JP6602254B2 - Blast furnace resting method - Google Patents

Blast furnace resting method Download PDF

Info

Publication number
JP6602254B2
JP6602254B2 JP2016086311A JP2016086311A JP6602254B2 JP 6602254 B2 JP6602254 B2 JP 6602254B2 JP 2016086311 A JP2016086311 A JP 2016086311A JP 2016086311 A JP2016086311 A JP 2016086311A JP 6602254 B2 JP6602254 B2 JP 6602254B2
Authority
JP
Japan
Prior art keywords
hot metal
slag
wind
amount
resting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016086311A
Other languages
Japanese (ja)
Other versions
JP2017193771A (en
Inventor
智 大関
健士朗 宮田
和明 新田
歩 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016086311A priority Critical patent/JP6602254B2/en
Publication of JP2017193771A publication Critical patent/JP2017193771A/en
Application granted granted Critical
Publication of JP6602254B2 publication Critical patent/JP6602254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、休風状態の高炉を通常の操業状態に円滑に再開させる高炉休風方法に関する。   The present invention relates to a blast furnace resting method for smoothly resuming a blast furnace in a resting state to a normal operating state.

高炉の操業においては、定期的に、高炉に吹き込む熱風を停止する休風を実施し、休風中に炉体の補修、付帯設備の補修などの高炉設備の整備等を行っている。休風を実施しているときは、熱放散により高炉から熱が奪われるため、高炉の炉内温度は時間とともに低下する。なお、生産調整のため、休風を実施することもある。
そして、休風状態の高炉を通常操業に移行するにあたっては、休風中の高炉に熱風を吹き込んで、炉内温度を短期間で上昇させて通常操業状態に復帰させる、高炉の休風立ち上げが実施される。
In the operation of the blast furnace, a resting wind is periodically stopped to stop the hot air blown into the blast furnace, and the blast furnace facilities are repaired during the resting period, such as repairing the furnace body and repairing incidental facilities. When resting, the heat from the blast furnace is taken away by heat dissipation, so the furnace temperature in the blast furnace decreases with time. In order to adjust production, there may be a pause.
Then, when shifting the blast furnace in the resting state to normal operation, hot air is blown into the blast furnace in the resting state, and the temperature in the furnace is raised in a short period to return to the normal operating state. Is implemented.

高炉の休風立ち上げを実施して、高炉の操業を円滑に再開させる技術としては、特許文献1〜3に開示されているものがある。
特許文献1は、休風立ち上げ初期(低温時)のスラグの排出不良を防止することを目的としている。
具体的には、高炉休風入り直前の溶銑温度を予測し、溶銑温度から溶銑Siを推定し、それに応じた硅石(SiO2)量の調整により、スラグ塩基度の上昇を抑制して、休風立ち上げ初期(低温時)のスラグの排出不良を防止することを目的としている。
As a technique for restarting the operation of the blast furnace smoothly by implementing a blast furnace start-up, there are those disclosed in Patent Documents 1 to 3.
Patent document 1 aims at preventing the discharge failure of the slag at the initial stage of the rest wind start (at the time of low temperature).
Specifically, the hot metal temperature immediately before entering the blast furnace is estimated, hot metal Si is estimated from the hot metal temperature, and the amount of meteorite (SiO 2 ) is adjusted accordingly to suppress the increase in slag basicity. The purpose is to prevent poor slag discharge at the beginning of the wind (at low temperatures).

特許文献2は、微粉炭吹込み操業が行なわれる高炉において、休風後送風を再開した直後に生じるスリップ、棚吊り、吹き抜け等の炉況不良乃至不安定現象を解消し、送風再開による立ち上げを短い時間で円滑に行なえる様にすることを目的としている。
具体的には、休風入り前の微粉炭吹込み量を低減しその減少分に応じて炉頂装入コークス量を増加し、それにより休風時の熱流比を適正に制御することによって、送風再開立ち上げ時における好ましくない軟化融着帯の上昇を抑えることができ、その結果として、スリップ、棚吊り、吹き抜け等の炉況悪化現象を生じることなく、短時間のうちに正常な操業状態に回復させることを目的としている。
Patent Document 2 describes that in a blast furnace where pulverized coal blowing operation is performed, the furnace condition failure or instability phenomenon such as slip, shelf suspending, blow-through, etc. that occurs immediately after resuming air blowing after resting is eliminated, and startup by resuming air blowing The purpose is to make it possible to perform smoothly in a short time.
Specifically, by reducing the amount of pulverized coal injection before entering the resting wind and increasing the amount of coke added to the top of the furnace according to the decrease, thereby appropriately controlling the heat flow ratio during the resting wind, It is possible to suppress an undesirable increase in the softened cohesive zone at the start of resumption of air blowing, and as a result, normal operating conditions can be achieved in a short time without causing deterioration of furnace conditions such as slip, shelf hanging, and blow-through. The purpose is to recover.

特許文献3は、高炉減尺操業を行って炉内補修を実施した後の高炉立上げを円滑に行うことを目的としている。
具体的には、高炉減尺操業を行った後、長時間の休風で炉内温度が大きく低下した高炉を、炉床部の銑滓の流れを良好に保持して、支障なく円滑に再立上げすることを目的としている。
Patent Document 3 aims to smoothly start up a blast furnace after performing blast furnace reduction operation and performing in-furnace repair.
Specifically, after performing the blast furnace scale-down operation, the blast furnace whose temperature in the furnace has greatly decreased due to a long period of off-air is maintained and the flow of the soot in the hearth is maintained well, so that it can be smoothly re-started. The purpose is to launch.

特開2013−256698号公報JP 2013-256698 A 特許第3465471号公報Japanese Patent No. 3465471 特許第3832451号公報Japanese Patent No. 3832451

ところが、休風中に高炉の炉内温度が低下し過ぎると、炉内の溶銑滓が凝固してしまい、休風立ち上げ時に障害となる溶銑滓の排出不良が発生してしまう虞がある。このように、溶銑滓の排出不良が生じると、炉内の通気性が悪化することとなる。また、炉内の通気性の悪化に伴って、高炉に吹き込む熱風の送風量が低減してしまう虞がある。
しかしながら、特許文献1は、スラグ成分の塩基度の調整についてのみ着目した技術であり、凝固を抑制するために必要とされるスラグ中(Al2O3)%の調整については明記されていないため、必ずしも溶銑滓の排出が良好となるスラグを得られないと考えられる。
However, if the in-furnace temperature of the blast furnace is excessively lowered during the resting wind, the hot metal in the furnace is solidified, and there is a possibility that defective hot metal discharge that becomes an obstacle when the resting wind is started up may occur. As described above, when defective hot metal discharge occurs, the air permeability in the furnace deteriorates. Moreover, there exists a possibility that the ventilation volume of the hot air which blows in into a blast furnace may reduce with the deterioration of the air permeability in a furnace.
However, Patent Document 1 is a technique that focuses only on the adjustment of the basicity of the slag component, and does not specify the adjustment of (Al 2 O 3 )% in the slag that is required for suppressing solidification. Therefore, it is considered that slag with which hot metal discharge is good cannot always be obtained.

