JP6613868B2 - Cooling machine and welding equipment - Google Patents

Cooling machine and welding equipment Download PDF

Info

Publication number
JP6613868B2
JP6613868B2 JP2015246188A JP2015246188A JP6613868B2 JP 6613868 B2 JP6613868 B2 JP 6613868B2 JP 2015246188 A JP2015246188 A JP 2015246188A JP 2015246188 A JP2015246188 A JP 2015246188A JP 6613868 B2 JP6613868 B2 JP 6613868B2
Authority
JP
Japan
Prior art keywords
plate
cooling body
plate member
cooling
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015246188A
Other languages
Japanese (ja)
Other versions
JP2016198822A (en
Inventor
岳行 齋藤
学 福本
正裕 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2016198822A publication Critical patent/JP2016198822A/en
Application granted granted Critical
Publication of JP6613868B2 publication Critical patent/JP6613868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、冷却機及び冷却機を備える溶接装置に関し、さらに詳しくは、互いに異なる厚さを有する板材を溶接するときにこれらの板材を冷却するための冷却機及びこれら板材を溶接するための溶接装置に関する。   The present invention relates to a cooler and a welding apparatus including the cooler, and more specifically, a cooler for cooling these plate members when welding plate members having different thicknesses, and a weld for welding these plate members. Relates to the device.

板材を溶接する際には、溶接に伴う熱ひずみで板材の溶接箇所の周辺部に溶接変形を生じることがある。溶接変形は、見栄えを低下させると共に、製品性能に影響する。そのため、溶接変形を生じた場合には、溶接後にプレス機などで変形部分を矯正して、形状を修正することがある。しかしながら、矯正を行うと、製造時の手間が増加する。そのため、溶接時に溶接変形を抑制する取り組みがなされている。この取り組みとして、上記周辺部を強制的に冷却して、溶接に伴う温度勾配を低減させて溶接変形を抑制させる方法がある。   When welding a plate material, welding deformation may occur in the peripheral portion of the welded portion of the plate material due to thermal strain accompanying welding. Welding deformation reduces appearance and affects product performance. For this reason, when welding deformation occurs, the shape may be corrected by correcting the deformed portion with a press machine or the like after welding. However, if correction is performed, labor during manufacturing increases. Therefore, efforts have been made to suppress welding deformation during welding. As this approach, there is a method in which the peripheral portion is forcibly cooled to reduce a temperature gradient accompanying welding and suppress welding deformation.

この方法として、特開2002−153988号公報には、下面の開口している冷却ボックスを備える冷却装置が開示されている。この冷却装置は、冷却水を冷却ボックス内側に供給して板材に吹き付けることで、溶接変形を抑制している。そして、この冷却装置は、冷却ボックスの下面の縁に沿って、冷却ボックス内に供給された冷却水が溶接トーチ側へ流出しないよう仕切り材が取り付けられており、仕切り材は冷却ボックスを介してアームのスプリングによって一定の押し付け量で板材に圧接されている。   As this method, Japanese Patent Application Laid-Open No. 2002-153988 discloses a cooling device including a cooling box having an open bottom surface. This cooling device suppresses welding deformation by supplying cooling water to the inside of the cooling box and spraying it on the plate material. In this cooling device, a partition material is attached along the edge of the lower surface of the cooling box so that the cooling water supplied into the cooling box does not flow out to the welding torch side, and the partition material passes through the cooling box. It is pressed against the plate with a certain amount of pressing by the spring of the arm.

また、特開2001−71129号公報には、板材の突合せ溶接部の近傍に沿って、溶接部の左右に殻体を仮設密着させる溶接変形防止冶具が開示されている。この溶接変形防止冶具は、殻体の内部に冷媒を流通させて、殻体に沿って冷却ラインを形成し、溶接時に発生する熱が冷却ラインより左右外側に伝達されることを阻止している。そして、この溶接変形防止冶具は、重錘のごとき殻体押圧手段で殻体の底板の下面を板材の表面に密接させている。   Japanese Patent Application Laid-Open No. 2001-71129 discloses a welding deformation prevention jig that temporarily attaches a shell body to the left and right of a welded portion along the vicinity of a butt welded portion of a plate material. This welding deformation prevention jig circulates a coolant through the inside of the shell, forms a cooling line along the shell, and prevents heat generated during welding from being transferred to the left and right outside of the cooling line. . In this welding deformation prevention jig, the lower surface of the bottom plate of the shell is brought into close contact with the surface of the plate by shell pressing means such as a weight.

特開2002−153988号公報JP 2002-153988 A 特開2001−71129号公報JP 2001-71129 A

特開2002−153988号公報の冷却装置は、単一の冷却ボックスで溶接ビート及び左右両板材の溶接ビートの周辺部の上方を纏めて覆っている。そのため、この冷却装置は、左右で厚さの異なる板材などを溶接する際に、仕切り材による冷却水の流出を防止させることができない。   The cooling device disclosed in Japanese Patent Application Laid-Open No. 2002-153988 covers the upper portion of the peripheral portion of the welding beat and the welding beat of the left and right plate members together with a single cooling box. Therefore, this cooling device cannot prevent the cooling water from flowing out of the partition material when welding plate materials having different thicknesses on the left and right.

特開2001−71129号公報の溶接変形防止冶具は、板材を溶接する場合、その都度、殻体と板材との接触を確保するため、板材毎に重錘を配置する手間が必要となる。そして、これらの文献のいずれにも、厚さの異なる板材を溶接することに関する開示は無い。   In the welding deformation prevention jig disclosed in Japanese Patent Laid-Open No. 2001-71129, when a plate material is welded, in order to ensure contact between the shell and the plate material, it is necessary to arrange a weight for each plate material. And neither of these documents discloses disclosure relating to welding plate materials having different thicknesses.

本発明の目的は、板材に対する冷却体の位置決めを容易に行える冷却機及び溶接装置を提供することである。   The objective of this invention is providing the cooler and welding apparatus which can position the cooling body easily with respect to a board | plate material.

本発明の一実施形態による冷却機は、第1板材と第1板材よりも厚い第2板材とを溶接するときに第1及び第2板材を冷却する。第1板材と第2板材とをそれらの側面を互いに接触させて配置するためのステージと、第1板材の上面に接触される第1冷却体と、第2板材の上面に接触される第2冷却体と、第1冷却体を第1板材に押し付ける1又は2以上の第1押圧部と、第2冷却体を第2板材に押し付ける1又は2以上の第2押圧部と、第1及び第2押圧部を共通に支持する共通支持部とを備える。   The cooler according to one embodiment of the present invention cools the first and second plate members when welding the first plate member and the second plate member that is thicker than the first plate member. A stage for arranging the first plate member and the second plate member with their side surfaces in contact with each other, a first cooling body in contact with the upper surface of the first plate member, and a second in contact with the upper surface of the second plate member A cooling body, one or more first pressing portions that press the first cooling body against the first plate member, one or more second pressing portions that press the second cooling body against the second plate member, the first and first And a common support portion that supports the two pressing portions in common.

本発明の一実施形態による溶接装置は、上記冷却機と、溶接トーチとを備える。   The welding apparatus by one Embodiment of this invention is equipped with the said cooler and the welding torch.

本発明によれば、板材に対する冷却体の位置決めを容易に行うことができる。   According to the present invention, it is possible to easily position the cooling body with respect to the plate material.

図1は、接触面押し付け圧力と接触熱抵抗との関係を示すグラフである。FIG. 1 is a graph showing the relationship between contact surface pressing pressure and contact thermal resistance. 図2は、本発明の一実施形態による溶接装置の外観構成を示す斜視図である。FIG. 2 is a perspective view showing an external configuration of a welding apparatus according to an embodiment of the present invention. 図3は、図2に示した溶接装置を別の角度から見た斜視図である。FIG. 3 is a perspective view of the welding apparatus shown in FIG. 2 viewed from another angle. 図4は、図2及び図3中の圧縮ばねの内部構造を示す部分破断正面図である。FIG. 4 is a partially broken front view showing the internal structure of the compression spring in FIGS. 2 and 3. 図5は、本発明の一実施形態による他の冷却機の外観構成を示す斜視図である。FIG. 5 is a perspective view showing an external configuration of another cooler according to an embodiment of the present invention. 図6は、図5に示した冷却機の流体圧付与部の模式図である。FIG. 6 is a schematic diagram of a fluid pressure imparting section of the cooler shown in FIG.

