JP6614072B2 - Mn-activated bifluoride phosphor and method for producing the same - Google Patents
Mn-activated bifluoride phosphor and method for producing the same Download PDFInfo
- Publication number
- JP6614072B2 JP6614072B2 JP2016173363A JP2016173363A JP6614072B2 JP 6614072 B2 JP6614072 B2 JP 6614072B2 JP 2016173363 A JP2016173363 A JP 2016173363A JP 2016173363 A JP2016173363 A JP 2016173363A JP 6614072 B2 JP6614072 B2 JP 6614072B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- formula
- fluoride
- solution
- represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Luminescent Compositions (AREA)
Description
本発明は、青色LED用赤色蛍光体として有用な式K2MF6:Mn(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素で、Siを必ず含む。)で表されるMn賦活複フッ化物赤色蛍光体(複フッ化物蛍光体)、及びその製造方法に関する。 The present invention relates to a formula K 2 MF 6 : Mn (wherein M is one, two or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge and Sn, which are useful as red phosphors for blue LEDs) In this case, the present invention relates to a Mn-activated double fluoride red phosphor (double fluoride phosphor) represented by the formula (1) and a method for producing the same.
白色LED(Light Emitting Diode)の演色性向上、あるいは白色LEDを液晶ディスプレイのバックライトとして用いる場合の色再現性の向上の目的で、近紫外から青色のLEDに相当する光で励起されて赤色に発光する蛍光体が必要とされ、研究が進められている。この中で特表2009−528429号公報(特許文献1)には、A2MF6(AはNa,K,Rb等、MはSi,Ge,Ti等)などの式で表される複フッ化物にMnを添加したもの(複フッ化物蛍光体)が有用であることが記載されている。 For the purpose of improving the color rendering of white LEDs (Light Emitting Diodes) or improving the color reproducibility when white LEDs are used as backlights for liquid crystal displays, they are excited by light equivalent to LEDs from near-ultraviolet to blue. Phosphors that emit light are needed and research is ongoing. Among them, JP 2009-528429 A (Patent Document 1) discloses a compound F 2 represented by a formula such as A 2 MF 6 (A is Na, K, Rb, etc., M is Si, Ge, Ti, etc.). It is described that a compound obtained by adding Mn to a compound (double fluoride phosphor) is useful.
上記蛍光体の製造方法については、特許文献1では構成各元素を全て溶解又は分散させたフッ化水素酸溶液を蒸発濃縮させて析出させる方法が開示されている。別の製法として、米国特許第3576756号明細書(特許文献2)には、構成各元素をそれぞれ溶解させたフッ化水素酸溶液を混合後、水溶性有機溶剤であるアセトンを加えて溶解度を低下させることにより析出させる方法が開示されている。更に、特許第4582259号公報(特許文献3)、及び特開2012−224536号公報(特許文献4)には、上記式における元素Mと、元素Aをそれぞれ別々の、フッ化水素酸を含む溶液に溶解し、そのどちらかにMnを添加しておいたものを改めて混合することにより、蛍光体を析出させる方法が開示されている。 Regarding the method for producing the phosphor, Patent Document 1 discloses a method in which a hydrofluoric acid solution in which all constituent elements are dissolved or dispersed is evaporated and concentrated. As another manufacturing method, in US Pat. No. 3,576,756 (Patent Document 2), after mixing a hydrofluoric acid solution in which each constituent element is dissolved, acetone, which is a water-soluble organic solvent, is added to lower the solubility. The method of making it precipitate by making it disclose is disclosed. Furthermore, Japanese Patent No. 4582259 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2012-224536 (Patent Document 4) disclose a solution containing hydrofluoric acid in which the element M and the element A in the above formulas are separate. A method for precipitating a phosphor by dissolving a solution in which Mn has been added and mixing again is disclosed.
以上に述べた既知のMn添加A2MF6複フッ化物蛍光体の製造工程は、得られる蛍光体の量に対して、かなり多くの量の、高濃度のフッ化水素酸を使用する必要がある。フッ化水素酸の腐食性、人体に対する毒性がこの蛍光体製造工程の実施、特に大規模化には障害である。 The manufacturing process of the known Mn-added A 2 MF 6 double fluoride phosphor described above requires the use of a high concentration of hydrofluoric acid in a considerably large amount relative to the amount of the phosphor obtained. is there. The corrosiveness and toxicity to the human body of hydrofluoric acid are obstacles to the implementation of this phosphor manufacturing process, particularly to enlargement.
その問題に対して、本発明の発明者の1人は、Mn賦活複フッ化物である赤色蛍光体を製造するに際し、本質的に湿式によるのではなく、原料粉末を混合し、加熱することにより物質の拡散移動を起こさせて目的の複フッ化物蛍光体を生成することにより、該蛍光体を製造する工程のうちの主要な部分をフッ化水素酸を用いずに行うことができることを見出し、国際公開第2015/115189号(特許文献5)に記している。 To solve the problem, one of the inventors of the present invention, when manufacturing a red phosphor that is Mn-activated bifluoride, is not essentially wet, but by mixing and heating the raw material powder. It is found that the main part of the process for producing the phosphor can be carried out without using hydrofluoric acid by causing the diffusion transfer of the substance to produce the target double fluoride phosphor. It describes in international publication 2015/115189 (patent document 5).
一方、上記文献などこれまでに開示されている、K2SiF6:Mnなどの蛍光体は、目的とする赤色を得るために必要な量、つまり例えば青色LEDの光、緑又は黄色の蛍光体の光と併せて全体として白色光を得るのに必要な赤色蛍光体自体の量が、他の発光色の蛍光体や、他の種類の赤色蛍光体に比べて多いという問題点があった。
なお、本発明に関連する先行技術文献は、下記の文献が挙げられる。
On the other hand, phosphors such as K 2 SiF 6 : Mn, which have been disclosed so far, such as the above-mentioned documents, are required in order to obtain a desired red color, for example, blue LED light, green or yellow phosphor There is a problem that the amount of the red phosphor itself necessary for obtaining white light as a whole in combination with the above-mentioned light is larger than those of other emission color phosphors and other types of red phosphors.
In addition, the following literature is mentioned as a prior art document relevant to this invention.
本発明は、上記事情に鑑みなされたもので、従来よりも目的とする赤色を得るのに必要な所要量が少なくて済むマンガン賦活複フッ化物赤色蛍光体及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a manganese-activated double fluoride red phosphor and a method for producing the same, which requires a smaller amount necessary to obtain the target red color than in the past. And
本発明者らは、従来製造されているK2SiF6:MnなどMn賦活複フッ化物赤色蛍光体の問題は、Mnの含有量が相対的に少ないか、又はMnが多い場合は何らかの理由で青色から赤色への変換効率が低下しているかにあることに着目し、鋭意検討した結果、Mnの含有量が多くかつ青色から赤色への変換効率(内部量子効率)も大きい複フッ化物蛍光体が製造できる条件を見出し、本発明をなすに至った。 The inventors of the present invention have problems with Mn-activated double fluoride red phosphors such as K 2 SiF 6 : Mn that have been produced in the past for some reason when the Mn content is relatively low or Mn is high. Focusing on the fact that the conversion efficiency from blue to red is decreasing, and as a result of intensive studies, a multifluoride phosphor with a high Mn content and a high conversion efficiency (internal quantum efficiency) from blue to red As a result, the present inventors have found a condition that can be manufactured, and have made the present invention.
