JP6606336B2 - Equipment suspension design method - Google Patents

Equipment suspension design method Download PDF

Info

Publication number
JP6606336B2
JP6606336B2 JP2015048112A JP2015048112A JP6606336B2 JP 6606336 B2 JP6606336 B2 JP 6606336B2 JP 2015048112 A JP2015048112 A JP 2015048112A JP 2015048112 A JP2015048112 A JP 2015048112A JP 6606336 B2 JP6606336 B2 JP 6606336B2
Authority
JP
Japan
Prior art keywords
suspension member
equipment suspension
shape
optimization
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015048112A
Other languages
Japanese (ja)
Other versions
JP2016170476A (en
Inventor
保司 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2015048112A priority Critical patent/JP6606336B2/en
Publication of JP2016170476A publication Critical patent/JP2016170476A/en
Priority to JP2019193445A priority patent/JP6929334B2/en
Application granted granted Critical
Publication of JP6606336B2 publication Critical patent/JP6606336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、航空機の機外に搭載される装備品懸架部材の設計方法に関する。   The present invention relates to a design method for an equipment suspension member mounted outside an aircraft.

従来、ヘリコプターなどの機外に取り付けられて、例えばスピーカーやライトなどの装備品を懸架する装備品懸架部材が知られている。この種の装備品懸架部材としては、アルミニウム合金のチューブを曲げ加工したものが一般的である。
このチューブ製の装備品懸架部材は、主に重量やコストの点で優れる反面、決まった曲率にしか加工できない曲げ治具(チューブベンダー)が必要であったり、いわゆるスプリングバックにより高精度な曲げ加工が困難であったりといった問題がある。
そのため、これらの問題を解消可能なものとして、平板部材を機械加工したものも使用されている(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, an equipment suspension member that is attached outside a machine such as a helicopter and suspends equipment such as speakers and lights is known. This type of equipment suspension member is generally a bent aluminum alloy tube.
This equipment suspension member made of tube is excellent mainly in terms of weight and cost, but it requires a bending jig (tube bender) that can only be processed to a fixed curvature, or it is highly accurate bending processing by so-called springback. There is a problem that it is difficult.
Therefore, what machined the flat plate member is also used as what can eliminate these problems (for example, refer to patent documents 1).

特開2002−29499号公報JP 2002-29499 A

ところで、装備品懸架部材の設計においては、各種荷重に耐える強度や、機体に及ぼす風圧荷重などの設計要素を考慮する必要があるが、平板部材製のものでは、単純な形状のチューブ製のものに比べて、これらの設計要素が複雑化する。
そのため、平板部材製の装備品懸架部材の設計では、一通りの検討を終えて形状を決定した後に加工が困難であることが判明し、手戻りとなる場合があった。
By the way, when designing equipment suspension members, it is necessary to consider design elements such as strength to withstand various loads and wind pressure load on the aircraft. Compared to the above, these design elements are complicated.
For this reason, in the design of the equipment suspension member made of a flat plate member, it has been found that the processing is difficult after the completion of a series of studies and the shape is determined, which may be reworked.

本発明は、上記課題を解決するためになされたもので、設計の手戻りを抑制することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to suppress rework of design.