本発明者らは、上記課題を解決するため、溶接時における冷却体での板材の安定した冷却を目的に、種々の検討を行い、以下の知見を得た。   In order to solve the above problems, the present inventors have made various studies for the purpose of stable cooling of the plate material with the cooling body during welding, and have obtained the following knowledge.

接触面押し付け圧力(押圧力)と接触熱抵抗との関係は、図1に示すように、押圧力が増加すると接触熱抵抗は減少するが、押圧力が所定値以上になると接触熱抵抗は飽和する(参考文献1:佐野川好母、「接触熱抵抗」、日本機械学会誌(1961)、pp247、図17の○印のプロットを引用)。具体的には、Al−Feの押圧力と接触熱抵抗との関係において、押圧力が7.4×10[N/m]以上になると、接触熱抵抗が安定してほぼ横這いに推移する。なお、接触熱抵抗は、Al−Feに限らず、例えば、Fe−Feなどであっても、押圧力が所定値以上になると、飽和する(例えば参考文献1のpp247、図18など参照)。 As shown in FIG. 1, the contact surface pressing pressure (pressing force) and the contact thermal resistance decrease as the pressing force increases, but the contact thermal resistance is saturated when the pressing force exceeds a predetermined value. (Reference 1: Yoshinobu Sanokawa, “Contact Thermal Resistance”, Journal of the Japan Society of Mechanical Engineers (1961), pp247, quoted with a circle in FIG. 17). Specifically, in the relationship between the pressing force of Al—Fe and the contact thermal resistance, when the pressing force is 7.4 × 10 6 [N / m 2 ] or more, the contact thermal resistance is stable and almost flat. To do. Note that the contact thermal resistance is not limited to Al—Fe, and, for example, even Fe—Fe, etc., is saturated when the pressing force exceeds a predetermined value (see, for example, pp 247 in Reference 1 and FIG. 18).

本発明者らは、上記の知見に基づいて本発明を完成させた。以下、本発明の一実施形態による冷却機を備える溶接装置について詳細に説明する。   The present inventors have completed the present invention based on the above findings. Hereinafter, a welding apparatus including a cooler according to an embodiment of the present invention will be described in detail.

本発明の一実施形態による冷却機は、第1板材と第1板材よりも厚い第2板材とを溶接するときに第1及び第2板材を冷却する。第1板材と第2板材とをそれらの側面を互いに接触させて配置するためのステージと、第1板材の上面に接触される第1冷却体と、第2板材の上面に接触される第2冷却体と、第1冷却体を第1板材に押し付ける1又は2以上の第1押圧部と、第2冷却体を第2板材に押し付ける1又は2以上の第2押圧部と、第1及び第2押圧部を共通に支持する共通支持部とを備える。   The cooler according to one embodiment of the present invention cools the first and second plate members when welding the first plate member and the second plate member that is thicker than the first plate member. A stage for arranging the first plate member and the second plate member with their side surfaces in contact with each other, a first cooling body in contact with the upper surface of the first plate member, and a second in contact with the upper surface of the second plate member A cooling body, one or more first pressing portions that press the first cooling body against the first plate member, one or more second pressing portions that press the second cooling body against the second plate member, the first and first And a common support portion that supports the two pressing portions in common.

この冷却機は、板材各々に対応する冷却体の位置決めを容易に行うことができる。   This cooler can easily position the cooling body corresponding to each plate material.

好ましくは、第1押圧部は第1圧縮ばねを含み、第2押圧部は第2圧縮ばねを含む。第1及び第2圧縮ばねは、次の式(1)を満たしかつ式(2)で定義される単位面積あたりのばね定数k[N/m/m]を有する。式(1)中、P[N/m]は第1及び第2冷却体と第1及び第2板材との間の接触熱抵抗が飽和するときの押圧力である。t[m]は第2板材の厚さであり、式(2)中、n[個]は第1及び第2圧縮ばね各々の数であり、kは圧縮ばね各々のばね定数であり、S[m]は圧縮ばねにより押し付けられる冷却体が板材に接触する面積である。

Figure 0006613868
Preferably, the first pressing portion includes a first compression spring, and the second pressing portion includes a second compression spring. The first and second compression springs have a spring constant k [N / m / m 2 ] per unit area that satisfies the following formula (1) and is defined by formula (2). In formula (1), P [N / m 2 ] is a pressing force when the contact thermal resistance between the first and second cooling bodies and the first and second plate members is saturated. t A [m] is the thickness of the second plate member, n in Equation (2) is the number of each of the first and second compression springs, and k i is the spring constant of each of the compression springs. , S [m 2 ] is an area where the cooling body pressed by the compression spring contacts the plate material.
Figure 0006613868

この冷却機では、第1圧縮ばねが第1板材の厚さ分だけ縮み、第2圧縮ばねが第2板材の厚さ分だけ縮む。第1板材が第2板材よりも薄い場合、第1圧縮ばねが第1冷却体を第1板材に押し付ける押圧力は、第2圧縮ばねが第2冷却体を第2板材に押し付ける押圧力よりも小さくなる。しかしながら、第1及び第2圧縮ばねの単位面積あたりのばね定数kはP/t以上であるため、第1冷却体と第1板材との間の接触熱抵抗と第2冷却体と第2板材との間の接触熱抵抗とはほぼ同じになり、第1板材から第1冷却体への抜熱量と第2板材から第2冷却体への抜熱量ともほぼ同じになる。その結果、第1及び第2板材に生じる溶接変形が抑えられる。 In this cooler, the first compression spring shrinks by the thickness of the first plate material, and the second compression spring shrinks by the thickness of the second plate material. When the first plate member is thinner than the second plate member, the pressing force by which the first compression spring presses the first cooling body against the first plate member is greater than the pressing force by which the second compression spring presses the second cooling member against the second plate member. Get smaller. However, since the spring constant k per unit area of the first and second compression springs is equal to or greater than P / t A , the contact thermal resistance between the first cooling body and the first plate member, the second cooling body, and the second cooling spring. The contact heat resistance with the plate material is substantially the same, and the heat removal amount from the first plate member to the first cooling body and the heat removal amount from the second plate member to the second cooling body are substantially the same. As a result, welding deformation that occurs in the first and second plate members is suppressed.

好ましくは、第1及び第2圧縮ばねは、次の式(3)を満たす単位面積あたりのばね定数k[N/m/m]を有し、式(3)中、ρ[N/m]は第2板材の降伏応力であり、t[m]は第2板材の厚さである。

Figure 0006613868
Preferably, the first and second compression springs have a spring constant k [N / m / m 2 ] per unit area that satisfies the following formula (3), and in the formula (3), ρ [N / m 2 ] is the yield stress of the second plate, and t B [m] is the thickness of the second plate.
Figure 0006613868

この場合、第1及び第2板材にかかる押圧力のむらが抑制され、第1及び第2板材からの抜熱量のむらも抑制される。その結果、第1及び第2板材は均一に冷却される。   In this case, unevenness of the pressing force applied to the first and second plate members is suppressed, and unevenness of the heat removal amount from the first and second plate members is also suppressed. As a result, the first and second plate members are uniformly cooled.

好ましくは、第1押圧部の個数は2個以上であり、第1冷却体上に直線上にかつ対称に配置される。第2押圧部の個数は2個以上であり、第2冷却体上に直線上にかつ対称に配置される。   Preferably, the number of the first pressing portions is two or more, and the first pressing portions are arranged linearly and symmetrically on the first cooling body. The number of the second pressing portions is two or more, and is arranged linearly and symmetrically on the second cooling body.