即ち、本発明は、下記のMn賦活複フッ化物蛍光体及びその製造方法を提供する。
〔1〕
下記式(1)
K2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素で、Siを必ず含む。)
で表されるMn賦活複フッ化物である赤色蛍光体に、K2MnF6の固体を混合して100℃以上500℃以下で加熱することを特徴とするMn賦活複フッ化物蛍光体の製造方法。
〔2〕
上記K2MnF6と共に、下記式(2)
AF・nHF (2)
(式中、AはLi、Na、K、Rb及びNH4から選ばれる、1種又は2種以上のアルカリ金属又はアンモニウムであって、Kを必ず含み、nは0.7以上4以下の数である。)
で表されるフッ化水素塩を固体で混合することを特徴とする〔1〕記載のMn賦活複フッ化物蛍光体の製造方法。
〔3〕
加熱によって得られた反応混合物を、無機酸溶液又はフッ化塩溶液で洗浄して不要成分を除去したのち、固液分離し、固形分を乾燥することを特徴とする〔1〕又は〔2〕記載のMn賦活複フッ化物蛍光体の製造方法。
〔4〕
上記式(1)で表されるMn賦活複フッ化物である赤色蛍光体であって、下記式(3)
Mn/(M+Mn) (3)
で表されるモル数又は原子数の比が0.1以上0.25以下であり、450nmの励起光による蛍光の内部量子効率が0.842以上、吸収率が0.72以上であることを特徴とするMn賦活複フッ化物蛍光体。
That is, this invention provides the following Mn activation double fluoride fluorescent substance and its manufacturing method.
[1]
Following formula (1)
K 2 MF 6 : Mn (1)
(In the formula, M is one or two or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge, and Sn, and necessarily includes Si.)
A method for producing a Mn-activated double fluoride phosphor, comprising mixing a solid of K 2 MnF 6 with a red phosphor, which is a Mn-activated double fluoride represented by the formula, and heating at 100 ° C. to 500 ° C. .
[2]
Together with the above K 2 MnF 6 , the following formula (2)
AF / nHF (2)
(In the formula, A is one or two or more alkali metals or ammonium selected from Li, Na, K, Rb, and NH 4 , and must include K, and n is a number of 0.7 or more and 4 or less. .)
The method for producing a Mn-activated bifluoride phosphor according to [1], wherein a hydrogen fluoride salt represented by the formula:
[3]
[1] or [2], wherein the reaction mixture obtained by heating is washed with an inorganic acid solution or a fluoride salt solution to remove unnecessary components, followed by solid-liquid separation and drying of the solid content. The manufacturing method of Mn activation double fluoride fluorescent substance of description .
[4]
A red phosphor which is a Mn-activated bifluoride represented by the above formula (1), which is represented by the following formula (3)
Mn / (M + Mn) (3)
The ratio of the number of moles or the number of atoms represented by the formula is 0.1 or more and 0.25 or less, the internal quantum efficiency of fluorescence by excitation light of 450 nm is 0.842 or more , and the absorptance is 0.72 or more. A featured Mn-activated double fluoride phosphor.
本発明によれば、従来の物に比べて、赤色光を得るのに必要な量が少なくて済むMn賦活複フッ化物蛍光体が得られる。 According to the present invention, it is possible to obtain a Mn-activated bifluoride phosphor that requires less amount to obtain red light than conventional ones.
以下に、本発明に係る複フッ化物蛍光体の製造方法について説明する。
本発明に係る蛍光体の製造方法は、下記式(1)
K2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素で、Siを必ず含む。)
で表されるMn賦活複フッ化物である赤色蛍光体に、K2MnF6の固体を混合して、好ましくはK2MnF6の固体と、下記式(2)
AF・nHF (2)
(式中、AはLi、Na、K、Rb及びNH4から選ばれる、1種又は2種以上のアルカリ金属又はアンモニウムであって、Kを必ず含み、nは0.7以上4以下の数である。)
で表されるフッ化水素塩を固体で混合して、100℃以上500℃以下で加熱することを特徴とするものである。
Below, the manufacturing method of the double fluoride fluorescent substance concerning this invention is demonstrated.
The phosphor production method according to the present invention comprises the following formula (1):
K 2 MF 6 : Mn (1)
(In the formula, M is one or two or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge, and Sn, and necessarily includes Si.)
A solid of K 2 MnF 6 is mixed with a red phosphor, which is a Mn-activated bifluoride represented by the formula, preferably a solid of K 2 MnF 6 and the following formula (2):
AF / nHF (2)
(In the formula, A is one or two or more alkali metals or ammonium selected from Li, Na, K, Rb, and NH 4 , and must include K, and n is a number of 0.7 or more and 4 or less. .)
Is mixed with a solid and heated at 100 ° C. or more and 500 ° C. or less.
ここで原料として用いる式(1)の蛍光体は特に限定されないが、製品となる蛍光体のMn含有量を多く、かつその分布を均一化したいという狙いがあることを考えると、MnのM+Mnに対する割合[Mn/(M+Mn)]が0.01(モル比)以上であることが好ましい。より好ましくは0.02以上(モル比)である。原料蛍光体の製造は、後に実例を挙げて示すが、特許文献3又は4に記されている湿式法、特許文献5に記されている乾式法など任意の方法で行うことができる。
The phosphor of the formula (1) used as a raw material here is not particularly limited, but considering that there is an aim to increase the Mn content of the phosphor as a product and to make the distribution uniform, Mn has a capacity to M + Mn. The ratio [Mn / (M + Mn)] is preferably 0.01 (molar ratio) or more. More preferably, it is 0.02 or more (molar ratio). Production of the raw material phosphor will be described later by way of an actual example, but can be performed by any method such as a wet method described in
本発明の蛍光体の製法で用いるK2MnF6は、公知の方法、すなわち(A)H.Bode, H.Jenssen, F.Bandte, Angew. Chem., 65巻, 304ページ, (1953年)(非特許文献1)に記されている、過マンガン酸カリウムをフッ化カリウムの存在下で、過酸化水素により還元する方法、(B)E.Huss, W.Klemm, Z.Anorg, Allg. Chem., 262巻, 25ページ, (1950年)(非特許文献2)に記されている、マンガンとアルカリ金属の無水塩化物の混合物をフッ素ガス気流中で熱する方法、(C)B.Cox, A.G.Sharpe, J. Chem. Soc., 1798ページ, (1954年)(非特許文献3)及び丸善株式会社発行、日本化学会編、新実験化学講座8「無機化合物の合成III」、1977年発行、1166ページ(非特許文献4)に記されている、フッ化マンガンを含む液の電解反応で合成する方法、のいずれかにより作製したものを用いることができる。
K 2 MnF 6 used in the production method of the phosphor of the present invention is a known method, that is, (A) H. Bode, H.M. Jenssen, F.M. Bandte, Angew. Chem. 65, 304, (1953) (Non-Patent Document 1), a method of reducing potassium permanganate with hydrogen peroxide in the presence of potassium fluoride, (B) E. Huss, W.H. Klemm, Z .; Anorg, Allg. Chem. 262, 25, (1950) (non-patent document 2), a method of heating a mixture of manganese and anhydrous alkali metal chloride in a fluorine gas stream, (C) B. Cox, A.M. G. Sharpe, J. et al. Chem. Soc. , 1798 pages, (1954) (Non-Patent Document 3) and published by Maruzen Co., Ltd., edited by The Chemical Society of Japan, New
原料蛍光体とK2MnF6の混合割合は、モル数でMが1モルに対して、Mnが、蛍光体から供給されるものと、K2MnF6で加えるものとあわせて0.06〜0.3モル、好ましくは0.1〜0.25モルとなる割合である。後述する反応とその後の処理によって製品蛍光体中でのMnのM+Mnに対する割合は、仕込みよりも少なくなる傾向なので、それを考慮して上記の値が好ましい。0.06モル未満では製品蛍光体中の賦活剤Mnが不足で、青色光の吸収が弱いため、結果として赤色光を十分に得ることができないおそれがある。0.3モルを超えて増やしても、かえって発光特性は低下する場合がある。
これら原料の混合には、両原料をポリエチレンなどの袋に入れて振ったり回転させたりする方法、ポリエチレン等でできた蓋付きの容器に入れて、ロッキングミキサー、タンブラーミキサーなどにかける、乳鉢で一緒にすりまぜるなど任意の方法を用いることができる。
The mixing ratio of the raw material phosphor and K 2 MnF 6 is 0.06 to M2 in terms of the number of moles, including that supplied with Mn from the phosphor and that added with K 2 MnF 6. The ratio is 0.3 mol, preferably 0.1 to 0.25 mol. Since the ratio of Mn to M + Mn in the product phosphor tends to be smaller than the charged amount by the reaction and the subsequent treatment described later, the above values are preferable in consideration thereof. If the amount is less than 0.06 mol, the activator Mn in the product phosphor is insufficient, and blue light absorption is weak, and as a result, there is a possibility that red light cannot be obtained sufficiently. Even if the amount exceeds 0.3 mol, the light emission characteristics may deteriorate.