また、特許文献2は、休風立ち上げを短い時間で円滑に行なえる様にする技術であり、高炉からのスラグの排出に関しては良好と思われるが、同文献中には明確に記載されていないので、スラグ排出の詳細は不明である。
特許文献3は、溶銑中Si濃度の推定を行っていないため、目的のスラグ成分に調整することができないと考えられる。それ故、溶銑中Si濃度が上昇することとなり、スラグ塩基度が上昇して、スラグ粘性等が上昇し、休風立ち上げ初期(低温時)のスラグ排出不良が発生する虞がある。
Patent Document 2 is a technology that makes it possible to smoothly start up a resting wind in a short time. Although it seems to be good with respect to the discharge of slag from the blast furnace, it is clearly described in the same document. The details of slag discharge are unknown.
Since patent document 3 is not estimating Si density | concentration in hot metal, it is thought that it cannot adjust to the target slag component. Therefore, the Si concentration in the hot metal is increased, the slag basicity is increased, the slag viscosity and the like are increased, and there is a possibility that the slag discharge failure at the initial stage of the rest wind start (at low temperature) may occur.

そこで、本発明は上述の問題に鑑みてなされたものであり、高炉の休風立ち上げ時の溶銑滓の排出不良の発生を回避して、高炉の操業を円滑に再開させることができる高炉休風方法を提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described problems, and avoids the occurrence of defective hot metal discharge at the time of blast furnace blast start-up, so that blast furnace operation can be resumed smoothly. The purpose is to provide a wind method.

上述の目的を達成するため、本発明においては以下の技術的手段を講じた。
本発明の高炉休風方法は、休風前の溶銑温度と、前記休風立ち上げ後の溶銑温度と、休風時間より、前記休風前から休風立ち上げの間における溶銑温度低下の傾きを予め求めておき、前記休風前における還元材比増加量と、求められた前記休風前から前記休風立ち上げの間における溶銑温度低下の傾きとの関係を予め求めておき、前記休風立ち上げにおける溶銑滓の排出状況を、当該溶銑滓の排出良好データと、当該溶銑滓の排出不良データとに層別し、層別された前記溶銑滓の排出データより、前記休風立ち上げにおける前記溶銑滓の排出状況が、良好となる前記溶銑の下限温度を予め求めておき、前記休風前における還元材比増加量と、前記休風立ち上げ後における前記溶銑中の[Si](質量%濃度)の最大値との関係を予め求めておき、前記休風立ち上げにおいて前記溶銑滓の排出状況が良好となるスラグの塩基度(CaO(質量%濃度)/SiO2(質量%濃度))、及びスラグ中(Al2O3)(質量%濃度)の適正条件を予め求めておき、その上で、前記還元材比増加量と前記溶銑温度低下の傾きとの関係と、前記休風時間と、前記休風前の溶銑温度とから、休風立ち上げ時における溶銑温度が、予め求めた前記溶銑の下限温度を下回らないように、前記還元材比増加量を決定し、前記休風立ち上げ時における溶銑温度が前記溶銑の下限温度を下回らないように決定した前記還元材比増加量から、前記休風立ち上げ後における前記溶銑中の[Si](質量%濃度)の最大値を推定し、推定した前記溶銑中の[Si](質量%濃度)の最大値から、前記スラグの塩基度(CaO(質量%濃度)/SiO2(質量%濃度))、及びスラグ中(Al2O3)(質量%濃度)の推定値を求め、前記休風立ち上げ後における前記溶銑中の[Si](質量%濃度)の最大値での、前記スラグの塩基度(CaO(質量%濃度)/SiO2(質量%濃度))、及びスラグ中(Al2O3)(質量%濃度)が前記適正条件を満たすように、高炉に投入する副原料を決定し、決定した前記還元材比増加量及び前記副原料を、前記休風前の高炉に投入した後、前記休風を行い、その後、前記休風立ち上げを行って当該高炉の操業を再開することを特徴とする。
In order to achieve the above-described object, the present invention takes the following technical means.
According to the blast furnace air suspension method of the present invention, the hot metal temperature before the air break, the hot metal temperature after the start of the air break, and the slope of the hot metal temperature decrease between the air break start time and the air break start time from the air break time. Is obtained in advance, and the relationship between the reduced material ratio increase before the resting wind and the slope of the hot metal temperature decrease during the start of the resting wind from before the resting is obtained in advance. the discharge condition of put that soluble Zukukasu wind startup, the discharge good data of the hot metal debris to stratify in the discharge failure data of the hot metal debris, from the discharge data of the molten iron slag which is stratified, the deactivation The lower limit temperature of the hot metal at which the hot metal discharge state at the wind start-up becomes good is obtained in advance, and the amount of reduction material ratio increase before the resting of the hot metal and The relationship with the maximum value of Si] (mass% concentration) is obtained in advance, and the rest Wherein the wind rising hot metal slag discharge condition is good and Do away lag basicity (CaO (wt% concentration) / SiO 2 (wt% concentration)), and slag (Al 2 O 3) (mass% concentration ) In advance, and then, based on the relationship between the reducing material ratio increase amount and the slope of the hot metal temperature decrease, the hot air time, and the hot metal temperature before the hot air break, The amount of increase in the reducing material ratio is determined so that the hot metal temperature at the time of start-up does not fall below the lower limit temperature of the hot metal determined in advance, and the hot metal temperature at the time of start-up of the rest air does not fall below the lower limit temperature of the hot metal From the reduced material ratio increase determined as described above, the maximum value of [Si] (mass% concentration) in the hot metal after the start of the rest wind is estimated, the estimated [Si] (mass%) in the hot metal the maximum value of the concentration), basicity of the slag (CaO (wt% concentration) / SiO 2 (wt% concentration)), and slag (Al 2 O 3) (wt% concentration) Obtains an estimate, [Si] in the molten iron after the deactivation air rising at the maximum value of (mass% concentration), basicity of the slag (CaO (wt% concentration) / SiO 2 (wt% concentration) ), And in the slag (Al 2 O 3 ) (mass% concentration) so as to satisfy the appropriate condition, determine the secondary material to be introduced into the blast furnace, the determined reducing material ratio increase amount and the secondary material, After putting into the blast furnace before the resting wind, the resting wind is performed, and then the resting wind is started to restart the operation of the blast furnace.