好ましくは、共通支持部は、第1及び第2押圧部を同じ圧力で押す流体で満たされた密閉容器を含み、第1及び第2押圧部はシリンダーを含む。   Preferably, the common support part includes an airtight container filled with a fluid that presses the first and second pressing parts with the same pressure, and the first and second pressing parts include a cylinder.

この場合、第1及び第2押圧部各々により第1及び第2冷却体が同じ押圧力で第1及び第2板材に接触する。その結果、第1及び第2板材は均一に冷却される。   In this case, the first and second pressing parts respectively contact the first and second plate members with the same pressing force by the first and second pressing portions. As a result, the first and second plate members are uniformly cooled.

溶接装置は、上記冷却機と、ステージの上方に配置される溶接トーチとを備える。   The welding apparatus includes the cooling machine and a welding torch disposed above the stage.

本実施形態による溶接装置は、図2及び図3に示すように、冷却体1と、冷却体2と、複数の支持体7と、複数の支持体8と、溶接トーチ10と、取付具11と、梁9と、ステージ5とを備える。溶接装置は、板材21とこれよりも厚い板材22とを溶接することができる。換言すると、溶接装置は、冷却機と、溶接トーチ10と、取付具11とを備える。冷却機は、冷却体1と、冷却体2と、複数の押圧部18と、複数の押圧部19と、梁9と、ステージ5とを備える。   As shown in FIGS. 2 and 3, the welding apparatus according to the present embodiment includes a cooling body 1, a cooling body 2, a plurality of supports 7, a plurality of supports 8, a welding torch 10, and a fixture 11. And a beam 9 and a stage 5. The welding apparatus can weld the plate material 21 and the plate material 22 thicker than this. In other words, the welding apparatus includes a cooler, a welding torch 10, and a fixture 11. The cooler includes a cooling body 1, a cooling body 2, a plurality of pressing portions 18, a plurality of pressing portions 19, a beam 9, and a stage 5.

次の表1は、板材21と板材22の組み合わせと、その場合の合成ばね定数k(単位面積あたりのばね定数)の例を示す。 Table 1 below shows an example of a combination of the plate material 21 and the plate material 22 and a combined spring constant k c (spring constant per unit area) in that case.

Figure 0006613868
Figure 0006613868

板材21,22は、特に限定されないが、例えば溶接トーチ10で溶接可能な鋼板である。なお、板材21,22の組み合わせは、同種の鋼板の組み合わせに限定されず、例えば熱処理などの加工条件や、成分組成などの異なる、異種の鋼板の組み合わせであってもよい。   Although the board | plate materials 21 and 22 are not specifically limited, For example, it is a steel plate which can be welded with the welding torch 10. FIG. Note that the combination of the plate materials 21 and 22 is not limited to the combination of the same type of steel plates, and may be a combination of different types of steel plates having different processing conditions such as heat treatment and different component compositions.

板材21,22は、それらの側面が互いに接触された状態でステージ5上に設置される。ステージ5上には、板材21,22が同一平面上に配置される。換言すると、ステージ5は、板材21の下面と板材22の下面とを同一平面上に揃えて、各板材21,22を下方から支える。ステージ5は、例えば各板材21,22を並べて置くための水平面を上部に有する。なお、ステージ5は、ステージ5上部に平面を有するものに限定されず、板材21の下面と板材22の下面とを同一平面上に揃えた姿勢で板材21,22を下方から支持可能であればよく、例えば搬送ローラーを並べたものであってもよい。   The plate materials 21 and 22 are installed on the stage 5 with their side surfaces in contact with each other. On the stage 5, plate members 21 and 22 are arranged on the same plane. In other words, the stage 5 supports the plate materials 21 and 22 from below by aligning the lower surface of the plate material 21 and the lower surface of the plate material 22 on the same plane. The stage 5 has, for example, a horizontal plane for placing the plate members 21 and 22 side by side at the top. The stage 5 is not limited to the one having a flat surface on the top of the stage 5, as long as the lower surface of the plate material 21 and the lower surface of the plate material 22 are aligned on the same plane and the plate materials 21 and 22 can be supported from below. For example, the conveyance rollers may be arranged side by side.

溶接トーチ10は、例えばレーザートーチである。溶接トーチ10は、取付具11の下部に取り付けられる。溶接トーチ10は、取付具11を介して梁9に支持される。梁9は、例えば溶接装置を設置した建物に固定される。また、取付具11は板材21,22の付き合わせた端部(辺)に沿って梁9に対して移動し、これに伴い、溶接トーチ10も移動する。溶接トーチ10は、移動時に、板材21,22の互いに付き合わせた端部を溶接する。溶接時に溶接トーチ10の移動する方向が溶接方向であり、平面視において溶接方向に直交する方向が左右である。   The welding torch 10 is, for example, a laser torch. The welding torch 10 is attached to the lower part of the fixture 11. The welding torch 10 is supported by the beam 9 via the fixture 11. The beam 9 is fixed to a building where a welding device is installed, for example. Further, the fixture 11 moves with respect to the beam 9 along the end portions (sides) of the plate members 21 and 22, and the welding torch 10 moves accordingly. The welding torch 10 welds the end portions of the plate members 21 and 22 that are attached to each other when moving. The direction in which the welding torch 10 moves during welding is the welding direction, and the direction orthogonal to the welding direction in plan view is the left and right.

冷却体1の下面は平面であり、冷却体1が板材21上に配置されることで、冷却体1の下面が板材21の上面に接触して板材21が冷却される。冷却体1の材料は、特に限定されないが、熱伝導率の高い材料が好ましい。例えば、鋼材等を用いてもよいし、アルミニウムを含むアルミニウム製であってもよい。   The lower surface of the cooling body 1 is a plane, and the cooling body 1 is disposed on the plate material 21, whereby the lower surface of the cooling body 1 comes into contact with the upper surface of the plate material 21 and the plate material 21 is cooled. Although the material of the cooling body 1 is not specifically limited, A material with high heat conductivity is preferable. For example, steel material etc. may be used and the product made from aluminum containing aluminum may be sufficient.

冷却体1の形状は限定されないが、例えば内部に空間を有する箱状である。冷却体1を投影した形状は、特に限定されないが、例えば図2における奥行き方向である溶接方向に長い平面視長方形状であり、正面視矩形の枠状である。冷却体1の箱内の構造は、空間が設けられてもよく、当該空間に冷媒が流通されていてもよい。冷媒の種類は特に限定されないが、例えば水である。冷媒を流通させる経路は、特に限定されないが、例えば冷却体1の溶接方向における一方の端部から冷却体1内に供給され冷却体1溶接方向における反対側の端部から冷却体1外に排出されることで、冷却体1内を流通させてもよい。なお、板材21から冷却体1に伝わった熱が冷却体1から放熱されることで板材21が冷却されるため、冷却体1内に冷媒を流通させなくてもよく、冷却体1の内部に空間を有しなくてもよい。   Although the shape of the cooling body 1 is not limited, For example, it is a box shape which has space inside. Although the shape which projected the cooling body 1 is not specifically limited, For example, it is a planar view rectangular shape long in the welding direction which is the depth direction in FIG. 2, and is a frame shape of a front view rectangle. The structure in the box of the cooling body 1 may be provided with a space, and a refrigerant may be circulated in the space. Although the kind of refrigerant | coolant is not specifically limited, For example, it is water. The path through which the refrigerant flows is not particularly limited. For example, the coolant is supplied from one end in the welding direction of the cooling body 1 into the cooling body 1 and discharged out of the cooling body 1 from the opposite end in the cooling body 1 welding direction. By doing so, the inside of the cooling body 1 may be circulated. Since the heat transferred from the plate 21 to the cooling body 1 is dissipated from the cooling body 1, the plate 21 is cooled. Therefore, it is not necessary to circulate the refrigerant in the cooling body 1. It is not necessary to have a space.