To mix these ingredients, put both ingredients in a polyethylene bag, shake or rotate, put it in a container with a lid made of polyethylene, put it on a rocking mixer, tumbler mixer, etc. Arbitrary methods can be used.
更に、上記の混合物に上記式(2)で表されるフッ化水素塩を固体で混合して加熱することで、反応を促進させることができる。これらフッ化水素塩としては、フッ化水素アンモニウム(NH4HF2)、フッ化水素ナトリウム(NaHF2)、フッ化水素カリウム(KHF2)などの市販品や、KF・2HFなどを用いることができる。 Furthermore, reaction can be accelerated | stimulated by mixing and heating the hydrogen fluoride salt represented by said Formula (2) with solid to said mixture. As these hydrogen fluoride salts, commercially available products such as ammonium hydrogen fluoride (NH 4 HF 2 ), sodium hydrogen fluoride (NaHF 2 ), potassium hydrogen fluoride (KHF 2 ), and KF · 2HF may be used. it can.
これらフッ化水素塩の添加量は、上記主成分金属Mの1モルに対し、アルカリ金属などAが0〜2.5モルであることが好ましい。より好ましくは0.1〜2.0モルである。2.5モルを超えてフッ化水素塩を増やしても、蛍光体の生成に利点はなく、生成物が塊になってほぐれにくくなるおそれがある。
このフッ化水素塩の混合の方法は限定的でないが、混合中に発熱するおそれもあるので、強い力で擦り混ぜるような方法は避け、短時間で混合することが望ましい。
The addition amount of these hydrogen fluoride salts is preferably 0 to 2.5 mol of A such as an alkali metal with respect to 1 mol of the main component metal M. More preferably, it is 0.1-2.0 mol. Even if the amount of the hydrogen fluoride salt is increased beyond 2.5 mol, there is no advantage in the production of the phosphor, and there is a possibility that the product becomes a lump and is difficult to be loosened.
Although the method of mixing the hydrogen fluoride salt is not limited, it may generate heat during mixing. Therefore, it is desirable to avoid mixing with strong force and to mix in a short time.
なお、フッ化水素塩の混合は、上記原料蛍光体とK2MnF6とを混合するときに同時に行っても良いが、上記の点を考慮すれば、予め原料蛍光体とK2MnF6を混合しておいたものに後からフッ化水素塩を混合することが好ましい。 The mixing of the hydrogen fluoride salt may be performed simultaneously when mixing the raw phosphor and K 2 MnF 6 but, considering the above points, the pre-feed phosphor and K 2 MnF 6 It is preferable to mix the hydrofluoric acid salt with the mixed material later.
反応促進剤として、フッ化水素塩のほかに、アルカリ金属の硝酸塩、硫酸塩、硫酸水素塩、フッ化物をフッ化水素塩と共に添加することも有効である。このアルカリ金属としては、Li、Na、K及びRbから選ばれる1種又は2種以上のアルカリ金属が好ましく、Kを含んでいることがより好ましい。この場合の添加量は、モル数でフッ化水素塩を超えない範囲が良い。 As a reaction accelerator, it is also effective to add alkali metal nitrate, sulfate, hydrogen sulfate, and fluoride together with hydrogen fluoride in addition to hydrogen fluoride. The alkali metal is preferably one or more alkali metals selected from Li, Na, K and Rb, and more preferably contains K. The addition amount in this case is preferably in a range not exceeding the hydrogen fluoride salt in terms of moles.
上述のように混合された原料を加熱する。加熱温度は100〜500℃、好ましくは150〜450℃、より好ましくは170〜400℃である。加熱中の雰囲気は大気中、窒素ガス中、アルゴンガス中、真空中などのいずれでも良いが、水素ガスを含む還元雰囲気はマンガンが還元されることに起因する発光特性の低下のおそれがあるので好ましくない。
混合された原料を密閉容器に入れ、容器ごと乾燥機、オーブンなどに入れるか、ガスの抜け口を持つ容器を用いて外からヒーターで直接加熱する方法のいずれかが適用できる。密閉容器を用いる場合は、反応物に接する部分がフッ素樹脂でできているものを用いることが好ましい。これに限らずフッ素樹脂製の容器は加熱温度が270℃以下の場合に好適に用いることができる。加熱温度がこれより高い場合、セラミックス製の容器を用いることが好ましい。この場合のセラミックスはアルミナ、マグネシア又はマグネシウムアルミニウムスピネルなどが好適である。
The raw materials mixed as described above are heated. The heating temperature is 100 to 500 ° C, preferably 150 to 450 ° C, more preferably 170 to 400 ° C. The atmosphere during heating can be any of air, nitrogen gas, argon gas, vacuum, etc., but the reducing atmosphere containing hydrogen gas may reduce the light emission characteristics due to the reduction of manganese. It is not preferable.
Either a mixed raw material is put into a sealed container and the whole container is put into a dryer, an oven, or the like, or a method of directly heating with a heater from the outside using a container having a gas outlet is applicable. When using an airtight container, it is preferable to use the one in which the part in contact with the reactant is made of a fluororesin. Not only this but the container made from a fluororesin can be used suitably when heating temperature is 270 degrees C or less. When the heating temperature is higher than this, it is preferable to use a ceramic container. The ceramic in this case is preferably alumina, magnesia or magnesium aluminum spinel.
更に詳しくは、反応容器の一例として、図1に示すステンレススチール製容器本体2の内壁にポリテトラフルオロエチレン製の内層3を形成した二重容器1を用い、この中で粉体混合物10を加熱反応させることが好ましい。なお、蓋体4の材質としては、ステンレススチールを用いることが好ましい。
More specifically, as an example of a reaction vessel, a double vessel 1 in which an
以上により得られた反応生成物には、目的とする複フッ化物蛍光体のほかに、未反応のヘキサフルオロマンガン酸塩が混じっている可能性があり、またフッ化水素塩も残留している。これらは洗浄によって除くことができる。 The reaction product obtained as described above may contain unreacted hexafluoromanganate in addition to the desired double fluoride phosphor, and hydrogen fluoride salt also remains. . These can be removed by washing.
