JP6605304B2 - Manufacturing method of micro magnesium oxide hollow particles - Google Patents

Manufacturing method of micro magnesium oxide hollow particles Download PDF

Info

Publication number
JP6605304B2
JP6605304B2 JP2015221029A JP2015221029A JP6605304B2 JP 6605304 B2 JP6605304 B2 JP 6605304B2 JP 2015221029 A JP2015221029 A JP 2015221029A JP 2015221029 A JP2015221029 A JP 2015221029A JP 6605304 B2 JP6605304 B2 JP 6605304B2
Authority
JP
Japan
Prior art keywords
magnesium oxide
hollow particles
oxide hollow
particles
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015221029A
Other languages
Japanese (ja)
Other versions
JP2017088448A (en
Inventor
恭子 若林
幸輝 一坪
賢太 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2015221029A priority Critical patent/JP6605304B2/en
Publication of JP2017088448A publication Critical patent/JP2017088448A/en
Application granted granted Critical
Publication of JP6605304B2 publication Critical patent/JP6605304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、微小酸化マグネシウム中空粒子の製造法に関する。   The present invention relates to a method for producing fine magnesium oxide hollow particles.

金属酸化物の微小中空体は、耐熱性に優れ、断熱性も有することから、樹脂などの充填材、耐火物、各種フィラー等として使用されている。当該金属酸化物の中でも、酸化マグネシウム中空粒子は、耐熱性、断熱性に優れることから、特に塗膜用フィラー、断熱フィルムなどに用いる無機フィラーとして有用である。   Metal oxide micro hollow bodies are excellent in heat resistance and also have heat insulation, and are therefore used as fillers such as resins, refractories, various fillers, and the like. Among the metal oxides, magnesium oxide hollow particles are particularly useful as inorganic fillers for coating film fillers, heat insulating films and the like because they are excellent in heat resistance and heat insulation.

このような金属酸化物中空粒子の製造法としては、エマルジョン法(特許文献1〜3)、樹脂表面に膜を形成後に焼成する方法(特許文献4)及び噴霧熱分解法(特許文献5)が知られている。   As a method for producing such metal oxide hollow particles, there are an emulsion method (Patent Documents 1 to 3), a method of baking after forming a film on the resin surface (Patent Document 4), and a spray pyrolysis method (Patent Document 5). Are known.

特開平4−250842号公報JP-A-4-250842 特開平11−116211号公報JP-A-11-116211 特開2000−203810号公報JP 2000-203810 A 特開2011−16718号公報JP 2011-16718 A 特開平7−96165号公報JP-A-7-96165

しかしながら、エマルジョン法や樹脂テンプレート法では、操作が複雑であり、単位時間あたりの生産量が少なく工業生産に適さないという欠点があった。一方、噴霧熱分解法は、樹脂等のテンプレートを用いない優れた方法であるが、特許文献5によれば酸化マグネシウム中空粒子を製造するには、1500〜1650℃という高温条件が必要とされており、電気炉設備の制約があり、安価に製造することはできなかった。また、高温条件にて噴霧すると、急激な加熱によって、中空粒子が割れやすくなるという課題があった。   However, the emulsion method and the resin template method have disadvantages that the operation is complicated, the production amount per unit time is small, and it is not suitable for industrial production. On the other hand, the spray pyrolysis method is an excellent method that does not use a template such as a resin. However, according to Patent Document 5, high temperature conditions of 1500 to 1650 ° C. are required to produce magnesium oxide hollow particles. In addition, there were restrictions on the electric furnace equipment, and it was not possible to manufacture at low cost. Moreover, when spraying on high temperature conditions, the subject that a hollow particle became easy to break by rapid heating occurred.

従って、本発明の課題は、低温かつ通常の設備で品質の良い酸化マグネシウム中空粒子の製造法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing high-quality magnesium oxide hollow particles at a low temperature and with ordinary equipment.