冷却体2は、冷却体1とほぼ構成が同じであるため、重複する説明は省略し、相違点を説明する。冷却体2は板材22上に配置される。冷却体2は、板材22上に配置されることで、冷却体2の平坦な下面が板材22の上面に接触する。冷却体1,2は、図2〜図4に示すように、左右に並び、互いの形状が左右対称形状である。   Since the cooling body 2 has substantially the same configuration as the cooling body 1, the overlapping description will be omitted and the differences will be described. The cooling body 2 is disposed on the plate material 22. The cooling body 2 is disposed on the plate material 22 so that the flat lower surface of the cooling body 2 is in contact with the upper surface of the plate material 22. As shown in FIGS. 2 to 4, the cooling bodies 1 and 2 are arranged side by side, and their shapes are symmetrical to each other.

支持体7は上下に長さを有する。支持体7の下部は、冷却体1の上部に固定される。支持体7の上部は、梁9に固定される。このため、支持体7は、冷却体1を上方から支持する。   The support 7 has a vertical length. The lower part of the support body 7 is fixed to the upper part of the cooling body 1. The upper part of the support 7 is fixed to the beam 9. For this reason, the support body 7 supports the cooling body 1 from upper direction.

支持体7の数や配置は、特に限定されないが、例えば図3及び図4に示すように、支持体7は溶接方向に沿う直線上に3つ配置され、3つの支持体7は等間隔に並ぶ。換言すると、3つの支持体7のうち1つは冷却体1の中央に配置され、残りの2つの支持体7は前後対称に配置される。すなわち、3つの支持体7は、冷却体1上に、直線上にかつ対称に配置される。   The number and arrangement of the supports 7 are not particularly limited. For example, as shown in FIGS. 3 and 4, three supports 7 are arranged on a straight line along the welding direction, and the three supports 7 are equally spaced. line up. In other words, one of the three supports 7 is disposed in the center of the cooling body 1 and the remaining two supports 7 are disposed symmetrically in the front-rear direction. That is, the three supports 7 are arranged on the cooling body 1 in a straight line and symmetrically.

支持体7の各々は、図4に示すように、上部品14と、下部品15と、押え板16とを有する。3つの支持体7は、配置される位置を除き、ほぼ構成が同じであるため、以下、便宜上1つの支持体7を代表にとり説明する。   As shown in FIG. 4, each support body 7 includes an upper part 14, a lower part 15, and a pressing plate 16. Since the three supports 7 have substantially the same configuration except for the position where they are arranged, the following description will be given by taking one support 7 as a representative for convenience.

上部品14は、梁9に固定される。上部品14は、特に限定されないが、例えば下方に開口し、中心軸方向が上下に沿う円筒状である。下部品15は、上部品14の下方に配置される。下部品15は、特に限定されないが、例えば中心軸方向が上下に沿う円柱状である。下部品15は、その上部が上部品14の筒内に下方から挿入されている。下部品15は、上部品14から下方への突出量が可変である。下部品15は、下端に押え板16が固定される。押え板16は、平面視正方形状の平板である。押え板16は、その下面に冷却体1が固定される。押え板16は、その押え板16の上面の面積が下部品15の下面の面積より大きい。換言すると、支持体13は、下部品15の下面に比べて広い面積の下面を有する押え板16で、冷却体1に固定される。なお、支持体7は、下部品15の上部品14からの抜け落ちを防止するストッパーとして、上部品14と下部品15とを繋ぐ鎖を更に含むことが好ましい。また、このストッパーは、鎖に限らず、例えば、上部材14に設けられ上下に長さを有するスリットと、下部材15に設けられこのスリット内に配置されるピンとを含み、このピンがスリットにピンが引っかかるようにしてもよい。   The upper part 14 is fixed to the beam 9. Although the upper component 14 is not specifically limited, For example, it is a cylindrical shape which opens below and the center axis direction follows up and down. The lower part 15 is disposed below the upper part 14. Although the lower part 15 is not specifically limited, For example, the center-axis direction is the column shape which follows up and down. The upper part of the lower part 15 is inserted into the cylinder of the upper part 14 from below. The lower component 15 has a variable amount of protrusion downward from the upper component 14. The lower part 15 has a presser plate 16 fixed to the lower end. The presser plate 16 is a flat plate having a square shape in plan view. The cooling body 1 is fixed to the lower surface of the pressing plate 16. The pressing plate 16 has an upper surface area larger than that of the lower surface of the lower part 15. In other words, the support body 13 is fixed to the cooling body 1 by the pressing plate 16 having a lower surface having a larger area than the lower surface of the lower part 15. The support 7 preferably further includes a chain connecting the upper part 14 and the lower part 15 as a stopper for preventing the lower part 15 from coming off from the upper part 14. In addition, the stopper is not limited to the chain, and includes, for example, a slit provided in the upper member 14 and having a length in the vertical direction, and a pin provided in the lower member 15 and disposed in the slit. The pin may be caught.

支持体8は、支持体7とほぼ構成が同じであるため、重複する説明は省略し、相違点を説明する。支持体8は冷却体2を上方から支持する。支持体8は、押え板16が冷却体2に固定される。支持体7,8は、左右対称に配置される。ここで、梁9は、支持体7,8を支持する。そのため、梁9は、支持体7,8を共通に支持する共通支持部17である。   Since the support body 8 has substantially the same configuration as the support body 7, a redundant description will be omitted and the differences will be described. The support body 8 supports the cooling body 2 from above. In the support 8, the presser plate 16 is fixed to the cooling body 2. The supports 7 and 8 are arranged symmetrically. Here, the beam 9 supports the supports 7 and 8. Therefore, the beam 9 is a common support portion 17 that supports the support bodies 7 and 8 in common.

圧縮ばね3は、特に限定されないが、例えば、コイルばね、空気ばね、板ばね、竹の子ばねから選ばれる1つであることが好ましく、例えばコイルばねである。圧縮ばね3は、1又は2以上設けられる。2以上の圧縮ばね3は、例えば溶接方向に沿う1つの直線上に対称性を有して冷却体1上に配置される。具体的には、例えば、冷却体1の前後寸法の中央を基準に前後で対称となる位置で直線上に並び、配置され、3以上の奇数で圧縮ばね3を有する場合、中央に1つの圧縮ばね3が配置されることが好ましい。なお、2以上の圧縮ばね3は直線上に対称性を有して冷却体1上に配置されればよく、4以上の圧縮ばね3を有する場合、1つの直線上での配置に限らず、溶接方向に沿う平行な2以上の直線上に分かれて各直線上に対称性を有して冷却体1上に配置されてもよい。   Although the compression spring 3 is not specifically limited, For example, it is preferable that it is one selected from a coil spring, an air spring, a leaf | plate spring, and a bamboo shoot spring, for example, it is a coil spring. One or more compression springs 3 are provided. The two or more compression springs 3 are arranged on the cooling body 1 with symmetry on one straight line along the welding direction, for example. Specifically, for example, when the compression body 3 is arranged and arranged on a straight line at positions symmetrical with respect to the front and rear dimensions with respect to the center of the front and rear dimensions of the cooling body 1 and has the compression spring 3 with an odd number of 3 or more, one compression is provided at the center. A spring 3 is preferably arranged. The two or more compression springs 3 may be arranged on the cooling body 1 with symmetry on a straight line. When the four or more compression springs 3 are provided, the arrangement is not limited to one straight line, It may be divided on two or more parallel straight lines along the welding direction and arranged on the cooling body 1 with symmetry on each straight line.