上記目的を達成するために、請求項1に記載の発明は、航空機の機外に搭載される平板状の装備品懸架部材の形状を設計する装備品懸架部材の設計方法であって、
所定の最適化条件を満たす前記装備品懸架部材の最適形状を導出する最適化解析工程と、
前記最適化解析工程で導出された最適形状が、所定の加工設備で加工可能か否かを判定する加工可否判定工程と、
前記最適形状についての詳細解析を行う詳細解析工程と、
を備え
前記最適化条件は、所定荷重が掛かったときの各部の応力値を所定の閾値以下としつつ、質量密度を最小化させるものであり、
前記詳細解析工程では、風圧荷重が許容値以内であり、固有振動数が加振周波数の整数倍に対してその所定割合以上離調しており、且つ、所定荷重が掛かったときの各部の応力値が所定の閾値以下となる形状を求め、
前記加工可否判定工程において前記最適形状が加工可能であると判定されるまで、前記最適化解析工程を繰り返し、前記加工可否判定工程において前記最適形状が加工可能であると判定された場合に、前記詳細解析工程を行うことを特徴とする。
In order to achieve the above object, the invention described in claim 1 is a design method of an equipment suspension member for designing a shape of a flat equipment suspension member mounted outside an aircraft.
An optimization analysis step for deriving an optimal shape of the equipment suspension member that satisfies a predetermined optimization condition;
A workability determination step for determining whether or not the optimum shape derived in the optimization analysis step can be processed with a predetermined processing facility,
A detailed analysis step for performing a detailed analysis on the optimum shape;
Equipped with a,
The optimization condition is to minimize the mass density while setting the stress value of each part when a predetermined load is applied to a predetermined threshold value or less,
In the detailed analysis step, the wind pressure load is within an allowable value, the natural frequency is detuned by a predetermined ratio or more with respect to an integral multiple of the excitation frequency, and the stress of each part when a predetermined load is applied Find the shape whose value is below a predetermined threshold,
The optimization analysis step is repeated until it is determined that the optimum shape is processable in the processability determination step, and when the optimum shape is determined to be processable in the processability determination step, A detailed analysis process is performed .

請求項2に記載の発明は、請求項1に記載の装備品懸架部材の設計方法において、
前記加工可否判定工程の判定条件が、前記最適化解析工程の前記最適化条件に含まれることを特徴とする。
The invention according to claim 2 is a method of designing an equipment suspension member according to claim 1,
The determination condition of the process availability determination step is included in the optimization condition of the optimization analysis step.

請求項3に記載の発明は、請求項1又は2に記載の装備品懸架部材の設計方法において、
前記最適化解析工程では、厚さ方向に貫通する開口部を設定可能な部分が、剛性を低くすることが可能な部分として求められ、当該開口部を有する前記最適形状が導出されることを特徴とする。
The invention according to claim 3 is the design method of the equipment suspension member according to claim 1 or 2 ,
In the optimization analysis step, a portion that can set an opening that penetrates in the thickness direction is obtained as a portion that can reduce rigidity, and the optimum shape having the opening is derived. And

本発明によれば、所定の最適化条件を満たすものとして装備品懸架部材の最適形状が導出され、この最適形状が所定の加工設備で加工可能であると判定された場合に、当該最適形状についての詳細解析が行われる。
これにより、加工が困難と判定された場合であっても最適化解析を再度行えば足り、詳細解析までは繰り返す必要がなくなるため、従来に比べて設計の手戻りを抑制することができる。
According to the present invention, when the optimum shape of the equipment suspension member is derived as satisfying the predetermined optimization condition, and it is determined that the optimum shape can be processed by the predetermined processing facility, Detailed analysis is performed.
Thereby, even if it is determined that the machining is difficult, it is sufficient to perform the optimization analysis again, and it is not necessary to repeat the detailed analysis. Therefore, reworking of the design can be suppressed as compared with the conventional case.

装備品懸架部材を搭載したヘリコプターの正面図である。It is a front view of the helicopter carrying the equipment suspension member. 装備品懸架部材の正面図である。It is a front view of an equipment suspension member. 装備品懸架部材の設計方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the design method of an equipment suspension member. 装備品懸架部材の設計方法のうちの詳細解析の流れを示すフローチャートである。It is a flowchart which shows the flow of the detailed analysis among the design methods of an equipment suspension member. 変形例の装備品懸架部材を搭載したヘリコプターの正面図である。It is a front view of the helicopter carrying the equipment suspension member of a modification.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本実施形態における装備品懸架部材1について説明する。
図1は、装備品懸架部材1を搭載したヘリコプター(回転翼機)Hの正面図であり、図2は、装備品懸架部材1の正面図である。
First, the equipment suspension member 1 in the present embodiment will be described.
FIG. 1 is a front view of a helicopter (rotary wing machine) H on which the equipment suspension member 1 is mounted, and FIG. 2 is a front view of the equipment suspension member 1.

