JP6608787B2 - Manufacturing method of sealed battery - Google Patents

Manufacturing method of sealed battery Download PDF

Info

Publication number
JP6608787B2
JP6608787B2 JP2016180308A JP2016180308A JP6608787B2 JP 6608787 B2 JP6608787 B2 JP 6608787B2 JP 2016180308 A JP2016180308 A JP 2016180308A JP 2016180308 A JP2016180308 A JP 2016180308A JP 6608787 B2 JP6608787 B2 JP 6608787B2
Authority
JP
Japan
Prior art keywords
welding
battery
liquid injection
sealing plug
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016180308A
Other languages
Japanese (ja)
Other versions
JP2018045888A (en
Inventor
伸芳 田中
幸太郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016180308A priority Critical patent/JP6608787B2/en
Publication of JP2018045888A publication Critical patent/JP2018045888A/en
Application granted granted Critical
Publication of JP6608787B2 publication Critical patent/JP6608787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Description

本発明は、密閉型電池の製造方法に関する。   The present invention relates to a method for manufacturing a sealed battery.

従来、例えば、電気自動車や据置型電力供給装置などの電源として用いられる大電流充放電用途の密閉型電池では、正負極がセパレータを介して配置された電極群が電解液に浸潤されて電池ケース内に収容されている。このような電極群には、正極と負極を間にセパレータを介して捲回した捲回電極群や、正極と負極を間にセパレータを介して積層した積層式電極群が広く知られている。   Conventionally, for example, in a sealed battery for large current charge / discharge applications used as a power source for an electric vehicle, a stationary power supply device, etc., a battery case in which an electrode group in which positive and negative electrodes are arranged via a separator is infiltrated with an electrolyte. Is housed inside. As such an electrode group, a wound electrode group in which a positive electrode and a negative electrode are wound via a separator, and a stacked electrode group in which a positive electrode and a negative electrode are stacked via a separator are widely known.

ところで、電池ケースには、一般に、電解液を注入するための注液口が形成されており、密閉型電池は電解液の注液後、注液口が封止栓で封止された密閉構造が採られている。特許文献1は、上記の密閉型電池において、注液口を塞ぐように配置した封止栓と電池ケースとをレーザによって溶接することでケース内を密閉にしているが、封止栓と電池ケースとを溶接する際に注液口に付着した電解液によって溶接不良が生じることで、電池ケース内の密閉が不完全となることが記載されている。   By the way, the battery case is generally provided with a liquid injection port for injecting an electrolyte solution, and the sealed battery has a sealed structure in which the liquid injection port is sealed with a sealing plug after the electrolyte solution is injected. Has been adopted. In Patent Document 1, in the above-described sealed battery, the inside of the case is hermetically sealed by welding a sealing plug and a battery case, which are arranged so as to close the liquid injection port. It is described that the sealing in the battery case becomes incomplete due to poor welding caused by the electrolytic solution adhering to the liquid injection port when the two are welded.

特許文献1は、前記課題を解決するための手段として、電池ケースと封止栓との境界部分の全周に対する溶接を、少なくとも二回に分けて行い、当該少なくとも二回の溶接を互いに所定の時間間隔を空けて行うことを特徴とする密閉型電池の製造方法を開示している。前記所定の時間間隔の合計は、前記溶接工程において前記蓋部と前記封止栓部との境界部分を溶接する際に気化した電解液が前記電池ケースの外部に放出されるのに要する時間であることが好ましいとされている。特許文献1は、前記製造方法により、レーザ溶接によって封止する際に生じる溶接不良を抑制できる、と記載されている。   In Patent Document 1, as means for solving the above-described problem, welding is performed at least twice on the entire circumference of the boundary portion between the battery case and the sealing plug, and the at least two weldings are performed in a predetermined manner. Disclosed is a method for manufacturing a sealed battery, which is performed at intervals of time. The total of the predetermined time intervals is a time required for the electrolytic solution vaporized when welding the boundary portion between the lid portion and the sealing plug portion in the welding process to be discharged to the outside of the battery case. Some are preferred. Patent Document 1 describes that the manufacturing method can suppress poor welding that occurs when sealing by laser welding.

特開2015−219962号公報Japanese Patent Laying-Open No. 2015-219962

前記蓋部と前記封止栓部の境界部分をレーザ溶接した場合、溶接をした部分の収縮が生じるために、未溶接の前記蓋部と前記封止栓部との境界部分に隙間が生じることがある。特許文献1によれば、レーザ溶接を所定の時間間隔を空けて2回に分けて実施することから、前記溶接部の冷却収縮が進行することで前記未溶接の前記蓋部と前記封止栓部との境界部分では隙間が生じ易くなる。したがって、前記未溶接部では溶接不良が発生することとなり、密閉性を確保することが困難となる。   When the boundary portion between the lid portion and the sealing plug portion is laser-welded, the welded portion contracts, so that a gap is generated at the boundary portion between the unwelded lid portion and the sealing plug portion. There is. According to Patent Document 1, since laser welding is performed in two steps with a predetermined time interval, the unwelded lid portion and the sealing plug are caused by cooling shrinkage of the welded portion. A gap is likely to occur at the boundary with the part. Therefore, poor welding occurs in the unwelded portion, and it is difficult to ensure sealing performance.

本発明は上記事案に鑑み、溶接不良を抑制し、高い密閉性の確保が可能な密閉型電池の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a sealed battery capable of suppressing poor welding and ensuring high sealing performance.

上記目的を達成すべく、本発明の密閉型電池は、注液口を有する電池ケースと、注液口を封止する封止栓と、を備えた密閉型電池の製造方法であって、前記注液口から前記電池ケース内に電解液を注入する注液工程と、該注液工程の後に、前記封止栓で前記注液口を塞いで前記電池ケースと前記封止栓との間に形成される環状の境界部分を該境界部分に沿って連続して溶接して前記注液口を封止する溶接工程と、を含み、前記溶接工程では、前記境界部分に均等に設定された複数の溶接開始位置から前記境界部分に沿って同方向に同時に溶接を開始することを特徴とする。   In order to achieve the above object, a sealed battery of the present invention is a method for producing a sealed battery comprising a battery case having a liquid inlet and a sealing plug for sealing the liquid inlet, A liquid injection step of injecting an electrolyte into the battery case from the liquid injection port; and after the liquid injection step, the liquid injection port is closed with the sealing plug between the battery case and the sealing plug. A welding step of continuously welding the annular boundary portion to be formed along the boundary portion to seal the liquid injection port, and in the welding step, a plurality of parts set evenly in the boundary portion Welding is started simultaneously in the same direction along the boundary portion from the welding start position.

本発明によれば、溶接不良を抑制し、高い密閉性の確保が可能な密閉型電池を得ることができる。本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, it is possible to obtain a sealed battery capable of suppressing poor welding and ensuring high sealing performance. Further features related to the present invention will become apparent from the description of the present specification and the accompanying drawings. Further, problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

実施形態1に係る密閉型電池の外観斜視図。1 is an external perspective view of a sealed battery according to Embodiment 1. FIG. 図1に示す密閉型電池の分解斜視図。FIG. 2 is an exploded perspective view of the sealed battery shown in FIG. 1. 図2に示す密閉型電池の捲回電極群の分解斜視図。FIG. 3 is an exploded perspective view of a wound electrode group of the sealed battery shown in FIG. 2. 密閉型電池の要部を拡大して示す平面図。The top view which expands and shows the principal part of a sealed battery. 図4のA−A線断面図。AA line sectional view of Drawing 4. 他の実施例を説明する図。The figure explaining another Example. 他の実施例を説明する図。The figure explaining another Example. 実施形態2に係る密閉型電池の要部を拡大して示す平面図。FIG. 4 is an enlarged plan view showing a main part of a sealed battery according to a second embodiment.