圧縮ばね3は、例えば、支持体7内に配置される。このため、溶接装置は、3つの支持体7と同数の3つの圧縮ばね3を備える。3つの圧縮ばね3は、いずれも構成が同じであるため、便宜上1つの圧縮ばね3を代表にとり説明する。なお、圧縮ばね3は、支持体7内に配置されるものに限定されず、例えば上端を梁9に固定され下端を冷却体1に接触させた状態で設けられるものなど、支持体7を介さずに冷却体1に接触されるものであってもよい。そして、圧縮ばね3は、支持体7を介さない場合、冷却体1を梁9に支持してもよい。また、支持体7内に配置される圧縮ばね3は、上部品14の筒内天面と下部品15の上面とに固着されることにより、下部品15の上部品14からの抜け落ちを防止するストッパーとしても機能してもよい。   The compression spring 3 is arrange | positioned in the support body 7, for example. For this reason, the welding apparatus includes the same number of three compression springs 3 as the three supports 7. Since all the three compression springs 3 have the same configuration, one compression spring 3 will be described as a representative for convenience. The compression spring 3 is not limited to the one disposed in the support 7, and for example, the compression spring 3 is provided with the upper end fixed to the beam 9 and the lower end in contact with the cooling body 1. Instead, it may be in contact with the cooling body 1. The compression spring 3 may support the cooling body 1 on the beam 9 when the support body 7 is not interposed. Further, the compression spring 3 disposed in the support 7 is fixed to the top surface of the upper part 14 in the cylinder and the upper surface of the lower part 15, thereby preventing the lower part 15 from falling off the upper part 14. It may also function as a stopper.

圧縮ばね3は、押圧部18に含まれる。押圧部18は冷却体1を板材21に押し付ける。具体的には、圧縮ばね3は、例えば、上端を上部品14の筒内天面に接触させかつ下端を下部品15の上面に接触させた姿勢で、上部品14内に配置される。圧縮ばね3は、冷却体1の下方に板材21が配置されることで、下部品15を介して上部品14内で圧縮される。このとき、圧縮ばね3は、圧縮される変位量が板材21の厚さとほぼ同一となる。換言すると、板材21の厚さとは、圧縮ばね3が押圧する方向に平行な向きにおける寸法であり、例えば板材21の上下に沿う寸法である。圧縮ばね3は、圧縮されることで、そのばね定数に応じた押圧力で冷却体1を下方に押圧する。このため、冷却体1は、板材21との接触時に、上方から弾性的に支持されることとなり、板材21の上面(接触面)への追従性が向上される。これによって、冷却体1は、材21が段差や波打ちを有する平坦度の良くない場合であっても、板材21に安定して接触することができる。   The compression spring 3 is included in the pressing portion 18. The pressing unit 18 presses the cooling body 1 against the plate material 21. Specifically, the compression spring 3 is disposed in the upper part 14 in a posture in which, for example, the upper end is brought into contact with the top surface of the upper part 14 and the lower end is brought into contact with the upper surface of the lower part 15. The compression spring 3 is compressed in the upper part 14 via the lower part 15 by arranging the plate material 21 below the cooling body 1. At this time, the displacement amount of the compression spring 3 is substantially the same as the thickness of the plate 21. In other words, the thickness of the plate material 21 is a dimension in a direction parallel to the direction in which the compression spring 3 presses, for example, a dimension along the top and bottom of the plate material 21. The compression spring 3 is compressed to press the cooling body 1 downward with a pressing force corresponding to the spring constant. For this reason, the cooling body 1 is elastically supported from above at the time of contact with the plate material 21, and the followability to the upper surface (contact surface) of the plate material 21 is improved. As a result, the cooling body 1 can stably come into contact with the plate material 21 even when the material 21 has a level difference or waviness and the flatness is not good.

圧縮ばね3は、所定値以上の押圧力で冷却体1を板材21に押し付ける。押圧力の前記所定値は、先の知見のとおり、冷却体1と板材21との接触熱抵抗が飽和するときの押圧力P[N/m]である。このため、板材21の厚さをt[m]とし、接触熱抵抗が飽和するときの押圧力をP[N/m]とするとき、圧縮ばね3は、以下の式(1)を満たす単位面積あたりのばね定数k[N/m/m]を有する。

Figure 0006613868
The compression spring 3 presses the cooling body 1 against the plate member 21 with a pressing force equal to or greater than a predetermined value. The predetermined value of the pressing force is the pressing force P [N / m 2 ] when the contact thermal resistance between the cooling body 1 and the plate member 21 is saturated, as described above. For this reason, when the thickness of the plate 21 is t A [m] and the pressing force when the contact thermal resistance is saturated is P [N / m 2 ], the compression spring 3 has the following formula (1): It has a spring constant k [N / m / m 2 ] per unit area to be satisfied.
Figure 0006613868

ここで、圧縮ばね3の数をn[個]とし、n個の圧縮ばね3のばね定数をそれぞれk,k,・・・kとし、冷却体1と板材21との接触面積(冷却体1の下面の面積)をS[m]とするとき、単位面積あたりのばね定数kは、以下の式(2)を満たす。ここで、nは自然数であり、圧縮ばね3の個数は1個でも2個以上でもよい。具体的には、例えば3つの圧縮ばね3を有する場合、3つの圧縮ばね3のばね定数をそれぞれk,k,kとし、前記接触面積Sを1mとするとき、単位面積あたりのばね定数kは、前記のばね定数k,k,kの和(合成ばね定数)と等しくなる。

Figure 0006613868
Here, the number of the compression spring 3 and n [pieces], k 1 n pieces of the spring constant of the compression spring 3 respectively, k 2, and · · · k n, the contact area between the cooling body 1 and the plate member 21 ( When the area of the lower surface of the cooling body 1 is S [m 2 ], the spring constant k per unit area satisfies the following formula (2). Here, n is a natural number, and the number of compression springs 3 may be one or two or more. Specifically, for example, when three compression springs 3 are provided, the spring constants of the three compression springs 3 are k 1 , k 2 , and k 3 , respectively, and the contact area S is 1 m 2 . The spring constant k is equal to the sum (synthetic spring constant) of the spring constants k 1 , k 2 , and k 3 .
Figure 0006613868

また、圧縮ばね3は、単位面積あたりのばね定数kに上限を有することが好ましい。この上限は、例えば板材22の降伏応力の半分の値を用いて設定される。この場合、板材22の厚さをt[m]とし、前記降伏応力をρ[N/m]とするとき、圧縮ばね3の単位面積あたりのばね定数k[N/m/m]は、以下の式(3)を満たす。なお、板材21,22は溶接可能な他の公知の鋼材が適用されるため、単位面積あたりのばね定数kの上限は、適宜前記鋼材の降伏応力を式(3)のρに代入すればよい。

Figure 0006613868
Moreover, it is preferable that the compression spring 3 has an upper limit in the spring constant k per unit area. This upper limit is set using, for example, a half value of the yield stress of the plate 22. In this case, when the thickness of the plate 22 is t B [m] and the yield stress is ρ [N / m 2 ], the spring constant k [N / m / m 2 ] per unit area of the compression spring 3 Satisfies the following equation (3). In addition, since other well-known steel materials that can be welded are applied to the plate materials 21 and 22, the upper limit of the spring constant k per unit area may be appropriately substituted for the yield stress of the steel material in ρ in the equation (3). .
Figure 0006613868

圧縮ばね4は、圧縮ばね3とほぼ構成が同じであるため、重複する説明は省略し、相違点を説明する。圧縮ばね4は、例えば、支持体8内に配置される。圧縮ばね4は、冷却体2の下方に板材22が配置されることで、下部品15を介して上部品14内で圧縮される。圧縮ばね4は、押圧部19に含まれる。押圧部19は冷却体2を板材22に押し付ける。圧縮ばね3と圧縮ばね4はそれぞれ個別に存在するため、さらに、圧縮ばね3のばね定数kをk、圧縮ばね3の数をn個、i個目の圧縮ばね3のばね定数をkA,i、冷却体1が板材21に接触する面積をSとすると、式(2)は次の式(4)で示される。圧縮ばね4のばね定数kをk、圧縮ばね4の数をn個、j個目の圧縮ばね4のばね定数をkB,j、冷却体2が板材22に接触する面積をSとすると、式(2)は次の式(5)で示される。