そこで本発明者は、酸化マグネシウム中空粒子の製造条件について種々検討した結果、原料として有機酸マグネシウム塩溶液を用い、これを特定の温度条件で乾燥及び熱分解する噴霧熱分解処理すれば、最高温度1200℃以下の条件で効率良く、安定して微小酸化マグネシウム中空粒子が得られることを見出し、本発明を完成した。   Therefore, as a result of various investigations on the manufacturing conditions of the magnesium oxide hollow particles, the present inventor used an organic acid magnesium salt solution as a raw material, and if this was dried and pyrolyzed under specific temperature conditions, the maximum temperature could be obtained. The inventors have found that fine magnesium oxide hollow particles can be obtained efficiently and stably under conditions of 1200 ° C. or lower, and the present invention has been completed.

すなわち、本発明は、次の〔1〕〜〔3〕を提供するものである。   That is, the present invention provides the following [1] to [3].

〔1〕有機酸マグネシウム塩溶液の液滴を、100〜450℃の乾燥温度ゾーン及び450〜1200℃以上の熱分解ゾーンを通過させる噴霧熱分解処理することを特徴とする微小酸化マグネシウム中空粒子の製造法。
〔2〕得られる微小酸化マグネシウム中空粒子が、平均円形度0.85以上、平均粒子径0.5μm〜20μmの微小酸化マグネシウム中空粒子である〔1〕記載の製造法。
〔3〕得られる微小酸化マグネシウム中空粒子が、中空室を有する殻を有し、殻の厚みが平均粒子径の1.6〜20.7%、中空率が20〜90%の微小酸化マグネシウム中空粒子である〔1〕又は〔2〕に記載の製造法。
[1] A fine magnesium oxide hollow particle characterized by subjecting droplets of an organic acid magnesium salt solution to a spray pyrolysis treatment in which a droplet is passed through a drying temperature zone of 100 to 450 ° C. and a pyrolysis zone of 450 to 1200 ° C. or more. Manufacturing method.
[2] The production method according to [1], wherein the obtained fine magnesium oxide hollow particles are fine magnesium oxide hollow particles having an average circularity of 0.85 or more and an average particle diameter of 0.5 μm to 20 μm.
[3] The obtained micro magnesium oxide hollow particles have a shell having a hollow chamber, the shell thickness is 1.6 to 20.7% of the average particle diameter, and the micro magnesium oxide hollow has a hollow ratio of 20 to 90%. The production method according to [1] or [2], which is a particle.

本発明方法によれば、低温条件で、特別な設備を必要とせずに、真球度が高く、平均粒子径が小さく、品質の安定した酸化マグネシウム中空粒子が安定して、かつ効率良く得られる。   According to the method of the present invention, magnesium oxide hollow particles having high sphericity, small average particle diameter, and stable quality can be stably and efficiently obtained under low temperature conditions without requiring special equipment. .

実施例1で得られた酸化マグネシウム中空粒子のSEM像を示す。The SEM image of the magnesium oxide hollow particle obtained in Example 1 is shown. 実施例1で得られた酸化マグネシウム中空粒子のXRDを示す。2 shows XRD of magnesium oxide hollow particles obtained in Example 1. FIG. 実施例2で得られた酸化マグネシウム中空粒子のXRDを示す。The XRD of the magnesium oxide hollow particle obtained in Example 2 is shown. 実施例3で得られた酸化マグネシウム中空粒子のXRDを示す。The XRD of the magnesium oxide hollow particle obtained in Example 3 is shown. 比較例1で得られた酸化マグネシウム中空粒子のXRDを示す。3 shows XRD of magnesium oxide hollow particles obtained in Comparative Example 1. FIG.

本発明の微小酸化マグネシウム中空粒子の製造法は、原料として有機酸マグネシウム塩溶液を用い、その液滴を、100〜450℃の乾燥温度ゾーン及び450〜1200℃の熱分解ゾーンを通過させる噴霧熱分解処理することを特徴とする。   The method for producing fine magnesium oxide hollow particles of the present invention uses an organic acid magnesium salt solution as a raw material, and sprays the droplets through a drying temperature zone of 100 to 450 ° C and a thermal decomposition zone of 450 to 1200 ° C. It is characterized by decomposing.