洗浄には塩酸、硝酸、フッ化水素酸などの無機酸溶液、又はフッ化アンモニウム、フッ化カリウムなどのフッ化塩溶液を用いることができる。フッ化水素酸又はフッ化アンモニウム溶液がより好ましい。また、蛍光体成分の溶出を抑えるために、エタノール、アセトンなどの水溶性有機溶剤を加えることも可能である。また原料のK2MF6を洗浄液に溶解させておくことも有効である。洗浄した後は、常法により固形分を乾燥し、Mn賦活複フッ化物蛍光体を得る。 For washing, an inorganic acid solution such as hydrochloric acid, nitric acid, or hydrofluoric acid, or a fluoride salt solution such as ammonium fluoride or potassium fluoride can be used. A hydrofluoric acid or ammonium fluoride solution is more preferable. In order to suppress the elution of the phosphor component, a water-soluble organic solvent such as ethanol or acetone can be added. It is also effective to dissolve the raw material K 2 MF 6 in the cleaning solution. After washing, the solid content is dried by a conventional method to obtain a Mn activated double fluoride phosphor.
次に、本発明に係る複フッ化物蛍光体について説明する。
本発明に係る蛍光体は、下記式(1)
K2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素で、Siを必ず含む。)
で表されるMn賦活複フッ化物である赤色蛍光体であって、下記式(3)
Mn/(M+Mn) (3)
(式中、Mは上記式(1)中のMと同じ。)
で表されるモル数又は原子数の比が0.06以上0.25以下であり、450nmの励起光による蛍光の内部量子効率が0.75以上であることを特徴とする。
Next, the double fluoride phosphor according to the present invention will be described.
The phosphor according to the present invention has the following formula (1):
K 2 MF 6 : Mn (1)
(In the formula, M is one or two or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge, and Sn, and necessarily includes Si.)
A red phosphor that is a Mn-activated bifluoride represented by the following formula (3)
Mn / (M + Mn) (3)
(In the formula, M is the same as M in the formula (1)).
The ratio of the number of moles or the number of atoms represented by the formula is 0.06 or more and 0.25 or less, and the internal quantum efficiency of fluorescence by 450 nm excitation light is 0.75 or more.
上記式(3)で表されるMnのM+Mnに対する割合は、蛍光体を希塩酸などに全量溶解して作製した溶液をICP発光分析等にかけて、Mnと、SiなどM元素を分析した結果から計算して求めるものである。このMnのM+Mnに対する割合が0.06より少ないと、青色光の吸収が弱いため、結果として赤色光を十分に得ることができない。また0.25より大きくても利点は無いばかりか、かえって内部量子効率が低下するおそれもある。この式(3)の値は好ましくは0.09以上、特に0.1以上で、0.2以下である。
Mで表される元素のうちでは、モル数又は原子数でSiの割合が60%以上であることが好ましい。より好ましくは80%以上である。Si以外の、Ti、Zr、Hf、Ge及びSnは実質的に含まなくても差支えない。
The ratio of Mn to M + Mn represented by the above formula (3) is calculated from the result of analyzing M elements such as Mn and Si by subjecting a solution prepared by dissolving the entire amount of phosphor in diluted hydrochloric acid to ICP emission analysis. Is what you want. If the ratio of Mn to M + Mn is less than 0.06, blue light is weakly absorbed, and as a result, red light cannot be obtained sufficiently. Moreover, even if it is larger than 0.25, there is no advantage, and there is a possibility that the internal quantum efficiency may be lowered. The value of the formula (3) is preferably 0.09 or more, particularly 0.1 or more and 0.2 or less.
Of the elements represented by M, the Si ratio is preferably 60% or more in terms of moles or atoms. More preferably, it is 80% or more. Other than Si, Ti, Zr, Hf, Ge, and Sn may be substantially not included.
本発明の蛍光体の内部量子効率は450nmの励起光に対して測定した場合に0.75以上であることが好ましい。内部量子効率が0.75未満では、青色光を吸収はしても、赤色光に変換される割合が少なく、目的とする赤色が得られない。好ましくは0.80以上の内部量子効率が必要である。内部量子効率は理論的な上限の1.0に至るまで特に制限はないが、通常0.95以下である。また、本発明の蛍光体の吸収率は450nmの励起光に対して測定した場合に0.70以上、特に0.72以上であることが好ましい。吸収率の上限は、通常0.95以下である。 The internal quantum efficiency of the phosphor of the present invention is preferably 0.75 or more when measured with respect to 450 nm excitation light. When the internal quantum efficiency is less than 0.75, even if blue light is absorbed, the ratio of conversion to red light is small, and the intended red color cannot be obtained. Preferably an internal quantum efficiency of 0.80 or more is required. The internal quantum efficiency is not particularly limited until reaching the theoretical upper limit of 1.0, but is usually 0.95 or less. The absorptance of the phosphor of the present invention is preferably 0.70 or more, particularly 0.72 or more when measured with respect to 450 nm excitation light. The upper limit of the absorption rate is usually 0.95 or less.
以下、参考例、実施例及び比較例を挙げて、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 EXAMPLES Hereinafter, although a reference example, an Example, and a comparative example are given and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[参考例1]
[K2MnF6の調製]
非特許文献4に記載されている方法に準拠し、以下の方法で調製した。
塩化ビニル樹脂製の反応槽の中央にフッ素樹脂系イオン交換膜の仕切り(隔膜)を設け、イオン交換膜を挟む2室の各々に、いずれも白金板からなる陽極と陰極を設置した。反応槽の陽極側に、フッ化マンガン(II)を溶解させたフッ化水素酸水溶液、陰極側にフッ化水素酸水溶液を入れた。両極を電源につなぎ、電圧3V、電流0.75Aで電解を行った。電解を終えた後、陽極側の反応液に、フッ化水素酸水溶液に飽和させたフッ化カリウムの溶液を過剰に加えた。生成した黄色の固体生成物をろ別、回収し、K2MnF6を得た。
[Reference Example 1]
[Preparation of K 2 MnF 6 ]
In accordance with the method described in
A fluororesin-based ion exchange membrane partition (diaphragm) was provided at the center of the reaction vessel made of vinyl chloride resin, and an anode and a cathode each made of a platinum plate were installed in each of the two chambers sandwiching the ion exchange membrane. A hydrofluoric acid aqueous solution in which manganese (II) was dissolved was placed on the anode side of the reaction tank, and a hydrofluoric acid aqueous solution was placed on the cathode side. Both electrodes were connected to a power source, and electrolysis was performed at a voltage of 3 V and a current of 0.75 A. After the electrolysis, an excessive solution of potassium fluoride saturated with an aqueous hydrofluoric acid solution was added to the reaction solution on the anode side. The produced yellow solid product was separated by filtration and recovered to obtain K 2 MnF 6 .
[参考例2]
[原料となる蛍光体の作製1]
40質量%のケイフッ化水素酸(H2SiF6)水溶液(森田化学工業(株)製)156cm3を、まず50質量%フッ化水素酸(HF)(SA−X、ステラケミファ(株)製)2,740cm3と混合した。これに、予め参考例1の方法で作製したK2MnF6粉末を22.2g加えて撹拌し溶解させた(第1の溶液:Si−F−Mn)。
これとは別に、フッ化水素カリウム(ステラケミファ製酸性フッ化カリウム、KHF2)140.3gを純水1,990cm3と混合し溶解させた(第2の溶液:K−H−F)。
第1の溶液を室温(16℃)で撹拌翼とモーターを用いて撹拌しながら、第2の溶液(15℃)を1分30秒かけて少しずつ加えていった。液の温度は26℃になり、淡橙色の沈殿(K2SiF6:Mn)が生じた。更に10分撹拌を続けたのち、この沈殿をブフナー漏斗で濾別し、できるだけ脱液した。更にアセトンで洗浄し、脱液、真空乾燥して、K2SiF6:Mnの粉末製品130.3gを得た。
得られた粉末製品の粒度分布を、気流分散式レーザー回折法粒度分布測定器(HELOS&RODOS、Sympatec社製)によって測定した。その結果、粒径2.49μm以下の粒子が全体積の10%(D10=2.49μm)、粒径7.72μm以下の粒子が全体積の50%(D50=7.72μm)、粒径12.2μm以下の粒子が全体積の90%(D90=12.2μm)を占めた。
また、製品の一部をとって希塩酸に完全に溶解し、ICP発光分光分析にかけてMnの含有量を分析したところ、1.42質量%であった。またSiの含有量は11.2質量%であった。これらの値から計算すると、モル比[Mn/(Mn+Si)]=0.0650であった。
[Reference Example 2]
[Fabrication of phosphor as raw material 1]
First, 156 cm 3 of a 40% by mass hydrosilicic acid (H 2 SiF 6 ) aqueous solution (Morita Chemical Co., Ltd.) was first added to 50% by mass hydrofluoric acid (HF) (SA-X, Stella Chemifa Co., Ltd.). ) Mixed with 2,740 cm 3 . To this, 22.2 g of K 2 MnF 6 powder prepared in advance by the method of Reference Example 1 was added and stirred to dissolve (first solution: Si—F—Mn).