図1に示すように、装備品懸架部材1は、ヘリコプターHの胴体両側部に搭載されて、スピーカーやカメラ、サーチライト、センサーなどの装備品Eを懸架するものである。この装備品懸架部材1は、厚さ方向がヘリコプターHの機体前後方向(図1の紙面垂直方向)に沿った長尺な金属平板からなり、ヘリコプターHの胴体側面に沿って下端から側方に向かいつつ上側に湾曲し、その上端部が側方に向かって延出した形状に形成されている。
なお、図1では、装備品懸架部材1の概略の搭載状態のみを図示しており、ヘリコプターHへの詳細の取付状態や、装備品Eを取り付ける後述のインターフェース部材2の図示は省略している。
As shown in FIG. 1, the equipment suspension member 1 is mounted on both sides of the body of the helicopter H and suspends equipment E such as a speaker, a camera, a searchlight, and a sensor. The equipment suspension member 1 is formed of a long metal plate whose thickness direction is along the longitudinal direction of the helicopter H (the vertical direction in the drawing in FIG. 1), and from the lower end to the side along the fuselage side of the helicopter H. It curves upward while facing it, and its upper end is formed in a shape extending toward the side.
In FIG. 1, only a schematic mounting state of the equipment suspension member 1 is illustrated, and a detailed mounting state to the helicopter H and an interface member 2 to be described below for mounting the equipment E are omitted. .

具体的には、図2に示すように、装備品懸架部材1は、湾曲部の下端から上端に向かって次第に幅が広がるように形成されており、この湾曲部の下端と中程の高さの部分にそれぞれ取付部11が設けられている。
これらの取付部11は、ヘリコプターHに取り付けられる部分であり、湾曲部からヘリコプターH側へ延出する形状にそれぞれ形成されている。各取付部11は、図示は省略するが、上面視コ字状に形成されるとともに厚さ方向に貫通する貫通孔11aを有しており、コ字状の開口内にヘリコプターHの固定部を挟んだ状態で、この固定部ごと貫通孔11aに固定ピンが挿通されることにより、ヘリコプターHの機体に固定される。
Specifically, as shown in FIG. 2, the equipment suspension member 1 is formed so that the width gradually increases from the lower end of the curved portion toward the upper end, and the lower end and the middle height of the curved portion. The attachment part 11 is provided in each part.
These attachment parts 11 are parts attached to the helicopter H, and are formed in shapes extending from the curved part to the helicopter H side. Although not shown, each mounting portion 11 is formed in a U shape when viewed from above and has a through-hole 11a that penetrates in the thickness direction. A fixing portion of the helicopter H is provided in the U-shaped opening. In a state of being sandwiched, a fixing pin is inserted into the through-hole 11a together with the fixing portion, thereby being fixed to the body of the helicopter H.

装備品懸架部材1の上側先端部は、装備品Eが懸架される懸架部12となっている。具体的に、この懸架部12は、装備品Eを懸架するためのインターフェース部材2がボルト締結されるようになっており、このインターフェース部材2を介して装備品Eが懸架される。   The upper end portion of the equipment suspension member 1 is a suspension section 12 on which the equipment E is suspended. Specifically, the suspension member 12 is configured such that the interface member 2 for suspending the equipment E is bolted, and the equipment E is suspended via the interface member 2.

また、装備品懸架部材1には、厚さ方向に貫通した複数(本実施形態では4つ)の開口部13,…が形成されている。これら複数の開口部13,…は、重量と空気抵抗の低減のために設けられており、後述するように、剛性上問題のない位置及び形状に形成されている。   Further, the equipment suspension member 1 is formed with a plurality of (four in this embodiment) openings 13,... Penetrating in the thickness direction. The plurality of openings 13,... Are provided to reduce weight and air resistance, and are formed in positions and shapes having no problem in rigidity, as will be described later.

続いて、装備品懸架部材1の形状を設計する装備品懸架部材1の設計方法(以下、単に「懸架部材設計方法」という)について説明する。
図3は、懸架部材設計方法の流れを示すフローチャートであり、図4は、懸架部材設計方法のうち、後述する詳細解析の流れを示すフローチャートである。
Subsequently, a design method of the equipment suspension member 1 for designing the shape of the equipment suspension member 1 (hereinafter simply referred to as “suspension member design method”) will be described.
FIG. 3 is a flowchart showing a flow of a suspension member design method, and FIG. 4 is a flowchart showing a detailed analysis flow described later in the suspension member design method.