原料として用いられる有機酸マグネシウム塩としては、酢酸マグネシウム、プロピオン酸マグネシウム等の有機カルボン酸マグネシウム塩が挙げられる。ここで有機酸としては、有機カルボン酸、特に脂肪酸が好ましく、C1−C36脂肪酸がより好ましい。有機酸マグネシウム塩溶液としては、有機酸マグネシウム塩水溶液が好ましい。
硫酸マグネシウム塩のような無機酸マグネシウムは、分解温度が高い。
Examples of the organic acid magnesium salt used as the raw material include organic carboxylic acid magnesium salts such as magnesium acetate and magnesium propionate. Examples of the organic acids, organic carboxylic acids, especially fatty acids are preferred, C 1 -C 36 fatty acid is more preferable. The organic acid magnesium salt solution is preferably an organic acid magnesium salt aqueous solution.
Inorganic acid magnesium such as magnesium sulfate has a high decomposition temperature.

有機酸マグネシウム塩溶液における有機酸マグネシウム塩濃度は、0.01〜2.0mol/Lが好ましく、0.1〜2.0mol/Lがより好ましい。   The organic acid magnesium salt concentration in the organic acid magnesium salt solution is preferably 0.01 to 2.0 mol / L, and more preferably 0.1 to 2.0 mol / L.

有機酸マグネシウム塩溶液は、スプレーノズル、特に2流体ノズルで噴霧するのが、粒子径の調整、生産性の点で好ましい。ここで2流体ノズルの方式には、空気と有機酸マグネシウム塩溶液とをノズル内部で混合する内部混合方式と、ノズル外部で空気と有機酸マグネシウム塩溶液を混合する外部混合方式があるが、いずれも採用できる。   The organic acid magnesium salt solution is preferably sprayed with a spray nozzle, particularly a two-fluid nozzle, in terms of particle diameter adjustment and productivity. Here, the two-fluid nozzle method includes an internal mixing method in which air and an organic acid magnesium salt solution are mixed inside the nozzle, and an external mixing method in which air and the organic acid magnesium salt solution are mixed outside the nozzle. Can also be adopted.

噴霧されたミスト(液滴)は、100〜450℃の乾燥ゾーン、次いで450〜1200℃の熱分解ゾーンを通過させることにより、熱分解され、酸化マグネシウム中空粒子となる。乾燥ゾーンの温度が100℃未満では速やかな乾燥ができず、450℃を超えると、水分の蒸発、外殻の析出反応が同時に起こるため、粒子が割れやすくなる。乾燥ゾーンの温度は、中空性を保つ点、割れを防ぐ点から150〜450℃が好ましく、200〜450℃がより好ましい。この乾燥ゾーンによりミストの外側が、乾燥されて有機酸マグネシウムの膜を形成し、それを起点に内部液が乾燥されるため、粒子が中空形状に形成される。   The sprayed mist (droplet) is thermally decomposed by passing through a drying zone at 100 to 450 ° C. and then a thermal decomposition zone at 450 to 1200 ° C. to form magnesium oxide hollow particles. When the temperature of the drying zone is less than 100 ° C., rapid drying cannot be performed, and when it exceeds 450 ° C., evaporation of moisture and precipitation reaction of the outer shell occur at the same time, so that the particles easily break. The temperature of the drying zone is preferably 150 to 450 ° C., more preferably 200 to 450 ° C. from the viewpoint of maintaining hollowness and preventing cracking. In this drying zone, the outside of the mist is dried to form an organic acid magnesium film, and the internal liquid is dried starting from the film, so that the particles are formed in a hollow shape.

