど、または、地震動が長くなればなるほど、地震応答解析に時間を要していた。コンピュータの処理速度が向上することで解析時間を短縮することは可能であるが、現段階では、支持力を算定するまでに1日以上の時間を要することが見込まれる。   In the conventional method, the work of performing the seismic response analysis in the entire analysis area and then analyzing the bearing capacity has occurred, so the larger the analysis area or the longer the earthquake motion, It took time to analyze the seismic response. Although it is possible to shorten the analysis time by improving the processing speed of the computer, at the present stage, it is expected that it takes one day or more to calculate the bearing capacity.

一方、本発明の手法を用いた場合には、地震応答解析の解析領域を小さくでき、解析領域全体に対して行われる解析であるにも関わらず、地盤の強度を推定して支持力の解析ができるため、数時間(例えば、4〜6時間)で地盤の支持力を算定することができる。   On the other hand, when the method of the present invention is used, the analysis area of the seismic response analysis can be made small, and although it is an analysis performed on the entire analysis area, the strength of the ground is estimated to analyze the bearing capacity. Therefore, the bearing capacity of the ground can be calculated in several hours (for example, 4 to 6 hours).

更に、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは勿論である。   Furthermore, it is needless to say that the present invention can be implemented in various modes without departing from the gist of the present invention.

10 支持力推定装置
14 CPU
20 不揮発性メモリ
30−1乃至30−M 強度変化情報
32 原地盤の地盤定数情報
34 地震波形情報
50 原地盤の供試体
50−1乃至50−N 分割領域
60 構造物
10 Supporting force estimation device 14 CPU
20 Nonvolatile memory 30-1 to 30-M Strength change information 32 Ground ground constant information 34 Seismic waveform information 50 Original ground specimen 50-1 to 50-N Divided area 60 Structure

Claims (2)

地盤定数が異なる複数の地盤から採取した供試体を用いて、地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地盤の強度変化率と、の対応関係を前記複数の地盤毎に導出する第1導出手段と、
推定対象地盤の地盤定数を用いて、想定される地震波形を入力して地震応答解析により前記推定対象地盤の応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかを導出する第2導出手段と、
前記第1導出手段により導出された前記対応関係と、前記第2導出手段により導出された前記応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、を用いて、前記推定対象地盤の前記地震波形を有する地震が発生した場合の強度を推定する推定手段と、
前記推定手段により推定された前記推定対象地盤の前記地震が発生した場合の強度から、前記推定対象地盤の前記地震が発生した場合の支持力を算定する算定手段と、
を備えた支持力推定装置。
Using test specimens collected from a plurality of grounds having different ground constants, the correspondence relationship between the stress of the ground, the maximum stress, the strain, the maximum strain, the energy and the maximum energy, and the strength change rate of the ground is the plurality of First deriving means for deriving for each ground;
A second method for deriving any one of stress, maximum stress, strain, maximum strain, energy, and maximum energy of the estimated target ground by inputting an assumed earthquake waveform using the ground constant of the estimated target ground and performing an earthquake response analysis Deriving means;
Using the correspondence relationship derived by the first deriving unit and any one of the stress, maximum stress, strain, maximum strain, energy, and maximum energy derived by the second deriving unit, the estimation target ground Estimating means for estimating the intensity when an earthquake having the earthquake waveform of
From the strength when the earthquake of the estimation target ground estimated by the estimation means, the calculation means for calculating the bearing capacity when the earthquake of the estimation target ground occurs,
A bearing capacity estimation device.
前記推定手段は、前記対応関係と、前記推定対象地盤上の構造物の重さに応じて調整した前記応力、最大応力、歪み、最大歪み、エネルギー及び最大エネルギーの何れかと、地震応答解析により得られた加速度から換算した慣性力と、を用いて、前記推定対象地盤の前記地震の発生時の強度を推定する
請求項1記載の支持力推定装置。
The estimation means is obtained by an earthquake response analysis with any one of the stress, maximum stress, strain, maximum strain, energy, and maximum energy adjusted according to the correspondence and the weight of the structure on the estimation target ground. The bearing capacity estimation device according to claim 1, wherein the strength at the time of occurrence of the earthquake of the estimation target ground is estimated using an inertial force converted from the obtained acceleration.
JP2015207232A 2015-10-21 2015-10-21 Bearing capacity estimation device Active JP6614549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015207232A JP6614549B2 (en) 2015-10-21 2015-10-21 Bearing capacity estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207232A JP6614549B2 (en) 2015-10-21 2015-10-21 Bearing capacity estimation device