本発明によれば、高炉の休風立ち上げ時の溶銑滓の排出不良の発生を回避して、高炉の操業を円滑に再開させることができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the defective discharge of the hot metal at the time of the blast furnace rest wind start-up can be avoided, and the operation of a blast furnace can be restarted smoothly.

休風前から休風立ち上げにかけての熱風の送風流量の推移を示した図である。It is the figure which showed transition of the ventilation flow volume of the hot air from before a rest wind to rest rest start-up. 休風前から休風立ち上げにかけての溶銑温度の推移を示した図である。It is the figure which showed transition of the hot metal temperature from a wind break before to a wind break start-up. 休風前から休風立ち上げにかけての還元材比の推移を示した図である。It is the figure which showed transition of the reductant ratio from before a rest wind to the rest wind rise. 休風前の還元材比増加量と、溶銑温度低下の傾きの関係を示した図である。It is the figure which showed the relationship between the reducing material ratio increase amount before a rest period, and the inclination of hot metal temperature fall. 出銑後の溶銑滓の流れを模式的に示した概略図である。It is the schematic which showed typically the flow of the hot metal after tapping. 休風時間と、休風立ち上げ時の溶銑温度の関係を示した図である。It is the figure which showed the relationship between a rest time and the hot metal temperature at the time of a rest wind start-up. 休風前から休風立ち上げ後にかけての溶銑中[Si]%の推移を示した図である。It is the figure which showed the transition of [Si]% in the hot metal from before the wind break to after the wind break. 休風前の還元材比増加量と、休風立ち上げ後の溶銑中[Si]%の最大値の関係を示した図である。It is the figure which showed the relationship between the reduction | restoration material ratio increase amount before a rest wind, and the maximum value of [Si]% in hot metal after a rest wind start-up. スラグ塩基度(C/S)と、スラグ結晶化温度の関係を示した図である。FIG. 3 is a diagram showing the relationship between slag basicity (C / S) and slag crystallization temperature. スラグ塩基度(C/S)と、スラグ粘度の関係を示した図である。FIG. 4 is a graph showing the relationship between slag basicity (C / S) and slag viscosity. 出銑後の溶銑滓の流れを模式的に示した概略図である。It is the schematic which showed typically the flow of the hot metal after tapping. スラグ塩基度(C/S)と、スラグ結晶化温度の関係を示した図である。FIG. 3 is a diagram showing the relationship between slag basicity (C / S) and slag crystallization temperature. スラグ塩基度(C/S)と、スラグ粘度の関係を示した図である。FIG. 4 is a graph showing the relationship between slag basicity (C / S) and slag viscosity. 還元材比増加量と、休風立ち上げ後の溶銑中[Si]%の最大値の関係を示した図である。FIG. 6 is a diagram showing the relationship between the amount of reduction material ratio increase and the maximum value of [Si]% in the hot metal after the start of rest wind. 溶銑中[Si]%の変化によるスラグ塩基度(C/S)の変化を示した図である。It is the figure which showed the change of slag basicity (C / S) by the change of [Si]% in hot metal. スラグ塩基度(C/S)と、スラグ結晶化温度の関係を示した図である。FIG. 3 is a diagram showing the relationship between slag basicity (C / S) and slag crystallization temperature. 休風前の還元材比増加量と、溶銑温度低下の傾きの関係を示した図である。It is the figure which showed the relationship between the reducing material ratio increase amount before a rest period, and the inclination of hot metal temperature fall. 休風前の還元材比増加量と、休風立ち上げ後の溶銑中[Si]%の最大値を示した図である。It is the figure which showed the amount of reduction material ratio increase before a rest wind, and the maximum value of [Si]% in hot metal after a rest wind start-up. 休風前から休風立ち上げにかけての溶銑温度の推移を示した図である。It is the figure which showed transition of the hot metal temperature from a wind break before to a wind break start-up. 休風前の還元材比増加量と、溶銑温度低下の傾きの関係を示した図である。It is the figure which showed the relationship between the reducing material ratio increase amount before a rest period, and the inclination of hot metal temperature fall. 出銑後の溶銑滓の流れを模式的に示した概略図である。It is the schematic which showed typically the flow of the hot metal after tapping. 休風時間と、休風立ち上げの溶銑温度の関係を示した図である。It is the figure which showed the relationship between a rest time and the hot metal temperature of a rest wind rise. 休風前から休風立ち上げ後にかけての溶銑中[Si]%の推移を示した図である。It is the figure which showed the transition of [Si]% in the hot metal from before the wind break to after the wind break. 休風前の還元材比増加量と、休風立ち上げ後の溶銑中[Si]%の最大値の関係を示した図である。It is the figure which showed the relationship between the reduction | restoration material ratio increase amount before a rest wind, and the maximum value of [Si]% in hot metal after a rest wind start-up. スラグ塩基度(C/S)と、スラグ結晶化温度の関係を示した図である。FIG. 3 is a diagram showing the relationship between slag basicity (C / S) and slag crystallization temperature. スラグ塩基度(C/S)と、スラグ粘度の関係を示した図である。FIG. 4 is a graph showing the relationship between slag basicity (C / S) and slag viscosity. スラグ塩基度(C/S)と、スラグ結晶化温度の関係を示した図である。FIG. 3 is a diagram showing the relationship between slag basicity (C / S) and slag crystallization temperature. スラグ塩基度(C/S)と、スラグ粘度の関係を示した図である。FIG. 4 is a graph showing the relationship between slag basicity (C / S) and slag viscosity. 休風前の還元材比増加量と、休風立ち上げ後の溶銑中[Si]%の最大値の関係を示した図である。It is the figure which showed the relationship between the reduction | restoration material ratio increase amount before a rest wind, and the maximum value of [Si]% in hot metal after a rest wind start-up. 溶銑中[Si]%の変化によるスラグ塩基度の変化を示した図である。It is the figure which showed the change of slag basicity by the change of [Si]% in hot metal. スラグ塩基度(C/S)と、スラグ結晶化温度の関係を示した図である。FIG. 3 is a diagram showing the relationship between slag basicity (C / S) and slag crystallization temperature. 本発明にかかる高炉休風方法のフローチャート図である。It is a flowchart figure of the blast furnace resting method concerning this invention.