Separately, 140.3 g of potassium hydrogen fluoride (acidic potassium fluoride manufactured by Stella Chemifa, KHF 2 ) was mixed with 1,990 cm 3 of pure water and dissolved (second solution: K—H—F).
While stirring the first solution at room temperature (16 ° C.) using a stirring blade and a motor, the second solution (15 ° C.) was added little by little over 1 minute 30 seconds. The temperature of the liquid became 26 ° C., and a pale orange precipitate (K 2 SiF 6 : Mn) was formed. After further stirring for 10 minutes, the precipitate was filtered off with a Buchner funnel and drained as much as possible. Further washed with acetone, draining, and dried in vacuo, K 2 SiF 6: to obtain a powder product 130.3g of Mn.
The particle size distribution of the obtained powder product was measured with an airflow dispersion type laser diffraction particle size distribution analyzer (HELOS & RODOS, manufactured by Sympatec). As a result, particles having a particle size of 2.49 μm or less were 10% of the total volume (D10 = 2.49 μm), particles having a particle size of 7.72 μm or less were 50% of the total volume (D50 = 7.72 μm), and
A part of the product was taken and completely dissolved in dilute hydrochloric acid, and the content of Mn was analyzed by ICP emission spectroscopic analysis. As a result, it was 1.42% by mass. The Si content was 11.2% by mass. When calculated from these values, the molar ratio [Mn / (Mn + Si)] was 0.0650.
[参考例3]
[原料となる蛍光体の作製2]
40質量%のケイフッ化水素酸水溶液234cm3を、まず50質量%フッ化水素酸2,660cm3と混合した。これに、予め参考例1の方法で作製したK2MnF6粉末を15.27g加えて撹拌し溶解させた(第1の溶液:Si−F−Mn)。
これとは別に、フッ化カリウム(ステラケミファ製無水フッ化カリウム、KF)156.6gを純水1,930cm3と混合し溶解させた(第2の溶液:K−F)。
第1の溶液を室温(16℃)で撹拌翼とモーターを用いて撹拌しながら、第2の溶液(15℃)を1分30秒かけて少しずつ加えていった。液の温度は28℃になり、淡橙色の沈殿(K2SiF6:Mn)が生じた。更に10分撹拌を続けたのち、この沈殿をブフナー漏斗で濾別し、できるだけ脱液した。更にアセトンで洗浄し、脱液、真空乾燥して、K2SiF6:Mnの粉末製品187.3gを得た。
参考例2と同様にして測定した粒度分布の結果は、D10=0.76μm、D50=3.04μm、D90=6.07μmであった。また、参考例2と同様にして組成分析をしたところ、Mn含有量は0.79質量%、Siの含有量は11.5質量%であった。これらの値から計算すると、モル比[Mn/(Mn+Si)]=0.0351であった。
[Reference Example 3]
[Fabrication of phosphor as raw material 2]
Of 40 wt% silicate aqueous hydrofluoric acid 234cm 3, it was first mixed with 50 wt% hydrofluoric acid 2,660cm 3. To this, 15.27 g of K 2 MnF 6 powder prepared in advance by the method of Reference Example 1 was added and dissolved by stirring (first solution: Si—F—Mn).
Separately, 156.6 g of potassium fluoride (anhydrous potassium fluoride, KF manufactured by Stella Chemifa) was mixed with 1,930 cm 3 of pure water and dissolved (second solution: K-F).
While stirring the first solution at room temperature (16 ° C.) using a stirring blade and a motor, the second solution (15 ° C.) was added little by little over 1 minute 30 seconds. The temperature of the liquid reached 28 ° C., and a pale orange precipitate (K 2 SiF 6 : Mn) was formed. After further stirring for 10 minutes, the precipitate was filtered off with a Buchner funnel and drained as much as possible. Further washed with acetone, draining, and dried in vacuo, K 2 SiF 6: to obtain a powder product 187.3g of Mn.
The results of the particle size distribution measured in the same manner as in Reference Example 2 were D10 = 0.76 μm, D50 = 3.04 μm, and D90 = 6.07 μm. Further, the composition analysis was conducted in the same manner as in Reference Example 2. As a result, the Mn content was 0.79% by mass, and the Si content was 11.5% by mass. When calculated from these values, the molar ratio [Mn / (Mn + Si)] = 0.0351.
[参考例4]
[原料K2SiF6の作製]
40質量%のケイフッ化水素酸水溶液390cm3を、まず50質量%フッ化水素酸150cm3と純水2,350cm3と混合した。(第1の溶液:Si−F)。
これとは別に、フッ化水素カリウム350.8gを純水1,930cm3と混合し溶解させた(第2の溶液:K−H−F)。
第1の溶液を室温(16℃)で撹拌翼とモーターを用いて撹拌しながら、第2の溶液(15℃)を1分30秒かけて少しずつ加えていった。液の温度は22℃になり、白色半透明の沈殿(K2SiF6)が生じた。更に10分撹拌を続けたのち、この沈殿をブフナー漏斗で濾別し、できるだけ脱液した。更にアセトンで洗浄し、脱液、真空乾燥して、K2SiF6の粉末製品324.3gを得た。
参考例2と同様にして測定した粒度分布の結果は、D10=0.49μm、D50=1.09μm、D90=2.44μmであった。
[Reference Example 4]
[Preparation of raw material K 2 SiF 6 ]
Of 40 wt% silicate aqueous hydrofluoric acid 390cm 3, was first mixed with 50 wt% hydrofluoric 150 cm 3 of pure water 2,350cm 3. (First solution: Si-F).
Separately, 350.8 g of potassium hydrogen fluoride was mixed with 1,930 cm 3 of pure water and dissolved (second solution: K—H—F).
While stirring the first solution at room temperature (16 ° C.) using a stirring blade and a motor, the second solution (15 ° C.) was added little by little over 1 minute 30 seconds. The temperature of the liquid became 22 ° C., and a white translucent precipitate (K 2 SiF 6 ) was formed. After further stirring for 10 minutes, the precipitate was filtered off with a Buchner funnel and drained as much as possible. Further washed with acetone, draining, and dried in vacuo to obtain a powder product 324.3g of K 2 SiF 6.
The results of the particle size distribution measured in the same manner as in Reference Example 2 were D10 = 0.49 μm, D50 = 1.09 μm, and D90 = 2.44 μm.