Publications (2)

Publication Number Publication Date
JP2017078659A JP2017078659A (en) 2017-04-27
JP6614549B2 true JP6614549B2 (en) 2019-12-04

Family

ID=58666114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207232A Active JP6614549B2 (en) 2015-10-21 2015-10-21 Bearing capacity estimation device

Country Status (1)

Country Link
JP (1) JP6614549B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052224B2 (en) * 1992-10-05 2000-06-12 株式会社地盤保証協会 Measuring method of allowable bearing capacity of ground
JP3640583B2 (en) * 2000-01-27 2005-04-20 株式会社竹中工務店 Earthquake response analysis method
JP2003268756A (en) * 2002-03-18 2003-09-25 Fuji Kiso Consultant Kk Foundation construction method selecting method and foundation construction method selecting program and computer readable recording medium recorded with foundation construction method selecting program
JP2003294850A (en) * 2002-04-04 2003-10-15 Ohbayashi Corp Ground response-analyzing method and system, program for making computer to execute the ground response- analyzing method, and record medium with recorded program
JP3893597B2 (en) * 2003-10-02 2007-03-14 応地研株式会社 Calculation method for stress, fracture, and allowable stress of multi-layer ground by equivalent thickness theory

Also Published As

Publication number Publication date
JP2017078659A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
Li et al. Using centrifuge tests data to identify the dynamic soil properties: Application to Fontainebleau sand
Lenti et al. A parametric numerical study of the interaction between seismic waves and landslides for the evaluation of the susceptibility to seismically induced displacements
CN1997999A (en) Systems and methods to determine elastic properties of materials
Xiong et al. Influence of soil–structure interaction (structure-to-soil relative stiffness and mass ratio) on the fundamental period of buildings: experimental observation and analytical verification
Brandenberg et al. Approximate solution for seismic earth pressures on rigid walls retaining inhomogeneous elastic soil
Kutter et al. Proposed outline for LEAP verification and validation processes
ElGhoraiby et al. The effects of base motion variability and soil heterogeneity on lateral spreading of mildly sloping ground
ElGhoraiby et al. Cyclic behavior of sand under non-uniform shear stress waves
Petridis et al. Soil–structure interaction effect on earthquake vulnerability assessment of moment resisting frames: the role of the structure
Armstrong Numerical analysis of LEAP centrifuge tests using a practice-based approach
JP6614549B2 (en) Bearing capacity estimation device
Zhang et al. Failure potential evaluation in engineering experiments using load/unload response ratio method
Moghaddam et al. Ground response analysis using non-recursive matrix implementation of hybrid frequency-time domain (HFTD) approach
Trandafir et al. Finite-element analysis of lateral pressures on rigid non-yielding retaining walls with EPS geofoam inclusion
El-Sekelly et al. Assessment of state-of-practice use of field liquefaction charts at low and high overburden using centrifuge experiments
JP2012037305A (en) Sequential nonlinear earthquake response analysis method for foundation and storage medium with analysis program stored thereon
Heins et al. FE-based identification of pile–soil interactions from dynamic load tests to predict the axial bearing capacity
Ravi Kumar Reddy et al. Effect of rigidity of plinth beam on soil interaction of modeled building frame supported on pile groups
Hajialilue-Bonab et al. Experimental study on the dynamic behavior of laterally loaded single pile
JP2008039534A (en) Method for evaluating soundness of foundation structure
JP6670669B2 (en) Liquefaction strength curve generation method, liquefaction strength curve generation device, and liquefaction strength curve generation program
Vogelsang et al. Stress paths on displacement piles during monotonic and cyclic penetration
Warrington Improved methods for forward and inverse solution of the wave equation for piles
Chiaradonna et al. Cone penetration testing to constrain the calibration process of a sand plasticity model for nonlinear deformation analysis
Boudina et al. A Comparative Analysis of Seismic Site Response in Time and Frequency Domains

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6614549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250