以下、本発明にかかる高炉休風方法の実施形態を、図を参照して説明する。
なお、以下に説明する実施形態は、本発明を具体化した一例であって、その具体例をもって本発明の構成を限定するものではない。従って、本発明の技術的範囲は、本実施形態に開示内容だけに限定されるものではない。
また、以下の説明では、同一の部品には同一の符号を付してある。それらの名称及び機能も同じである。従って、それらについての詳細な説明は繰返さない。
Hereinafter, an embodiment of a blast furnace resting method according to the present invention will be described with reference to the drawings.
In addition, embodiment described below is an example which actualized this invention, Comprising: The structure of this invention is not limited with the specific example. Therefore, the technical scope of the present invention is not limited only to the contents disclosed in the present embodiment.
Moreover, in the following description, the same code | symbol is attached | subjected to the same components. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

まず、本実施形態の高炉休風方法の概略について述べる。
本実施形態の高炉休風方法は、予め休風の過去実績から、以下に示す3つの関係((i)〜(iii))を整理して準備しておく。
(i) 休風前に高炉1内の溶銑滓に投入する還元材に関する還元材比増加量と、休風中の溶銑温度低下の傾きの関係を求めておく。
First, the outline of the blast furnace resting method of this embodiment will be described.
The blast furnace air suspension method of the present embodiment is prepared in advance by arranging the following three relationships ((i) to (iii)) based on past past results of air suspension.
(i) The relationship between the amount of increase in the reducing material ratio related to the reducing material to be introduced into the hot metal in the blast furnace 1 and the slope of the decrease in hot metal temperature during the resting wind is obtained in advance.

(ii) 休風立ち上げ時における高炉1からの溶銑滓の排出状況が良好であるか、不良であるかを判定し、休風立ち上げ時における溶銑温度の下限温度を求めておく。
(iii) 休風前の還元材比増加量と、休風立ち上げ時における溶銑中[Si]濃度の最大値との関係を求めておく。
(iv) 予め事前準備しておいた上記関係を用いて、以下に示す休風前から休風立ち上げ間のパラメータを求める。
(ii) It is determined whether the hot metal discharge state from the blast furnace 1 at the start of the rest wind is good or bad, and the lower limit temperature of the hot metal temperature at the start of the rest wind is obtained.
(iii) The relationship between the amount of reduction material ratio increase before the break and the maximum value of the [Si] concentration in the hot metal at the start of the break is obtained.
(iv) Using the above-mentioned relationship prepared in advance, obtain the following parameters between the start of the rest and the start of the rest.

(v) 休風立ち上げ時の溶銑温度が、予め求めておいた下限温度を下回らないように、休風前の還元材比増加量を決定する。
(vi) 決定した休風前の還元材比増加量に対応する、休風立ち上げ時における溶銑中[Si]%の増加量を推定する。
(vii) 推定した溶銑中[Si]%の増加量に対応するスラグ成分の変化量を推定する。
(v) The amount of reducing material ratio increase before the break is determined so that the hot metal temperature at the start of the break is not lower than the lower limit temperature obtained in advance.
(vi) Estimate the amount of increase in [Si]% in hot metal at the start of rest time, corresponding to the determined reduction material ratio increase before rest time.
(vii) The amount of change in the slag component corresponding to the estimated increase in [Si]% in the hot metal is estimated.

(viii) 推定したスラグ成分の変化量を基に、休風立ち上げで溶銑滓の排出が良好となるように、高炉1に投入する副原料の成分を調整する。
このように、決定した還元材比増加量((v)で決定)、及び副原料((viii)で決定)を、休風前の高炉1に投入した後、休風を行い、その後、休風立ち上げを行って高炉1の操業を再開する。
(viii) Based on the estimated amount of change in the slag component, the component of the auxiliary raw material to be introduced into the blast furnace 1 is adjusted so that the hot metal discharge is good when the wind is stopped.
In this way, after the determined reducing material ratio increase (determined by (v)) and auxiliary material (determined by (viii)) are put into the blast furnace 1 before the resting wind, the resting wind is performed, and then the resting state is performed. Wind up and restart blast furnace 1 operation.

続いて、本実施形態の高炉休風方法を、詳細に説明する。なお、以下の(A1)〜(A5)に示すデータは過去実績の一例である。
(A1)
具体的には、休風前の溶銑温度と、休風立ち上げ後の溶銑温度と、休風時間より、休風前から休風立ち上げの間における溶銑温度低下の傾きを予め求めておく。なお、この事前準備手順は、図32中の手順(1)に該当する。
Next, the blast furnace air suspension method of the present embodiment will be described in detail. The data shown in the following (A1) to (A5) is an example of past results.
(A1)
Specifically, the slope of the hot metal temperature drop between before the wind break and between the start of the wind break is determined in advance from the hot metal temperature before the wind break, the hot metal temperature after the wind break rise, and the wind break time. This advance preparation procedure corresponds to the procedure (1) in FIG.

ここで、休風とは、通常操業中の高炉1に吹き込む熱風を停止することを指す。なお、休風を実施しているときは、熱放散により高炉1から熱が奪われるため、高炉1の炉内温度は時間とともに低下する。また、休風立ち上げとは、休風中の高炉1内に熱風を吹き込み、通常の操業を再開することを示す。また、休風時間とは、高炉1内に熱風の送風を停止した時から、熱風の送風を再開するまでの時間のことを指す。   Here, resting air refers to stopping hot air blown into the blast furnace 1 during normal operation. In addition, since heat is taken away from the blast furnace 1 by heat dissipation when the resting wind is implemented, the furnace temperature of the blast furnace 1 falls with time. The term “rest wind start-up” means that hot air is blown into the blast furnace 1 that is resting and normal operation is resumed. The resting time refers to the time from when hot air blowing is stopped in the blast furnace 1 to when hot air blowing is resumed.

本実施形態においては、休風中においては、熱風が吹き込まれておらず、炉内の溶銑の温度が低下しているので、その期間の溶銑温度低下の傾きを予め求めることとしている。
図1に、休風前から休風立ち上げ後にかけての熱風の送風流量の推移を示す。
熱風の送風流量は、高炉1に備えられている、すべての羽口から吹き込む熱風の合計であり、1分間あたりに、何ノルマル立米(Nm3/min)高温空気を、高炉1内に吹き込むかを指す。
In the present embodiment, during the rest period, hot air is not blown, and the temperature of the hot metal in the furnace is lowered. Therefore, the inclination of the hot metal temperature drop during that period is obtained in advance.
FIG. 1 shows the transition of the flow rate of hot air from before the break and after the start of the break.
The flow rate of hot air is the total of hot air blown from all tuyere provided in the blast furnace 1, and how many normal rice (Nm 3 / min) hot air is blown into the blast furnace 1 per minute. Point to.

図1に示すように、通常操業時の熱風の送風流量は、およそ6000(Nm3/min)程度で推移している。なお、図1では、1時間毎の送風流量の平均値をプロットしている。図1中の横軸の数字は日付であり、休風を含む10日間(1/17〜1/27)の推移を示している。図1中にプロットしている、熱風の送風流量が0となっている時間が休風時間である。
図2に、休風前から休風立ち上げ後にかけての溶銑温度の推移を示す。
As shown in FIG. 1, the flow rate of hot air during normal operation is about 6000 (Nm 3 / min). In addition, in FIG. 1, the average value of the ventilation flow volume for every hour is plotted. The numbers on the horizontal axis in FIG. 1 are dates, and show changes over a period of 10 days (1/17 to 1/27) including the rest. The time when the hot air flow rate is 0 plotted in FIG. 1 is the rest time.
FIG. 2 shows the transition of the hot metal temperature from before the wind break to after the wind break.