熱分解ゾーンの温度は、有機酸マグネシウムを酸化マグネシウムに熱分解し、かつ酸化マグネシウムを分解させず、効率良く中空粒子を得る点から450〜1200℃が好ましく、500〜1200℃がより好ましく、600〜1200℃がさらに好ましい。熱分解ゾーンの温度が450℃未満では十分な熱分解反応が起こらず、1200℃を超えると、急激な加熱によって、中空体が破裂する。この熱分解ゾーンでは、高温で一気に熱分解反応を進めることで乾燥ゾーンにて形成された中空構造を強固にすることにより、中空室を区画する殻を有する酸化マグネシウム中空粒子であって、殻の厚さの薄い中空粒子が得られる。   The temperature of the pyrolysis zone is preferably 450 to 1200 ° C., more preferably 500 to 1200 ° C., more preferably 600 to 1200 ° C. from the viewpoint of thermally decomposing organic acid magnesium into magnesium oxide and not efficiently decomposing magnesium oxide and obtaining hollow particles efficiently. More preferably, ˜1200 ° C. When the temperature of the pyrolysis zone is less than 450 ° C., a sufficient pyrolysis reaction does not occur. In this thermal decomposition zone, the hollow structure formed in the drying zone is strengthened by advancing the thermal decomposition reaction at a high temperature at a stretch, whereby magnesium oxide hollow particles having shells defining the hollow chamber, Thin hollow particles are obtained.

得られた酸化マグネシウム中空粒子は、冷却後、フィルターを通過させることにより、粒子径の調整をすることができる。   The obtained magnesium oxide hollow particles can be adjusted in particle size by passing through a filter after cooling.

本発明方法により得られる微小酸化マグネシウム中空粒子は、平均円形度が0.85以上、平均粒子径が0.5μm〜20μmであるのが好ましい。   The fine magnesium oxide hollow particles obtained by the method of the present invention preferably have an average circularity of 0.85 or more and an average particle diameter of 0.5 μm to 20 μm.

本発明方法により得られる微小酸化マグネシウム中空粒子の形状は、ほぼ球状であり、好ましくは平均円形度が0.85以上であり、より好ましい平均円形度は0.90以上である。   The fine magnesium oxide hollow particles obtained by the method of the present invention have a substantially spherical shape, preferably an average circularity of 0.85 or more, and more preferably an average circularity of 0.90 or more.

ここで、円形度は、走査型電子顕微鏡写真から粒子の投影面積(A)と周囲長(PM)を測定し、周囲長(PM)に対する真円の面積を(B)とすると、その粒子の円形度はA/Bとして表される。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円の周囲長および面積は、それぞれPM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、この粒子の円形度は、円形度=A/B=A×4π/(PM)2として算出される。100個の粒子について円形度を測定し、その平均値でもって平均円形度とする。 Here, the circularity is determined by measuring the projected area (A) and the perimeter (PM) of a particle from a scanning electron micrograph, and assuming that the area of a perfect circle with respect to the perimeter (PM) is (B). Circularity is expressed as A / B. Therefore, the circumference and area of a perfect circle having the same circumference as the sample particle (PM) are PM = 2πr and B = πr 2 , respectively, so that B = π × (PM / 2π) 2 . The circularity of the particles is calculated as circularity = A / B = A × 4π / (PM) 2 . The circularity is measured for 100 particles, and the average value is defined as the average circularity.

本発明方法により得られる微小酸化マグネシウム中空粒子の平均粒子径は、0.5μm〜20μmが好ましく、より好ましくは1μm〜20μmであり、さらに好ましくは1μm〜15μmであり、さらに好ましくは2μm〜12μmであり、さらに好ましくは3μm〜10μmである。平均粒子径が0.5μm未満の中空粒子は、超音波照射等の特殊な装置の使用を必要とし、20μmを超える場合は一部が不完全な真球となることがあり、好ましくない。なお、平均粒子径の調整は、噴霧に使用する流体ノズルの直径の調節によって行うことができる。ここで粒子径は、電子顕微鏡の解析によって測定でき、その平均は、JIS R 1629「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」、レーザー回折・散乱法による粒子径分布測定装置として、例えばマイクロトラック(日機装株式会社製)などによって計算できる。   The average particle size of the fine magnesium oxide hollow particles obtained by the method of the present invention is preferably 0.5 μm to 20 μm, more preferably 1 μm to 20 μm, still more preferably 1 μm to 15 μm, and further preferably 2 μm to 12 μm. And more preferably 3 μm to 10 μm. Hollow particles having an average particle size of less than 0.5 μm require the use of a special device such as ultrasonic irradiation, and when the particle size exceeds 20 μm, some of the particles may be incomplete spheres, which is not preferable. In addition, adjustment of an average particle diameter can be performed by adjustment of the diameter of the fluid nozzle used for spraying. Here, the particle size can be measured by analysis with an electron microscope, and the average is JIS R 1629 “Method for measuring particle size distribution by laser diffraction / scattering method of fine ceramic raw material”, Particle size distribution measuring device by laser diffraction / scattering method For example, it can be calculated by a micro truck (manufactured by Nikkiso Co., Ltd.).