以下、図面を参照して本発明の密閉型電池の製造方法における実施の形態について説明する。   Embodiments of the method for manufacturing a sealed battery according to the present invention will be described below with reference to the drawings.

[実施形態1]
まず、本実施形態に係る密閉型電池の構成について説明する。図1は、実施形態1に係る密閉型電池100の外観斜視図である。図2は、図1に示す密閉型電池100の分解斜視図である。図3は、図2に示す密閉型電池100の捲回電極群3の分解斜視図である。
[Embodiment 1]
First, the configuration of the sealed battery according to the present embodiment will be described. FIG. 1 is an external perspective view of a sealed battery 100 according to the first embodiment. FIG. 2 is an exploded perspective view of the sealed battery 100 shown in FIG. 3 is an exploded perspective view of the wound electrode group 3 of the sealed battery 100 shown in FIG.

本実施形態の密閉型電池100は、例えば、電気自動車や据置型電力供給装置などの電源として用いられる大電流充放電用途の密閉型電池である。詳細は後述するが、本実施形態の密閉型電池100は、電池蓋6と封止栓11との接合領域に、溶接開始位置を少なくとも2つ以上有し、該溶接開始位置は、電池蓋6と封止栓11の全溶接周長に対して、溶接周長がそれぞれ均等となる接合領域に配置されており、各溶接開始位置から同時に溶接を開始する、ことを特徴としている。   The sealed battery 100 of the present embodiment is a sealed battery for large current charge / discharge applications that is used as a power source for an electric vehicle, a stationary power supply device, or the like. Although details will be described later, the sealed battery 100 of the present embodiment has at least two welding start positions in the joint region between the battery lid 6 and the sealing plug 11, and the welding start positions are the battery lid 6. Are arranged in the joining region where the welding perimeters are equal to the total welding perimeter of the sealing plug 11, and welding is started simultaneously from each welding start position.

本実施形態の密閉型電池100は、主に、偏平角形の電池ケースと、該電池ケースの外部に設けられた正極外部端子14及び負極外部端子12と、該電池ケースに収容された捲回電極群3と、該捲回電極群3を正極外部端子14及び負極外部端子12に接続する正極集電板42及び負極集電板22とを有している。正極外部端子14及び負極外部端子12、捲回電極群3、並びに正極集電板42及び負極集電板22は、それぞれ、ガスケット5、絶縁板7、及び絶縁保護フィルム2によって、電池ケースに対して電気的に絶縁されている。   The sealed battery 100 of the present embodiment mainly includes a flat rectangular battery case, a positive electrode external terminal 14 and a negative electrode external terminal 12 provided outside the battery case, and a wound electrode housed in the battery case. And a positive electrode current collector plate 42 and a negative electrode current collector plate 22 that connect the wound electrode group 3 to the positive electrode external terminal 14 and the negative electrode external terminal 12. The positive electrode external terminal 14 and the negative electrode external terminal 12, the wound electrode group 3, and the positive electrode current collector plate 42 and the negative electrode current collector plate 22 are respectively attached to the battery case by the gasket 5, the insulating plate 7, and the insulating protective film 2. Are electrically insulated.

電池ケース、正極外部端子14及び正極集電板42は、例えば、アルミニウム合金によって製作することができる。また、負極外部端子12及び負極集電板22は、例えば、銅合金によって製作することができる。また、ガスケット5及び絶縁板7は、例えば、ポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂材料によって製作することができる。絶縁保護フィルム2は、例えばPP(ポリプロピレン)などの合成樹脂製の一枚のシートまたは複数のフィルム部材によって製作することができる。   The battery case, the positive electrode external terminal 14 and the positive electrode current collector plate 42 can be made of, for example, an aluminum alloy. Moreover, the negative electrode external terminal 12 and the negative electrode current collector plate 22 can be made of, for example, a copper alloy. In addition, the gasket 5 and the insulating plate 7 can be made of an insulating resin material such as polybutylene terephthalate, polyphenylene sulfide, or perfluoroalkoxy fluororesin. The insulating protective film 2 can be manufactured by a sheet of a synthetic resin such as PP (polypropylene) or a plurality of film members.

本実施形態の密閉型電池100は、正極側と負極側、例えば、正極外部端子14と負極外部端子12、及び、正極集電板42と負極集電板22が、密閉型電池100の幅方向Wにおける中心線に概ね対照な構成を有している。したがって、以下では、正極側と負極側において共通する構成については、正極外部端子14及び負極外部端子12を一括して外部端子20と表記し、正極集電板42及び負極集電板22を一括して集電板40と表記して説明する。   The sealed battery 100 according to this embodiment includes a positive electrode side and a negative electrode side, for example, a positive electrode external terminal 14 and a negative electrode external terminal 12, and a positive electrode current collector plate 42 and a negative electrode current collector plate 22. It has a configuration that is generally in contrast to the centerline at W. Therefore, in the following, regarding the configuration common to the positive electrode side and the negative electrode side, the positive electrode external terminal 14 and the negative electrode external terminal 12 are collectively referred to as the external terminal 20, and the positive electrode current collector plate 42 and the negative electrode current collector plate 22 are collectively illustrated. The current collector plate 40 will be described.

電池ケースは、上部に開口部1aを有する偏平な角形の電池缶1と、該電池缶1の開口部1aを封止する矩形平板状の電池蓋6とを有している。電池缶1は、概ね長方形の底面1dと、該底面から垂直に立ち上がる概ね矩形の広側面1b及び狭側面1cを有し、上部が開放されて概ね長方形の開口部1aを有している。電池缶1は、内部に捲回電極群3を収容した状態で、電池蓋6が開口部1aを塞ぐように溶接されて封止される。   The battery case includes a flat rectangular battery can 1 having an opening 1 a at the top, and a rectangular flat battery cover 6 that seals the opening 1 a of the battery can 1. The battery can 1 has a generally rectangular bottom surface 1d, a generally rectangular wide side surface 1b and a narrow side surface 1c rising vertically from the bottom surface, and an upper portion is opened to have a generally rectangular opening 1a. The battery can 1 is welded and sealed so that the battery lid 6 closes the opening 1a in a state where the wound electrode group 3 is accommodated therein.

電池蓋6は、密閉型電池100の幅方向を長手方向とする概ね長方形の上面を有している。電池蓋6の上面の長手方向の一端と他端には、正極外部端子14と負極外部端子12が設けられている。電池蓋6は、上面の長手方向の一端と他端に、それぞれ外部端子20の柱状の接続部12a、14aを挿通させる貫通孔26、46を有し、ガスケット5及び絶縁板7によって外部端子20及び集電板40に対して電気的に絶縁されている。   The battery lid 6 has a substantially rectangular upper surface with the width direction of the sealed battery 100 as the longitudinal direction. A positive external terminal 14 and a negative external terminal 12 are provided at one end and the other end in the longitudinal direction of the upper surface of the battery lid 6. The battery cover 6 has through holes 26 and 46 through which the columnar connection portions 12a and 14a of the external terminal 20 are inserted at one end and the other end in the longitudinal direction of the upper surface, respectively, and the external terminal 20 is formed by the gasket 5 and the insulating plate 7. In addition, the current collector plate 40 is electrically insulated.