図3に示すように、本実施形態における懸架部材設計方法では、まず設計者は、設計対象である装備品懸架部材1のベースモデル(ベース形状)を設定する(ステップS1)。
このベースモデルは、開口部13のない平板状のもので、例えば従来の装備品懸架部材のなかから適宜選定されたり、ヘリコプターHの機体形状(側面形状や固定部の位置)等に基づいて概略的に設定されたりする。
As shown in FIG. 3, in the suspension member design method according to the present embodiment, the designer first sets a base model (base shape) of the equipment suspension member 1 that is a design target (step S1).
This base model has a flat plate shape without an opening 13, and is selected based on, for example, a conventional equipment suspension member or a helicopter H body shape (side surface shape or fixed portion position). It is set automatically.

次に設計者は、装備品懸架部材1の材料を選定する(ステップS2)。
この材料としては、強度や重量、コスト等を考慮のうえ適切なものが選定されるが、特に重量の点からアルミニウム合金が好適に用いられる。
Next, the designer selects a material for the equipment suspension member 1 (step S2).
As this material, an appropriate material is selected in consideration of strength, weight, cost and the like, and an aluminum alloy is preferably used particularly from the viewpoint of weight.

次に設計者は、最適化解析の設計領域を設定する(ステップS3)。
このステップでは、装備品懸架部材1(ベースモデル)のうち、次ステップで行う最適化解析の解析対象とする部分が設計対象として設定される。本実施形態では、ヘリコプターHとの取り合い部分である2つの取付部11,11と、装備品Eが懸架される懸架部12とを除く装備品懸架部材1の略全部分を設定対象としている。
Next, the designer sets a design area for optimization analysis (step S3).
In this step, the part to be analyzed in the optimization analysis performed in the next step in the equipment suspension member 1 (base model) is set as the design target. In the present embodiment, substantially all the parts of the equipment suspension member 1 except for the two attachment parts 11 and 11 which are the parts to be engaged with the helicopter H and the suspension part 12 on which the equipment E is suspended are targeted for setting.

次に設計者は、ステップS3で設定した設計領域に対し、その構造を最適化する最適化解析を行う(ステップS4)。
この最適化解析では、所定の最適化条件及び制約条件を満足する装備品懸架部材1の最適形状を導出する。最適化条件は、想定される最大の荷重(装備品Eの重量や風圧による荷重等)が掛かったときの各部の応力値を所定の閾値以下としつつ、質量密度を最小化(すなわち最も軽量化)させるものとする。また、制約条件は、各荷重に対する変位を限定したものとする。なお、この最適化条件または制約条件に、後述のステップS62で判定する風圧荷重に関する条件や、ステップS65で判定する固有振動数に関する条件を含めてもよい。
この最適化解析により、開口部13とすることができる部分が、剛性が低くても問題のない部分として求められ、当該複数の開口部13,…を含む最適形状が導出される。
Next, the designer performs an optimization analysis for optimizing the structure of the design region set in step S3 (step S4).
In this optimization analysis, an optimum shape of the equipment suspension member 1 that satisfies predetermined optimization conditions and constraint conditions is derived. The optimization condition is to minimize the mass density (ie, the lightest weight) while keeping the stress value of each part under the maximum assumed load (weight of equipment E, load due to wind pressure, etc.) below a predetermined threshold value. ) Further, the constraint condition is that the displacement with respect to each load is limited. The optimization condition or constraint condition may include a condition related to wind pressure load determined in step S62 described later and a condition related to the natural frequency determined in step S65.
By this optimization analysis, a portion that can be the opening portion 13 is obtained as a portion having no problem even if the rigidity is low, and an optimum shape including the plurality of opening portions 13 is derived.

次に設計者は、ステップS4で導出された最適形状が加工可能なものか否かを判定する(ステップS5)。
このステップでは、導出された最適形状が所定の加工設備(例えば製造者が所有のものやコスト的に利用可能なものなど)で加工可能なものか否かが判定される。
なお、このステップでの加工可否の判定は、その判定条件を形状の条件等に置き換えたうえで、ステップS4の最適化解析の最適化条件に含めてもよい。
Next, the designer determines whether or not the optimum shape derived in step S4 can be machined (step S5).
In this step, it is determined whether or not the derived optimum shape can be processed by a predetermined processing facility (for example, one owned by the manufacturer or one that can be used in terms of cost).
The determination of whether or not machining is possible in this step may be included in the optimization condition of the optimization analysis in step S4 after the determination condition is replaced with a shape condition or the like.

ステップS5において、最適形状が加工困難なものであると判定した場合には(ステップS5;No)、設計者は、上述のステップS2へ処理を移行する。   If it is determined in step S5 that the optimal shape is difficult to process (step S5; No), the designer shifts the process to step S2 described above.

また、ステップS5において、最適形状が加工可能なものであると判定した場合には(ステップS5;Yes)、設計者は、この最適形状についての詳細な各種解析(詳細解析)を行う(ステップS6)。
この詳細解析では、装備品懸架部材1に要求される強度等の各種要件を最適形状が満足するか個別に確認し、必要に応じて形状修正を加える。
なお、以下の説明において、「装備品懸架部材1」とは、特に断りのない限り、その時点で最適とされた形状のものを指し、修正が加えられている場合には修正後のものを指す。
When it is determined in step S5 that the optimum shape is workable (step S5; Yes), the designer performs various detailed analyzes (detailed analysis) on the optimum shape (step S6). ).
In this detailed analysis, various requirements such as strength required for the equipment suspension member 1 are individually confirmed as to whether the optimum shape is satisfied, and the shape is corrected as necessary.
In the following description, “equipment suspension member 1” refers to a shape that is optimal at that time unless otherwise specified. Point to.

具体的に、詳細解析では、図4に示すように、まず設計者は、装備品懸架部材1がヘリコプターHの機体に及ぼす風圧荷重を算出する(ステップS61)。
このステップでは、前方からの風を受ける場合の装備品懸架部材1の抵抗面積(受風面積)が算出され、機体が所定速度で飛行したときに当該抵抗面積で所定の風速の風を受けた場合の風圧荷重が算出される。
Specifically, in the detailed analysis, as shown in FIG. 4, the designer first calculates the wind pressure load that the equipment suspension member 1 exerts on the body of the helicopter H (step S61).
In this step, the resistance area (wind receiving area) of the equipment suspension member 1 when receiving wind from the front is calculated, and when the fuselage flew at a predetermined speed, the wind of the predetermined wind speed was received at the resistance area. The wind pressure load in the case is calculated.

次に設計者は、ステップS61で算出した風圧荷重が所定の許容値以内か否かを判定し(ステップS62)、許容値を超えていると判定した場合には(ステップS62;No)、風圧荷重を抑えるべく形状(主に開口部13の形状)を適宜修正した後に(ステップS63)、上述のステップS61へ処理を移行して、風圧荷重を再計算する。   Next, the designer determines whether or not the wind pressure load calculated in step S61 is within a predetermined allowable value (step S62). If the designer determines that the wind pressure load exceeds the allowable value (step S62; No), the wind pressure is determined. After appropriately correcting the shape (mainly the shape of the opening 13) to suppress the load (step S63), the process proceeds to step S61 described above, and the wind pressure load is recalculated.

また、ステップS62において、算出した風圧荷重が許容値以内と判定した場合には(ステップS62;Yes)、設計者は、装備品懸架部材1の振動解析を行う(ステップS64)。
具体的に、このステップでは、固有値解析が行われて装備品懸架部材1の固有振動数が算出される。
In Step S62, when it is determined that the calculated wind pressure load is within the allowable value (Step S62; Yes), the designer performs vibration analysis of the equipment suspension member 1 (Step S64).
Specifically, in this step, eigenvalue analysis is performed to calculate the natural frequency of the equipment suspension member 1.

次に設計者は、ステップS64で算出した装備品懸架部材1の固有振動数が、ヘリコプターHのローターによる加振周波数の整数倍に対して十分(例えば±10%以上)離れているか否かを判定する(ステップS65)。
そして、装備品懸架部材1の固有振動数が加振周波数の整数倍に対して十分離れていないと判定した場合には(ステップS65;No)、設計者は、固有振動数を加振周波数から離調させるべく装備品懸架部材1の形状を適宜修正した後に(ステップS63)、上述のステップS61へ処理を移行する。
なお、このステップでは、装備品懸架部材1の後流に発生するカルマン渦の発生周波数からの離調も確認しておくことがより好ましい。
Next, the designer determines whether or not the natural frequency of the equipment suspension member 1 calculated in step S64 is sufficiently (for example, ± 10% or more) away from an integer multiple of the excitation frequency of the helicopter H rotor. Determination is made (step S65).
If it is determined that the natural frequency of the equipment suspension member 1 is not sufficiently separated from the integral multiple of the excitation frequency (step S65; No), the designer determines the natural frequency from the excitation frequency. After appropriately modifying the shape of the equipment suspension member 1 to detune (step S63), the process proceeds to step S61 described above.
In this step, it is more preferable to confirm the detuning from the generation frequency of the Karman vortex generated in the wake of the equipment suspension member 1.

また、ステップS65において、装備品懸架部材1の固有振動数が加振周波数の整数倍に対して十分離れていると判定した場合には(ステップS65;Yes)、設計者は、装備品懸架部材1の強度解析を行う(ステップS66)。
具体的に、このステップでは、想定される最大の荷重(装備品Eの重量や風圧による荷重等)が装備品懸架部材1に掛かったときの各部の応力値が算出される。
Further, when it is determined in step S65 that the natural frequency of the equipment suspension member 1 is sufficiently separated from the integer multiple of the excitation frequency (step S65; Yes), the designer defines the equipment suspension member. 1 is analyzed (step S66).
Specifically, in this step, the stress value of each part when the assumed maximum load (the weight of the equipment E, the load due to the wind pressure, etc.) is applied to the equipment suspension member 1 is calculated.

次に設計者は、ステップS66で算出された各部の応力値が所定の許容値以内か否かを判定し(ステップS67)、許容値を超えていると判定した場合には(ステップS67;No)、応力値を抑えるべく形状を適宜修正した後に(ステップS63)、上述のステップS61へ処理を移行する。   Next, the designer determines whether or not the stress value of each part calculated in step S66 is within a predetermined allowable value (step S67), and determines that the stress value exceeds the allowable value (step S67; No). ) After appropriately correcting the shape to suppress the stress value (step S63), the process proceeds to step S61 described above.

また、ステップS67において、装備品懸架部材1の応力値が許容値以内と判定された場合には(ステップS62;Yes)、設計者は詳細解析を終了する(ステップS64)。   If it is determined in step S67 that the stress value of the equipment suspension member 1 is within the allowable value (step S62; Yes), the designer ends the detailed analysis (step S64).

詳細解析が終了すると、図3に示すように、設計者は、装備品懸架部材1の軽量化が十分であるか否か、つまり装備品懸架部材1が所定の重量以下か否かを判定し(ステップS7)、軽量化が十分でないと判定した場合には(ステップS7;No)、上述のステップS2へ処理を移行する。
また、このステップS7において、装備品懸架部材1が十分に軽量化されていると判定した場合には(ステップS7;Yes)、設計者は、当該装備品懸架部材1の形状を最終形状とし、設計を終了する。
When the detailed analysis is completed, as shown in FIG. 3, the designer determines whether the weight of the equipment suspension member 1 is sufficient, that is, whether the equipment suspension member 1 is not more than a predetermined weight. If it is determined that the weight reduction is not sufficient (step S7) (step S7; No), the process proceeds to step S2.
If it is determined in step S7 that the equipment suspension member 1 is sufficiently lightened (step S7; Yes), the designer sets the shape of the equipment suspension member 1 to the final shape, Finish the design.

以上のように、本実施形態によれば、所定の最適化条件を満たすものとして装備品懸架部材1の最適形状が導出され、この最適形状が所定の加工設備で加工可能であると判定された場合に、当該最適形状についての詳細解析が行われる。
これにより、加工が困難と判定された場合であっても最適化解析を再度行えば足り、詳細解析までは繰り返す必要がなくなるため、従来に比べて設計の手戻りを抑制することができる。
As described above, according to the present embodiment, the optimal shape of the equipment suspension member 1 is derived as satisfying the predetermined optimization condition, and it is determined that the optimal shape can be processed by the predetermined processing equipment. In some cases, a detailed analysis of the optimum shape is performed.
Thereby, even if it is determined that the machining is difficult, it is sufficient to perform the optimization analysis again, and it is not necessary to repeat the detailed analysis. Therefore, reworking of the design can be suppressed as compared with the conventional case.

また、加工可否の判定条件を最適化解析の最適化条件に含めた場合には、加工可否の判定工程自体が必要なくなり、さらに設計の手戻りを抑制することができる。   In addition, when the processability determination condition is included in the optimization condition of the optimization analysis, the processability determination process itself is not necessary, and the rework of the design can be suppressed.

なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   The embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.

例えば、上記実施形態では、装備品懸架部材1がヘリコプターHの下面と側面に取り付けられることとしたが、本発明に係る装備品懸架部材の形状は、このようなものに限定されず、例えば図5に示す装備品懸架部材1Aのように、ヘリコプターHの下面と上面に取り付けられる略U字状に形成されていてもよい。   For example, in the above embodiment, the equipment suspension member 1 is attached to the lower surface and the side surface of the helicopter H. However, the shape of the equipment suspension member according to the present invention is not limited to this, for example, FIG. Like the equipment suspension member 1 </ b> A shown in FIG.

また、本発明に係る装備品懸架部材は、航空機に搭載されるものであれば、ヘリコプター用に限定されず、例えば無人航空機などにも適用可能である。   The equipment suspension member according to the present invention is not limited to a helicopter as long as it is mounted on an aircraft, and can be applied to, for example, an unmanned aircraft.

1 装備品懸架部材
11 取付部
11a 貫通孔
12 懸架部
13 開口部
E 装備品
H ヘリコプター
DESCRIPTION OF SYMBOLS 1 Equipment suspension member 11 Attachment part 11a Through-hole 12 Suspension part 13 Opening part E Equipment H Helicopter

Claims (3)

航空機の機外に搭載される平板状の装備品懸架部材の形状を設計する装備品懸架部材の設計方法であって、
所定の最適化条件を満たす前記装備品懸架部材の最適形状を導出する最適化解析工程と、
前記最適化解析工程で導出された最適形状が、所定の加工設備で加工可能か否かを判定する加工可否判定工程と、
前記最適形状についての詳細解析を行う詳細解析工程と、
を備え
前記最適化条件は、所定荷重が掛かったときの各部の応力値を所定の閾値以下としつつ、質量密度を最小化させるものであり、
前記詳細解析工程では、風圧荷重が許容値以内であり、固有振動数が加振周波数の整数倍に対してその所定割合以上離調しており、且つ、所定荷重が掛かったときの各部の応力値が所定の閾値以下となる形状を求め、
前記加工可否判定工程において前記最適形状が加工可能であると判定されるまで、前記最適化解析工程を繰り返し、前記加工可否判定工程において前記最適形状が加工可能であると判定された場合に、前記詳細解析工程を行うことを特徴とする装備品懸架部材の設計方法。
A design method for an equipment suspension member for designing the shape of a flat equipment suspension member mounted outside an aircraft,
An optimization analysis step for deriving an optimal shape of the equipment suspension member that satisfies a predetermined optimization condition;
A workability determination step for determining whether or not the optimum shape derived in the optimization analysis step can be processed with a predetermined processing facility,
A detailed analysis step for performing detailed analysis on the optimum shape;
Equipped with a,
The optimization condition is to minimize the mass density while setting the stress value of each part when a predetermined load is applied to a predetermined threshold value or less,
In the detailed analysis step, the wind pressure load is within an allowable value, the natural frequency is detuned by a predetermined ratio or more with respect to an integral multiple of the excitation frequency, and the stress of each part when a predetermined load is applied Find a shape whose value is below a predetermined threshold,
The optimization analysis step is repeated until it is determined that the optimum shape is processable in the processability determination step, and when the optimum shape is determined to be processable in the processability determination step, A design method for an equipment suspension member characterized by performing a detailed analysis process .
前記加工可否判定工程の判定条件が、前記最適化解析工程の前記最適化条件に含まれることを特徴とする請求項1に記載の装備品懸架部材の設計方法。   The method for designing an equipment suspension member according to claim 1, wherein the determination condition of the processability determination step is included in the optimization condition of the optimization analysis step. 前記最適化解析工程では、厚さ方向に貫通する開口部を設定可能な部分が、剛性を低くすることが可能な部分として求められ、当該開口部を有する前記最適形状が導出されることを特徴とする請求項1又は2に記載の装備品懸架部材の設計方法。 In the optimization analysis step, a portion that can set an opening that penetrates in the thickness direction is obtained as a portion that can reduce rigidity, and the optimum shape having the opening is derived. The design method of the equipment suspension member according to claim 1 or 2 .
JP2015048112A 2015-03-11 2015-03-11 Equipment suspension design method Active JP6606336B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015048112A JP6606336B2 (en) 2015-03-11 2015-03-11 Equipment suspension design method
JP2019193445A JP6929334B2 (en) 2015-03-11 2019-10-24 Equipment Suspension member design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015048112A JP6606336B2 (en) 2015-03-11 2015-03-11 Equipment suspension design method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019193445A Division JP6929334B2 (en) 2015-03-11 2019-10-24 Equipment Suspension member design method

Publications (2)

Publication Number Publication Date
JP2016170476A JP2016170476A (en) 2016-09-23
JP6606336B2 true JP6606336B2 (en) 2019-11-13

Family

ID=56982460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015048112A Active JP6606336B2 (en) 2015-03-11 2015-03-11 Equipment suspension design method

Country Status (1)

Country Link
JP (1) JP6606336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614301B1 (en) * 2018-09-14 2019-12-04 Jfeスチール株式会社 Method and apparatus for optimization of vibration characteristics of vehicle body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223480A (en) * 2002-01-29 2003-08-08 Asahi Kasei Corp Optimal shape design method and system
JP2003312593A (en) * 2002-04-22 2003-11-06 Mitsubishi Heavy Ind Ltd Helicopter aileron
JP3187212U (en) * 2013-09-04 2013-11-14 昌弘 小山田 Aircraft disaster prevention launcher and aircraft

Also Published As

Publication number Publication date
JP2016170476A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
US9322281B2 (en) Shroud segment to be arranged on a blade
JP5418775B2 (en) Longitudinal material for aircraft wing and method of forming the same
JP5980919B2 (en) Wing tip device and a wing having such a tip device
CN103306818B (en) Combustion gas turbine frame stiffening rail
EP2957483A2 (en) Suspension tower and vehicle front portion structure
JP6606336B2 (en) Equipment suspension design method
CN105008668A (en) Twisted gas turbine engine airfoil having a twisted rib
JP2009544523A (en) Aircraft wing stringer and method of forming the same
EP1873056A2 (en) Fixing system for a leading edge to the structure of an aircraft lift plane
CN105026072A (en) Casting core for twisted gas turbine engine airfoil having a twisted rib
US7686249B2 (en) Integral frame member for an aircraft
JP6929334B2 (en) Equipment Suspension member design method
JP2013523530A (en) Aircraft fixed wing
US20140112795A1 (en) Turbine blade
EP2565117A1 (en) A stiffening element for an aircraft
EP2921646A1 (en) Turbine blade
JP2006022812A (en) Reinforcement material of low pressure compressor for aircraft engine
CN104564533A (en) Reinforced hollow for a wind turbine tower
EP2942484B2 (en) Blade element cross-ties
JP6819422B2 (en) Variable roof structure for vehicles
CN107532607B (en) Composite blading including the leading edge reinforcer made of another material
JP5228694B2 (en) Ceiling fan
JP2010149725A (en) Cross member fastening structure
US20170146022A1 (en) Blade for industrial axial fan and industrial axial fan comprising such blade
EP3018290A1 (en) Gas turbine blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191018

R150 Certificate of patent or registration of utility model

Ref document number: 6606336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250