Figure 0006613868
Since the compression spring 4 has substantially the same configuration as that of the compression spring 3, a redundant description will be omitted and differences will be described. The compression spring 4 is arrange | positioned in the support body 8, for example. The compression spring 4 is compressed in the upper part 14 via the lower part 15 by arranging the plate material 22 below the cooling body 2. The compression spring 4 is included in the pressing portion 19. The pressing portion 19 presses the cooling body 2 against the plate material 22. Since the compression spring 3 and the compression spring 4 exist separately, the spring constant k of the compression spring 3 is k A , the number of compression springs 3 is n A , and the spring constant of the i-th compression spring 3 is k When A, i and the area where the cooling body 1 contacts the plate material 21 are S A , the equation (2) is expressed by the following equation (4). The spring constant k of the compression spring 4 is k B , the number of the compression springs 4 is n B , the spring constant of the jth compression spring 4 is k B, j , and the area where the cooling body 2 contacts the plate member 22 is S B Then, Formula (2) is shown by the following Formula (5).
Figure 0006613868

特に限定されないが、以下、具体的な圧縮ばね3,4の構成を例示する。この場合、例えば、板材21,22を熱間圧延軟鋼板とし、冷却体1,2をアルミニウム製とし、板材21,22として表1の板組み例の7通りが行われるとする。   Although it does not specifically limit, below, the structure of the concrete compression springs 3 and 4 is illustrated. In this case, for example, it is assumed that the plate materials 21 and 22 are hot-rolled mild steel plates, the cooling bodies 1 and 2 are made of aluminum, and the plate materials 21 and 22 are subjected to seven plate assembly examples shown in Table 1.

先の知見から押圧力Pが7.4×10N/mとなり、前記降伏応力ρを熱間圧延軟鋼板の降伏応力とするとき、前記降伏応力の半分の値が87.5×10N/mとなる(参考文献2:国重和俊、「自動車用高張力鋼板の最近の進歩と展望」、材料(2001)、p52、図9の軟鋼、ひずみ速度4×10−3/sのデータを引用)。 From the above knowledge, when the pressing force P is 7.4 × 10 6 N / m 2 and the yield stress ρ is the yield stress of the hot rolled mild steel sheet, the half value of the yield stress is 87.5 × 10 6. 6 N / m 2 (Reference 2: Kazutoshi Kunishige, “Recent Advances and Prospects of High-Strength Steel Sheets for Automobiles”, Material (2001), p52, Mild Steel in FIG. 9, Strain Rate 4 × 10 −3 / quoting s data).

このため、式(1)は以下の式(6)となり、式(3)は以下の式(7)となる。そして、表1より、板材21の厚さのうち最も薄い厚さtが0.7×10−3mであり、板材22の厚さのうち最も厚い厚さtが3.2×10−3mであるため、圧縮ばね3及び4の単位面積あたりのばね定数kは、式(6),(7)より、下限を10.6×10N/m/m、上限を27.3×10N/m/mとされる。

Figure 0006613868
Therefore, Expression (1) becomes the following Expression (6), and Expression (3) becomes the following Expression (7). And from Table 1, the thinnest thickness t A among the thicknesses of the plate material 21 is 0.7 × 10 −3 m, and the thickest thickness t B among the thicknesses of the plate material 22 is 3.2 × 10 6. -3 m, the spring constant k per unit area of the compression springs 3 and 4 is 10.6 × 10 9 N / m / m 2 as the lower limit and 27 as the upper limit from the equations (6) and (7). 3 × 10 9 N / m / m 2 .
Figure 0006613868

ここで、表1では、各冷却体1,2と対応する板材21,22との接触面積をいずれも1mとするとき、単位面積あたりのばね定数k[N/m/m]に単位面積として前記接触面積(1m)をかけた値を合成ばね定数k[N/m]として表記している。この合成ばね定数kにおいて、「下限」の値は、式(6)のtに板組み例における板材21の厚さを代入し、得られる単位面積あたりのばね定数k[N/m/m]の下限値に前記接触面積をかけた値[N/m]である。更に、「上限」の値は、式(7)のtに板組み例における板材22の厚さを代入し、得られる単位面積あたりのばね定数k[N/m/m]の上限値に前記接触面積(1m)をかけた値[N/m]である。 Here, in Table 1, when the contact areas between the cooling bodies 1 and 2 and the corresponding plate materials 21 and 22 are both 1 m 2 , the unit is the spring constant k [N / m / m 2 ] per unit area. A value obtained by multiplying the contact area (1 m 2 ) as an area is expressed as a composite spring constant k c [N / m]. In this composite spring constant k c , the value of “lower limit” is obtained by substituting the thickness of the plate material 21 in the plate assembly example into t A in the equation (6), and the spring constant k [N / m / It is a value [N / m] obtained by multiplying the lower limit value of m 2 ] by the contact area. Furthermore, the value of the “upper limit” is the upper limit value of the spring constant k [N / m / m 2 ] per unit area obtained by substituting the thickness of the plate member 22 in the plate assembly example into t B in the equation (7). It is a value [N / m] which multiplied the contact area (1 m 2 ).

表1の板組み例において、溶接装置は、各冷却体1,2の各板材21,22との接触面積を1mとするとき、各圧縮ばね3,4として、例えば7.0×10N/mのばね定数k,k,kをそれぞれ有する3つのコイルばねを設ければよい。この場合、各圧縮ばね3,4の単位面積あたりのばね定数kはそれぞれ、式(2)、式(4)及び式(5)より、21.0×10N/m/mとなり、式(6)及び式(7)を満たすためである。なお、ばね定数k,k,・・・,k及び単位面積あたりのばね定数kは、いずれも前記の具体的な数値のみに限定されるものではない。 In the plate assembly example of Table 1, when the contact area between the cooling bodies 1 and 2 and the plate materials 21 and 22 is 1 m 2 , the welding device is, for example, 7.0 × 10 9 as the compression springs 3 and 4. Three coil springs having N / m spring constants k 1 , k 2 , and k 3 may be provided. In this case, the spring constant k per unit area of each of the compression springs 3 and 4 is 21.0 × 10 9 N / m / m 2 from the equations (2), (4), and (5), respectively. This is because the expressions (6) and (7) are satisfied. Incidentally, the spring constant k per spring constant k 1, k 2, · · ·, k n, and unit area, not both to be limited to specific values of the.

以上のように、冷却機は、共通支持部30を用いて支持体7,8を共通に支持することで、板材21,22に対する冷却体1,2の位置決めを容易に行うことができる。そのため、冷却機は、板材の厚さが異なっても、例えば冷却体1,2を容易に左右対称で配置できる。   As described above, the cooler can easily position the cooling bodies 1 and 2 with respect to the plate materials 21 and 22 by commonly supporting the supports 7 and 8 using the common support portion 30. Therefore, even if the thickness of a board | plate material differs, the cooler can arrange | position the cooling bodies 1 and 2 with left-right symmetry easily, for example.

冷却機は、圧縮ばね3,4が式(1)を満たすことで、板材21,22の配置時に都度圧縮ばね3,4の押圧力を調整する工程などを実施しなくても、所定値P以上の押圧力で各冷却体1,2と各板材21,22と接触させることができる。そのため、冷却機は、良好な接触熱抵抗の状態で板材21,22を冷却することができる。その結果、溶接装置は、溶接に伴う入熱による溶接変形の発生を抑制して、板材21,22を溶接することができる。更に、冷却体1での抜熱量と冷却体2での抜熱量とをほぼ同一にすることができるため、冷却機は、板材21,22間での熱勾配の発生を抑制することができる。その結果、溶接装置は、この熱勾配による溶接変形の発生を抑制して、板材21,22を溶接することができる。   Since the compression springs 3 and 4 satisfy the expression (1), the cooler can perform the predetermined value P without performing a step of adjusting the pressing force of the compression springs 3 and 4 each time the plate members 21 and 22 are arranged. The cooling bodies 1 and 2 and the plate members 21 and 22 can be brought into contact with each other with the above pressing force. Therefore, the cooler can cool the plate materials 21 and 22 in a state of good contact heat resistance. As a result, the welding apparatus can weld the plate members 21 and 22 while suppressing the occurrence of welding deformation due to heat input accompanying welding. Furthermore, since the heat removal amount in the cooling body 1 and the heat removal amount in the cooling body 2 can be made substantially the same, the cooler can suppress the occurrence of a thermal gradient between the plate members 21 and 22. As a result, the welding apparatus can weld the plate members 21 and 22 while suppressing the occurrence of welding deformation due to the thermal gradient.