図2に示すように、通常操業時は、還元材(コークス、微粉炭等)の燃焼熱と、酸化鉄の還元熱及び炉頂や炉体からの放散熱がバランス(均衡)しており、炉内の溶銑温度は1480℃から1540℃程度の範囲で推移している。
しかし、休風中にはコークス、微粉炭の燃焼が止まるため、休風時間に応じた放散熱が失われ、炉内の溶銑温度が低下することとなる。
As shown in FIG. 2, during normal operation, the heat of combustion of the reducing material (coke, pulverized coal, etc.) and the heat of reduction of iron oxide and the heat dissipated from the top and furnace body are balanced. The hot metal temperature in the furnace is in the range of 1480 ℃ to 1540 ℃.
However, since the combustion of coke and pulverized coal stops during the rest period, the heat dissipated according to the rest period is lost, and the hot metal temperature in the furnace is lowered.

そこで、休風前に測定した炉内の溶銑温度と、休風立ち上げ後に、最初に測定した炉内の溶銑温度の差を、休風時間で割った値を、休風前から休風立ち上げの間の溶銑温度低下の傾きとした。
(A2)
続いて、休風前における還元材比増加量と、手順(1)で求めた休風前から休風立ち上げの間における炉内の溶銑温度低下の傾きとの関係を予め求めておく。なお、この事前準備手順は、図32中の手順(2)に該当する。
Therefore, the difference between the hot metal temperature measured in the furnace before the break and the hot metal temperature measured in the furnace after the start of the break, divided by the break time, The slope of the hot metal temperature drop during raising was taken as the slope.
(A2)
Subsequently, the relationship between the reducing material ratio increase before the break and the slope of the hot metal temperature drop in the furnace between the break and the start of the break determined in step (1) is obtained in advance. This advance preparation procedure corresponds to the procedure (2) in FIG.

以下の説明においては、溶銑1t製造するために必要な還元材の量を、還元材比(kg/tp)と呼ぶこととする。この還元材は、コークス、微粉炭などで構成されている。
本実施形態においては、休風中の溶銑温度低下を抑制し、休風立上げ後に炉熱を早期回復させるために、休風前に炉内に投入する還元材の量を増やし、還元材比を増加させることとしている。
In the following description, the amount of reducing material necessary for producing hot metal 1 t is referred to as a reducing material ratio (kg / tp). This reducing material is composed of coke, pulverized coal, or the like.
In this embodiment, in order to suppress the hot metal temperature drop during the resting wind and to recover the furnace heat early after the start of the resting wind, the amount of the reducing material put into the furnace before the resting wind is increased, and the reducing material ratio Is going to increase.

図3に、休風前から休風立ち上げ後にかけての還元材比の推移を示す。
休風前においては、通常操業時の還元材比に対して、高い還元材比で操業している。
図3に示すように、休風前における還元材比の最大値と、通常操業時における還元材比の値との差を、休風前の還元材比増加量(kg/tp)と呼ぶこととする。なお、通常操業時の還元材比は、休風48時間前から、休風36時間前の平均の還元材比とした。
FIG. 3 shows the transition of the reducing material ratio from before the wind break to after the wind break.
Before the break, it operates at a higher reducing agent ratio than the normal reducing agent ratio.
As shown in FIG. 3, the difference between the maximum value of the reducing material ratio before the wind break and the value of the reducing material ratio during normal operation is referred to as the reducing material ratio increase (kg / tp) before the wind break. And The ratio of reducing material during normal operation was the average ratio of reducing material from 48 hours before the resting wind to 36 hours before the resting wind.

休風前の還元材比増加量と、炉内の溶銑温度低下の傾きの過去実績を、10点以上集めて、横軸を休風前の還元材比増加量とし、縦軸を炉内の溶銑温度低下の傾きとした上で、集めた過去実績をプロットして関係を求めた。その求めた関係を、図4に示す。
図4に示すように、休風前の還元材比増加量(kg/tp)が多いほど、溶銑温度低下の傾き(℃/h)が小さくなることがわかる。
Collected more than 10 points of the reduction material ratio increase before the break and the slope of the hot metal temperature drop in the furnace, the horizontal axis is the reduction material ratio increase before the break, and the vertical axis is the inside of the furnace Based on the slope of the hot metal temperature drop, the past results collected were plotted to obtain the relationship. The obtained relationship is shown in FIG.
As shown in FIG. 4, it can be seen that the slope (° C./h) of the hot metal temperature decrease becomes smaller as the amount of increase in the reducing material ratio (kg / tp) before the wind break increases.

図4に、最小二乗法で求めた近似直線を点線で示す。また図4に、近似直線よりも、溶銑温度低下の傾きが大きいプロットの中で、近似直線から最も離れている点を通る直線を実線で示す。
この図4中の実線を、休風前の還元材比増加量と、炉内の溶銑温度低下の傾きの関係式とした。その関係式を式(1)に示す。
In FIG. 4, the approximate straight line obtained by the least square method is indicated by a dotted line. Further, in FIG. 4, a straight line passing through a point farthest from the approximate line in a plot in which the slope of the hot metal temperature decrease is larger than that of the approximate line is indicated by a solid line.
The solid line in FIG. 4 is a relational expression between the amount of increase in the reducing material ratio before the break and the slope of the hot metal temperature drop in the furnace. The relational expression is shown in Expression (1).

溶銑温度低下の傾き(℃/h)=−0.0347×休風前の還元材比増加量(kg/tp)+8.1965 ・・・(1)
(A3)
休風立ち上げ時における溶銑滓の排出状況を、溶銑滓の排出良好データと、溶銑滓の排出不良データとに層別し、層別された溶銑滓の排出データより、休風立ち上げ時における溶銑滓の排出状況が、良好となる溶銑の下限温度を予め求めておく。なお、この事前準備手順は、図32中の手順(3)に該当する。
Slope of hot metal temperature decrease (℃ / h) = -0.0347 x Reducing material ratio increase before rest (kg / tp) + 8.1965 (1)
(A3)
The hot metal discharge status at the start of rest wind is stratified into hot metal discharge good data and defective hot metal discharge data. The lower limit temperature of the hot metal at which the hot metal discharge is good is determined in advance. This advance preparation procedure corresponds to the procedure (3) in FIG.