電池蓋6の長手方向の中間部には、ガス排出弁10と注液口9が設けられている。ガス排出弁10は、例えば、電池蓋6を薄肉化することによって電池蓋6と一体的に設けられ、電池ケースの内部圧力が所定の値を超えて上昇したときに開裂してガスを排出し、電池ケースの内部圧力を低下させて密閉型電池100の安全性を確保する。注液口9は、電池ケース内に電解液を注入するのに用いられ、電解液の注液後に、封止栓11が、例えばレーザ溶接によって溶接されて封止される。電池ケース内に注入する電解液としては、例えば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を適用することができる。 A gas discharge valve 10 and a liquid injection port 9 are provided at an intermediate portion in the longitudinal direction of the battery lid 6. The gas discharge valve 10 is provided integrally with the battery cover 6 by thinning the battery cover 6, for example, and cleaves and discharges the gas when the internal pressure of the battery case rises above a predetermined value. The safety of the sealed battery 100 is ensured by reducing the internal pressure of the battery case. The liquid injection port 9 is used to inject an electrolytic solution into the battery case, and after the electrolytic solution is injected, the sealing plug 11 is welded and sealed, for example, by laser welding. As an electrolytic solution to be injected into the battery case, for example, a nonaqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a carbonate organic solvent such as ethylene carbonate is applied. Can do.

外部端子20は、バスバー等に溶接接合される溶接接合部と、集電板40に接続される接続部12a、14aとを有している。溶接接合部は、電池蓋6の外側に配置される直方体のブロック形状を有し、下面が電池蓋6の上面に対向し、上面が所定高さ位置で電池蓋6の上面と平行になる構成を有している。接続部12a、14aは、溶接接合部の下面から電池蓋6を貫通する方向に突出し、電池蓋6の円形の貫通孔26、46に挿通可能な円柱形状を有している。   The external terminal 20 has a weld joint that is welded to a bus bar or the like, and connection parts 12 a and 14 a that are connected to the current collector plate 40. The weld joint has a rectangular parallelepiped block shape arranged outside the battery lid 6, the lower surface faces the upper surface of the battery lid 6, and the upper surface is parallel to the upper surface of the battery lid 6 at a predetermined height position. have. The connection parts 12a and 14a protrude in the direction penetrating the battery cover 6 from the lower surface of the welded joint part, and have a cylindrical shape that can be inserted into the circular through holes 26 and 46 of the battery cover 6.

集電板40は、電池蓋6の下面に対向して配置される矩形板状の基部21、41と、基部21、41の側端で折曲されて電池缶1の広側面1bに沿って底面に向かう方向に延びる接続端部24、44を有している。集電板40の基部21、41は、外部端子20の接続部12a、14aを挿通させる貫通孔23、43を有している。集電板40の接続端部24、44は、捲回電極群3の捲回軸方向の両端部の箔露出部34c,32cに対向して重ね合わされた状態で例えば超音波圧接や抵抗溶接等によって箔露出部34c,32cに接合され、捲回電極群3を構成する正極電極34、負極電極32(図3参照)と電気的に接続される。   The current collecting plate 40 is bent at the rectangular plate-like base portions 21 and 41 arranged to face the lower surface of the battery lid 6 and the side edges of the base portions 21 and 41, and extends along the wide side surface 1 b of the battery can 1. It has connection ends 24 and 44 extending in the direction toward the bottom surface. The base portions 21 and 41 of the current collector plate 40 have through holes 23 and 43 through which the connection portions 12 a and 14 a of the external terminal 20 are inserted. The connection end portions 24 and 44 of the current collector plate 40 are superposed so as to face the foil exposed portions 34c and 32c at both ends in the winding axis direction of the wound electrode group 3, for example, ultrasonic welding or resistance welding. Are joined to the foil exposed portions 34c and 32c and electrically connected to the positive electrode 34 and the negative electrode 32 (see FIG. 3) constituting the wound electrode group 3.

外部端子20の接続部12a、14aは、ガスケット5の貫通孔、電池蓋6の貫通孔46、26、絶縁板7の貫通孔、及び集電板40の基部21、41の貫通孔23、43に順次挿通され、集電板40の基部21、41の下面すなわち電池蓋6と反対側の面に突出した先端が拡径するようにかしめられる。これにより、外部端子20及び集電板40がガスケット5及び絶縁板7を介して電池蓋6に一体に固定され、捲回電極群3が集電板40及び絶縁板7を介して電池蓋6に固定される。また、外部端子20が集電板40を介して捲回電極群3を構成する正極電極34、負極電極32(図3参照)と電気的に接続される。   The connecting portions 12a and 14a of the external terminal 20 are the through holes of the gasket 5, the through holes 46 and 26 of the battery cover 6, the through holes of the insulating plate 7, and the through holes 23 and 43 of the base portions 21 and 41 of the current collector plate 40. Are sequentially inserted and crimped so that the tips projecting from the lower surfaces of the base portions 21 and 41 of the current collector plate 40, that is, the surface opposite to the battery lid 6, are expanded. Thereby, the external terminal 20 and the current collector plate 40 are integrally fixed to the battery lid 6 via the gasket 5 and the insulating plate 7, and the wound electrode group 3 is connected to the battery lid 6 via the current collector plate 40 and the insulating plate 7. Fixed to. Further, the external terminal 20 is electrically connected to the positive electrode 34 and the negative electrode 32 (see FIG. 3) constituting the wound electrode group 3 through the current collector plate 40.

捲回電極群3は、集電板40及び絶縁板7を介して電池蓋6に固定された状態で絶縁保護フィルム2によって覆われ、電池缶1の開口部1aから電池缶1内に挿入され、電池蓋6の全周が電池缶1の開口部1aの全周に亘って、例えばレーザ溶接によって接合されて、電池ケース内に封入される。その後、電池蓋6の注液口9を介して電池ケース内に電解液を注入し、注液口9に封止栓11を、例えばレーザ溶接によって接合し、電池ケースを密閉する。   The wound electrode group 3 is covered with the insulating protective film 2 while being fixed to the battery lid 6 via the current collector plate 40 and the insulating plate 7, and is inserted into the battery can 1 from the opening 1 a of the battery can 1. The entire periphery of the battery lid 6 is joined to the entire periphery of the opening 1a of the battery can 1 by, for example, laser welding and enclosed in a battery case. Thereafter, an electrolytic solution is injected into the battery case through the liquid injection port 9 of the battery lid 6, and a sealing plug 11 is joined to the liquid injection port 9 by, for example, laser welding to seal the battery case.

密閉型電池100の製造方法は、注液口9から電池ケース内に電解液を注入する注液工程と、注液工程の後に、封止栓11で注液口9を塞いで封止栓11を電池ケースに溶接して注液口9を封止する溶接工程を含む。溶接工程では、封止栓11で注液口9を塞いだ状態で電池ケースと封止栓11との間に形成される環状の境界部分を、その境界部分に沿って連続して溶接し、注液口9を密封する。   The manufacturing method of the sealed battery 100 includes a liquid injection process in which an electrolytic solution is injected from the liquid injection port 9 into the battery case, and the liquid injection port 9 is closed with the sealing plug 11 after the liquid injection process. Including a welding step of sealing the liquid injection port 9 by welding to the battery case. In the welding process, an annular boundary portion formed between the battery case and the sealing plug 11 in a state where the liquid injection port 9 is closed with the sealing plug 11 is continuously welded along the boundary portion, The injection port 9 is sealed.

図4は、密閉型電池100の要部を拡大して示す平面図、図5は、図4のA−A線断面図である。本実施例では、封止栓11が平面視円形で且つ溶接開始点が2つの場合について説明する。   4 is an enlarged plan view showing a main part of the sealed battery 100, and FIG. 5 is a cross-sectional view taken along the line AA of FIG. In this embodiment, the case where the sealing plug 11 is circular in plan view and there are two welding start points will be described.

上述のように、電池蓋6には注液口9が設けられている。注液口9は、電池ケースの内部に電解液を注入するための貫通孔であり、電池ケースの内部と外部を連通するように、電池蓋6を貫通している。注液口9は、平面視で円形に形成されている。注液口9は、図5に示すように、電池蓋6の表面側に開口する大径孔部9aと、電池蓋6の裏面側に開口する小径孔部9bとを有しており、大径孔部9aと小径孔部9bとが段差を介して連続している。   As described above, the battery lid 6 is provided with the liquid injection port 9. The liquid injection port 9 is a through hole for injecting the electrolyte into the battery case, and penetrates the battery lid 6 so as to communicate the inside and outside of the battery case. The liquid injection port 9 is formed in a circular shape in plan view. As shown in FIG. 5, the liquid injection port 9 has a large-diameter hole portion 9 a that opens to the front surface side of the battery lid 6 and a small-diameter hole portion 9 b that opens to the back surface side of the battery lid 6. The diameter hole portion 9a and the small diameter hole portion 9b are continuous through a step.

封止栓11は、注液口9を封止するための部材である。封止栓11は、図4に示すように、平面視で円形に形成されている。封止栓11は、注液口9の大径孔部9aに挿入される円形の大径部11aと、大径部11aの中央部分から突出して注液口9の小径孔部9bに挿入される凸状の小径部11bを有している。大径部11aは、図5(a)に示す例では、大径孔部9aの直径と同じか若干小さい略同一の外径を有しており、図5(b)に示す例では、大径孔部9aの直径よりも小さく、大径孔部9aの内周面との間に間隙を有する外径を有している。小径部11bは、小径孔部9bの直径と同じか若干小さい略同一の外径を有している。封止栓11は、図5(a)及び図5(b)に示す構成のいずれでもよい。   The sealing plug 11 is a member for sealing the liquid injection port 9. As shown in FIG. 4, the sealing plug 11 is formed in a circular shape in plan view. The sealing plug 11 is inserted into the circular large-diameter portion 11a inserted into the large-diameter hole portion 9a of the liquid injection port 9 and the small-diameter hole portion 9b of the liquid injection port 9 protruding from the central portion of the large-diameter portion 11a. A convex small-diameter portion 11b. In the example shown in FIG. 5A, the large-diameter portion 11a has substantially the same outer diameter that is the same as or slightly smaller than the diameter of the large-diameter hole portion 9a. In the example shown in FIG. The outer diameter is smaller than the diameter of the diameter hole portion 9a and has a gap between the inner diameter surface of the large diameter hole portion 9a. The small diameter part 11b has substantially the same outer diameter that is the same as or slightly smaller than the diameter of the small diameter hole part 9b. The sealing plug 11 may have any of the configurations shown in FIGS. 5 (a) and 5 (b).

封止栓11は、注液口9を塞ぐように注液口9の上部から挿入された状態で電池蓋6に溶接される。封止栓11は、小径部11bが小径孔部9bに挿入され、かつ、大径部11aが大径孔部9aに挿入されて、大径部11aの上面が電池蓋6の上面と略面一に配置される。そして、図5(a)に示す例の場合には、大径部11aの外周面が大径孔部9aの内周面に対向し、もしくは当接した状態に配置される。また、図5(b)に示す例の場合には、大径部11aの外周面が大径孔部9aの内周面との間に間隙を有して配置される。   The sealing plug 11 is welded to the battery lid 6 while being inserted from above the liquid injection port 9 so as to close the liquid injection port 9. The sealing plug 11 has a small diameter portion 11b inserted into the small diameter hole portion 9b and a large diameter portion 11a inserted into the large diameter hole portion 9a, and the upper surface of the large diameter portion 11a is substantially the same as the upper surface of the battery lid 6. Placed in one. And in the case of the example shown to Fig.5 (a), the outer peripheral surface of the large diameter part 11a is arrange | positioned in the state which opposes or contact | abutted the inner peripheral surface of the large diameter hole part 9a. In the example shown in FIG. 5B, the outer peripheral surface of the large-diameter portion 11a is disposed with a gap between the inner peripheral surface of the large-diameter hole portion 9a.

溶接工程では、電池蓋6と封止栓11との間に形成される円環状の境界部分を、境界部分に沿って連続して溶接し、注液口9を封止する。図5(a)に示す構成例の場合は、封止栓11の大径部11aの外周面と注液口9の大径孔部9aの内周面との境界部分を溶接する突き合わせ溶接となる。そして、図5(b)に示す構成例の場合は、封止栓11の大径部11aの外周面と注液口9の大径孔部9aの底面との境界部分を溶接する隅肉溶接となる。   In the welding process, an annular boundary portion formed between the battery lid 6 and the sealing plug 11 is continuously welded along the boundary portion to seal the liquid injection port 9. In the case of the configuration example shown in FIG. 5A, butt welding for welding a boundary portion between the outer peripheral surface of the large diameter portion 11a of the sealing plug 11 and the inner peripheral surface of the large diameter hole portion 9a of the liquid injection port 9; Become. In the case of the configuration example shown in FIG. 5B, fillet welding is performed to weld a boundary portion between the outer peripheral surface of the large diameter portion 11a of the sealing plug 11 and the bottom surface of the large diameter hole portion 9a of the liquid injection port 9. It becomes.

溶接は、レーザ溶接によって行われる。レーザ溶接のレーザは、電池蓋6の上方から境界部分に照射される。図5(a)に示す構成例の場合、少ないエネルギでレーザ溶接することができ、小規模な設備を用いて実施することができる。一方、図5(b)に示す構成例の場合、図5(a)に示す構成例よりも、封止栓11の大径部11aの外径と注液口9の大径孔部9aの内径の各寸法精度を低くすることができるので、封止栓11及び電池蓋6の製造が容易で、製造コストを安価にすることができる。   Welding is performed by laser welding. Laser welding laser is applied to the boundary portion from above the battery lid 6. In the case of the configuration example shown in FIG. 5A, laser welding can be performed with less energy, and implementation can be performed using a small-scale facility. On the other hand, in the case of the configuration example shown in FIG. 5B, the outer diameter of the large-diameter portion 11a of the sealing plug 11 and the large-diameter hole portion 9a of the liquid injection port 9 are larger than those in the configuration example shown in FIG. Since the dimensional accuracy of the inner diameter can be lowered, the sealing plug 11 and the battery lid 6 can be easily manufactured, and the manufacturing cost can be reduced.

溶接工程では、境界部分に均等に設定された複数の溶接開始位置から境界部分に沿って同方向に同時に溶接が開始される。そして、複数の溶接開始位置からそれぞれ隣接する他の溶接開始位置まで溶接される。本実施例では、円環状に連続する境界部分を均等に2つに分けるように、第1溶接開始位置W1Sと第2溶接開始位置W2Sが設定されている。そして、かかる第1溶接開始位置W1Sと第2溶接開始位置W2Sからそれぞれ境界部分に沿って反時計回りに同時に溶接が開始され、それぞれ隣接する第2の溶接開始位置W2Sと第1の溶接開始位置W1Sまで溶接される。したがって、かかる境界部分には、第1溶接部W1と第2溶接部W2が形成され、境界部分が密閉される。第1溶接開始位置W1Sと第2溶接開始位置W2Sは、第1溶接部W1と第2溶接部W2の各溶接周長がそれぞれ均等となる領域に設定されている。   In the welding process, welding is simultaneously started in the same direction along the boundary portion from a plurality of welding start positions set evenly in the boundary portion. Then, welding is performed from a plurality of welding start positions to other adjacent welding start positions. In the present embodiment, the first welding start position W1S and the second welding start position W2S are set so that the boundary portion that is continuous in an annular shape is equally divided into two. Then, welding is started simultaneously from the first welding start position W1S and the second welding start position W2S in the counterclockwise direction along the boundary portions, respectively, and the adjacent second welding start position W2S and the first welding start position are respectively adjacent. It is welded to W1S. Therefore, the 1st welding part W1 and the 2nd welding part W2 are formed in this boundary part, and a boundary part is sealed. The first welding start position W1S and the second welding start position W2S are set in regions where the weld circumferences of the first welded portion W1 and the second welded portion W2 are equal.

溶接終了位置は、他の溶接開始位置を通過して溶接済みの領域に設定されている。本実施例では、第1溶接部W1の溶接終了位置W1Eは、第2溶接開始位置W2Sを通過して第2溶接部W2の領域に設定されており、第2溶接部W2の溶接終了位置W2Eは、第1溶接開始位置W1Sを通過して第1溶接部W1の領域に設定されている。したがって、第1溶接部W1は、第2溶接部W2と部分的に重なるように形成され、第2溶接部W2は、第1溶接部W1と部分的に重なるように形成されている。このように、第1溶接部W1と第2溶接部W2との接続部分を部分的に重なるように形成することにより、再熱効果を受け、溶接部分の平準化や靱性の向上が期待される。   The welding end position is set to an area that has been welded through another welding start position. In the present embodiment, the welding end position W1E of the first welded portion W1 passes through the second welding start position W2S and is set in the region of the second welded portion W2, and the welding end position W2E of the second welded portion W2 is set. Is set in the region of the first welded portion W1 through the first welding start position W1S. Accordingly, the first weld W1 is formed to partially overlap the second weld W2, and the second weld W2 is formed to partially overlap the first weld W1. Thus, by forming the connection part of the 1st welding part W1 and the 2nd welding part W2 so that it may overlap partially, it receives a reheating effect and the improvement of the leveling of a welding part and toughness is anticipated. .

従来の密閉型電池では、一つの溶接開始位置から溶接を開始していた。蓋部と封止栓部をレーザ溶接した場合、溶接領域は冷却収縮が生じるため、未溶接領域における蓋部と封止栓部との間に隙間が生じる。当該隙間は、溶接領域の略対向領域における未溶接領域において顕著であり、ブローフォールやクラックなどの溶接欠陥が生じる原因となり、密閉性の低下に繋がるおそれがあった。特に、封止栓部は、密閉型電池の他の部材と比較して軽量で且つ小さい部品であるため、溶接後の冷却収縮による応力の作用を受けやすく、蓋部に対する位置がズレやすいという問題を有していた。   In a conventional sealed battery, welding is started from one welding start position. When the lid portion and the sealing plug portion are laser-welded, a cooling shrinkage occurs in the welded region, so that a gap is generated between the lid portion and the sealing plug portion in the unwelded region. The gap is prominent in the unwelded region in the substantially opposite region of the welded region, causing welding defects such as blow-fall and cracks, which may lead to a decrease in hermeticity. In particular, the sealing plug part is lighter and smaller than other members of the sealed battery, and thus is easily affected by stress due to cooling shrinkage after welding, and the position of the sealing part is easily displaced. Had.

これに対し、本実施形態の密閉型電池100は、封止栓11と電池蓋6との溶接開始位置は2つ以上設けられ、溶接開始位置は、電池蓋6と封止栓11の全溶接周長に対して、各溶接周長がそれぞれ略均等となる領域に配置され、各溶接開始位置から同時に溶接が開始されることを特徴としている。したがって、封止栓11に対して溶接領域の冷却収縮による応力が均等に加えられ、注液口9に対する封止栓11の移動や、注液口9からの封止栓11の浮き上がりを防ぐことができる。   On the other hand, in the sealed battery 100 of the present embodiment, two or more welding start positions of the sealing plug 11 and the battery lid 6 are provided, and the welding start position is the total welding of the battery lid 6 and the sealing plug 11. It is characterized in that each welding circumferential length is arranged in a substantially equal area with respect to the circumferential length, and welding is started simultaneously from each welding start position. Therefore, the stress due to the cooling shrinkage of the welding region is equally applied to the sealing plug 11, and the movement of the sealing plug 11 with respect to the liquid injection port 9 and the lifting of the sealing plug 11 from the liquid injection port 9 are prevented. Can do.

そのため、本実施形態の密閉型電池100は、従来技術で課題となっていた、未溶接領域で生じる電池蓋6と封止栓11との間の隙間が生じることがなく、溶接不良の抑制が可能となる。より詳細には、従来技術で隙間が顕著であった溶接領域の略対向領域における未溶接領域が存在しないため、溶接不良を抑制することが可能となる。更に、当該溶接工程は密閉型電池の製造工程における下流工程であるため、当該溶接工程での溶接不良は、密閉型電池の略完成製品が不良品となる。そのため、本実施形態の密閉型電池100は、仕損へ与える影響が非常に大きい略完成製品の不良率改善にも大きく貢献される。   Therefore, the sealed battery 100 according to the present embodiment does not have a gap between the battery lid 6 and the sealing plug 11 generated in the unwelded region, which has been a problem in the prior art, and suppresses poor welding. It becomes possible. More specifically, since there is no unwelded region in the substantially opposite region of the welded region where the gap was significant in the prior art, it is possible to suppress poor welding. Further, since the welding process is a downstream process in the manufacturing process of the sealed battery, the welding failure in the welding process is a substantially completed product of the sealed battery. Therefore, the sealed battery 100 according to the present embodiment greatly contributes to the improvement of the defective rate of a substantially completed product that has a great influence on the workability.

また、密閉型電池100は、封止栓11におけるそれぞれの溶接終了点の少なくとも一部は、他の溶接開始領域の内に配されていても良い。本実施例では、溶接終了位置が前記他の溶接開始位置を通過して溶接済みの領域に設定されている。したがって、既に溶接された箇所を更に溶接することになり、再熱効果を受け、溶接部の平準化や靱性の向上が期待される。   Further, in the sealed battery 100, at least a part of each welding end point in the sealing plug 11 may be arranged in another welding start region. In the present embodiment, the welding end position is set to a welded region passing through the other welding start position. Therefore, the already welded part will be further welded, and it will receive the reheating effect, and leveling of the welded part and improvement of toughness are expected.

尚、本実施例では、第1溶接開始位置W1Sと第2溶接開始位置W2Sからそれぞれ境界部分に沿って反時計回りに溶接する場合を例に説明したが、溶接する方向は第1溶接開始位置W1Sと第2溶接開始位置W2Sからそれぞれ同じ方向であればよく、例えば時計回りに溶接しても良い。   In addition, although the present Example demonstrated as an example the case where it welds counterclockwise along a boundary part from the 1st welding start position W1S and the 2nd welding start position W2S, respectively, the direction to weld is the 1st welding start position. It suffices if they are in the same direction from W1S and the second welding start position W2S. For example, welding may be performed clockwise.

図6は、他の実施例を説明する図であり、図4に対応するものである。
図4に示す実施例では、封止栓11が平面視円形の場合について説明したが、図6に示すように、封止栓11が平面視楕円形の場合についても本発明を同様に適用することができる。
FIG. 6 is a diagram for explaining another embodiment and corresponds to FIG.
In the embodiment shown in FIG. 4, the case where the sealing plug 11 is circular in plan view has been described. However, as shown in FIG. 6, the present invention is similarly applied to the case where the sealing plug 11 is elliptical in plan view. be able to.

注液口の開口面積をより大きく確保して注液効率を向上させるために、注液口の形状を平面視楕円形とすることが従来から行われている。図6に示す実施例の場合、不図示の注液口と封止栓11は、それぞれ長軸が電池蓋6の長手方向に沿うように配置されている。そして、第1溶接開始位置W1Sと第2溶接開始位置W2Sは、封止栓11の径方向中心位置を挟んで電池蓋6の長手方向一方側と他方側に分かれて位置するように設定されている。封止栓11が楕円形の場合、封止栓11の長軸側の方が短軸側よりも径が長いので、一方の長軸側の端部から溶接を開始すると、溶接領域の冷却収縮によって他方の長軸側の端部が注液口9(図5を参照)から浮き上がり易いが、上記構成によれば、かかる封止栓11の浮き上がりを効果的に抑制することができ、隙間の発生を防止できる。   In order to secure a larger opening area of the liquid injection port and improve the liquid injection efficiency, it has been conventionally performed that the shape of the liquid injection port is an elliptical shape in plan view. In the case of the embodiment shown in FIG. 6, the liquid injection port (not shown) and the sealing plug 11 are arranged such that the long axis is along the longitudinal direction of the battery lid 6. And the 1st welding start position W1S and the 2nd welding start position W2S are set so that it may be divided and located in the longitudinal direction one side and other side of battery lid 6 on both sides of the diameter direction center position of sealing plug 11 Yes. When the sealing plug 11 is oval, the diameter of the major axis side of the sealing plug 11 is longer than that of the minor axis side. Therefore, when welding is started from the end of one major axis side, the cooling shrinkage of the welding region However, according to the above configuration, the lifting of the sealing plug 11 can be effectively suppressed, and the gap portion of the gap can be reduced. Occurrence can be prevented.

図7は、他の実施例を説明する図であり、図4に対応するものである。
図4及び図6に示す実施例では、溶接開始位置が2箇所の場合について説明したが、3箇所以上の場合についても本発明を適用することができる。図7に示す実施例は、溶接開始位置が3箇所であり、第1溶接開始位置W1Sと第2溶接開始位置W2Sと第3溶接開始位置W3Sが設定されている。第1溶接開始位置W1Sと第2溶接開始位置W2Sと第3溶接開始位置W3Sは、境界部分に沿って均等に位置するように設定されており、封止栓11の中心を基準にして互いに120度の角度を有する位置に設定されている。
FIG. 7 is a diagram for explaining another embodiment and corresponds to FIG.
In the examples shown in FIGS. 4 and 6, the case where the welding start positions are two has been described, but the present invention can also be applied to the case where there are three or more positions. In the embodiment shown in FIG. 7, there are three welding start positions, and a first welding start position W1S, a second welding start position W2S, and a third welding start position W3S are set. The first welding start position W1S, the second welding start position W2S, and the third welding start position W3S are set so as to be evenly positioned along the boundary portion, and are 120 to each other with the center of the sealing plug 11 as a reference. It is set to a position having an angle of degrees.

そして、かかる第1溶接開始位置W1Sと第2溶接開始位置W2Sと第3溶接開始位置W3Sからそれぞれ境界部分に沿って反時計回りに同時に溶接が開始され、第1溶接部W1と第2溶接部W2と第3溶接部W3が形成される。第1溶接開始位置W1Sと第2溶接開始位置W2Sと第3溶接開始位置W3Sは、第1溶接部W1と第2溶接部W2と第3溶接部W3の各溶接周長がそれぞれ均等となる領域に設定されている。   Then, welding is started simultaneously counterclockwise from the first welding start position W1S, the second welding start position W2S, and the third welding start position W3S, respectively along the boundary portions, and the first welding portion W1 and the second welding portion. W2 and the third weld W3 are formed. The first welding start position W1S, the second welding start position W2S, and the third welding start position W3S are areas in which the welding perimeters of the first welding portion W1, the second welding portion W2, and the third welding portion W3 are equal. Is set to

上記構成によれば、未溶接領域を2つの場合に比べて減らせられるため、前記蓋部と前記封止栓部との間の隙間がより生じ難くなる効果がある。すなわち、溶接開始位置を増やすことで、隙間に起因する溶接不良の抑制が得られ易くなる。   According to the said structure, since an unwelded area | region can be reduced compared with two cases, there exists an effect which the clearance gap between the said cover part and the said sealing plug part becomes difficult to produce more. That is, by increasing the welding start position, it becomes easy to obtain a suppression of welding failure due to the gap.

[実施形態2]
図8は、実施形態2を説明する図であり、図8(a)は、一次溶接工程を説明する図、図8(b)は、二次溶接工程を説明する図である。
尚、実施形態1と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
[Embodiment 2]
FIG. 8 is a diagram for explaining the second embodiment, FIG. 8 (a) is a diagram for explaining the primary welding process, and FIG. 8 (b) is a diagram for explaining the secondary welding process.
Note that the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態において特徴的なことは、同時溶接を所定の時間間隔を空けて複数回に分けて行うことである。溶接工程は、一次溶接工程と二次溶接工程とを含む。一次溶接工程では、複数の溶接開始位置からそれぞれ隣接する溶接終了位置まで溶接を行う。二次溶接工程では、一次溶接工程から所定時間経過後に一次溶接工程における溶接終了位置から他の溶接開始位置まで溶接を行う。   What is characteristic in this embodiment is that simultaneous welding is performed in a plurality of times with a predetermined time interval. The welding process includes a primary welding process and a secondary welding process. In the primary welding process, welding is performed from a plurality of welding start positions to adjacent welding end positions. In the secondary welding process, welding is performed from a welding end position in the primary welding process to another welding start position after a predetermined time has elapsed from the primary welding process.

本実施例では、円環状に連続する境界部分を均等に2つに分けるように、第1溶接開始位置W1Sと第2溶接開始位置W2Sが設定されている。第1溶接開始位置W1Sと第2溶接開始位置W2Sは、図8(a)に示すように、封止栓11の径方向中心位置を挟んで電池蓋6の長手方向一方側と他方側に離れた位置に設定されている。   In the present embodiment, the first welding start position W1S and the second welding start position W2S are set so that the boundary portion that is continuous in an annular shape is equally divided into two. As shown in FIG. 8A, the first welding start position W1S and the second welding start position W2S are separated to one side and the other side in the longitudinal direction of the battery lid 6 with the radial center position of the sealing plug 11 in between. Is set to the correct position.

そして、一次溶接工程により、第1溶接開始位置W1Sと第2溶接開始位置W2Sからそれぞれ境界部分に沿って反時計回りに同時に溶接が開始され、それぞれ隣接する第1溶接終了位置W1Eと第2溶接終了位置W2Eまで溶接される。本実施例では、第1溶接終了位置W1Eと第2溶接終了位置W2Eは、封止栓11の径方向中心位置を基準として、第1溶接開始位置W1Sと第2溶接開始位置W2Sからそれぞれ90度以上180度未満の角度範囲内に離れた位置に設定されている。したがって、図8(a)に示すように、境界部分には、第1溶接部W1と第2溶接部W2が形成される。第1溶接部W1と第2溶接部W2は、境界部分を互いに等しい長さ分だけ部分的に接合し、境界部分に沿って互いに離れた位置に形成される。   Then, in the primary welding process, welding is simultaneously started counterclockwise along the boundary portions from the first welding start position W1S and the second welding start position W2S, respectively, and the adjacent first welding end position W1E and second welding are respectively set. Welding is performed up to the end position W2E. In this embodiment, the first welding end position W1E and the second welding end position W2E are 90 degrees from the first welding start position W1S and the second welding start position W2S, respectively, with the radial center position of the sealing plug 11 as a reference. It is set at a position separated within an angle range of less than 180 degrees. Therefore, as shown to Fig.8 (a), the 1st welding part W1 and the 2nd welding part W2 are formed in a boundary part. The first welded portion W1 and the second welded portion W2 are formed at positions where the boundary portions are partially joined to each other by an equal length and separated from each other along the boundary portion.

一次溶接工程の終了後から二次溶接工程が開始されるまでの所定時間は、予め設定された時間であり、例えば一次溶接工程により溶接された第1溶接部の温度が所定温度以下に低下するまでの時間が設定される。二次溶接工程では、第3溶接開始位置W3Sと第4溶接開始位置W4Sからそれぞれ境界部分に沿って反時計回りに同時に溶接が開始され、それぞれ隣接する第3溶接終了位置W3Eと第4溶接終了位置W4Eまで溶接される。   The predetermined time from the end of the primary welding process to the start of the secondary welding process is a preset time. For example, the temperature of the first welded portion welded by the primary welding process is reduced to a predetermined temperature or lower. The time until is set. In the secondary welding process, welding is simultaneously started counterclockwise along the boundary portion from the third welding start position W3S and the fourth welding start position W4S, respectively, and the adjacent third welding end position W3E and the fourth welding end, respectively. Welding to position W4E.

二次溶接工程における溶接開始位置は、一次溶接工程による一方の第1溶接部の領域に設定され、二次溶接工程における溶接終了位置は、一次溶接工程による他方の第1溶接部の領域に設定されている。すなわち、第3溶接開始位置W3Sと第4溶接開始位置W4Sは、第1溶接部W1の領域と第2溶接部W2の領域にそれぞれ設定されている。そして、第3溶接終了位置W3Eと第4溶接終了位置W4Eは、第2溶接部W2の領域と第1溶接部W1の領域にそれぞれ設定されている。   The welding start position in the secondary welding process is set in the area of one first welded part in the primary welding process, and the welding end position in the secondary welding process is set in the area of the other first welded part in the primary welding process. Has been. That is, the third welding start position W3S and the fourth welding start position W4S are set in the region of the first welding part W1 and the region of the second welding part W2, respectively. The third welding end position W3E and the fourth welding end position W4E are respectively set in the region of the second welding part W2 and the region of the first welding part W1.

したがって、第1溶接部W1の第1溶接終了位置W1Eと第2溶接部W2の第2溶接開始位置W2Sとの間が第3溶接部W3によって接続され、第1溶接部W1の第1溶接開始位置W1Sと第2溶接部W2の第2溶接終了位置W2Eとの間が第4溶接部W4によって接続される。   Therefore, the first welding end position W1E of the first welding part W1 and the second welding start position W2S of the second welding part W2 are connected by the third welding part W3, and the first welding start of the first welding part W1 is started. The fourth welding portion W4 connects between the position W1S and the second welding end position W2E of the second welding portion W2.

そして、第3溶接部W3は、第3溶接開始位置W3S側の端部が第1溶接部W1の第1溶接終了位置W1E側の端部と部分的に重なるように形成され、第3溶接終了位置W3E側の端部が第2溶接部W2の第2溶接開始位置W2S側の端部と部分的に重なるように形成されている。そして、第4溶接部W4は、第4溶接開始位置W4S側の端部が第2溶接部W2の第2溶接終了位置W2E側の端部と部分的に重なるように形成され、第4溶接終了位置W4E側の端部が第1溶接部W1の第1溶接開始位置W1S側の端部と部分的に重なるように形成されている。したがって、第1溶接部W1〜第4溶接部W4が互いに重なる部分は、再熱効果を受け、溶接部分の平準化や靱性の向上が期待される。   And the 3rd welding part W3 is formed so that the edge part by the side of the 3rd welding start position W3S may partially overlap with the edge part by the side of the 1st welding end position W1E of the 1st welding part W1, and the 3rd welding end The end portion on the position W3E side is formed so as to partially overlap the end portion on the second welding start position W2S side of the second welding portion W2. And the 4th welding part W4 is formed so that the edge part by the side of the 4th welding start position W4S may overlap with the edge part by the side of the 2nd welding end position W2E of the 2nd welding part W2, and the 4th welding end The end on the position W4E side is formed so as to partially overlap the end on the first welding start position W1S side of the first welding part W1. Therefore, a portion where the first welded portion W1 to the fourth welded portion W4 overlap each other is expected to receive a reheating effect, and leveling of the welded portion and improvement of toughness are expected.

なお、本実施例では、一次溶接工程と二次溶接工程の2回に分けて境界部分を溶接する場合を例に説明したが、3回以上に分けて行っても良い。溶接工程を3回以上に分けることによって溶接終了位置の少なくとも一部が、他の溶接部に配されている箇所を増やすことで、再熱効果の領域を増やすことに繋がり、溶接部の平準化や靱性の向上がより得られ易くなる。   In addition, although the present Example demonstrated as an example the case where a boundary part was welded in 2 steps, a primary welding process and a secondary welding process, you may carry out in 3 steps or more. By dividing the welding process into three or more times, increasing the number of locations where at least a part of the welding end position is distributed to other welds leads to an increase in the area of the reheating effect, and leveling of the welds And toughness can be improved more easily.

なお、上述の各実施形態では、扁平状に捲回した電極群を例示したが、本発明はこれに限定されず、円柱状に捲回した電極群や正負極を積層した電極群を用いるようにしてもよい。また、本実施形態では、角型電池を例示したが、円柱状電池や扁平状電池にも適用可能であり、さらに、電解液を水系電解液とした密閉型電池にも適用可能である。また、本実施形態では軸芯を有する電極群を例示したが、電池重量を抑えるため軸芯のない電極群を用いるようにしてもよい。その際、電池の出力体積密度を高めるために、所定の圧力で扁平状に捲回された電極群を押し潰すようにしてもよい。   In each of the above-described embodiments, the electrode group wound in a flat shape is illustrated, but the present invention is not limited to this, and an electrode group wound in a columnar shape or an electrode group in which positive and negative electrodes are stacked is used. It may be. In this embodiment, the rectangular battery is exemplified, but the present invention can be applied to a cylindrical battery or a flat battery, and can also be applied to a sealed battery in which an electrolytic solution is an aqueous electrolytic solution. Further, in the present embodiment, the electrode group having the axis is illustrated, but an electrode group without the axis may be used in order to reduce the battery weight. At that time, in order to increase the output volume density of the battery, the electrode group wound in a flat shape with a predetermined pressure may be crushed.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

本発明は密閉性が確保可能で軽量の密閉型電池を提供するものであるため、密閉型電池
の製造、販売に寄与するので、産業上の利用可能性を有する。
Since the present invention provides a lightweight sealed battery that can ensure hermeticity and contributes to the manufacture and sale of sealed batteries, it has industrial applicability.

1 電池缶
6 電池蓋
9 注液口
11 封止栓
100 密閉型電池
W1 第1溶接部
W2 第2溶接部
W3 第3溶接部
W4 第4溶接部
W1S 第1溶接開始位置
W2S 第2溶接開始位置
W3S 第3溶接開始位置
W4S 第4溶接開始位置
W1E 第1溶接終了位置
W2E 第2溶接終了位置
W3E 第3溶接終了位置
W4E 第4溶接終了位置
DESCRIPTION OF SYMBOLS 1 Battery can 6 Battery cover 9 Injection port 11 Seal plug 100 Sealed battery W1 1st welding part W2 2nd welding part W3 3rd welding part W4 4th welding part W1S 1st welding start position W2S 2nd welding start position W3S Third welding start position W4S Fourth welding start position W1E First welding end position W2E Second welding end position W3E Third welding end position W4E Fourth welding end position

Claims (6)

注液口を有する電池ケースと、注液口を封止する封止栓と、を備えた密閉型電池の製造方法であって、
前記注液口から前記電池ケース内に電解液を注入する注液工程と、
該注液工程の後に、前記封止栓で前記注液口を塞いで前記電池ケースと前記封止栓との間に形成される環状の境界部分を該境界部分に沿って連続して溶接して前記注液口を封止する溶接工程と、を含み、
前記溶接工程では、前記境界部分に均等に設定された複数の溶接開始位置から前記境界部分に沿って同方向に同時に溶接を開始し、前記複数の溶接開始位置からそれぞれ隣接する他の溶接開始位置まで溶接を行い、溶接終了位置が前記他の溶接開始位置を通過して溶接済みの領域に設定されていることを特徴とする密閉型電池の製造方法。
A method for producing a sealed battery comprising a battery case having a liquid inlet and a sealing plug for sealing the liquid inlet,
A liquid injection step of injecting an electrolytic solution into the battery case from the liquid injection port;
After the liquid injection step, the liquid injection port is closed with the sealing plug, and an annular boundary portion formed between the battery case and the sealing plug is continuously welded along the boundary portion. And a welding step for sealing the liquid injection port,
In the welding step, welding is simultaneously started in the same direction along the boundary portion from a plurality of welding start positions set equally to the boundary portion, and other welding start positions adjacent to each other from the plurality of welding start positions. And the welding end position is set to a welded region after passing through the other welding start position .
注液口を有する電池ケースと、注液口を封止する封止栓と、を備えた密閉型電池の製造方法であって、
前記注液口から前記電池ケース内に電解液を注入する注液工程と、
該注液工程の後に、前記封止栓で前記注液口を塞いで前記電池ケースと前記封止栓との間に形成される環状の境界部分を該境界部分に沿って連続して溶接して前記注液口を封止する溶接工程と、を含み、
前記溶接工程では、前記境界部分に均等に設定された複数の溶接開始位置から前記境界部分に沿って同方向に同時に溶接を開始し、前記溶接を所定の時間間隔を空けて複数回に分けて行うことを特徴とする密閉型電池の製造方法。
A method for producing a sealed battery comprising a battery case having a liquid inlet and a sealing plug for sealing the liquid inlet,
A liquid injection step of injecting an electrolytic solution into the battery case from the liquid injection port;
After the liquid injection step, the liquid injection port is closed with the sealing plug, and an annular boundary portion formed between the battery case and the sealing plug is continuously welded along the boundary portion. And a welding step for sealing the liquid injection port,
In the welding step, welding is simultaneously started in the same direction along the boundary portion from a plurality of welding start positions set equally to the boundary portion, and the welding is divided into a plurality of times with a predetermined time interval. tightly closed method for producing a battery you and performing.
前記溶接工程は、
前記複数の溶接開始位置からそれぞれ隣接する溶接終了位置まで溶接を行う一次溶接工程と、
該一次溶接工程から所定時間経過後に前記溶接終了位置からそれぞれ隣接する他の溶接開始位置まで溶接を行う二次溶接工程と、
を含むことを特徴とする請求項に記載の密閉型電池の製造方法。
The welding process includes
A primary welding step of performing welding from the plurality of welding start positions to adjacent welding end positions;
A secondary welding step of performing welding from the welding end position to another adjacent welding start position after elapse of a predetermined time from the primary welding step;
The method for producing a sealed battery according to claim 2 , comprising:
前記二次溶接工程における溶接開始位置が前記一次溶接工程による一方の第1溶接部の領域に設定され、
前記二次溶接工程における溶接終了位置が前記一次溶接工程による他方の第1溶接部の領域に設定されていることを特徴とする請求項に記載の密閉型電池の製造方法。
The welding start position in the secondary welding process is set in the region of one first welded part by the primary welding process,
The method for manufacturing a sealed battery according to claim 3 , wherein a welding end position in the secondary welding step is set in a region of the other first welded portion in the primary welding step.
前記境界部分は、平面視円形を有することを特徴とする請求項1から請求項のいずれか一項に記載の密閉型電池の製造方法。 The method for manufacturing a sealed battery according to any one of claims 1 to 4 , wherein the boundary portion has a circular shape in a plan view. 前記境界部分は、平面視楕円形を有することを特徴とする請求項1から請求項のいずれか一項に記載の密閉型電池の製造方法。 The said boundary part has a planar view ellipse, The manufacturing method of the sealed battery as described in any one of Claims 1-4 characterized by the above-mentioned.
JP2016180308A 2016-09-15 2016-09-15 Manufacturing method of sealed battery Active JP6608787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180308A JP6608787B2 (en) 2016-09-15 2016-09-15 Manufacturing method of sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180308A JP6608787B2 (en) 2016-09-15 2016-09-15 Manufacturing method of sealed battery

Publications (2)

Publication Number Publication Date
JP2018045888A JP2018045888A (en) 2018-03-22
JP6608787B2 true JP6608787B2 (en) 2019-11-20

Family

ID=61693815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180308A Active JP6608787B2 (en) 2016-09-15 2016-09-15 Manufacturing method of sealed battery

Country Status (1)

Country Link
JP (1) JP6608787B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346167B (en) * 2021-06-04 2024-02-02 中创新航科技股份有限公司 Welding method of battery cover plate
CN114122587A (en) * 2021-12-17 2022-03-01 珠海冠宇电池股份有限公司 Battery with a battery cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111246A (en) * 1997-08-06 1999-04-23 Toshiba Corp Sealed battery and manufacture thereof
US7754378B2 (en) * 2004-06-25 2010-07-13 Samsung Sdi Co., Ltd. Secondary battery with a sealing plate used to seal an electrolyte injection hole in a cap plate
CN101291774A (en) * 2005-06-29 2008-10-22 皇家飞利浦电子股份有限公司 Laser welding system and method
JP5084136B2 (en) * 2005-11-30 2012-11-28 三洋電機株式会社 Manufacturing method of sealed battery
JP6217979B2 (en) * 2014-05-14 2017-10-25 トヨタ自動車株式会社 Manufacturing method of sealed battery
DE112015006650T5 (en) * 2015-06-26 2018-03-08 Toyota Jidosha Kabushiki Kaisha SYSTEMS AND METHODS OF WELDING

Also Published As

Publication number Publication date
JP2018045888A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6806217B2 (en) Rechargeable battery
JP5135368B2 (en) Square battery and method for manufacturing the same
JP6093874B2 (en) Prismatic secondary battery
JP5475206B1 (en) Prismatic secondary battery
JP6522418B2 (en) Rectangular secondary battery, battery assembly using the same, and method of manufacturing the same
JP2016207510A (en) Square secondary battery
JP2009259524A (en) Lid of battery case, battery, and method of manufacturing the same
JP2010282822A (en) Sealed battery and method of manufacturing the same
JP6217979B2 (en) Manufacturing method of sealed battery
JP2016085875A (en) Power storage device, power-supply module, and method for manufacturing power storage device
JPWO2013132632A1 (en) Sealed battery and manufacturing method thereof
JP6608787B2 (en) Manufacturing method of sealed battery
KR102487890B1 (en) Secondary battery
JP2005183360A (en) Square battery and its manufacturing method
US10381631B2 (en) Sealed-type battery having a current interrupt device
JP6246540B2 (en) Nonaqueous electrolyte secondary battery
JP6105986B2 (en) Power storage device and method for manufacturing power storage device
JP2013251123A (en) Square secondary battery
JP2001118561A (en) Current-collecting structure and secondary battery
JP6304981B2 (en) Nonaqueous electrolyte secondary battery
JP6133680B2 (en) Prismatic secondary battery
JP2015018680A (en) Power storage element, and method of manufacturing power storage element
JP6045799B2 (en) Flat battery
JP2016110701A (en) Manufacturing method of current interruption mechanism
JP6373590B2 (en) Battery and battery manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191024

R150 Certificate of patent or registration of utility model

Ref document number: 6608787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250