冷却機は、各冷却体1,2と対応する板材21,22との接触面の追従性の向上によって、板材21,22の少なくとも一方の平坦度が良くない場合であっても、各冷却体1,2と夫々に対応する各板材21,22とを安定して接触させることができる。これらのことから、冷却機及び溶接装置は、厚さの異なる鋼板を溶接する場合に加え、例えばテーラードブランク溶接などの平坦度の低い鋼板を溶接する場合にも好適に使用可能である。   Even if the flatness of at least one of the plate members 21 and 22 is not good due to the improvement in the followability of the contact surfaces between the respective cooling members 1 and 2 and the corresponding plate members 21 and 22, 1 and 2 and the plate materials 21 and 22 corresponding to each can be contacted stably. For these reasons, the cooler and the welding apparatus can be suitably used not only when welding steel plates with different thicknesses but also when welding steel plates with low flatness such as tailored blank welding.

冷却機は、圧縮ばね3,4が式(3)を満たすことで、例えば押圧力を調整する工程を省いて冷却体1,2を対応する板材21,22に接触させる場合であっても、各冷却体1,2と対応する板材21,22との接触箇所での塑性変形や疵の発生を抑制することができる。また、冷却機は、前記冷媒を冷却体1,2内に流通させることで、前記冷媒を介して板材21,22からの熱が冷却体1,2外に排出され、冷却時における冷却体1,2への蓄熱を軽減させることができ好ましい。なお、圧縮ばね3,4は、合成ばね定数が異なってもよい。この場合、左右の押圧力を同一にして、左右の接触熱抵抗を同一できる。   Even if the cooling machine 3 and 4 satisfy the formula (3), for example, the step of adjusting the pressing force is omitted and the cooling bodies 1 and 2 are brought into contact with the corresponding plate materials 21 and 22, It is possible to suppress the occurrence of plastic deformation and wrinkles at the contact points between the respective cooling bodies 1 and 2 and the corresponding plate materials 21 and 22. Further, the cooler distributes the refrigerant in the cooling bodies 1 and 2, so that the heat from the plate members 21 and 22 is discharged to the outside of the cooling bodies 1 and 22 through the refrigerant, and the cooling body 1 at the time of cooling. , 2 is preferable because it can reduce the heat storage. The compression springs 3 and 4 may have different composite spring constants. In this case, the left and right pressing forces can be made the same, and the left and right contact thermal resistances can be made the same.

本発明の一実施形態による他の冷却機について詳細に説明する。先に説明した冷却機と重複する説明は省略し、相違点を説明する。   Another cooler according to an embodiment of the present invention will be described in detail. The description which overlaps with the cooler demonstrated previously is abbreviate | omitted, and demonstrates a different point.

共通支持部17は、図5及び図6に示すように、梁9に設けられ流体で満たされた密閉容器31と、容器31内の流体の圧力を調節する調節部32とを備える。この流体は、特に限定されないが、例えば油である。調節部32は容器31に取り付けてある。調節部32は、例えば、容器31に繋がるシリンダー34と、シリンダー34内を移動するピストン35と、ピストン35を動かすための動力源36とを備える。調節部32は、動力源36がピストン35を動かすことで、容器31内の流体圧を調節する。   As shown in FIGS. 5 and 6, the common support portion 17 includes a sealed container 31 provided on the beam 9 and filled with a fluid, and an adjustment unit 32 that adjusts the pressure of the fluid in the container 31. Although this fluid is not specifically limited, For example, it is oil. The adjustment unit 32 is attached to the container 31. The adjustment unit 32 includes, for example, a cylinder 34 connected to the container 31, a piston 35 that moves in the cylinder 34, and a power source 36 for moving the piston 35. The adjustment unit 32 adjusts the fluid pressure in the container 31 by the power source 36 moving the piston 35.

容器31は、その内部が支持体7,8各々の上部材14内に繋がり、上部材14各々は内部が流体で満たされる。支持体7,8各々は、下部材15の上面が同一の面積である。そのため、支持体7,8各々の下部材15は、容器31及び上部材14の流体により同じ圧力で押される。換言すると、押圧部18,19各々は下部材15であり、共通支持部17は、上部材14をシリンダーに用いて、下部材15をピストンに用いる。その結果、冷却体1,2各々は、同じ圧力が付与される。さらに、支持体7の下部材15は冷却体1を板材21に押し付け、支持体8の下部材15は冷却体2を板材22に押し付ける。   The container 31 is connected to the inside of the upper member 14 of each of the supports 7 and 8, and each of the upper members 14 is filled with a fluid. In each of the supports 7 and 8, the upper surface of the lower member 15 has the same area. Therefore, the lower member 15 of each of the supports 7 and 8 is pressed with the same pressure by the fluid of the container 31 and the upper member 14. In other words, each of the pressing portions 18 and 19 is the lower member 15, and the common support portion 17 uses the upper member 14 as a cylinder and the lower member 15 as a piston. As a result, the same pressure is applied to each of the cooling bodies 1 and 2. Further, the lower member 15 of the support 7 presses the cooling body 1 against the plate material 21, and the lower member 15 of the support 8 presses the cooling body 2 against the plate material 22.

以上のように、冷却機は、板材21,22各々に対する冷却体1,2各々の位置決めを容易に行うことができる。さらに、冷却機は、押圧部18,19各々により冷却体1,2が同じ押圧力で板材21,22に接触する。その結果、冷却機は、板材21に対する冷却体1の接触熱抵抗と板材22に対する冷却体2の接触熱抵抗とを同一にして、板材21,22を均一に冷却することができる。さらに、冷却機は、接触熱抵抗が飽和するときの圧力よりも小さい圧力を冷却体1,2に付与して、左右の接触熱抵抗を同一にできる。そのため、冷却機は、板材21,22が例えばオーステナイト系鋼よりも柔らかいフェライト系鋼であっても、冷却体1,2との接触疵の発生を抑制して、板材21,22を左右均等に冷却することができる。   As described above, the cooling machine can easily position the cooling bodies 1 and 2 with respect to the plate materials 21 and 22 respectively. Further, in the cooler, the cooling bodies 1 and 2 come into contact with the plate materials 21 and 22 with the same pressing force by the pressing portions 18 and 19 respectively. As a result, the cooler can cool the plate materials 21 and 22 uniformly by making the contact thermal resistance of the cooling body 1 to the plate material 21 and the contact heat resistance of the cooling body 2 to the plate material 22 the same. Furthermore, the cooler can apply the pressure smaller than the pressure when the contact thermal resistance is saturated to the cooling bodies 1 and 2 to make the left and right contact thermal resistances the same. Therefore, even if the plate materials 21 and 22 are ferritic steel softer than austenitic steel, for example, the cooler suppresses generation of contact flaws with the cooling bodies 1 and 2 so that the plate materials 21 and 22 are evenly distributed on the left and right. Can be cooled.

本発明は、自動車のフレームなどの鋼板を溶接する溶接装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a welding apparatus that welds steel plates such as automobile frames.