休風前に増加させる還元材比が不十分ならば、休風立ち上げ時の溶銑温度が大きく低下してしまい、溶銑とスラグが混在する溶銑滓の流動性が低下することとなる。
このように、溶銑・スラグの流動性が低下すると、粘性が高く出銑樋を流れなかったり、凝固してしまったりといったことが発生し、炉内から溶銑滓を排出することが困難となり、出銑不能などの大きなトラブルに至ってしまう虞がある。
If the ratio of reducing material to be increased before the resting wind is insufficient, the hot metal temperature at the start of the resting wind is greatly lowered, and the fluidity of the hot metal in which hot metal and slag are mixed is lowered.
As described above, when the hot metal / slag fluidity is lowered, the viscosity is high and the hot metal does not flow or solidifies, which makes it difficult to discharge the hot metal from the furnace. There is a risk that it will lead to major troubles such as inability to drown.

ここで、10回以上の休風の過去実績データついて、検討した。
この過去実績データのうち、休風立ち上げ時の溶銑滓の排出状況が良好であるものを、溶銑滓の排出良好データとし、排出状況が不良であるものを、溶銑滓の排出不良データとして、層別した。
休風立ち上げの溶銑滓の排出状況を、排出良好データと排出不良データに層別するにあたっては、以下の2点を基準にして行った。
Here, we examined the past performance data of 10 or more wind breaks.
Of the past performance data, the hot metal discharge status at the start of the off-air is good, the hot metal discharge good data, the poor hot metal discharge data, the hot metal discharge defective data, Stratified.
When categorizing the hot metal discharge status after the start of resting wind into good discharge data and defective discharge data, the following two points were used as a reference.

・炉内に残留する溶銑滓の増加により、炉内通気性に問題が生じ、通気不良となって減風に至った例。
・炉外に排出させた溶銑滓が凝固し、出銑不可能となった例。
図5に、出銑口2から出た溶銑滓の流れの概略図を示す。図5に示すように、例えば、出銑口2から排出されたスラグが、スラグ処理設備(ドライピット3、水砕設備4)に流れるまでの間に凝固する場合、又はスラグの粘性が高く出銑樋を流れない場合、出銑が継続できなくなる、すなわち出銑不可能となる。
・ An example where the increase in hot metal remaining in the furnace caused problems in the air permeability in the furnace, resulting in poor ventilation and reduced wind.
・ Examples where the hot metal discharged outside the furnace has solidified and cannot be discharged.
In FIG. 5, the schematic of the flow of the hot metal which came out from the spout opening 2 is shown. As shown in FIG. 5, for example, when the slag discharged from the tap outlet 2 solidifies before flowing into the slag treatment equipment (dry pit 3, granulation equipment 4), or the slag has a high viscosity. If it does not flow, the output cannot be continued, that is, it cannot be output.

上記の2点を、休風立ち上げ時の溶銑滓の排出不良データ(不可)とし、上記の2点のような問題が生じなかったデータを、立ち上げ時の溶銑滓の排出良好データ(良)とした。
溶銑滓の排出状況を層別したデータ(排出良好データ及び排出不良データ)について、横軸を休風時間とし、縦軸を休風立ち上げの溶銑温度とした上で、集めた10点以上の過去実績をプロットして関係を求めた。その求めた関係を、図6に示す。
The above two points are the hot metal discharge failure data (impossible) at the start of resting wind, and the data that did not cause problems like the above two points are the hot metal discharge good data (good) ).
For data categorized by hot metal discharge status (good discharge data and defective discharge data), the horizontal axis is the break time and the vertical axis is the hot metal temperature at the start of the break, The past results were plotted to find the relationship. The obtained relationship is shown in FIG.

図6より、休風立ち上げ時の溶銑温度が1360℃を下回ると、溶銑滓の排出不良となるため、休風立ち上げ時の溶銑温度の下限温度を1360℃と決定した。
(A4)
休風前における還元材比増加量と、休風立ち上げ後における溶銑中[Si]%の最大値との関係を予め求めておく。なお、この事前準備手順は、図32中の手順(4)に該当する。
As shown in FIG. 6, when the hot metal temperature at the start of the resting wind falls below 1360 ° C., the hot metal discharge is poor, so the lower limit temperature of the hot metal temperature at the start of the resting wind is determined to be 1360 ° C.
(A4)
The relationship between the amount of increase in the reducing material ratio before the resting wind and the maximum value of [Si]% in the hot metal after the start of the resting wind is obtained in advance. This advance preparation procedure corresponds to the procedure (4) in FIG.

図7に、休風前から休風立ち上げ後にかけての溶銑中[Si]%の推移を示す。なお、溶銑中[Si]%は、溶銑に含まれる[Si]の質量%で示した濃度である。また、(質量%で示した濃度)を単に(%)と表していることもある。
図7に示すように、溶銑中[Si]%は、休風立ち上げ時に最大値となり、以降は減少し、通常操業時の溶銑[Si]%へと戻ることがわかる。
FIG. 7 shows the transition of [Si]% in the hot metal from before the wind break to after the wind break rise. In addition, [Si]% in the hot metal is a concentration indicated by mass% of [Si] contained in the hot metal. In addition, (concentration expressed in mass%) may be simply expressed as (%).
As shown in FIG. 7, it can be seen that the hot metal [Si]% reaches the maximum value when the wind is stopped, decreases thereafter, and returns to the hot metal [Si]% during normal operation.

そこで、本願発明者は、休風立ち上げ時にピークとなる点を、溶銑中[Si]%の最大値とした。ところで、休風前には溶銑中[Si]%がやや高くなる点(小さなピーク)が存在しており、その小さなピークを溶銑中[Si]%の最大値とする事例(例えば、特開2013−256698号公報)はあるが、図7に示す如く溶銑中[Si]%は休風立ち上げ時に最大となるのは明らかであるので、前述の小さなピークを最大値とすることは好ましくない。   Therefore, the inventor of the present application sets the point that becomes a peak at the start of rest time as the maximum value of [Si]% in the hot metal. By the way, there is a point (small peak) in which [Si]% in the hot metal is slightly higher before the break, and the small peak is set as the maximum value of [Si]% in the hot metal (for example, Japanese Patent Laid-Open No. 2013-2013). However, as shown in FIG. 7, it is clear that [Si]% in the hot metal is maximized at the start of rest time, so it is not preferable to set the above-mentioned small peak as the maximum value.