本発明方法により得られる微小酸化マグネシウム中空粒子の粒子径分布(粒度分布)は、せまい程好ましく、粒子の80%以上が平均粒子径の±5.0μmにあるのが好ましく、粒子の80%以上が平均粒子径の±4.5μmにあるのがより好ましく、粒子の80%以上が平均粒子径の±4.0μmにあるのがさらに好ましい。   The particle size distribution (particle size distribution) of the fine magnesium oxide hollow particles obtained by the method of the present invention is so small that 80% or more of the particles are preferably within ± 5.0 μm of the average particle diameter, and 80% or more of the particles. Is more preferably within ± 4.5 μm of the average particle diameter, and more preferably 80% or more of the particles are within ± 4.0 μm of the average particle diameter.

本発明方法により得られる微小酸化マグネシウム中空粒子は、中空室を有する殻を有し、殻の厚みが平均粒子径の1.6〜20.7%であるのが好ましい。また中空率が20〜90%であるのが好ましい。中空室を有する中空粒子であることは、SEM像及びTEM像から確認できる。
殻の厚みは、強度、軽量化及び熱伝導率等の点から平均粒子径の1.6〜20.7%が好ましく、3.6〜20.7%がより好ましく、3.6〜16.4%がさらに好ましい。また、中空率は、20〜90%が好ましく、20〜80%がより好ましく、30〜80%がさらに好ましい。殻の厚みはSEM像及びTEM像から測定できる。50個の粒子について殻の厚みを測定し、その平均値をもって殻の厚みとした。中空率は以下の様に算出する。粒子および粒子内の空隙を真球と仮定する。粒子径を(A)、SEM像及びTEM像から求めた殻の厚みを(B)とすると、その粒子の空隙の半径はA/2−Bとして表される。試料粒子と同一の体積を持つ真円の体積は、V=4/3×π×(A/2)である。また空隙の体積はV=4/3×π×(A/2−B)となり、この粒子の中空率は、中空率=V/V×100として計算できる。
The fine magnesium oxide hollow particles obtained by the method of the present invention preferably have a shell having a hollow chamber, and the thickness of the shell is preferably 1.6 to 20.7% of the average particle diameter. Moreover, it is preferable that a hollow rate is 20 to 90%. The hollow particles having a hollow chamber can be confirmed from the SEM image and the TEM image.
The thickness of the shell is preferably from 1.6 to 20.7%, more preferably from 3.6 to 20.7%, more preferably from 3.6 to 16% of the average particle diameter from the viewpoints of strength, weight reduction and thermal conductivity. 4% is more preferable. Moreover, 20 to 90% is preferable, 20 to 80% is more preferable, and 30 to 80% is more preferable. The thickness of the shell can be measured from an SEM image and a TEM image. The thickness of the shell was measured for 50 particles, and the average value was taken as the shell thickness. The hollow ratio is calculated as follows. The particles and the voids within the particles are assumed to be true spheres. When the particle diameter is (A) and the shell thickness obtained from the SEM image and TEM image is (B), the void radius of the particle is expressed as A / 2-B. The volume of a perfect circle having the same volume as the sample particle is V 1 = 4/3 × π × (A / 2) 3 . The void volume is V 2 = 4/3 × π × (A / 2-B) 3 , and the hollowness of the particles can be calculated as hollowness = V 2 / V 1 × 100.