[実施例1]
参考例2で得られたK2SiF6:Mn粉末52.93gと、参考例1で得られたK2MnF6粉末3.34g(Mn0.0135モル相当)を同一のポリエチレン製チャック付袋に入れた。手で振ったりゆっくり回転させたりして5分間かけて混合した。混合時におけるモル比[Mn/(Si+Mn)]は0.118に相当する。
この混合粉に、更にフッ化水素塩(ステラケミファ製酸性フッ化カリウム(S)、KF・2HF)の粉末24.73gを加え、上記と同様にして混合した。
粉体混合物を図1に示す構造の二重容器1(内容器の容積125cm3)に入れて密閉した。ここで、図1において、二重容器1はステンレススチール(SUS)製の容器本体2の内壁にポリテトラフルオロエチレン製の内層3を形成してなるもので、この二重容器1内に粉体混合物10を入れ、SUS製の蓋体4で密閉し、オーブンに入れて加熱した。温度は250℃で時間は12時間保持し、自然冷却した。
[Example 1]
Put 52.93 g of K 2 SiF 6 : Mn powder obtained in Reference Example 2 and 3.34 g of K 2 MnF 6 powder obtained in Reference Example 1 (corresponding to 0.0135 mol of Mn) in the same bag with polyethylene chuck. I put it in. The mixture was shaken by hand or slowly rotated for 5 minutes. The molar ratio [Mn / (Si + Mn)] during mixing corresponds to 0.118.
To this mixed powder, 24.73 g of powder of hydrogen fluoride salt (acidic potassium fluoride (S), KF · 2HF manufactured by Stella Chemifa) was further added and mixed in the same manner as described above.
The powder mixture was placed in a double container 1 (inner container volume: 125 cm 3 ) having the structure shown in FIG. 1 and sealed. Here, in FIG. 1, a double container 1 is formed by forming an
洗浄液として、8.2gのケイフッ化カリウム(森田化学工業社製K2SiF6)を220cm3の50質量%フッ化水素酸に溶解した液を用意しておいた。このうち200cm3に上記の反応生成物を加え、撹拌をしながら10分間おいた。塊状の部分はほぐれて粉末状になった。粉末状になった沈殿物をブフナー漏斗でろ別し、先に作製した洗浄液の残りで振りかけ洗浄した。更にアセトンで洗浄して回収後、真空乾燥した。62.47gの粉末製品が得られた。
参考例2と同様にして測定した粒度分布の結果は、D10=15.1μm、D50=23.3μm、D90=34.4μmであった。また、参考例2と同様にして組成分析をしたところ、Mn含有量は2.31質量%、Siの含有量は10.7質量%であった。これらの値から計算すると、モル比[Mn/(Mn+Si)]=0.110であった。
As a cleaning solution, a solution prepared by dissolving 8.2 g of potassium silicofluoride (K 2 SiF 6 manufactured by Morita Chemical Co., Ltd.) in 220 cm 3 of 50% by mass hydrofluoric acid was prepared. Of these, the above reaction product was added to 200 cm 3 and allowed to stand for 10 minutes with stirring. The massive part was loosened and became powdery. The powdery precipitate was filtered off with a Buchner funnel and washed by sprinkling with the rest of the previously prepared cleaning solution. Further, it was washed with acetone and collected, and then dried in vacuum. 62.47 g of powder product was obtained.
The results of the particle size distribution measured in the same manner as in Reference Example 2 were D10 = 15.1 μm, D50 = 23.3 μm, and D90 = 34.4 μm. Further, the composition analysis was conducted in the same manner as in Reference Example 2. As a result, the Mn content was 2.31% by mass, and the Si content was 10.7% by mass. When calculated from these values, the molar ratio [Mn / (Mn + Si)] = 0.110.
[実施例2]
参考例3で得られたK2SiF6:Mn粉末54.81gと、参考例1で得られたK2MnF6粉末2.44g(Mn0.0099モル相当)を実施例1と同様にして混合した。混合時におけるモル比[Mn/(Si+Mn)]は0.073に相当する。
この混合粉に、更にKF・2HFの粉末25.29gを加え、実施例1と同様にして混合した。以下実施例1と同様に反応を行わせた。
実施例1と同じ洗浄液を作製し、同じように処理した後、固液分離、アセトン洗浄、真空乾燥した。61.84gの粉末製品が得られた。
参考例2と同様にして測定した粒度分布の結果は、D10=11.9μm、D50=17.8μm、D90=25.9μmであった。また、参考例2と同様にして組成分析をしたところ、Mn含有量は1.44質量%、Siの含有量は11.2質量%であった。これらの値から計算すると、モル比[Mn/(Mn+Si)]=0.0659であった。
[Example 2]
54.81 g of K 2 SiF 6 : Mn powder obtained in Reference Example 3 and 2.44 g of K 2 MnF 6 powder obtained in Reference Example 1 (equivalent to Mn 0.0099 mol) were mixed in the same manner as in Example 1. did. The molar ratio [Mn / (Si + Mn)] during mixing corresponds to 0.073.
To this mixed powder, 25.29 g of KF · 2HF powder was further added and mixed in the same manner as in Example 1. Thereafter, the reaction was carried out in the same manner as in Example 1.
The same cleaning liquid as in Example 1 was prepared and treated in the same manner, followed by solid-liquid separation, acetone cleaning, and vacuum drying. 61.84 g of powder product was obtained.
The results of the particle size distribution measured in the same manner as in Reference Example 2 were D10 = 11.9 μm, D50 = 17.8 μm, and D90 = 25.9 μm. Further, the composition analysis was conducted in the same manner as in Reference Example 2. As a result, the Mn content was 1.44% by mass and the Si content was 11.2% by mass. When calculated from these values, the molar ratio [Mn / (Mn + Si)] was 0.0659.
[比較例1]
参考例4で得られたK2SiF6粉末52.85g(Si0.24モル相当)と、参考例1で得られたK2MnF6粉末2.46g(Mn0.0100モル相当)を実施例1と同様にして混合した。混合時におけるモル比[Mn/(Si+Mn)]は0.040に相当する。
この混合粉に、更にKF・2HFの粉末24.52gを加え、実施例1と同様にして混合した。以下実施例1と同様に反応を行わせた。
実施例1と同じ洗浄液を作製し、同じように処理した後、固液分離、アセトン洗浄、真空乾燥した。60.66gの粉末製品が得られた。
参考例2と同様にして測定した粒度分布の結果は、D10=10.1μm、D50=16.2μm、D90=24.0μmであった。また、参考例2と同様にして組成分析をしたところ、Mn含有量は0.77質量%、Siの含有量は11.6質量%であった。これらの値から計算すると、モル比[Mn/(Mn+Si)]=0.0339であった。
[Comparative Example 1]
Example 1 was obtained by using 52.85 g of K 2 SiF 6 powder obtained in Reference Example 4 (corresponding to 0.24 mol of Si) and 2.46 g of K 2 MnF 6 powder obtained in Reference Example 1 (corresponding to 0.0100 mol of Mn). And mixed in the same manner. The molar ratio [Mn / (Si + Mn)] during mixing corresponds to 0.040.
To this mixed powder, 24.52 g of KF · 2HF powder was further added and mixed in the same manner as in Example 1. Thereafter, the reaction was carried out in the same manner as in Example 1.
The same cleaning liquid as in Example 1 was prepared and treated in the same manner, followed by solid-liquid separation, acetone cleaning, and vacuum drying. 60.66 g of powder product was obtained.
The results of the particle size distribution measured in the same manner as in Reference Example 2 were D10 = 10.1 μm, D50 = 16.2 μm, and D90 = 24.0 μm. Further, the composition analysis was conducted in the same manner as in Reference Example 2. As a result, the Mn content was 0.77% by mass, and the Si content was 11.6% by mass. When calculated from these values, the molar ratio [Mn / (Mn + Si)] = 0.0339.