そして、10回以上の休風の過去実績データについて、休風前の還元材比増加量と溶銑中[Si]%の最大値の過去実績データを集め、横軸を休風前の還元材比増加量とし、縦軸を溶銑[Si]%の最大値とした上で、集めた過去実績データをプロットして関係を求めた。その求めた関係を、図8に示す。
図8中の実線は、最小二乗法で求めた近似直線である。この図8中の直線を、休風前の還元材比増加量と、休風立ち上げ後の溶銑中[Si]%の最大値の関係式とした。その関係式を式(2)に示す。
Then, for past performance data of 10 or more pauses, collect the past performance data of the reduced material ratio increase before the wind break and the maximum value of [Si]% in hot metal, and the horizontal axis shows the ratio of the reduced material before the wind break. The amount of increase was used, the vertical axis was the maximum value of hot metal [Si]%, and the past performance data collected was plotted to obtain the relationship. The obtained relationship is shown in FIG.
The solid line in FIG. 8 is an approximate straight line obtained by the least square method. The straight line in FIG. 8 is a relational expression between the reduction material ratio increase before the wind break and the maximum value of [Si]% in the hot metal after the wind break-up. The relational expression is shown in Expression (2).

溶銑中[Si]%の最大値=0.0104×休風前の還元材比増加量(kg/tp)+0.5695 ・・・(2)
(A5)
休風立ち上げにおいて、溶銑滓の排出状況が良好となるスラグの塩基度(CaO)%/(SiO2)%、及びスラグ中(Al2O3)%の適正条件を予め求めておく。なお、この事前準備手順は、図32中の手順(5)に該当する。
Maximum value of [Si]% in hot metal = 0.0104 x reducing material ratio increase before rest (kg / tp) + 0.5695 (2)
(A5)
In the start-up of the resting wind, appropriate conditions of basicity (CaO)% / (SiO 2 )% of slag and (Al 2 O 3 )% in slag in which the hot metal discharge state is good are obtained in advance. This advance preparation procedure corresponds to the procedure (5) in FIG.

スラグの塩基度は、スラグ中の(CaO)%及び(SiO2)%を用いて、下式で計算する。なお、(CaO)%は(CaO)の質量%で示した濃度であり、(SiO2)%は(SiO2)の質量%で示した濃度である。
スラグの塩基度=(C/S)=(CaO)%÷(SiO2)%
溶銑滓の排出が良好となるように以下に示す2つの条件を満足するスラグ成分を、適正値とする。
The basicity of slag is calculated by the following formula using (CaO)% and (SiO 2 )% in slag. Note that (CaO)% is a concentration expressed by mass% of (CaO), and (SiO 2 )% is a concentration expressed by mass% of (SiO 2 ).
Slag basicity = (C / S) = (CaO)% ÷ (SiO 2 )%
The slag component that satisfies the following two conditions is set to an appropriate value so that the hot metal discharge is good.

・排出したスラグの温度が、結晶化温度を下回らないこと。
・スラグの粘度が、できる限り低位であること。
本実施形態においては、スラグの塩基度及びスラグ中の(Al2O3)%の適正値については、以下に示す公知の文献等をもとに設定した。
参考文献の(星ら:CAMP-ISIJ,12(1999),709,10)によれば、スラグの温度が低下して固相が析出し、且つスラグの粘度が急上昇する温度を結晶化温度とし、スラグの成分と結晶化温度について、以下の関係式を求めている。
-The temperature of the discharged slag must not be lower than the crystallization temperature.
-The slag viscosity should be as low as possible.
In the present embodiment, the basicity of slag and the appropriate value of (Al 2 O 3 )% in the slag were set based on the following known documents.
According to the reference (Hoshi et al .: CAMP-ISIJ, 12 (1999), 709, 10), the crystallization temperature is defined as the temperature at which the slag decreases and the solid phase precipitates, and the viscosity of the slag rapidly increases. The following relational expressions are obtained for the slag components and the crystallization temperature.

結晶化温度(℃)=195×(C/S)+7.1×(MgO)%+11.5×(Al2O3)%+0.9×(TiO2)%+870.1
通常、スラグ中の(MgO)%,(Al2O3)%,(TiO2)%は、(MgO)%:5〜8(%),(Al2O3)%:13.5〜16(%),(TiO2)%:1〜2(%)程度で操業をしている。なお、(MgO)%は(MgO)の質量%で示した濃度であり、(Al2O3)%は(Al2O3)の質量%で示した濃度であり、(TiO2)%は(TiO2)の質量%で示した濃度である。
Crystallization temperature (℃) = 195 × (C / S) + 7.1 × (MgO)% + 11.5 × (Al 2 O 3 )% + 0.9 × (TiO 2 )% + 870.1
Usually, in the slag (MgO)%, (Al 2 O 3)%, (TiO 2)% is, (MgO)%: 5~8 ( %), (Al 2 O 3)%: 13.5~16 (% ), (TiO 2 )%: 1 to 2 (%). Incidentally, (MgO)% is the concentration shown in weight percent (MgO), (Al 2 O 3)% is the concentration shown in weight percent (Al 2 O 3), ( TiO 2)% is This is the concentration expressed as mass% of (TiO 2 ).

本実施形態においては、(MgO)%=6.8%,(Al2O3)%=14.0%,(TiO2)%=1.6%として、上記式に従い、塩基度と結晶化温度の関係を求めた。その求めた関係を、図9に示す。
また、参考文献の(星ら:CAMP-ISIJ,12(1999),709,10)によれば、1400℃におけるスラグの粘度について、以下の関係式を求めている。
粘度=0.3×{12.6×(C/S)2−33.1×(C/S)−0.52×(MgO)%+0.42×(Al2O3)%−0.29×(TiO2)%+21.72}
また、(MgO)%=6.8%,(Al2O3)%=14.0%,(TiO2)%=1.6%として、上記式に従い、塩基度と粘度の関係を求めた。その求めた関係を、図10に示す。
In this embodiment, (MgO)% = 6.8%, (Al 2 O 3 )% = 14.0%, (TiO 2 )% = 1.6%, and the relationship between basicity and crystallization temperature was determined according to the above formula. . The obtained relationship is shown in FIG.
Further, according to the reference (Hoshi et al .: CAMP-ISIJ, 12 (1999), 709, 10), the following relational expression is obtained for the viscosity of slag at 1400 ° C.
Viscosity = 0.3 × {12.6 × (C / S) 2 −33.1 × (C / S) −0.52 × (MgO)% + 0.42 × (Al 2 O 3 )% − 0.29 × (TiO 2 )% + 21.72 }
Further, the relationship between basicity and viscosity was determined according to the above formula, assuming that (MgO)% = 6.8%, (Al 2 O 3 )% = 14.0%, and (TiO 2 )% = 1.6%. The obtained relationship is shown in FIG.

上記2つ(結晶化温度、粘度)の式の適用範囲は、以下の通りである。
1.0<(CaO)%/(SiO2)%<1.4
4.5%<(MgO)%<8.5%
14%<(Al2O3)%<18%
図11に、出銑口2から排出された溶銑滓の流れの概略図を示す。
Applicable ranges of the above two formulas (crystallization temperature, viscosity) are as follows.
1.0 <(CaO)% / (SiO 2 )% <1.4
4.5% <(MgO)% <8.5%
14% <(Al 2 O 3 )% <18%
In FIG. 11, the schematic of the flow of the hot metal discharged | emitted from the spout 2 is shown.