本発明方法により得られる微小酸化マグネシウム中空粒子のかさ密度は、0.01〜0.4g/cm3であるのが好ましく、0.02〜0.4g/cm3であるのがより好ましく、0.03〜0.4g/cm3であるのがさらに好ましい。かさ密度は、JIS R 1628「ファインセラミックス粉末のかさ密度測定方法」の測定方法、パウダーテスタ(ホソカワミクロン社製)などの粉体力学特性測定装置により測定できる。 The bulk density of the fine magnesium oxide hollow particles obtained by the method of the present invention is preferably from 0.01~0.4g / cm 3, more preferably from 0.02~0.4g / cm 3, 0 More preferably, it is 0.03-0.4 g / cm 3 . The bulk density can be measured by a measurement method of JIS R 1628 “Measurement Method of Bulk Density of Fine Ceramics Powder” or a powder mechanical property measurement device such as a powder tester (manufactured by Hosokawa Micron).

本発明方法により得られる微小酸化マグネシウム中空粒子のみかけ密度は、0.36〜2.92g/cm3であるのが好ましく、0.73〜2.92g/cm3であるのがより好ましく、0.73〜2.56g/cm3であるのがさらに好ましい。みかけ密度は、JIS R 1620「ファインセラミックス粉末の粒子密度測定方法」、アキュピック(株式会社島津製作所製)の乾式自動密度計などにより測定できる。 Apparent density of the fine magnesium oxide hollow particles obtained by the method of the present invention is preferably from 0.36~2.92g / cm 3, more preferably from 0.73~2.92g / cm 3, 0 More preferably, it is 0.73 to 2.56 g / cm 3 . The apparent density can be measured by JIS R 1620 “Method of measuring particle density of fine ceramic powder”, a dry automatic densimeter of AccuPick (manufactured by Shimadzu Corporation), or the like.

本発明方法により得られる微小酸化マグネシウム中空粒子は、圧縮強度が0.3〜150MPaであるのが好ましく、1〜150MPaであるのがより好ましく、3〜150MPaであるのがさらに好ましい。圧縮強度は、微小圧縮試験機MCT−510(株式会社島津製作所製)により測定することができる。   The fine magnesium oxide hollow particles obtained by the method of the present invention preferably have a compressive strength of 0.3 to 150 MPa, more preferably 1 to 150 MPa, and even more preferably 3 to 150 MPa. The compressive strength can be measured by a micro compression tester MCT-510 (manufactured by Shimadzu Corporation).

本発明方法により得られる微小酸化マグネシウム中空粒子のBET比表面積は、0.6〜5m2/gであるのが好ましく、0.7〜5m2/gがより好ましく、0.7〜2.6m2/gがさらに好ましい。BET比表面積は、JIS Z 8830「ガス吸着による粉体(固体)の比表面積測定方法」、フローソープII 2300(株式会社島津製作所製)BET比表面積測定計などにより測定できる。 BET specific surface area of fine magnesium oxide hollow particles obtained by the method of the present invention is preferably from 0.6~5m 2 / g, more preferably 0.7~5m 2 / g, 0.7~2.6m 2 / g is more preferable. The BET specific surface area can be measured by JIS Z 8830 “Method for measuring specific surface area of powder (solid) by gas adsorption”, Flow Soap II 2300 (manufactured by Shimadzu Corporation) BET specific surface area meter or the like.

本発明方法により得られる微小酸化マグネシウム中空粒子は、中空真球状であるから、フィルムやシートへの充填性が良好であり、軽量化達成できる。また熱伝導率が低いことから断熱性、遮熱性等の特性も付与できる。   Since the fine magnesium oxide hollow particles obtained by the method of the present invention have a hollow spherical shape, the filling property to a film or sheet is good, and weight reduction can be achieved. Moreover, since heat conductivity is low, characteristics, such as heat insulation and heat insulation, can be provided.

次に実施例を挙げて本発明を更に詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.

実施例1
蒸留水1リットルに酢酸マグネシウム0.1モルを溶解した、酢酸マグネシウム水溶液を噴霧熱分解装置の溶液タンクに投入した。投入された水溶液を送液ポンプにより、2流体ノズルを介してミスト状に噴霧し、乾燥ゾーン(約400℃)、次いで熱分解ゾーン(約1000℃)を通過させた。バグフィルターを用いて酸化マグネシウム中空粒子を回収した。
Example 1
A magnesium acetate aqueous solution in which 0.1 mol of magnesium acetate was dissolved in 1 liter of distilled water was put into a solution tank of a spray pyrolysis apparatus. The introduced aqueous solution was sprayed in a mist form via a two-fluid nozzle by a liquid feed pump, and passed through a drying zone (about 400 ° C.) and then a thermal decomposition zone (about 1000 ° C.). Magnesium oxide hollow particles were recovered using a bag filter.