[比較例2]
40質量%のケイフッ化水素酸水溶液156cm3を、まず50質量%フッ化水素酸2,740cm3と混合した。これに、予め参考例1の方法で作製したK2MnF6粉末を44.4g加えて撹拌し溶解させた(第1の溶液:Si−F−Mn)。
これとは別に、フッ化水素カリウム140.3gを50質量%フッ化水素酸260cm3と純水1,730cm3と混合し溶解させた(第2の溶液:K−H−F)。
第1の溶液を室温(16℃)で撹拌翼とモーターを用いて撹拌しながら、第2の溶液(15℃)を1分30秒かけて少しずつ加えていった。液の温度は26℃になり、淡橙色の沈殿(K2SiF6:Mn)が生じた。更に10分撹拌を続けたのち、この沈殿をブフナー漏斗で濾別し、できるだけ脱液した。更にアセトンで洗浄し、脱液、真空乾燥して、K2SiF6:Mnの粉末製品135.5gを得た。
参考例2と同様にして測定した粒度分布の結果は、D10=5.92μm、D50=13.3μm、D90=19.8μmであった。また、参考例2と同様にして組成分析をしたところ、Mn含有量は2.71質量%、Siの含有量は10.5質量%であった。これらの値から計算すると、モル比[Mn/(Mn+Si)]=0.132であった。
[Comparative Example 2]
Of 40 wt% silicate aqueous hydrofluoric acid 156cm 3, it was first mixed with 50 wt% hydrofluoric acid 2,740cm 3. To this, 44.4 g of K 2 MnF 6 powder prepared in advance by the method of Reference Example 1 was added and stirred to dissolve (first solution: Si—F—Mn).
Separately was a hydrogen fluoride of potassium 140.3g was mixed with 50 wt% hydrofluoric 260 cm 3 of pure water 1,730Cm 3 dissolved (second solution: K-H-F).
While stirring the first solution at room temperature (16 ° C.) using a stirring blade and a motor, the second solution (15 ° C.) was added little by little over 1 minute 30 seconds. The temperature of the liquid became 26 ° C., and a pale orange precipitate (K 2 SiF 6 : Mn) was formed. After further stirring for 10 minutes, the precipitate was filtered off with a Buchner funnel and drained as much as possible. Further washed with acetone, draining, and dried in vacuo, K 2 SiF 6: to obtain a powder product 135.5g of Mn.
The results of the particle size distribution measured in the same manner as in Reference Example 2 were D10 = 5.92 μm, D50 = 13.3 μm, and D90 = 19.8 μm. Further, the composition analysis was conducted in the same manner as in Reference Example 2. As a result, the Mn content was 2.71% by mass, and the Si content was 10.5% by mass. When calculated from these values, the molar ratio [Mn / (Mn + Si)] = 0.132.
以上の参考例(K2SiF6:Mnのみ)、実施例、比較例によって得られた製品の組成としてのモル比[Mn/(Mn+Si)]と参考として中心粒径(D50)を表1に一覧で示す。 Table 1 shows the molar ratio [Mn / (Mn + Si)] as a composition of the products obtained by the above reference examples (K 2 SiF 6 : Mn only), Examples and Comparative Examples and the center particle diameter (D50) as a reference. Shown in the list.
[特性評価]
参考例、実施例、比較例によって得られた蛍光体の発光スペクトル及び励起スペクトルを、蛍光光度計FP6500(日本分光(株)製)で測定した。スペクトルは全て同様である。代表として実施例1の製品の結果を図2に示す。発光スペクトルの最大ピークは631.4nmであり、その幅(ピークの高さの半分の位置で測った半価幅)は3.8nmであった。
また、量子効率測定装置QE1100(大塚電子(株)製)を用いて、励起波長450nmでの吸収率と量子効率を測定した。励起波長450nmでの吸収率と量子効率を表2に示す。
[Characteristic evaluation]
The emission spectra and excitation spectra of the phosphors obtained in the reference examples, examples and comparative examples were measured with a fluorometer FP6500 (manufactured by JASCO Corporation). All spectra are similar. As a representative, the results of the product of Example 1 are shown in FIG. The maximum peak of the emission spectrum was 631.4 nm, and its width (half-value width measured at half the peak height) was 3.8 nm.
Moreover, the absorption factor and quantum efficiency in excitation wavelength 450nm were measured using quantum efficiency measuring apparatus QE1100 (made by Otsuka Electronics Co., Ltd.). Table 2 shows the absorptance and quantum efficiency at an excitation wavelength of 450 nm.
[評価実験]
図3に示す試験用発光装置を作製した。チップ11はInGaN系青色発光ダイオード(エピテックス社製SMBB470)である。12、13は電気接続部であり、凹部19の部分で不透明なベースハウジング18に埋め込まれている。接続部12はチップ11の下側電極と電気的に接しており、接続部13は上部電極とボンディングワイヤ14を介して電気的に接続されている。凹部19の壁面17は可視光を反射するようになっている。凹部19に蛍光体16を予め混練した液状の熱硬化性樹脂15を注入して硬化させる。
樹脂としてシリコーン樹脂(信越化学工業(株)製KER−6020A/B、2液型で使用時にA、B両液を混合)、赤色蛍光体として実施例1と比較例1のもの、黄色蛍光体としてセリウム賦活イットリウムアルミニウムガーネット(Y2.94Ce0.06Al5O12、略号YAG)を使用した。YAG蛍光体の平均粒径は2.65μm、既述の条件、方法で測定した内部量子効率は0.94であった。表3に示す配合(重量)でシリコーンと蛍光体を混合し、図3のようにLEDに注入後、120℃にキープされたオーブン(大気雰囲気)で30分間加熱し、樹脂を硬化させた。
得られたLEDを大塚電子(株)製全光束測定装置(ハーフムーンφ500mm)にとりつけ、350mAの定電流(このときの印加電圧3.0V)で点灯させ、発光スペクトルを測定し、発光の色度を計算した値も表3に記載した。
[Evaluation experiment]
The test light emitting device shown in FIG. 3 was produced. The chip 11 is an InGaN blue light emitting diode (SMTB470 manufactured by Epitex).
Silicone resin as the resin (Ker-6020A / B manufactured by Shin-Etsu Chemical Co., Ltd., two-component type, A and B mixed together when used), red phosphor of Example 1 and Comparative Example 1, yellow phosphor A cerium activated yttrium aluminum garnet (Y 2.94 Ce 0.06 Al 5 O 12 , abbreviated YAG) was used. The average particle size of the YAG phosphor was 2.65 μm, and the internal quantum efficiency measured by the conditions and method described above was 0.94. Silicone and phosphor were mixed in the composition (weight) shown in Table 3, and after being injected into the LED as shown in FIG. 3, the resin was cured by heating in an oven (atmosphere) kept at 120 ° C. for 30 minutes.
The obtained LED is attached to a total luminous flux measuring device (half moon φ500 mm) manufactured by Otsuka Electronics Co., Ltd., lit at a constant current of 350 mA (applied voltage of 3.0 V at this time), an emission spectrum is measured, and the color of emitted light The values calculated for the degrees are also listed in Table 3.
図4に、青色LEDと赤色蛍光体からなるLEDのスペクトルの例としてLED1のスペクトルを、図5に青色LEDと赤色蛍光体、更にYAG蛍光体からなるものの例としてLED2のスペクトルを示した。
図6にLED2〜7(実施例)及びLED8〜13(比較例)の色度をx、y色度図上に示した。同量の混合比率で実施例の方がより暖色すなわち赤色寄りになっていることがわかる。
FIG. 4 shows the spectrum of the LED 1 as an example of the spectrum of the LED composed of the blue LED and the red phosphor, and FIG. 5 shows the spectrum of the
FIG. 6 shows the chromaticity of the
なお、これまで本発明を実施形態をもって説明してきたが、本発明はこの実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれる。 Although the present invention has been described with the embodiment, the present invention is not limited to the embodiment, and other embodiments, additions, changes, deletions, and the like can be conceived by those skilled in the art. As long as the effects of the present invention are exhibited in any aspect, they are included in the scope of the present invention.