1,2:冷却体
3,4:圧縮ばね
5:ステージ
7,8:支持部
9:梁
10:溶接トーチ
11:取付具
14:上部位
15:下部位
16:押え板
21,22:板材
17:共通支持部
18,19:押圧部
31:密閉容器
32:調整部
DESCRIPTION OF SYMBOLS 1, 2: Cooling body 3, 4: Compression spring 5: Stage 7, 8: Support part 9: Beam 10: Welding torch 11: Mounting tool 14: Upper part 15: Lower part 16: Presser plate 21,22: Plate material 17 : Common support part 18, 19: Press part 31: Airtight container 32: Adjustment part

Claims (5)

第1板材と前記第1板材よりも厚い第2板材とを溶接するときに前記第1及び第2板材を冷却するための冷却機であって、
前記第1板材と前記第2板材とをそれらの側面を互いに接触させて配置するためのステージと、
前記第1板材の上面に接触される第1冷却体と、
前記第2板材の上面に接触される第2冷却体と、
前記第1冷却体を前記第1板材に押し付ける1又は2以上の第1押圧部と、
前記第2冷却体を前記第2板材に押し付ける1又は2以上の第2押圧部と、
前記第1押圧部と前記第2押圧部とを共通に支持する共通支持部とを備え、
前記第1押圧部は第1圧縮ばねを含み、
前記第2押圧部は第2圧縮ばねを含み、
前記第1及び第2圧縮ばねは、次の式(1)を満たしかつ式(2)で定義される単位面積あたりのばね定数k[N/m/m ]を有し、式(1)中、P[N/m ]は前記第1及び第2冷却体と前記第1及び第2板材との間の接触熱抵抗が飽和するときの押圧力であり、t [m]は前記第2板材の厚さであり、式(2)中、n[個]は前記第1及び第2圧縮ばね各々の数であり、k は前記第1及び第2圧縮ばね各々のばね定数であり、S[m ]は前記第1及び第2冷却体各々が前記第1及び第2板材各々に接触する面積である、冷却機。
Figure 0006613868
A cooler for cooling the first and second plate members when welding a first plate member and a second plate member that is thicker than the first plate member;
A stage for placing the first plate member and the second plate member with their side surfaces in contact with each other;
A first cooling body in contact with an upper surface of the first plate member;
A second cooling body in contact with the upper surface of the second plate member;
1 or 2 or more 1st press parts which press the said 1st cooling body against the said 1st board | plate material,
1 or 2 or more 2nd press parts which press the said 2nd cooling body against the said 2nd board | plate material,
E Bei a common support for supporting the said first pressing portion and the second pressing portion in common,
The first pressing portion includes a first compression spring,
The second pressing portion includes a second compression spring;
The first and second compression springs satisfy the following formula (1) and have a spring constant k [N / m / m 2 ] per unit area defined by the formula (2 ). P [N / m 2 ] is the pressing force when the contact thermal resistance between the first and second cooling bodies and the first and second plate members is saturated, and t A [m] is the above The thickness of the second plate member, where n [pieces] is the number of each of the first and second compression springs, and k i is the spring constant of each of the first and second compression springs. And S [m 2 ] is a cooler in which each of the first and second cooling bodies is in contact with each of the first and second plate members .
Figure 0006613868
請求項に記載の冷却機であって、
前記第1及び第2圧縮ばねは、次の式(3)を満たす前記単位面積あたりのばね定数k[N/m/m]を有し、式(3)中、ρ[N/m]は前記第2板材の降伏応力であり、t[m]は前記第2板材の厚さである、冷却機。
Figure 0006613868
The cooler according to claim 1 ,
The first and second compression springs have a spring constant k [N / m / m 2 ] per unit area that satisfies the following formula (3), and in the formula (3), ρ [N / m 2 ] Is the yield stress of the second plate, and t B [m] is the thickness of the second plate.
Figure 0006613868
第1板材と前記第1板材よりも厚い第2板材とを溶接するときに前記第1及び第2板材を冷却するための冷却機であって、
前記第1板材と前記第2板材とをそれらの側面を互いに接触させて配置するためのステージと、
前記第1板材の上面に接触される第1冷却体と、
前記第2板材の上面に接触される第2冷却体と、
前記第1冷却体を前記第1板材に押し付ける1又は2以上の第1押圧部と、
前記第2冷却体を前記第2板材に押し付ける1又は2以上の第2押圧部と、
前記第1押圧部と前記第2押圧部とを共通に支持する共通支持部とを備え
前記共通支持部は、前記第1及び第2押圧部を同じ圧力で押す流体で満たされた密閉容器を含み、
前記第1及び第2押圧部はシリンダーを含む、冷却機。
A cooler for cooling the first and second plate members when welding a first plate member and a second plate member that is thicker than the first plate member;
A stage for placing the first plate member and the second plate member with their side surfaces in contact with each other;
A first cooling body in contact with an upper surface of the first plate member;
A second cooling body in contact with the upper surface of the second plate member;
1 or 2 or more 1st press parts which press the said 1st cooling body against the said 1st board | plate material,
1 or 2 or more 2nd press parts which press the said 2nd cooling body against the said 2nd board | plate material,
A common support portion that supports the first pressing portion and the second pressing portion in common ,
The common support part includes an airtight container filled with a fluid that presses the first and second pressing parts with the same pressure,
The first and second pressing parts include a cylinder, and a cooler.
請求項1〜のいずれか1項に記載の冷却機であって、
前記第1押圧部の個数は2個以上であり、前記第1冷却体上に直線上にかつ対称に配置され、
前記第2押圧部の個数は2個以上であり、前記第2冷却体上に直線上にかつ対称に配置される、冷却機。
It is a cooling machine given in any 1 paragraph of Claims 1-3 ,
The number of the first pressing parts is two or more, and is arranged linearly and symmetrically on the first cooling body,
The number of the second pressing portions is two or more, and the cooler is arranged linearly and symmetrically on the second cooling body.
請求項1〜のいずれか1項に記載の冷却機と、
前記ステージの上方に配置される溶接トーチとを備える、溶接装置。
The cooler according to any one of claims 1 to 4 ,
And a welding torch disposed above the stage.
JP2015246188A 2015-04-10 2015-12-17 Cooling machine and welding equipment Active JP6613868B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015080833 2015-04-10
JP2015080833 2015-04-10

Publications (2)

Publication Number Publication Date
JP2016198822A JP2016198822A (en) 2016-12-01
JP6613868B2 true JP6613868B2 (en) 2019-12-04

Family

ID=57422352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246188A Active JP6613868B2 (en) 2015-04-10 2015-12-17 Cooling machine and welding equipment

Country Status (1)

Country Link
JP (1) JP6613868B2 (en)

Also Published As

Publication number Publication date
JP2016198822A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
US11027781B2 (en) Hot-stamping formed article, structural member using the same, and manufacturing method of hot-stamping formed article
RU2595706C2 (en) Plant and method for making tubular beam with one central section
US9199594B2 (en) System, method, and apparatus for automotive under-run protective device
CN104401240B (en) A kind of off highway vehicle seat two-dimension non linearity vibration isolation suspension
US20160362139A1 (en) Vehicle body side frame
US6861617B2 (en) Method of reducing distortion by transient thermal tensioning
TWI803667B (en) Welding method of stainless steel foil and welded structure
EP2845772B1 (en) An under-run protection device for a vehicle, and a method for manufacturing such a device
US20230327257A1 (en) Battery case for electric vehicles and manufacturing method
KR20200031708A (en) Method for improving fatigue strength of lap-welded joint, lap-welded joint manufacturing method, and lap-welded joint
JP2017113782A (en) Hot press device and hot press molding method
JP6613868B2 (en) Cooling machine and welding equipment
JP2017131954A (en) Cooler and welding device
Chen et al. A comparison study on the effectiveness of stepped binder and weld line clamping pins on formability improvement for tailor-welded blanks
BR112019019903A2 (en) front axle beam and production method thereof
JP2010082642A (en) Welding apparatus and method
JP6127669B2 (en) Manufacturing method of hot stamping molded product and manufacturing method of blank material
CN106238862B (en) A kind of box longitudinal beam welding anti-distortion method
JP5106934B2 (en) Packing method of metal plate
CN205496343U (en) Hemmer
KR101525081B1 (en) a High hardness armor steel for bending mold
CN209867676U (en) Laser welding equipment with pressing device
JP2011167711A (en) Brazing tool
CN110479767A (en) A kind of straightening machine base and production method
JP2021138318A (en) Frame unit and frame assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R151 Written notification of patent or utility model registration

Ref document number: 6613868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151