乾燥ゾーン400℃と熱分解ゾーン1000℃の温度条件で得られた酸化マグネシウム中空粒子の特性を表1に示す。また、SEM像を図1に、XRDを図2に示す。   Table 1 shows the characteristics of the magnesium oxide hollow particles obtained under the temperature conditions of the drying zone of 400 ° C and the thermal decomposition zone of 1000 ° C. An SEM image is shown in FIG. 1 and an XRD is shown in FIG.

実施例2および3
実施例1で調製した0.1mol/Lの酢酸マグネシウム水溶液を二流体ノズルで噴霧し、温度を変えた乾燥ゾーン、熱分解ゾーンを通過させ、バグフィルターを用いて酸化マグネシウムを回収した。
実施例2は、乾燥ゾーン400℃、熱分解ゾーン600℃、また実施例3は、乾燥ゾーン400℃、熱分解ゾーン800℃とした。
乾燥ゾーンを400℃、熱分解ゾーンを600℃として実施例1と同様にして噴霧熱分解して得られた酸化マグネシウム中空粒子のXRDを図3に示す。また、乾燥ゾーンを400℃、熱分解ゾーンを800℃として噴霧熱分解して得られた酸化マグネシウム中空粒子のXRDを図4に示す。
図3及び図4より、乾燥ゾーン400℃、熱分解ゾーン600〜800℃の噴霧熱分解でも、酸化マグネシウム中空粒子が得られた。
Examples 2 and 3
The 0.1 mol / L magnesium acetate aqueous solution prepared in Example 1 was sprayed with a two-fluid nozzle, passed through a drying zone and a thermal decomposition zone at different temperatures, and magnesium oxide was recovered using a bag filter.
In Example 2, the drying zone was 400 ° C and the pyrolysis zone was 600 ° C. In Example 3, the drying zone was 400 ° C and the pyrolysis zone was 800 ° C.
FIG. 3 shows XRD of magnesium oxide hollow particles obtained by spray pyrolysis in the same manner as in Example 1 with the drying zone set at 400 ° C. and the pyrolysis zone set at 600 ° C. FIG. 4 shows XRD of magnesium oxide hollow particles obtained by spray pyrolysis with the drying zone set at 400 ° C. and the pyrolysis zone set at 800 ° C.
3 and 4, magnesium oxide hollow particles were obtained even by spray pyrolysis in a drying zone of 400 ° C and a pyrolysis zone of 600 to 800 ° C.

比較例1
乾燥ゾーンを400℃、熱分解ゾーンを400℃として実施例1と同様に噴霧熱分解を行った。得られた粒子のXRDを図5に示す。
図5より、酸化マグネシウムだけでなく炭酸マグネシウムが生成していた。
Comparative Example 1
Spray pyrolysis was performed in the same manner as in Example 1 with the drying zone set at 400 ° C. and the thermal decomposition zone set at 400 ° C. The XRD of the obtained particles is shown in FIG.
From FIG. 5, not only magnesium oxide but also magnesium carbonate was generated.

Claims (3)

2流体ノズルで噴霧された有機酸マグネシウム塩溶液の液滴を、100〜450℃の乾燥温度ゾーン及び450〜1200℃の熱分解ゾーンを通過させる噴霧熱分解処理することを特徴とする、平均粒子径1μm〜15μmの微小酸化マグネシウム中空粒子の製造法。 An average particle, characterized by subjecting droplets of an organic acid magnesium salt solution sprayed by a two-fluid nozzle to a spray pyrolysis treatment in which the droplets pass through a drying temperature zone of 100 to 450 ° C. and a pyrolysis zone of 450 to 1200 ° C. A method for producing fine magnesium oxide hollow particles having a diameter of 1 μm to 15 μm . 得られる微小酸化マグネシウム中空粒子が、平均円形度0.85以上の微小酸化マグネシウム中空粒子である請求項1記載の製造法。 The resulting fine magnesium oxide hollow particles, The process of Claim 1 average is small magnesium oxide hollow particles of circularity 0.85 on more than. 得られる微小酸化マグネシウム中空粒子が、中空室を有する殻を有し、殻の厚みが平均粒子径の1.6〜20.7%、中空率が20〜90%の微小酸化マグネシウム中空粒子である請求項1又は2記載の製造法。   The obtained micro magnesium oxide hollow particles are micro magnesium oxide hollow particles having a shell having a hollow chamber, the shell thickness being 1.6 to 20.7% of the average particle diameter, and the hollow ratio being 20 to 90%. The production method according to claim 1 or 2.
JP2015221029A 2015-11-11 2015-11-11 Manufacturing method of micro magnesium oxide hollow particles Active JP6605304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015221029A JP6605304B2 (en) 2015-11-11 2015-11-11 Manufacturing method of micro magnesium oxide hollow particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015221029A JP6605304B2 (en) 2015-11-11 2015-11-11 Manufacturing method of micro magnesium oxide hollow particles

Publications (2)

Publication Number Publication Date
JP2017088448A JP2017088448A (en) 2017-05-25
JP6605304B2 true JP6605304B2 (en) 2019-11-13

Family

ID=58769068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015221029A Active JP6605304B2 (en) 2015-11-11 2015-11-11 Manufacturing method of micro magnesium oxide hollow particles

Country Status (1)

Country Link
JP (1) JP6605304B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107253733B (en) * 2017-07-18 2018-11-02 叶盛 A kind of preparation method of the nano oxidized magnesium material of high purity high dispersiveness
KR102213381B1 (en) * 2019-06-10 2021-02-08 경희대학교 산학협력단 A magnesium oxide hollow sphere and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363106B2 (en) * 1999-01-14 2003-01-08 株式会社豊田中央研究所 Polymer composite materials
JP2003002640A (en) * 2001-06-18 2003-01-08 Ube Material Industries Ltd Magnesium-containing oxide powder
JP6191987B2 (en) * 2012-09-26 2017-09-06 学校法人日本大学 Inorganic hollow particles and method for producing the same
JP6316153B2 (en) * 2013-09-19 2018-04-25 太平洋セメント株式会社 Fine alumina hollow particles

Also Published As

Publication number Publication date
JP2017088448A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6316153B2 (en) Fine alumina hollow particles
JP6422679B2 (en) Hollow particle production equipment
JP6324247B2 (en) Inorganic oxide micro hollow particles
TW201736617A (en) Nickel powder
JP5248054B2 (en) Method for producing spherical alumina particles
JP6605304B2 (en) Manufacturing method of micro magnesium oxide hollow particles
JP2016017027A (en) Method for manufacturing hollow particle
CN103949192A (en) Method for preparing hollow spheres through microwave-assisted aerosol
JP7114231B2 (en) inorganic particles
Mesguich et al. Nanopowder synthesis of the SOFC cathode material Nd2NiO4+ δ by ultrasonic spray pyrolysis
WO2015146961A1 (en) Production method for forsterite fine particles
JP6389431B2 (en) Fine aluminosilicate hollow particles
JP6386949B2 (en) Fine calcium carbonate hollow particles
JP6389373B2 (en) Micro mullite hollow particles
JP6558999B2 (en) Hollow particles and filler material for heat insulating coatings
TWI496615B (en) Method for prepareing silver particles and core-shell silver particles
JP6846245B2 (en) Fine particle production equipment by spray pyrolysis
JP6441755B2 (en) Method for producing spherical carbonic acid divalent metal salt
JP6484533B2 (en) Fine strontium carbonate particles
JP6678041B2 (en) Fine barium carbonate particles
JP6277387B2 (en) Method for producing forsterite fine particles
JP6975575B2 (en) Oxide hollow particles
JP6588365B2 (en) Inorganic oxide micro hollow particles
JP2017171514A (en) Spherical calcium carbonate particle and method for producing the same
JP6807711B2 (en) Method for producing hollow oxide particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191016

R150 Certificate of patent or registration of utility model

Ref document number: 6605304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250