1 二重容器
2 容器本体
3 内層
4 蓋体
10 粉体混合物
11 青色LEDチップ
12、13 電気接続部
14 ボンディングワイヤ
15 熱硬化性樹脂
16 蛍光体
17 反射材付壁面(枠)
18 ベースハウジング
19 凹部空間
DESCRIPTION OF SYMBOLS 1
18
Claims (4)
K2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素で、Siを必ず含む。)
で表されるMn賦活複フッ化物である赤色蛍光体に、K2MnF6の固体を混合して100℃以上500℃以下で加熱することを特徴とするMn賦活複フッ化物蛍光体の製造方法。 Following formula (1)
K 2 MF 6 : Mn (1)
(In the formula, M is one or two or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge, and Sn, and necessarily includes Si.)
A method for producing a Mn-activated double fluoride phosphor, comprising mixing a solid of K 2 MnF 6 with a red phosphor, which is a Mn-activated double fluoride represented by the formula, and heating at 100 ° C. to 500 ° C. .
AF・nHF (2)
(式中、AはLi、Na、K、Rb及びNH4から選ばれる、1種又は2種以上のアルカリ金属又はアンモニウムであって、Kを必ず含み、nは0.7以上4以下の数である。)
で表されるフッ化水素塩を固体で混合することを特徴とする請求項1記載のMn賦活複フッ化物蛍光体の製造方法。 Together with the above K 2 MnF 6 , the following formula (2)
AF / nHF (2)
(In the formula, A is one or two or more alkali metals or ammonium selected from Li, Na, K, Rb, and NH 4 , and must include K, and n is a number of 0.7 or more and 4 or less. .)
The method for producing a Mn-activated double fluoride phosphor according to claim 1, wherein the hydrogen fluoride salt represented by the formula is mixed as a solid.
K2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素で、Siを必ず含む。)
で表されるMn賦活複フッ化物である赤色蛍光体であって、下記式(3)
Mn/(M+Mn) (3)
で表されるモル数又は原子数の比が0.1以上0.25以下であり、450nmの励起光による蛍光の内部量子効率が0.842以上、吸収率が0.72以上であることを特徴とするMn賦活複フッ化物蛍光体。 Following formula (1)
K 2 MF 6 : Mn (1)
(In the formula, M is one or two or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge, and Sn, and necessarily includes Si.)
A red phosphor that is a Mn-activated bifluoride represented by the following formula (3)
Mn / (M + Mn) (3)
The ratio of the number of moles or the number of atoms represented by the formula is 0.1 or more and 0.25 or less, the internal quantum efficiency of fluorescence by excitation light of 450 nm is 0.842 or more , and the absorptance is 0.72 or more. A featured Mn-activated double fluoride phosphor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160132658A KR102678117B1 (en) | 2015-10-14 | 2016-10-13 | Mn-ACTIVATED COMPLEX FLUORIDE PHOSPHOR AND METHOD FOR PREPARING THE SAME |
US15/292,745 US10266763B2 (en) | 2015-10-14 | 2016-10-13 | Mn-activated complex fluoride phosphor and method of producing thereof |
KR1020240045723A KR102693295B1 (en) | 2015-10-14 | 2024-04-04 | Mn-ACTIVATED COMPLEX FLUORIDE PHOSPHOR AND METHOD FOR PREPARING THE SAME |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015202674 | 2015-10-14 | ||
JP2015202674 | 2015-10-14 | ||
JP2016136010 | 2016-07-08 | ||
JP2016136010 | 2016-07-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018012825A JP2018012825A (en) | 2018-01-25 |
JP6614072B2 true JP6614072B2 (en) | 2019-12-04 |
Family
ID=61019265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016173363A Active JP6614072B2 (en) | 2015-10-14 | 2016-09-06 | Mn-activated bifluoride phosphor and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6614072B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10804442B2 (en) | 2018-01-29 | 2020-10-13 | Nichia Corporation | Light emitting device |
JP6940777B2 (en) * | 2018-12-26 | 2021-09-29 | 日亜化学工業株式会社 | Fluoride phosphor, light emitting device and method for producing fluoride phosphor |
WO2022044860A1 (en) * | 2020-08-25 | 2022-03-03 | デンカ株式会社 | Fluoride phosphor, complex, and light-emitting device |
JP7335520B2 (en) | 2021-06-21 | 2023-08-30 | 日亜化学工業株式会社 | WAVELENGTH CONVERSION MEMBER, LIGHT EMITTING DEVICE AND IMAGE DISPLAY DEVICE |
JP2023058394A (en) * | 2021-10-13 | 2023-04-25 | ステラケミファ株式会社 | Red phosphor and production method therefor |
CN115093849B (en) * | 2022-08-06 | 2023-10-31 | 烟台希尔德材料科技有限公司 | Preparation method of red fluorescent powder for high-brightness low-attenuation backlight |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5682104B2 (en) * | 2008-09-05 | 2015-03-11 | 三菱化学株式会社 | Phosphor and method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device |
JP2010232381A (en) * | 2009-03-26 | 2010-10-14 | Mitsubishi Chemicals Corp | Semiconductor light-emitting device, and image display and lighting device |
JP2011029497A (en) * | 2009-07-28 | 2011-02-10 | Mitsubishi Chemicals Corp | White light emitting device and illumination apparatus using the same |
JP5822045B2 (en) * | 2014-01-30 | 2015-11-24 | 信越化学工業株式会社 | Method for producing double fluoride phosphor |
JP6119623B2 (en) * | 2014-01-30 | 2017-04-26 | 信越化学工業株式会社 | Method for producing double fluoride phosphor |
JP5804149B2 (en) * | 2014-01-30 | 2015-11-04 | 信越化学工業株式会社 | Manufacturing method and processing method of double fluoride phosphor |
JP6155383B2 (en) * | 2014-02-26 | 2017-06-28 | デンカ株式会社 | Phosphor, light emitting element and light emitting device |
JP5915713B2 (en) * | 2014-09-30 | 2016-05-11 | 日亜化学工業株式会社 | Fluoride phosphor, method for producing the same, and light emitting device |
TWI656194B (en) * | 2015-04-28 | 2019-04-11 | 日商根本特殊化學股份有限公司 | Fluoride phosphor, method of manufacturing the same, and semiconductor light emitting device |
-
2016
- 2016-09-06 JP JP2016173363A patent/JP6614072B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018012825A (en) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5804149B2 (en) | Manufacturing method and processing method of double fluoride phosphor | |
JP6614072B2 (en) | Mn-activated bifluoride phosphor and method for producing the same | |
KR102693295B1 (en) | Mn-ACTIVATED COMPLEX FLUORIDE PHOSPHOR AND METHOD FOR PREPARING THE SAME | |
JP5845999B2 (en) | Method for producing double fluoride phosphor | |
JP5828366B2 (en) | Method for producing double fluoride phosphor | |
JP6394307B2 (en) | Bifluoride phosphor and method for producing the same | |
JP2018062596A (en) | Red phosphor and method for producing the same | |
WO2015115193A1 (en) | Complex fluoride phosphor and method for producing same | |
TWI641727B (en) | Method for producing complex fluoride phosphor | |
TW201529802A (en) | Method for producing fluorescent substance | |
JP6112029B2 (en) | Method for producing double fluoride phosphor | |
JP2016088950A (en) | Red fluorescent body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190402 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191021 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6614072 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |