JP6105986B2 - Power storage device and method for manufacturing power storage device - Google Patents

Power storage device and method for manufacturing power storage device Download PDF

Info

Publication number
JP6105986B2
JP6105986B2 JP2013053736A JP2013053736A JP6105986B2 JP 6105986 B2 JP6105986 B2 JP 6105986B2 JP 2013053736 A JP2013053736 A JP 2013053736A JP 2013053736 A JP2013053736 A JP 2013053736A JP 6105986 B2 JP6105986 B2 JP 6105986B2
Authority
JP
Japan
Prior art keywords
peripheral side
liquid injection
plastic deformation
injection hole
sealing plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013053736A
Other languages
Japanese (ja)
Other versions
JP2014179288A (en
Inventor
翔 西丸
翔 西丸
青田 欣也
欣也 青田
浩一 梶原
浩一 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013053736A priority Critical patent/JP6105986B2/en
Publication of JP2014179288A publication Critical patent/JP2014179288A/en
Application granted granted Critical
Publication of JP6105986B2 publication Critical patent/JP6105986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、蓄電素子および蓄電素子の製造方法に関する。   The present invention relates to a power storage element and a method for manufacturing the power storage element.

リチウムイオン二次電池などの二次電池は、電池缶内に発電要素が収容され、電解液が注入されている。電池缶は、電池蓋により密封されている。電解液は電池蓋に設けられた注液部から電池缶内に注入され、注入後、注液部は封止栓により封止される。封止栓は、注液部に挿入され、通常、レーザ溶接などにより注液部に接合される。   In a secondary battery such as a lithium ion secondary battery, a power generation element is accommodated in a battery can and an electrolyte is injected. The battery can is sealed with a battery lid. The electrolytic solution is injected into the battery can from a liquid injection part provided on the battery lid, and after the injection, the liquid injection part is sealed with a sealing plug. The sealing plug is inserted into the liquid injection part and is usually joined to the liquid injection part by laser welding or the like.

封止栓の注液部への挿入性を考慮した場合、注液部と封止栓との間には隙間が必要となる。しかしながら、この隙間が大きすぎると、隙間を封止するための溶接金属が不足して、溶接金属に割れ等の溶接欠陥が生じる可能性がある。   In consideration of the insertion property of the sealing plug into the liquid injection part, a gap is required between the liquid injection part and the sealing plug. However, if this gap is too large, the weld metal for sealing the gap is insufficient, and a weld defect such as a crack may occur in the weld metal.

特許文献1には、封止栓の外表面などに溶接時に溶融される突起が設けられた電池が開示され、溶接の際に、突起の溶融金属(溶融池)を利用して封止栓を注液部に溶接する方法が開示されている。   Patent Document 1 discloses a battery in which a protrusion that is melted at the time of welding is provided on the outer surface of the sealing plug, and the sealing plug is used by utilizing a molten metal (molten pool) of the protrusion at the time of welding. A method of welding to a liquid injection part is disclosed.

特開2012−18861号公報JP 2012-18861 A

レーザ溶接や電子ビーム溶接等により封止栓を注液部に溶接する方法では、所定の位置を溶接開始点として、封止栓の外周に沿って溶接が行われる。このため、周方向に溶接が行われる過程において、溶接開始点において溶融された金属が凝固収縮を起こし、これに伴い封止栓が浮いてしまうおそれがある。   In the method of welding the sealing plug to the liquid injection part by laser welding, electron beam welding, or the like, welding is performed along the outer periphery of the sealing plug with a predetermined position as a welding start point. For this reason, in the process in which welding is performed in the circumferential direction, the metal melted at the welding start point may cause solidification shrinkage, and the sealing plug may float accordingly.

請求項1に記載の蓄電素子は、発電要素が収容された容器と、容器の一側面に設けられ、電解液を注入する注液孔を有する注液部と、注液孔を封止する封止栓とを備え、注液孔は、容器の一側面に凹設された凹部の底面に設けられ、封止栓は、注液孔に挿入される挿入部と、凹部に嵌合される嵌合部とを有し、少なくとも嵌合部の周縁部および凹部の開口周縁部のいずれか一方の所定位置に、嵌合部の外周側面と凹部の内周側面とが当接される塑性変形部が形成され、封止栓が注液部に対して塑性変形部の反対側に偏心して配置され、注液孔を挟んで塑性変形部に対向する位置において嵌合部の外周側面と凹部の内周側面とが当接、嵌合部の外周側面と凹部の内周側面と全周に亘って溶接部が形成されていることを特徴とする。
請求項4に記載の蓄電素子の製造方法は、容器内に発電要素を収容する収容工程と、容器の一側面に凹設された凹部の底面に設けられた注液孔から容器内に電解液を注入する注液工程と、封止栓により注液孔を封止する封止工程とを含む蓄電素子の製造方法であって、封止工程は、封止栓に設けられた挿入部を注液孔に挿入し、封止栓に設けられた嵌合部を凹部に嵌合する配置工程と、少なくとも嵌合部の周縁部および凹部の開口周縁部のいずれか一方における第1の位置を容器の外方から押圧して、第1の位置における嵌合部の外周側面と凹部の内周側面とが当接される塑性変形部を形成するとともに、封止栓を凹部に対して塑性変形部の反対側に偏心させて、注液孔を挟んで塑性変形部に対向する第2の位置における嵌合部の外周側面と凹部の内周側面とを当接させることで仮止めする仮止め工程と、嵌合部の外周側面と凹部の内周側面とを、全周に亘って溶接する溶接工程とを含むことを特徴とする。
The electricity storage device according to claim 1 is a container in which a power generation element is accommodated, a liquid injection part provided on one side of the container, having a liquid injection hole for injecting an electrolytic solution, and a seal for sealing the liquid injection hole. The liquid injection hole is provided on the bottom surface of the concave portion provided in one side of the container, and the sealing plug is fitted into the insertion portion to be inserted into the liquid injection hole and fitted into the concave portion. A plastic deformation portion having at least one of a peripheral portion of the fitting portion and an opening peripheral portion of the concave portion, and the outer peripheral side surface of the fitting portion and the inner peripheral side surface of the concave portion are in contact with each other at a predetermined position. The sealing plug is eccentrically arranged on the opposite side of the plastic deformation part with respect to the liquid injection part, and is located between the outer peripheral side surface of the fitting part and the concave part at a position facing the plastic deformation part across the liquid injection hole. and peripheral sides abut, wherein the weld along the entire periphery of the inner peripheral side of the outer peripheral side surface and the concave portion of the fitting portion is formed.
The method for manufacturing a power storage device according to claim 4 includes: a housing step of housing the power generation element in the container; and an electrolyte solution in the container from a liquid injection hole provided in a bottom surface of the recess formed in one side of the container. A storage element manufacturing method including a liquid injection process for injecting a liquid and a sealing process for sealing a liquid injection hole with a sealing plug, wherein the sealing process is performed by pouring an insertion portion provided in the sealing plug. The placement step of inserting the fitting portion provided in the sealing plug into the recess and inserting the fitting portion into the recess, and at least the first position in either the peripheral portion of the fitting portion or the opening peripheral portion of the recess The outer peripheral side surface of the fitting portion and the inner peripheral side surface of the concave portion at the first position are pressed to form a plastic deformation portion, and the sealing plug is pressed against the concave portion with the plastic deformation portion. And the outer peripheral side surface of the fitting portion at the second position facing the plastic deformation portion across the liquid injection hole. A temporary fixing step of temporarily fixing the contact portion by contacting the inner peripheral side surface of the portion, and a welding step of welding the outer peripheral side surface of the fitting portion and the inner peripheral side surface of the concave portion over the entire circumference. And

本発明によれば、封止栓を注液部に溶接する際に、封止栓が浮くことが防止され、封止の信頼性を向上することができる。   According to the present invention, when the sealing plug is welded to the liquid injection part, the sealing plug is prevented from floating, and the sealing reliability can be improved.

本発明に係る蓄電素子の一実施の形態としての角形二次電池の外観斜視図。1 is an external perspective view of a prismatic secondary battery as an embodiment of a power storage device according to the present invention. 図1に示された角形二次電池の分解斜視図。FIG. 2 is an exploded perspective view of the prismatic secondary battery shown in FIG. 1. 図2に示された発電要素を、その捲回終端部側を展開した状態の斜視図。The perspective view of the state which expand | deployed the electric power generation element shown by FIG. 2 the winding termination | terminus part side. 封止栓と注液部とを示す封止構造の拡大分解斜視図。The expansion disassembled perspective view of the sealing structure which shows a sealing stopper and a liquid injection part. (a)は封止栓が注液部に配置された状態を示す断面模式図、(b)は封止栓が注液部に仮止めされた状態を示す断面模式図。(A) is a cross-sectional schematic diagram which shows the state by which the sealing stopper is arrange | positioned in the liquid injection part, (b) is a cross-sectional schematic diagram which shows the state in which the sealing plug was temporarily fixed to the liquid injection part. (a)は封止栓が注液部にレーザ溶接される様子を示す断面模式図、(b)は封止栓が注液部に溶接された後の状態を示す断面模式図。(A) is a cross-sectional schematic diagram which shows a mode that a sealing plug is laser-welded to a liquid injection part, (b) is a cross-sectional schematic diagram which shows the state after a sealing plug is welded to a liquid injection part. (a)は封止栓が注液部に配置された状態を示す平面模式図、(b)は封止栓が注液部に仮止めされた状態を示す平面模式図。(A) is a plane schematic diagram which shows the state by which the sealing plug is arrange | positioned in the liquid injection part, (b) is a plane schematic diagram which shows the state by which the sealing plug was temporarily fixed to the liquid injection part. (a)および(b)は封止栓が注液部にレーザ溶接される様子を示す平面模式図。(A) And (b) is a plane schematic diagram which shows a mode that a sealing stopper is laser-welded to a liquid injection part. 封止栓が注液部に溶接された後の状態を示す平面模式図。The plane schematic diagram which shows the state after the sealing stopper was welded to the liquid injection part. 第2の実施の形態に係る蓄電素子における封止栓による注液孔の封止方法を説明する断面模式図。The cross-sectional schematic diagram explaining the sealing method of the liquid injection hole by the sealing plug in the electrical storage element which concerns on 2nd Embodiment. 第3の実施の形態に係る蓄電素子における封止栓による注液孔の封止方法を説明する平面模式図。The plane schematic diagram explaining the sealing method of the liquid injection hole by the sealing plug in the electrical storage element which concerns on 3rd Embodiment. 第1の実施の形態の変形例に係る蓄電素子における封止栓による注液孔の封止方法を説明する断面模式図。The cross-sectional schematic diagram explaining the sealing method of the injection hole by the sealing plug in the electrical storage element which concerns on the modification of 1st Embodiment. 第2の実施の形態の変形例に係る蓄電素子における封止栓による注液孔の封止方法を説明する断面模式図。The cross-sectional schematic diagram explaining the sealing method of the injection hole by the sealing plug in the electrical storage element which concerns on the modification of 2nd Embodiment. 変形例に係る蓄電素子において、複数の塑性変形部が形成された封止栓と、注液部とを示す図。The figure which shows the sealing stopper in which the several plastic deformation part was formed, and the liquid injection part in the electrical storage element which concerns on a modification.

以下、この発明の蓄電素子および蓄電素子の製造方法の一実施形態を図面を参照して説明する。
−第1の実施の形態−
図1は本発明に係る蓄電素子の一実施の形態としての角形二次電池の外観斜視図であり、図2は図1に示された角形二次電池の分解斜視図である。以下の説明では、角形二次電池をリチウムイオン角形二次電池として説明する。なお、説明の便宜上、図示するように上下方向を規定する。
Hereinafter, an embodiment of a power storage device and a method for manufacturing the power storage device of the present invention will be described with reference to the drawings.
-First embodiment-
FIG. 1 is an external perspective view of a prismatic secondary battery as an embodiment of a power storage device according to the present invention, and FIG. 2 is an exploded perspective view of the prismatic secondary battery shown in FIG. In the following description, the prismatic secondary battery is described as a lithium ion prismatic secondary battery. For convenience of explanation, the vertical direction is defined as shown.

図1に示すように、角形二次電池100は、電池缶101と電池蓋102とから構成される角形の電池容器(容器)103を備えている。電池缶101および電池蓋102の材質は、たとえば、アルミニウムまたはアルミニウム合金などのアルミニウム系金属である。   As shown in FIG. 1, the rectangular secondary battery 100 includes a rectangular battery container (container) 103 including a battery can 101 and a battery lid 102. The material of the battery can 101 and the battery lid 102 is, for example, an aluminum-based metal such as aluminum or an aluminum alloy.

電池蓋102は、矩形平板状であって、電池缶101の開口部101d(図2参照)を塞ぐように接合されている。つまり、電池蓋102は、電池缶101を封止している。電池蓋102には、正極端子141および負極端子151が配設されている。電池蓋102には、ガス排出弁104が設けられている。ガス排出弁104は、たとえば、プレス加工によって電池蓋102を部分的に薄肉化することで形成される。ガス排出弁104には、開裂時に大きな開口が形成されるように開裂溝が形成されている。ガス排出弁104は、角形二次電池100が過充電等の異常により発熱して内部にガスが発生し、電池容器103内の圧力が上昇して所定圧力に達したときに開裂して、内部からガスを排出することで電池容器103内の圧力を低減させる。   The battery lid 102 has a rectangular flat plate shape and is joined so as to close the opening 101 d (see FIG. 2) of the battery can 101. That is, the battery lid 102 seals the battery can 101. The battery lid 102 is provided with a positive terminal 141 and a negative terminal 151. The battery cover 102 is provided with a gas discharge valve 104. The gas discharge valve 104 is formed, for example, by partially thinning the battery lid 102 by press working. The gas discharge valve 104 is formed with a cleavage groove so that a large opening is formed at the time of cleavage. The gas discharge valve 104 is heated when the rectangular secondary battery 100 generates heat due to an abnormality such as overcharge, and gas is generated therein. When the pressure in the battery container 103 rises and reaches a predetermined pressure, the gas discharge valve 104 is opened. The pressure in the battery container 103 is reduced by discharging the gas from the battery.

電池蓋102には、電池容器103内に電解液を注入する注液孔111を有する注液部110(図4参照)が形成されている。電解液としては、たとえば、エチレンカーボネート等の炭酸エステル系の有機溶媒に6フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を用いることができる。 The battery lid 102 is formed with a liquid injection part 110 (see FIG. 4) having a liquid injection hole 111 for injecting an electrolytic solution into the battery container 103. As the electrolytic solution, for example, a non-aqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a carbonate-based organic solvent such as ethylene carbonate can be used.

注液孔111は、電池容器103の内外を連通する貫通孔であって、電解液が注入された後に封止栓120により封止される。封止栓120による注液孔111の封止構造ならびに封止方法の詳細については後述する。   The liquid injection hole 111 is a through hole that communicates the inside and outside of the battery container 103, and is sealed by the sealing plug 120 after the electrolyte is injected. Details of the sealing structure of the liquid injection hole 111 by the sealing plug 120 and the sealing method will be described later.

図2に示すように、電池缶101には発電要素170が収容されている。電池缶101は、一対の幅広面101aと一対の幅狭面101bと底面101cとを有し、上面が開口された矩形箱状に形成されている。発電要素170は、絶縁ケース108に覆われた状態で電池缶101内に収容されている。絶縁ケース108の材質は、ポリプロピレン等の絶縁性を有する樹脂である。これにより、電池缶101と、発電要素170とは電気的に絶縁されている。   As shown in FIG. 2, the power generation element 170 is accommodated in the battery can 101. The battery can 101 has a pair of wide surfaces 101a, a pair of narrow surfaces 101b, and a bottom surface 101c, and is formed in a rectangular box shape with an upper surface opened. The power generation element 170 is accommodated in the battery can 101 while being covered with the insulating case 108. The material of the insulating case 108 is an insulating resin such as polypropylene. Thereby, the battery can 101 and the power generation element 170 are electrically insulated.

正極端子141は正極集電体181を介して発電要素170の正極電極174に電気的に接続され、負極端子151は負極集電体182を介して発電要素170の負極電極175に電気的に接続されている。これにより、正極端子141および負極端子151を介して外部負荷に電力が供給され、あるいは、正極端子141および負極端子151を介して外部発電電力が発電要素170に供給されて充電される。   The positive electrode terminal 141 is electrically connected to the positive electrode 174 of the power generation element 170 via the positive electrode current collector 181, and the negative electrode terminal 151 is electrically connected to the negative electrode 175 of the power generation element 170 via the negative electrode current collector 182. Has been. Thereby, electric power is supplied to the external load via the positive electrode terminal 141 and the negative electrode terminal 151, or external generated electric power is supplied to the power generation element 170 via the positive electrode terminal 141 and the negative electrode terminal 151 to be charged.

電池蓋組立体107は、電池蓋102と、電池蓋102に設けられた一対の貫通孔102hのそれぞれに取り付けられた正極端子141および負極端子151と、正極集電体181および負極集電体182と、一対のガスケット150と、一対の絶縁部材160とを含んで構成されている。   The battery lid assembly 107 includes a battery lid 102, a positive electrode terminal 141 and a negative electrode terminal 151 attached to each of a pair of through holes 102 h provided in the battery lid 102, and a positive electrode current collector 181 and a negative electrode current collector 182. And a pair of gaskets 150 and a pair of insulating members 160.

正極端子141および正極集電体181の材質はアルミニウムまたはアルミニウム合金である。負極端子151および負極集電体182の材質は銅または銅合金である。絶縁部材160およびガスケット150の材質は、ポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂である。   The material of the positive electrode terminal 141 and the positive electrode current collector 181 is aluminum or an aluminum alloy. The material of the negative electrode terminal 151 and the negative electrode current collector 182 is copper or a copper alloy. The material of the insulating member 160 and the gasket 150 is an insulating resin such as polybutylene terephthalate, polyphenylene sulfide, or perfluoroalkoxy fluororesin.

図3を参照して、発電要素170について説明する。図3は、図2に示された発電要素170を、その捲回終端部側を展開した状態の斜視図である。
蓄電要素でもある発電要素170は、図3に示すように、長尺状の正極電極174および負極電極175を、セパレータ173を介在させて捲回軸Uの周りに扁平形状に捲回することで積層構造とされている。すなわち、発電要素170は、断面が半円弧形状の円弧部が両端に形成され、両端部間がほぼ平坦な平坦部とされた扁平形状の捲回電極群である。
The power generating element 170 will be described with reference to FIG. FIG. 3 is a perspective view of the power generation element 170 shown in FIG. 2 in a state where the winding terminal end side is developed.
As shown in FIG. 3, the power generation element 170 that is also a power storage element is obtained by winding a long positive electrode 174 and a negative electrode 175 in a flat shape around a winding axis U with a separator 173 interposed therebetween. It is a laminated structure. That is, the power generation element 170 is a flat wound electrode group in which a circular arc part having a semicircular cross section is formed at both ends, and a flat part between both the end parts is a flat part.

正極電極174は、正極箔171と、正極活物質に結着材(バインダ)を配合した正極活物質合剤が正極箔171の両面に塗工されて形成された正極活物質合剤層176とを有する。負極電極175は、負極箔172と、負極活物質に結着材(バインダ)を配合した負極活物質合剤が負極箔172の両面に塗工されて形成された負極活物質合剤層177とを有する。正極活物質と負極活物質との間では、充放電が行われる。   The positive electrode 174 includes a positive electrode foil 171 and a positive electrode active material mixture layer 176 formed by coating a positive electrode active material mixture in which a binder (binder) is mixed with a positive electrode active material on both surfaces of the positive electrode foil 171. Have The negative electrode 175 includes a negative electrode foil 172 and a negative electrode active material mixture layer 177 formed by coating a negative electrode active material mixture in which a binder (binder) is mixed with a negative electrode active material on both surfaces of the negative electrode foil 172. Have Charging / discharging is performed between the positive electrode active material and the negative electrode active material.

正極箔171は、厚さ20〜30μm程度のアルミニウム合金箔であり、負極箔172は、厚さ15〜20μm程度の銅合金箔である。セパレータ173の素材は多孔質のポリエチレン樹脂である。正極活物質はマンガン酸リチウム等のリチウム含有遷移金属複酸化物であり、負極活物質はリチウムイオンを可逆に吸蔵、放出可能な黒鉛等の炭素材である。   The positive foil 171 is an aluminum alloy foil having a thickness of about 20 to 30 μm, and the negative foil 172 is a copper alloy foil having a thickness of about 15 to 20 μm. The material of the separator 173 is a porous polyethylene resin. The positive electrode active material is a lithium-containing transition metal double oxide such as lithium manganate, and the negative electrode active material is a carbon material such as graphite capable of reversibly occluding and releasing lithium ions.

発電要素170の幅方向(捲回方向に直交する捲回軸U方向)の両端部は、一方は正極活物質合剤層176が形成されていない未塗工部(正極箔171の露出部)が積層された部分とされている。また、他方は負極活物質合剤層177が形成されていない未塗工部(負極箔172の露出部)が積層された部分とされている。正極側未塗工部の積層体および負極側未塗工部の積層体は、それぞれ予め押し潰され、それぞれ、電池蓋組立体107の正極集電体181および負極集電体182(図2参照)と超音波接合により接続され、電池蓋組立体107に一体化される。   One end of both ends of the power generation element 170 in the width direction (winding axis U direction orthogonal to the winding direction) is an uncoated portion where the positive electrode active material mixture layer 176 is not formed (exposed portion of the positive electrode foil 171). Are the stacked portions. The other is a portion where an uncoated portion (exposed portion of the negative electrode foil 172) where the negative electrode active material mixture layer 177 is not formed is laminated. The laminated body of the positive electrode side uncoated part and the laminated body of the negative electrode side uncoated part are respectively crushed in advance, respectively, and the positive electrode current collector 181 and the negative electrode current collector 182 of the battery lid assembly 107 (see FIG. 2). ) By ultrasonic bonding and integrated with the battery lid assembly 107.

封止栓120と注液部110の形状について説明する。図4は封止栓120と注液部110とを示す封止構造の拡大分解斜視図である。   The shapes of the sealing plug 120 and the liquid injection part 110 will be described. FIG. 4 is an enlarged exploded perspective view of the sealing structure showing the sealing plug 120 and the liquid injection part 110.

注液部110は、電池蓋102の外表面に凹設された円形の凹部112と、凹部112の底面112bから電池蓋102の厚さ方向に貫通して形成された円形の注液孔111とを有する。凹部112と注液孔111とは同心円に形成されている。換言すれば、注液部110は、大径開口部を構成する凹部112と、小径開口部を構成する注液孔111とを有する段付き孔である。凹部112は、電池容器103の一側面を構成する電池蓋102の上面(電池容器103の外部)側において、電池容器103の内方に向かって窪むように設けられている。凹部112は、たとえば、座ぐり加工により形成される。凹部112は、底面112bと、底面112bの外周端から立ち上がる側面(以下、内周側面112iと記す)とを有する。凹部112の底面112bは、封止栓120の鍔部(嵌合部)122の下面が当接される面とされる。   The liquid injection part 110 includes a circular recess 112 formed in the outer surface of the battery lid 102, and a circular liquid injection hole 111 formed through the bottom surface 112 b of the recess 112 in the thickness direction of the battery cover 102. Have The recess 112 and the liquid injection hole 111 are formed concentrically. In other words, the liquid injection part 110 is a stepped hole having a recess 112 that constitutes a large-diameter opening and a liquid injection hole 111 that constitutes a small-diameter opening. The recess 112 is provided so as to be recessed toward the inside of the battery container 103 on the upper surface (outside of the battery container 103) side of the battery lid 102 constituting one side surface of the battery container 103. The recess 112 is formed, for example, by spot facing. The recess 112 has a bottom surface 112b and a side surface (hereinafter referred to as an inner peripheral side surface 112i) rising from the outer peripheral end of the bottom surface 112b. The bottom surface 112b of the recess 112 is a surface with which the lower surface of the flange (fitting portion) 122 of the sealing plug 120 is brought into contact.

封止栓120は、たとえば、アルミニウム、アルミニウム合金等のアルミニウム系金属により形成される。封止栓120は、底部121aを有する円筒状の筒部121と、筒部121の上部外周に形成された円環状の鍔部122とを有する。鍔部122と筒部121とは同心円に形成されている。換言すれば、封止栓120は、大径部を構成する鍔部122と、小径部を構成する筒部121とを有する段付き形状を呈している。鍔部122の周縁部は、封止栓120が注液部110に配置されたときに、電池蓋102の外表面から上方(電池容器103の外方)に向かって突出する突起部122aとされ(図5参照)、突起部122aは鍔部122の全周に亘って設けられている。封止栓120の筒部121および鍔部122の中央部には、鍔部122側が開口された中空部125が形成され、封止栓120はほぼハット型形状を呈している。   The sealing plug 120 is made of, for example, an aluminum-based metal such as aluminum or an aluminum alloy. The sealing plug 120 includes a cylindrical tube portion 121 having a bottom portion 121 a and an annular flange portion 122 formed on the upper outer periphery of the tube portion 121. The flange portion 122 and the cylindrical portion 121 are formed concentrically. In other words, the sealing plug 120 has a stepped shape having the flange portion 122 constituting the large diameter portion and the cylindrical portion 121 constituting the small diameter portion. The peripheral edge of the flange 122 is a protrusion 122 a that protrudes upward (outside the battery container 103) from the outer surface of the battery lid 102 when the sealing plug 120 is disposed in the liquid injection part 110. (Refer FIG. 5) and the protrusion part 122a are provided over the perimeter of the collar part 122. FIG. A hollow portion 125 having an opening on the flange 122 side is formed at the center of the cylindrical portion 121 and the flange 122 of the sealing plug 120, and the sealing plug 120 has a substantially hat-shaped shape.

第1の実施の形態に係る角形二次電池100の製造方法について説明する。角形二次電池100の製造方法は、電池容器内に発電要素170を収容する収容工程と、注液孔111から電池容器内に電解液を注入する注液工程と、封止栓120により注液孔111を封止する封止工程とを含む。   A method for manufacturing prismatic secondary battery 100 according to the first embodiment will be described. The manufacturing method of the prismatic secondary battery 100 includes an accommodating step of accommodating the power generation element 170 in the battery container, an injecting step of injecting an electrolytic solution into the battery container from the injecting hole 111, and an injection by the sealing plug 120. And a sealing step for sealing the hole 111.

−収容工程−
電池蓋組立体107に一体化された発電要素170を、電池缶101内に収容された絶縁ケース108内に収容する。このとき、捲回軸Uが電池缶101の底面101cに平行となるように、かつ、一対の平坦部が電池缶101の幅広面101aに平行となるように、発電要素170を電池缶101内に収容する。電池缶101の開口部101dを、電池蓋組立体107の電池蓋102によって閉塞し、電池蓋102の周縁をレーザ溶接等により電池缶101の開口周縁に接合する。
-Containment process-
The power generation element 170 integrated with the battery lid assembly 107 is accommodated in the insulating case 108 accommodated in the battery can 101. At this time, the power generating element 170 is placed in the battery can 101 so that the winding axis U is parallel to the bottom surface 101 c of the battery can 101 and the pair of flat portions are parallel to the wide surface 101 a of the battery can 101. To house. The opening 101d of the battery can 101 is closed by the battery lid 102 of the battery lid assembly 107, and the periphery of the battery lid 102 is joined to the opening periphery of the battery can 101 by laser welding or the like.

−注液工程−
電池蓋102が上側になるように電池容器103を図示しない平面台上に載置し、電池容器内部の減圧と電解液注入の2つの機能を持った注液用治具(不図示)を注液孔111に取り付ける。電池容器103の内圧がたとえば27kPa程度になるまで減圧し、その後、所定量の電解液を注入する。
-Injection process-
The battery container 103 is placed on a flat table (not shown) so that the battery lid 102 is on the upper side, and an injection jig (not shown) having two functions of decompression and electrolyte injection inside the battery container is added. Attach to the liquid hole 111. The pressure is reduced until the internal pressure of the battery container 103 becomes about 27 kPa, for example, and then a predetermined amount of electrolyte is injected.

−封止工程−
封止栓120により注液孔111を封止する封止工程は、封止栓120を注液部110に配置する配置工程と、封止栓120を注液部110に仮止めする仮止め工程と、注液部110に封止栓120を溶接して注液孔111を封止する溶接工程とを含んでいる。
-Sealing process-
The sealing process for sealing the liquid injection hole 111 with the sealing plug 120 includes an arrangement process for arranging the sealing plug 120 in the liquid injection part 110 and a temporary fixing process for temporarily fixing the sealing plug 120 to the liquid injection part 110. And a welding step of welding the sealing plug 120 to the liquid injection part 110 and sealing the liquid injection hole 111.

図5〜図9を参照して、注液孔111を封止栓120で封止する封止方法、ならびに、封止構造の詳細について説明する。図5および図6は注液孔111の封止構造を示す断面模式図であり、図1のV−V線切断断面を示している。図7〜図9は、電池蓋102を上方から見た平面模式図である。図5(a)および図7(a)は封止栓120が注液部110に配置された状態を示し、図5(b)および図7(b)は封止栓120が注液部110に仮止めされた状態を示している。図6(a)および図8(a),(b)は封止栓120が注液部110に溶接される様子を示している。図6(b)および図9は封止栓120が注液部110に溶接された後の状態を示している。なお、便宜上、図示するように、上下方向をZ方向とし、捲回軸U方向をY方向とし、Z方向およびY方向のそれぞれに直交する方向をX方向として説明する。   With reference to FIGS. 5-9, the sealing method which seals the liquid injection hole 111 with the sealing stopper 120, and the detail of a sealing structure are demonstrated. 5 and 6 are cross-sectional schematic views showing the sealing structure of the liquid injection hole 111, showing a cross section taken along the line VV of FIG. 7 to 9 are schematic plan views of the battery lid 102 as viewed from above. FIGS. 5A and 7A show a state where the sealing plug 120 is disposed in the liquid injection part 110, and FIGS. 5B and 7B show the state where the sealing plug 120 is the liquid injection part 110. FIG. The state temporarily stopped is shown. FIGS. 6A, 8 </ b> A, and 8 </ b> B show how the sealing plug 120 is welded to the liquid injection part 110. FIG. 6B and FIG. 9 show a state after the sealing plug 120 is welded to the liquid injection part 110. For convenience, as shown in the figure, the vertical direction is the Z direction, the winding axis U direction is the Y direction, and the direction orthogonal to each of the Z direction and the Y direction is the X direction.

−配置工程−
封止栓120を注液部110に配置する配置工程では、図5(a)および図7(a)に示すように、注液孔111に封止栓120の筒部(挿入部)121を挿入し、凹部112に鍔部(嵌合部)122を嵌合する。図5(a)に示すように、封止栓120の大径部を構成する鍔部122の外径do1は、注液部110の大径開口部を構成する凹部112の内径Di1よりも僅かに短い(do1<Di1)。封止栓120の小径部を構成する筒部121の外径do2は、注液部110の小径開口部を構成する注液孔111の内径Di2よりも僅かに短い(do2<Di2)。このため、封止栓120が注液部110に配置された状態では、鍔部(大径部)122の外周側面122oと凹部(大径開口部)112の内周側面112iとの間に隙間c1が形成され、筒部(小径部)121の外周側面121oと注液孔(小径開口部)111の内周側面111iとの間に隙間c2が形成される。なお、隙間c2の長さは、隙間c1の長さと同一か僅かに長くなるように設定される(Di1−do1≦Di2−do2)。
-Placement process-
In the arrangement step of arranging the sealing plug 120 in the liquid injection part 110, as shown in FIG. 5A and FIG. 7A, the cylinder part (insertion part) 121 of the sealing plug 120 is provided in the liquid injection hole 111. Insert and fit the flange (fitting portion) 122 into the recess 112. As shown in FIG. 5A, the outer diameter do1 of the flange 122 that constitutes the large-diameter portion of the sealing plug 120 is slightly smaller than the inner diameter Di1 of the recess 112 that constitutes the large-diameter opening of the liquid injection portion 110. (Do1 <Di1). The outer diameter do2 of the cylindrical part 121 constituting the small diameter part of the sealing plug 120 is slightly shorter than the inner diameter Di2 of the liquid injection hole 111 constituting the small diameter opening part of the liquid injection part 110 (do2 <Di2). For this reason, in the state where the sealing plug 120 is disposed in the liquid injection part 110, there is a gap between the outer peripheral side surface 122 o of the collar part (large diameter part) 122 and the inner peripheral side surface 112 i of the concave part (large diameter opening part) 112. c <b> 1 is formed, and a gap c <b> 2 is formed between the outer peripheral side surface 121 o of the cylindrical portion (small diameter portion) 121 and the inner peripheral side surface 111 i of the liquid injection hole (small diameter opening portion) 111. The length of the gap c2 is set to be the same as or slightly longer than the length of the gap c1 (Di1-do1 ≦ Di2-do2).

−仮止め工程−
封止栓120を注液部110に仮止めする仮止め工程では、図5(a)および図5(b)に示すように、鍔部122の周縁部を構成する突起部122aの所定位置(以下、第1の位置1Aと記す)を、押圧治具190によって上方(電池容器103の外方)から押圧して塑性変形部127を形成する。
-Temporary fixing process-
In the temporary fixing step of temporarily fixing the sealing plug 120 to the liquid injection part 110, as shown in FIGS. 5 (a) and 5 (b), a predetermined position of the protruding part 122a constituting the peripheral part of the flange part 122 ( Hereinafter, the first position 1 </ b> A) is pressed from above (outside the battery container 103) by the pressing jig 190 to form the plastic deformation portion 127.

押圧治具190は、立方体形状の押圧部191を有し、押圧部191の下面は平坦な面とされている。押圧部191の下面を突起部122aの上面に当接させて下方に押圧すると、図5(b)および図7(b)に示すように、第1の位置1Aにおいて、突起部122aが上下方向(Z方向)に圧縮されるとともに径方向外方(+X方向)に張り出すように変形し、塑性変形部127が形成される。突起部122aが変形し、+X方向に張り出すと、塑性変形部127の外周側面が凹部112の内周側面112iに当接し、塑性変形部127の外周側面に凹部112の内周側面112iからの反力が作用する。封止栓120の鍔部122と凹部112との間には隙間c1が形成され、筒部121と注液孔111との間には隙間c2が形成されているため、凹部112の内周側面112iからの反力が塑性変形部127の外周側面に作用すると、封止栓120が−X方向に移動する。   The pressing jig 190 has a cube-shaped pressing portion 191, and the lower surface of the pressing portion 191 is a flat surface. When the lower surface of the pressing portion 191 is brought into contact with the upper surface of the protruding portion 122a and pressed downward, as shown in FIGS. 5B and 7B, the protruding portion 122a is vertically moved at the first position 1A. The plastic deformation portion 127 is formed by being compressed in the (Z direction) and deforming so as to project outward in the radial direction (+ X direction). When the protrusion 122a is deformed and protrudes in the + X direction, the outer peripheral side surface of the plastic deformation portion 127 comes into contact with the inner peripheral side surface 112i of the recess 112, and the outer peripheral side surface of the plastic deformation portion 127 comes from the inner peripheral side surface 112i of the recess 112. Reaction force acts. A gap c1 is formed between the flange 122 and the recess 112 of the sealing plug 120, and a gap c2 is formed between the cylinder 121 and the liquid injection hole 111. When the reaction force from 112i acts on the outer peripheral side surface of the plastic deformation portion 127, the sealing plug 120 moves in the -X direction.

図7(b)に示すように、封止栓120が−X方向に所定距離だけ移動すると、注液孔111を挟んで塑性変形部127に対向する位置(以下、第2の位置1Bと記す)において、封止栓120の外周側面122oと凹部112の内周側面112iとが当接する。つまり、第2の位置1Bにおける鍔部122の外周側面122oと凹部112の内周側面112iとが線接触される。   As shown in FIG. 7B, when the sealing plug 120 moves by a predetermined distance in the −X direction, the position facing the plastic deformation portion 127 across the liquid injection hole 111 (hereinafter referred to as the second position 1B). ), The outer peripheral side surface 122o of the sealing plug 120 and the inner peripheral side surface 112i of the recess 112 abut. That is, the outer peripheral side surface 122o of the flange 122 and the inner peripheral side surface 112i of the concave portion 112 are in line contact with each other at the second position 1B.

押圧治具190による押圧作業が完了すると、塑性変形部127の外周側面は凹部112の内周側面112iに密着される。つまり、第1の位置1Aにおける鍔部122の外周側面122oを構成する塑性変形部127の外周側面は、凹部112の内周側面112iに面接触されている。   When the pressing operation by the pressing jig 190 is completed, the outer peripheral side surface of the plastic deformation portion 127 is brought into close contact with the inner peripheral side surface 112 i of the recess 112. That is, the outer peripheral side surface of the plastic deformation portion 127 constituting the outer peripheral side surface 122o of the flange 122 at the first position 1A is in surface contact with the inner peripheral side surface 112i of the recess 112.

このように、封止栓120の鍔部122の外周側面122oと、注液部110の凹部112の内周側面112iとが、第1の位置1Aにおいて面接触し、第2の位置1Bにおいて線接触し、封止栓120が注液部110に対して塑性変形部127の反対側(−X方向)に偏心して配置された状態で、封止栓120は仮止めされる。換言すれば、図7(b)に示すように、封止栓120は、封止栓120の中心軸O1が注液孔111の中心軸O2に対して線接触部CP側に位置し、第1の位置1Aおよび第2の位置1Bにおいて注液部110により挟持された状態で固定されている。   Thus, the outer peripheral side surface 122o of the flange 122 of the sealing plug 120 and the inner peripheral side surface 112i of the recess 112 of the liquid injection unit 110 are in surface contact at the first position 1A, and the line at the second position 1B. The sealing plug 120 is temporarily fixed in a state where the sealing plug 120 is eccentrically arranged on the opposite side (−X direction) of the plastic deformation portion 127 with respect to the liquid injection portion 110. In other words, as shown in FIG. 7B, the sealing plug 120 has the central axis O1 of the sealing plug 120 positioned on the line contact portion CP side with respect to the central axis O2 of the liquid injection hole 111, and The first position 1A and the second position 1B are fixed while being sandwiched by the liquid injection unit 110.

−溶接工程−
電池蓋102に封止栓120を溶接する溶接工程では、たとえば、図示しないYAGパルスレーザ溶接機を用い、1パルスのエネルギーを6J、パルス周波数を60パルス/sec、平均出力を360W、溶接速度を10mm/secとしてレーザ光196を照射する。レーザ溶接の開始点(以下、溶接開始点SPと記す)は、図6(a)および図8(a)に示すように、第2の位置1Bに設定され、第2の位置1Bにおける鍔部122の外周側面122oと凹部112の内周側面112iとの境界に向けて、電池蓋102の外表面に対して垂直方向(−Z方向)にレーザ光196が照射される。つまり、第1の実施の形態では、溶接開始点SPと、線接触部CPとが一致している。
-Welding process-
In the welding process of welding the sealing plug 120 to the battery lid 102, for example, using a YAG pulse laser welding machine (not shown), the energy of one pulse is 6 J, the pulse frequency is 60 pulses / sec, the average output is 360 W, and the welding speed is Laser light 196 is irradiated at 10 mm / sec. As shown in FIGS. 6A and 8A, the laser welding start point (hereinafter referred to as welding start point SP) is set at the second position 1B, and the collar portion at the second position 1B. Laser light 196 is irradiated in a direction perpendicular to the outer surface of the battery cover 102 (−Z direction) toward the boundary between the outer peripheral side surface 122o of 122 and the inner peripheral side surface 112i of the recess 112. That is, in the first embodiment, the welding start point SP and the line contact portion CP coincide with each other.

図8(b)に示すように、溶接開始点SPから鍔部122の外周側面122oに沿って、鍔部122の外周側面122oと凹部112の内周側面112iとを全周に亘って溶接する。溶接開始点SPから鍔部122の外周側面122oに沿ってレーザ光の照射領域197を移動させると、その移動中に溶接作業が終了した部分における溶融池が徐々に凝固する。本実施の形態では、封止栓120が注液部110に仮止めされているため、溶融池が生成される際の膨張や溶融池が凝固する際の収縮によって、封止栓120が浮いてしまうことが防止され、図9に示すように封止栓120の全周に亘って良好な溶接金属Wを形成することができる。   As shown in FIG. 8B, the outer peripheral side surface 122o of the flange 122 and the inner peripheral side surface 112i of the recess 112 are welded over the entire circumference along the outer peripheral side surface 122o of the flange 122 from the welding start point SP. . When the laser light irradiation region 197 is moved from the welding start point SP along the outer peripheral side surface 122o of the flange 122, the molten pool gradually solidifies in the portion where the welding operation is completed during the movement. In this embodiment, since the sealing plug 120 is temporarily fixed to the liquid injection part 110, the sealing plug 120 is floated by expansion when the molten pool is generated and contraction when the molten pool solidifies. As shown in FIG. 9, good weld metal W can be formed over the entire circumference of the sealing plug 120.

上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)鍔部122の周縁部の第1の位置1Aを電池容器103の外方から押圧して塑性変形部127を形成するとともに、封止栓120を注液部110に対して塑性変形部127の反対側に偏心させて仮止めし、鍔部122の外周側面122oと凹部112の内周側面112iとを、全周に亘って溶接した。これにより、封止栓120を注液部110に溶接する際に、封止栓120が電池蓋102から浮くことが防止され、注液部110に対する封止栓120の封止の信頼性を向上することができる。
According to the first embodiment described above, the following operational effects are obtained.
(1) The first position 1A of the peripheral portion of the flange 122 is pressed from the outside of the battery container 103 to form the plastic deformation portion 127, and the sealing plug 120 is plastically deformed with respect to the liquid injection portion 110. The outer peripheral side surface 122o of the flange portion 122 and the inner peripheral side surface 112i of the concave portion 112 were welded over the entire periphery. Accordingly, when the sealing plug 120 is welded to the liquid injection part 110, the sealing plug 120 is prevented from floating from the battery lid 102, and the sealing reliability of the sealing plug 120 with respect to the liquid injection part 110 is improved. can do.

これに対して、たとえば、図5(a)に示す封止栓120が注液部110に遊嵌されている状態でレーザ溶接を行う場合は、溶接開始点において溶融池が生成される際の膨張や溶融池が凝固する際の収縮によって、封止栓120が電池蓋102から浮き上がるおそれがある。この場合、浮き上がり部分で封止栓120と電池蓋102との間に充分な溶融池を生成することができず、溶接金属に割れ等の溶接欠陥が生じるおそれがある。本実施の形態では、塑性変形部127を形成することにより、注液部110に対して封止栓120が固定され、溶接の際に封止栓120が浮き上がることが防止されるので、封止栓120と電池蓋102との間に充分な溶融池が生成され、溶接金属Wに溶接欠陥が生じることが防止される。   On the other hand, for example, when laser welding is performed in a state where the sealing plug 120 shown in FIG. 5A is loosely fitted in the liquid injection part 110, the molten pool is generated at the welding start point. The sealing plug 120 may be lifted from the battery lid 102 due to expansion or contraction when the molten pool solidifies. In this case, a sufficient molten pool cannot be generated between the sealing plug 120 and the battery lid 102 at the floating portion, and there is a possibility that a weld defect such as a crack may occur in the weld metal. In the present embodiment, by forming the plastic deformation portion 127, the sealing plug 120 is fixed to the liquid injection section 110, and the sealing plug 120 is prevented from floating during welding. A sufficient molten pool is generated between the plug 120 and the battery lid 102, and welding defects are prevented from occurring in the weld metal W.

(2)鍔部122の周縁部は、電池蓋102の外表面から電池容器103の外方に向かって突出する突起部122aとされている。このため、鍔部122の外周側面122oと凹部112の内周側面112iとの隙間c1に充填すべき溶融金属(溶融池)が不足することが防止される。換言すれば、突起部122aを設けることによって、突起部122aを設けない場合に比べて隙間c1を大きく設定することができ、製作性の向上を図ることができる。 (2) The peripheral edge of the flange 122 is a protrusion 122 a that protrudes from the outer surface of the battery lid 102 toward the outside of the battery container 103. For this reason, it is prevented that the molten metal (molten pool) which should be filled in the clearance c1 between the outer peripheral side surface 122o of the flange 122 and the inner peripheral side surface 112i of the recess 112 is insufficient. In other words, by providing the protrusion 122a, the gap c1 can be set larger than in the case where the protrusion 122a is not provided, and the productivity can be improved.

−第2の実施の形態−
図10を参照して第2の実施の形態に係る蓄電素子における封止栓による注液孔の封止方法について説明する。図中、第1の実施の形態と同一または相当部分には同一符号を付し、相違点について主に説明する。図10(a)および図10(b)は、図5(a)および図6(a)と同様の図であり、第2の実施の形態に係る蓄電素子における封止栓220による注液孔111の封止方法を説明する断面模式図である。
-Second Embodiment-
With reference to FIG. 10, a method for sealing a liquid injection hole with a sealing plug in the energy storage device according to the second embodiment will be described. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and differences will be mainly described. 10 (a) and 10 (b) are the same views as FIGS. 5 (a) and 6 (a), and a liquid injection hole by the sealing plug 220 in the electricity storage device according to the second embodiment. It is a cross-sectional schematic diagram explaining the sealing method of 111. FIG.

第1の実施の形態では、鍔部122に突起部122aを設け、第1の位置1Aにおける突起部122aを押圧して、塑性変形部127を形成した(図5参照)。これに対して、第2の実施の形態では、封止栓220の鍔部222には突起部が設けられていない。第2の実施の形態では、電池蓋102における凹部212の開口周縁部が、電池蓋102から+Z方向(電池容器103の外方)に向かって突出する突起部212aとして、凹部212の全周に亘って設けられている。円環状の突起部212aの内周側面は、凹部212の内周側面212iの一部を構成している。   In the first embodiment, the protrusion 122a is provided on the collar 122, and the protrusion 122a at the first position 1A is pressed to form the plastic deformation portion 127 (see FIG. 5). On the other hand, in 2nd Embodiment, the projection part is not provided in the collar part 222 of the sealing plug 220. FIG. In the second embodiment, the opening peripheral edge of the recess 212 in the battery lid 102 is formed as a protrusion 212a protruding from the battery lid 102 in the + Z direction (outward of the battery container 103) on the entire periphery of the recess 212. It is provided over. The inner peripheral side surface of the annular protrusion 212 a constitutes a part of the inner peripheral side surface 212 i of the recess 212.

第2の実施の形態では、第1の位置1Aにおける電池蓋102の凹部212の開口周縁部を構成する突起部212aを押圧治具190により押圧することで、塑性変形部227が形成される。突起部212aは、押圧治具190により押圧されると、Z方向に圧縮されるとともに注液部110の径方向外方に向かう変形量が抑えられつつ主に径方向内方に向かって変形し、塑性変形部227の内側側面が封止栓220の鍔部222の外周側面222oを押圧し、封止栓220が−X方向に移動する。封止栓220が所定距離だけ移動すると、第2の位置1Bにおいて鍔部222の外周側面222oが凹部212の内周側面212iに突き当てられる。   In the second embodiment, the plastic deformation portion 227 is formed by pressing the projection 212a constituting the opening peripheral edge of the recess 212 of the battery lid 102 at the first position 1A with the pressing jig 190. When the protrusion 212a is pressed by the pressing jig 190, the protrusion 212a is compressed in the Z direction and deformed mainly inward in the radial direction while suppressing the amount of deformation of the liquid injection part 110 in the radially outward direction. The inner side surface of the plastic deformation portion 227 presses the outer peripheral side surface 222o of the flange 222 of the sealing plug 220, and the sealing plug 220 moves in the −X direction. When the sealing plug 220 moves by a predetermined distance, the outer peripheral side surface 222o of the flange 222 is abutted against the inner peripheral side surface 212i of the recess 212 at the second position 1B.

これにより、第1の位置1Aで塑性変形部227が封止栓220の鍔部222の外周側面222oに面接触され、かつ、第2の位置1Bで鍔部222の外周側面222oが凹部212の内周側面212iに線接触された状態で、封止栓220が仮止めされる。   Thereby, the plastic deformation portion 227 is in surface contact with the outer peripheral side surface 222o of the flange portion 222 of the sealing plug 220 at the first position 1A, and the outer peripheral side surface 222o of the flange portion 222 is in the recess 212 at the second position 1B. The sealing plug 220 is temporarily fixed in a state of being in line contact with the inner peripheral side surface 212i.

このような第2の実施の形態によれば、第1の実施の形態と同様の効果を奏する。   According to such 2nd Embodiment, there exists an effect similar to 1st Embodiment.

−第3の実施の形態−
図11を参照して第3の実施の形態に係る蓄電素子における封止栓による注液孔の封止方法について説明する。図中、第1の実施の形態と同一または相当部分には同一符号を付し、相違点について主に説明する。図11は、図8と同様の図であり、第3の実施の形態に係る蓄電素子における封止栓120による注液孔111の封止方法を説明する平面模式図である。
-Third embodiment-
With reference to FIG. 11, a method for sealing a liquid injection hole with a sealing plug in the energy storage device according to the third embodiment will be described. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and differences will be mainly described. FIG. 11 is a view similar to FIG. 8 and is a schematic plan view illustrating a method for sealing the liquid injection hole 111 with the sealing plug 120 in the energy storage device according to the third embodiment.

第1の実施の形態では、溶接開始点SPを第2の位置1Bの線接触部CPに設定した(図8(a)参照)。これに対して第3の実施の形態では、図11(a)に示すように、溶接開始点SPが第2の位置1Bの線接触部CPから周方向に所定距離だけ離れた位置に設定されている。溶接開始点SPの位置は、封止栓120の外周のどの位置であってもよいし、溶接方向も平面視で時計方向、反時計方向のいずれであってもよい。しかしながら、溶接開始点SPの位置は、隙間c1の寸法ができるだけ小さい位置とすることが好ましい。隙間c1の寸法が小さい位置に溶接開始点SPを設定することで、溶融池の凝固収縮の際に封止栓120が溶接開始点SP側に引っ張られ、位置がずれてしまうことを効果的に防止することができるためである。したがって、封止栓120の浮きをより効果的に抑制するためには、次のようにして溶接開始点SPの位置、および、溶接方向を決定することが好ましい。   In the first embodiment, the welding start point SP is set at the line contact portion CP at the second position 1B (see FIG. 8A). On the other hand, in the third embodiment, as shown in FIG. 11A, the welding start point SP is set at a position away from the line contact portion CP at the second position 1B by a predetermined distance in the circumferential direction. ing. The position of the welding start point SP may be any position on the outer periphery of the sealing plug 120, and the welding direction may be either clockwise or counterclockwise in plan view. However, the position of the welding start point SP is preferably a position where the dimension of the gap c1 is as small as possible. By setting the welding start point SP at a position where the dimension of the gap c1 is small, it is effective that the sealing plug 120 is pulled toward the welding start point SP when the molten pool is solidified and contracted, and the position is shifted. This is because it can be prevented. Therefore, in order to suppress the floating of the sealing plug 120 more effectively, it is preferable to determine the position of the welding start point SP and the welding direction as follows.

図11に示すように、塑性変形部127と注液孔111の中心軸O2とを結ぶ線分Lを含む仮想平面を第1平面S1とし、第1平面S1に直交し、かつ、注液孔111の中心軸O2を含む仮想平面を第2平面S2として定義する。   As shown in FIG. 11, a virtual plane including a line segment L connecting the plastic deformation portion 127 and the central axis O2 of the liquid injection hole 111 is defined as a first plane S1, orthogonal to the first plane S1, and the liquid injection hole A virtual plane including 111 central axis O2 is defined as second plane S2.

溶接開始点SPは、第2平面S2で2分される領域A1,A2のうち塑性変形部127を有しない第1領域A1に設定される。換言すれば、溶接開始点SPは、溶接開始点SPと第1の位置1Aの塑性変形部127との離間距離よりも、溶接開始点SPと第2の位置1Bの線接触部CPとの離間距離が短くなるような位置に設定される。   The welding start point SP is set to the first region A1 that does not have the plastic deformation portion 127 in the regions A1 and A2 divided into two by the second plane S2. In other words, the welding start point SP is farther from the welding start point SP and the line contact portion CP at the second position 1B than the separation distance between the welding start point SP and the plastic deformation portion 127 at the first position 1A. The position is set so that the distance becomes shorter.

第3の実施の形態における溶接工程では、図11(a)に示すように、第1領域A1に設定された溶接開始点SPから第2の位置1Bに向かって、すなわち図示R1方向に、鍔部122の外周側面122oに沿って、鍔部122の外周側面122oと凹部112の内周側面112iとの溶接を行う。第3の実施の形態における溶接工程では、図11(b)に示すように、第2の位置1Bにおける鍔部122の外周側面122oと凹部112の内周側面112iとを溶接した後に、第1の位置1Aにおける鍔部122の外周側面122oと凹部112の内周側面112iとを溶接する。   In the welding process in the third embodiment, as shown in FIG. 11 (a), from the welding start point SP set in the first region A1 toward the second position 1B, that is, in the illustrated R1 direction, The outer peripheral side surface 122o of the flange 122 and the inner peripheral side surface 112i of the recess 112 are welded along the outer peripheral side surface 122o of the portion 122. In the welding process in the third embodiment, as shown in FIG. 11 (b), after the outer peripheral side surface 122o of the flange 122 and the inner peripheral side surface 112i of the recess 112 are welded at the second position 1B, the first The outer peripheral side surface 122o of the flange 122 and the inner peripheral side surface 112i of the recess 112 are welded at the position 1A.

このような第3の実施の形態によれば、第1の実施の形態と同様の効果を奏する。また、第3の実施の形態によれば、溶接開始点SPを第2領域A2に設定した場合や、溶接開始点SPからR2方向に溶接を行う場合に比べて、溶融池が生成される際の膨張や溶融池が凝固する際の収縮に起因する封止栓120の移動量を抑えることができる。   According to such 3rd Embodiment, there exists an effect similar to 1st Embodiment. Further, according to the third embodiment, when the weld pool is generated, compared to the case where the welding start point SP is set in the second region A2 or when welding is performed in the R2 direction from the welding start point SP. The amount of movement of the sealing plug 120 due to the expansion of the melt and the shrinkage when the molten pool solidifies can be suppressed.

次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(1)第1の実施の形態では、鍔部122の周縁部の第1の位置1Aを押圧して塑性変形部127を形成し、第2の実施の形態では、凹部212の開口周縁部の第1の位置1Aを押圧して塑性変形部227を形成したが、本発明はこれに限定されない。鍔部122,222の周縁部、および、凹部112,212の開口周縁部の両者を押圧治具190により同時に押圧して、鍔部122,222と凹部112,212のそれぞれに塑性変形部127,227を形成するようにしてもよい。
The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
(1) In 1st Embodiment, the 1st position 1A of the peripheral part of the collar part 122 is pressed, and the plastic deformation part 127 is formed, and in 2nd Embodiment, the opening peripheral part of the recessed part 212 is formed. Although the first position 1A is pressed to form the plastic deformation portion 227, the present invention is not limited to this. Both the peripheral edge portions of the flange portions 122 and 222 and the opening peripheral edge portion of the concave portions 112 and 212 are simultaneously pressed by the pressing jig 190, and the plastic deformation portions 127 and 212 are respectively applied to the flange portions 122 and 222 and the concave portions 112 and 212. 227 may be formed.

(2)第1の実施の形態では、鍔部122の周縁部が電池蓋102から電池容器103の外方に向かって突出した突起部122aとされ、第2の実施の形態では、凹部212の開口周縁部が電池蓋102から電池容器103の外方に向かって突出した突起部212aとされていた。なお、突起部122a,212aの幅、高さは、隙間c1の寸法公差が最大になったときにおいても、隙間c1が溶接金属で埋められるように、充分な溶融池が生成される大きさに設定されている。しかしながら、突起部122a,212aを設けなくても、充分な溶融池を生成できる場合には、突起部122a,212aを省略してもよい。図12に示すように、第1の実施の形態において、突起部122aを省略した場合でも、鍔部122の周縁部の第1の位置1Aに塑性変形部327を形成することにより、封止栓120を注液部110に固定することができ、溶接の際に封止栓120が浮き上がることを防止できる。同様に、図13に示すように、第2の実施の形態において、突起部212aを省略した場合でも、凹部212の開口周縁部の第1の位置1Aに塑性変形部427を形成することにより、封止栓220を注液部110に固定することができ、溶接の際に封止栓220が浮き上がることを防止できる。 (2) In the first embodiment, the peripheral edge of the flange 122 is a protrusion 122a protruding from the battery lid 102 toward the outside of the battery container 103. In the second embodiment, the recess 212 The peripheral edge of the opening was a protrusion 212 a protruding from the battery lid 102 toward the outside of the battery container 103. The widths and heights of the protrusions 122a and 212a are such that a sufficient molten pool is generated so that the gap c1 is filled with the weld metal even when the dimensional tolerance of the gap c1 is maximized. Is set. However, the protrusions 122a and 212a may be omitted if a sufficient molten pool can be generated without providing the protrusions 122a and 212a. As shown in FIG. 12, in the first embodiment, even when the protrusion 122 a is omitted, by forming the plastic deformation portion 327 at the first position 1 </ b> A of the peripheral portion of the flange portion 122, the sealing plug 120 can be fixed to the liquid injection part 110, and the sealing plug 120 can be prevented from floating during welding. Similarly, as shown in FIG. 13, in the second embodiment, even when the protrusion 212a is omitted, by forming the plastic deformation portion 427 at the first position 1A of the opening peripheral portion of the recess 212, The sealing plug 220 can be fixed to the liquid injection part 110, and the sealing plug 220 can be prevented from floating during welding.

(3)封止栓120,220の全周に亘って形成される溶接金属Wの幅や深さは、上記した実施の形態に限定されない。図9では、塑性変形部127のX方向長さ(径方向の長さ)や突起部122aの幅(径方向の長さ)に比べて、平面視円環状の溶接金属Wの幅(径方向の長さ)が短くなるように、溶接金属Wが形成されているが、たとえば、塑性変形部127のX方向長さ(径方向の長さ)や突起部122aの幅(径方向の長さ)に比べて、溶接金属Wの幅(径方向の長さ)が長くなるように、溶接金属Wを形成してもよい。 (3) The width and depth of the weld metal W formed over the entire circumference of the sealing plugs 120 and 220 are not limited to the above-described embodiment. In FIG. 9, the width (radial direction) of the annular weld metal W in a plan view is larger than the X-direction length (the radial direction length) of the plastic deformation portion 127 and the width (the radial direction length) of the protrusion 122 a. The weld metal W is formed so that the length of the plastic deformation portion 127 is shortened. For example, the length of the plastic deformation portion 127 in the X direction (the length in the radial direction) and the width of the projection portion 122a (the length in the radial direction). ), The weld metal W may be formed so that the width (the length in the radial direction) of the weld metal W is longer.

(4)蓄電素子として、リチウムイオン二次電池を一例に説明したが本発明はこれに限定されない。ニッケル水素電池などの他の二次電池や、リチウムイオンキャパシタや電解二重層コンデンサなど、種々の蓄電素子に本発明を適用できる。また、容器の形状も角形に限定されない。 (4) Although the lithium ion secondary battery has been described as an example of the storage element, the present invention is not limited to this. The present invention can be applied to various secondary storage devices such as nickel-metal hydride batteries, lithium ion capacitors and electrolytic double layer capacitors. Further, the shape of the container is not limited to a square shape.

(5)溶接条件は、上記した例に限定されない。また、レーザ溶接に代えて、電子ビーム溶接により封止栓120,220を電池蓋102に溶接してもよい。
(6)さらに、塑性変形部を形成する第1の位置1Aは、上記した例に限定されない。
(5) The welding conditions are not limited to the above example. Further, instead of laser welding, the sealing plugs 120 and 220 may be welded to the battery lid 102 by electron beam welding.
(6) Furthermore, the 1st position 1A which forms a plastic deformation part is not limited to an above-described example.

(7)上記した実施の形態では、塑性変形部127,227,327,427を1カ所設ける場合について説明したが、本発明はこれに限定されない。2カ所以上、塑性変形部を設けてもよい。たとえば、図14(a)に示すように、塑性変形部527を3カ所設けてもよいし、図14(b)に示すように、塑性変形部627を4カ所設けてもよい。塑性変形部527,627を複数設ける場合、図14に示すように、注液孔の中心軸O2を含む所定の仮想平面S5によって2分される領域E1,E2のうちの一方の領域E2のみに塑性変形部527,627を設け、他方の領域E1には塑性変形部527,627を設けないようにする。これにより、領域E1側に封止栓120を偏心させて、封止栓120を仮止めすることができる。 (7) In the above-described embodiment, the case where one plastic deformation portion 127, 227, 327, 427 is provided has been described, but the present invention is not limited to this. Two or more plastic deformation portions may be provided. For example, as shown in FIG. 14A, three plastic deformation portions 527 may be provided, or as shown in FIG. 14B, four plastic deformation portions 627 may be provided. When a plurality of plastic deformation portions 527 and 627 are provided, as shown in FIG. 14, only one region E2 of the regions E1 and E2 divided by a predetermined virtual plane S5 including the central axis O2 of the liquid injection hole is provided. The plastic deformation portions 527 and 627 are provided, and the plastic deformation portions 527 and 627 are not provided in the other region E1. Thereby, the sealing plug 120 can be decentered to the region E1 side, and the sealing plug 120 can be temporarily fixed.

塑性変形部527,627を2カ所以上設ける場合、第1平面S1および第2平面S2は、次のように定義する。領域E2において周方向両端の塑性変形部間の任意の位置を基準位置BPとし、基準位置BPから注液孔の中心軸O2とを結ぶ線分Lを含む仮想平面を第1平面S1とする。たとえば、基準位置BPは、図14(a)に示すように、周方向両端の塑性変形部527間に設けられる中央の塑性変形部527に設定することができる。また、基準位置BPは、図14(b)に示すように、周方向両端の塑性変形部627間のほぼ中央の位置を基準位置BPとして設定することができる。第2平面S2は、第1平面S1に直交し、かつ、注液孔の中心軸O2を含む仮想平面とする。第1平面S1および第2平面S2を上記のように定義したとき、第2平面S2で2分される領域F1,F2のうち、基準位置BPを有しない領域F1に溶接開始点SPを設定することが好ましい。なお、図14(a)および図14(b)では、第2平面S2と仮想平面S5とを同一平面とし、仮想平面S5により2分される領域E1,E2と、第2平面S2により2分される領域F1,F2とを、それぞれ同一の領域とした場合について説明したが、仮想平面S5と第2平面S2とは、同一平面とする場合に限定されない。   When two or more plastic deformation portions 527 and 627 are provided, the first plane S1 and the second plane S2 are defined as follows. An arbitrary position between the plastic deformation portions at both ends in the circumferential direction in the region E2 is defined as a reference position BP, and a virtual plane including a line segment L connecting the reference position BP and the central axis O2 of the liquid injection hole is defined as a first plane S1. For example, as shown in FIG. 14A, the reference position BP can be set at a central plastic deformation portion 527 provided between the plastic deformation portions 527 at both ends in the circumferential direction. Further, as shown in FIG. 14B, the reference position BP can be set to a substantially central position between the plastic deformation portions 627 at both ends in the circumferential direction as the reference position BP. The second plane S2 is a virtual plane that is orthogonal to the first plane S1 and includes the central axis O2 of the liquid injection hole. When the first plane S1 and the second plane S2 are defined as described above, the welding start point SP is set in the area F1 that does not have the reference position BP among the areas F1 and F2 divided into two by the second plane S2. It is preferable. In FIGS. 14A and 14B, the second plane S2 and the virtual plane S5 are the same plane, and the areas E1 and E2 divided by the virtual plane S5 and the second plane S2 are divided into two. In the above description, the regions F1 and F2 are the same region, but the virtual plane S5 and the second plane S2 are not limited to the same plane.

上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。   Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.

1A 第1の位置、1B 第2の位置、100 角形二次電池、101 電池缶、101a 幅広面、101b 幅狭面、101c 底面、102 電池蓋、102h 貫通孔、103 電池容器、104 ガス排出弁、107 電池蓋組立体、108 絶縁ケース、110 注液部、111 注液孔、111i 内周側面、112 凹部、112b 底面、112i 内周側面、120 封止栓、121 筒部、121a 底部、121o 外周側面、122 鍔部、122a 突起部、122o 外周側面、125 中空部、127 塑性変形部、141 正極端子、150 ガスケット、151 負極端子、160 絶縁部材、170 発電要素、171 正極箔、172 負極箔、173 セパレータ、174 正極電極、175 負極電極、176 正極活物質合剤層、177 負極活物質合剤層、181 正極集電体、182 負極集電体、190 押圧治具、191 押圧部、196 レーザ光、197 照射領域、212 凹部、212a 突起部、212i 内周側面、220 封止栓、222 鍔部、222o 外周側面、227 塑性変形部、327 塑性変形部、427 塑性変形部、527 塑性変形部、627 塑性変形部
1A 1st position, 1B 2nd position, 100 square secondary battery, 101 battery can, 101a wide surface, 101b narrow surface, 101c bottom surface, 102 battery lid, 102h through-hole, 103 battery container, 104 gas exhaust valve 107 Battery cover assembly, 108 Insulating case, 110 Injecting part, 111 Injecting hole, 111i Inner peripheral side, 112 Recessed part, 112b Bottom, 112i Inner peripheral side, 120 Sealing plug, 121 Tube part, 121a Bottom part, 121o Peripheral side surface, 122 collar portion, 122a protrusion, 122o Peripheral side surface, 125 hollow portion, 127 plastic deformation portion, 141 positive electrode terminal, 150 gasket, 151 negative electrode terminal, 160 insulating member, 170 power generation element, 171 positive electrode foil, 172 negative electrode foil , 173 separator, 174 positive electrode, 175 negative electrode, 176 positive electrode active material mixture layer, 177 negative electrode active material Mixture layer, 181 positive electrode current collector, 182 negative electrode current collector, 190 pressing jig, 191 pressing portion, 196 laser beam, 197 irradiation region, 212 concave portion, 212a protruding portion, 212i inner peripheral side surface, 220 sealing plug, 222 collar part, 222o outer peripheral side surface, 227 plastic deformation part, 327 plastic deformation part, 427 plastic deformation part, 527 plastic deformation part, 627 plastic deformation part

Claims (8)

発電要素が収容された容器と、
前記容器の一側面に設けられ、電解液を注入する注液孔を有する注液部と、
前記注液孔を封止する封止栓とを備え、
前記注液孔は、前記容器の一側面に凹設された凹部の底面に設けられ、
前記封止栓は、前記注液孔に挿入される挿入部と、前記凹部に嵌合される嵌合部とを有し、
少なくとも前記嵌合部の周縁部および前記凹部の開口周縁部のいずれか一方の所定位置に、前記嵌合部の外周側面と前記凹部の内周側面とが当接される塑性変形部が形成され、
前記封止栓が前記注液部に対して前記塑性変形部の反対側に偏心して配置され、
前記注液孔を挟んで前記塑性変形部に対向する位置において前記嵌合部の外周側面と前記凹部の内周側面とが当接、前記嵌合部の外周側面と前記凹部の内周側面と全周に亘って溶接部が形成されていることを特徴とする蓄電素子。
A container containing a power generation element;
A liquid injection part provided on one side of the container and having a liquid injection hole for injecting an electrolyte;
A sealing stopper for sealing the liquid injection hole,
The liquid injection hole is provided on the bottom surface of a concave portion provided in one side of the container,
The sealing plug has an insertion portion to be inserted into the liquid injection hole and a fitting portion to be fitted into the concave portion,
At least a predetermined position of one of the peripheral edge of the fitting portion and the opening peripheral edge of the concave portion is formed with a plastic deformation portion where the outer peripheral side surface of the fitting portion and the inner peripheral side surface of the concave portion are in contact with each other. ,
The sealing stopper is arranged eccentrically on the opposite side of the plastic deformation part with respect to the liquid injection part,
The inner peripheral side of the outer peripheral side surface and the recess of the fitting portion at a position opposed to the plastic deformation portion across the injection hole is abutting the inner circumferential surface of the recess and the outer peripheral side surface of the fitting portion And a welding part is formed over the entire circumference.
請求項1に記載の蓄電素子において、
前記塑性変形部と前記注液孔の中心軸とを結ぶ線分を含む仮想平面を第1平面とし、
前記第1平面に直交し、かつ、前記注液孔の中心軸を含む仮想平面を第2平面としたとき、
前記第2平面で2分される領域のうち前記塑性変形部を有しない領域に、前記嵌合部の外周側面と前記凹部の内周側面との溶接開始点が設けられていることを特徴とする蓄電素子。
The electricity storage device according to claim 1,
A virtual plane including a line segment connecting the plastic deformation portion and the central axis of the liquid injection hole is a first plane,
When the virtual plane that is orthogonal to the first plane and includes the central axis of the liquid injection hole is the second plane,
The welding start point between the outer peripheral side surface of the fitting portion and the inner peripheral side surface of the recess is provided in a region that does not have the plastic deformation portion in a region divided into two by the second plane. A power storage element.
請求項1または2に記載の蓄電素子において、
少なくとも前記嵌合部の周縁部および前記凹部の開口周縁部のいずれか一方は、前記容器の一側面から前記容器の外方に向かって突出していることを特徴とする蓄電素子。
The electricity storage device according to claim 1 or 2,
At least one of the peripheral edge portion of the fitting portion and the open peripheral edge portion of the concave portion protrudes from one side surface of the container toward the outside of the container.
容器内に発電要素を収容する収容工程と、前記容器の一側面に凹設された凹部の底面に設けられた注液孔から前記容器内に電解液を注入する注液工程と、封止栓により前記注液孔を封止する封止工程とを含む蓄電素子の製造方法であって、
前記封止工程は、
前記封止栓に設けられた挿入部を前記注液孔に挿入し、前記封止栓に設けられた嵌合部を前記凹部に嵌合する配置工程と、
少なくとも前記嵌合部の周縁部および前記凹部の開口周縁部のいずれか一方における第1の位置を前記容器の外方から押圧して、前記第1の位置における前記嵌合部の外周側面と前記凹部の内周側面とが当接される塑性変形部を形成するとともに、前記封止栓を前記凹部に対して前記塑性変形部の反対側に偏心させて、前記注液孔を挟んで前記塑性変形部に対向する第2の位置における前記嵌合部の外周側面と前記凹部の内周側面とを当接させることで仮止めする仮止め工程と、
前記嵌合部の外周側面と前記凹部の内周側面とを、全周に亘って溶接する溶接工程とを含むことを特徴とする蓄電素子の製造方法。
A housing step of housing the power generation element in the container, a liquid injection step of injecting an electrolyte into the container from a liquid injection hole provided in a bottom surface of a concave portion provided in one side of the container, and a sealing plug And a sealing step for sealing the liquid injection hole according to the method,
The sealing step includes
An insertion step of inserting an insertion portion provided in the sealing plug into the liquid injection hole, and fitting a fitting portion provided in the sealing plug into the recess; and
At least a first position in any one of the peripheral edge of the fitting portion and the opening peripheral edge of the recess is pressed from the outside of the container, and the outer peripheral side surface of the fitting portion in the first position and the A plastic deformation portion is formed in contact with the inner peripheral side surface of the recess, and the sealing plug is eccentric to the opposite side of the plastic deformation portion with respect to the recess, and the plastic is sandwiched between the liquid injection holes. A temporary fixing step of temporarily fixing the outer peripheral side surface of the fitting portion and the inner peripheral side surface of the concave portion at a second position facing the deforming portion by abutting;
The manufacturing method of the electrical storage element characterized by including the welding process of welding the outer peripheral side surface of the said fitting part, and the inner peripheral side surface of the said recessed part over a perimeter.
請求項4に記載の蓄電素子の製造方法において、
前記仮止め工程は、少なくとも前記嵌合部の周縁部および前記凹部の開口周縁部のいずれか一方における第1の位置を前記容器の外方から押圧して、前記第1の位置における前記嵌合部の外周側面と前記凹部の内周側面とが面接触される塑性変形部を形成するとともに、前記注液孔を挟んで前記塑性変形部に対向する第2の位置における前記嵌合部の外周側面と前記凹部の内周側面とを線接触させることを特徴とする蓄電素子の製造方法。
In the manufacturing method of the electrical storage element of Claim 4,
The temporary fixing step includes pressing the first position in at least one of the peripheral edge portion of the fitting portion and the opening peripheral edge portion of the concave portion from the outside of the container, and the fitting in the first position. The outer peripheral side surface of the fitting portion forms a plastic deformation portion where the outer peripheral side surface of the concave portion and the inner peripheral side surface of the concave portion are in surface contact with each other, and the outer periphery of the fitting portion at a second position facing the plastic deformation portion with the liquid injection hole interposed therebetween A method of manufacturing a power storage element, wherein the side surface and the inner peripheral side surface of the recess are brought into line contact.
請求項5に記載の蓄電素子の製造方法において、
前記塑性変形部と前記注液孔の中心軸とを結ぶ線分を含む仮想平面を第1平面とし、
前記第1平面に直交し、かつ、前記注液孔の中心軸を含む仮想平面を第2平面としたとき、
前記溶接工程は、前記第2平面で2分される領域のうち前記塑性変形部を有しない領域に溶接開始点を設定し、前記溶接開始点から前記嵌合部の外周側面に沿って、前記嵌合部の外周側面と前記凹部の内周側面とを溶接することを特徴とする蓄電素子の製造方法。
In the manufacturing method of the electrical storage element according to claim 5,
A virtual plane including a line segment connecting the plastic deformation portion and the central axis of the liquid injection hole is a first plane,
When the virtual plane that is orthogonal to the first plane and includes the central axis of the liquid injection hole is the second plane,
The welding step sets a welding start point in a region that does not have the plastic deformation portion in a region divided into two by the second plane, and extends from the welding start point along the outer peripheral side surface of the fitting portion, A method for manufacturing a power storage element, comprising welding an outer peripheral side surface of a fitting portion and an inner peripheral side surface of the recess.
請求項6に記載の蓄電素子の製造方法において、
前記溶接工程は、前記第2の位置における前記嵌合部の外周側面と前記凹部の内周側面とを溶接した後に、前記第1の位置における前記嵌合部の外周側面と前記凹部の内周側面とを溶接することを特徴とする蓄電素子の製造方法。
In the manufacturing method of the electrical storage element of Claim 6,
In the welding step, after welding the outer peripheral side surface of the fitting portion and the inner peripheral side surface of the concave portion at the second position, the outer peripheral side surface of the fitting portion and the inner periphery of the concave portion at the first position A method for manufacturing a power storage element, comprising welding a side surface.
請求項4または5に記載の蓄電素子の製造方法において、
少なくとも前記嵌合部の周縁部および前記凹部の開口周縁部のいずれか一方は、前記容器の一側面から前記容器の外方に向かって突出した突起部であり、
前記仮止め工程では、前記第1の位置における前記突起部を押圧して塑性変形部を形成することを特徴とする蓄電素子の製造方法。
In the manufacturing method of the electrical storage element of Claim 4 or 5,
At least one of the peripheral edge part of the fitting part and the opening peripheral edge part of the recess is a protrusion protruding from one side surface of the container toward the outside of the container,
In the temporary fixing step, the method of manufacturing a power storage element is characterized in that the projecting portion at the first position is pressed to form a plastically deformed portion.
JP2013053736A 2013-03-15 2013-03-15 Power storage device and method for manufacturing power storage device Expired - Fee Related JP6105986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013053736A JP6105986B2 (en) 2013-03-15 2013-03-15 Power storage device and method for manufacturing power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013053736A JP6105986B2 (en) 2013-03-15 2013-03-15 Power storage device and method for manufacturing power storage device

Publications (2)

Publication Number Publication Date
JP2014179288A JP2014179288A (en) 2014-09-25
JP6105986B2 true JP6105986B2 (en) 2017-03-29

Family

ID=51699024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013053736A Expired - Fee Related JP6105986B2 (en) 2013-03-15 2013-03-15 Power storage device and method for manufacturing power storage device

Country Status (1)

Country Link
JP (1) JP6105986B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6770690B2 (en) * 2017-08-10 2020-10-21 トヨタ自動車株式会社 Sealed battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018915A (en) * 2005-07-08 2007-01-25 Nec Tokin Corp Sealed battery
JP2008010264A (en) * 2006-06-28 2008-01-17 Hitachi Maxell Ltd Sealed battery
JP5520721B2 (en) * 2010-07-09 2014-06-11 日立ビークルエナジー株式会社 Sealed battery
KR101216419B1 (en) * 2010-10-08 2012-12-28 주식회사 엘지화학 Secondary Battery of Improved Sealability
JP6083170B2 (en) * 2011-10-26 2017-02-22 株式会社Gsユアサ Electricity storage element

Also Published As

Publication number Publication date
JP2014179288A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US10079370B2 (en) Secondary battery
JP6138963B2 (en) Square battery
JP5475206B1 (en) Prismatic secondary battery
JP6569322B2 (en) Secondary battery and assembled battery using the same
JP2017041320A (en) Secondary battery and manufacturing method therefor
KR100749645B1 (en) Separator and lithium rechargeable battery using the same
JP2015011948A (en) Battery, and method for manufacturing battery
JP2005183360A (en) Square battery and its manufacturing method
JP5856929B2 (en) Rectangular secondary battery and method for manufacturing the same
JP6105986B2 (en) Power storage device and method for manufacturing power storage device
JP2014063696A (en) Power storage device and method for manufacturing the same
JP2013114991A (en) Secondary battery
JP2020035581A (en) Power storage element
JP5490967B1 (en) Power storage device and method for manufacturing power storage device
JP6014161B2 (en) Method for manufacturing rectangular energy storage device
JP6115094B2 (en) Power storage device and method for manufacturing power storage device
JP5879373B2 (en) Prismatic secondary battery
JP7346856B2 (en) Energy storage element and its manufacturing method
JP6047676B2 (en) Prismatic secondary battery
JP2024053766A (en) Method for manufacturing an electricity storage device and an electricity storage device
JP2014099351A (en) Square power storage element
WO2019013326A1 (en) Power storage element
JP2014175160A (en) Method for manufacturing storage element and storage element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R150 Certificate of patent or registration of utility model

Ref document number: 6105986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170927

LAPS Cancellation because of no payment of annual fees