図11に示すように、炉内から排出されたスラグは出銑樋を流れて、水砕設備4にて水冷されるか、乃至は、ドライピット3にて徐冷されてリサイクル製品となる。ところが、この排出されたスラグは、各冷却設備に到達するまでの間に、大気や出銑樋に熱を放散して温度が低下することとなる。
ここで、各溶銑温度を測定したところ、溶銑とスラグを分離する主樋スキンマー部5で測定した溶銑温度と、スラグの徐冷設備であるドライピット3入口におけるスラグの温度には、30℃〜40℃の差があることを確認した。
As shown in FIG. 11, the slag discharged from the furnace flows out of the furnace and is cooled with water in the granulating equipment 4 or gradually cooled in the dry pit 3 to become a recycled product. However, the discharged slag dissipates heat to the atmosphere and the output before reaching each cooling facility, and the temperature decreases.
Here, when each hot metal temperature was measured, the hot metal temperature measured by the main skin skinmer part 5 for separating the hot metal and the slag, and the slag temperature at the inlet of the dry pit 3 which is a slag slow cooling facility, It was confirmed that there was a difference of 40 ° C.

そして、(A3)で設定した溶銑の下限温度1360℃から、スラグの温度低下分40℃を差し引くと、想定されるスラグの最低温度は1320℃となる。
図12に示すように、スラグの塩基度と結晶化温度の関係より、スラグの塩基度が1.22以上であり、且つスラグの温度が1320℃となった場合には、結晶化温度を下回り、急激にスラグの粘度が上昇することとなる。
Then, by subtracting 40 ° C. of the slag temperature drop from the lower limit temperature 1360 ° C. of the hot metal set in (A3), the assumed minimum slag temperature is 1320 ° C.
As shown in FIG. 12, from the relationship between the slag basicity and the crystallization temperature, when the slag basicity is 1.22 or more and the slag temperature is 1320 ° C., the crystallization temperature falls below the crystallization temperature. In addition, the viscosity of the slag will increase.

そこで、スラグの塩基度は1.22未満に設定する必要がある。
また、図13に示すように、スラグの塩基度と粘度の関係より、スラグの塩基度が1.0〜1.3の範囲では、スラグの塩基度が高い方がスラグの粘度が低い。よって、スラグの粘度の観点からは、スラグの塩基度は高い方が望ましいといえる。
図14に、休風における還元材比増加量と、溶銑中[Si]%の最大値の関係を示す。
Therefore, the basicity of slag must be set to less than 1.22.
Moreover, as shown in FIG. 13, from the relationship between the basicity of slag and the viscosity, when the basicity of slag is in the range of 1.0 to 1.3, the higher the basicity of slag, the lower the viscosity of slag. Therefore, it can be said that it is desirable that the slag has a higher basicity from the viewpoint of the viscosity of the slag.
FIG. 14 shows the relationship between the amount of reduction material ratio increase in the rest wind and the maximum value of [Si]% in the hot metal.

図14を参照すると、還元材比の増加に伴い、溶銑中[Si]%の最大値は上昇するが、バラつきがあることがわかる。
図14に、最小二乗法で求めた近似直線の式を実線で示す。この近似直線の式を使用して、推定した溶銑中[Si]%の推定値と、過去実績の溶銑中[Si]%の差を計算して、もっとも差が大きい例を、図14中の点線で示す。図14中の2本の点線のように、最大で±0.27程度の差があることがわかる。
Referring to FIG. 14, it can be seen that the maximum value of [Si]% in the hot metal increases as the reducing material ratio increases, but there is variation.
In FIG. 14, the equation of the approximate straight line obtained by the least square method is shown by a solid line. Using this approximate straight line equation, the difference between the estimated value of estimated [Si]% in hot metal and [Si]% in hot metal of the past results is calculated. Shown with dotted lines. As can be seen from the two dotted lines in FIG. 14, there is a difference of about ± 0.27 at the maximum.

溶銑中[Si]%が変動すると、スラグ中の塩基度(C/S)が変動する。そのスラグ中の塩基度(C/S)の計算方法を以下に示す。
表1に、各原料毎の装入量(t/ch)を示す。表2に、各原料毎の各成分(%)を示す。
When [Si]% changes in hot metal, the basicity (C / S) in slag changes. The calculation method of basicity (C / S) in the slag is shown below.
Table 1 shows the charging amount (t / ch) for each raw material. Table 2 shows each component (%) for each raw material.

表1に示すすべての原料の装入量(t/ch)及び、表2に示す鉱石、コークス、微粉炭や副原料などの高炉1に投入する各原料の成分(質量%濃度)から、T.Fe(鉄分),SiO2,MnO,TiO2,CaO,Al2O3,MgOの各成分の装入量(t/ch)を、下式により求める。
各原料毎の各成分の装入量(t/ch)=各原料中の各成分(%)×各原料の装入量(t/ch)
表3に、各原料毎の各成分の装入量(t/ch)を示す。
From the charge (t / ch) of all the raw materials shown in Table 1 and the components (mass% concentration) of each raw material charged into the blast furnace 1 such as ore, coke, pulverized coal and auxiliary raw materials shown in Table 2. The amount of charge (t / ch) of each component of .Fe (iron), SiO 2 , MnO, TiO 2 , CaO, Al 2 O 3 , and MgO is obtained by the following equation.
Charge of each component for each raw material (t / ch) = Each component in each raw material (%) x Charge of each raw material (t / ch)
Table 3 shows the charging amount (t / ch) of each component for each raw material.

ここで、(t/ch)とは1チャージあたりの装入量(t)である。また、1日に必要な鉱石やコークス等の原燃料(装入物)をおよそ80〜100(回/日)程度に分けて装入している。
表4に、各原料毎の各成分の装入量の合計(表3の合計)を示す。
Here, (t / ch) is the charging amount (t) per charge. In addition, raw fuel (charges) such as ore and coke necessary for one day is divided into about 80 to 100 (times / day).
Table 4 shows the total amount of each component charged for each raw material (total of Table 3).

表4に示す、各成分のうち、CaO,Al2O3,MgOは、すべてスラグになることとなる。それに対して、SiO2,MnO,TiO2の各成分の一部は溶銑になり、また各成分の残りはスラグになることとなる。
装入物中のFeは、すべて溶銑になるとして、下式で溶銑中Fe(t/ch)を求める。
溶銑中Fe(t/ch)=装入物中T.Fe(t/ch)
また、溶銑中Mn量、溶銑中Ti量は、簡易的に以下のように計算する。
Of the components shown in Table 4, CaO, Al 2 O 3 and MgO all become slag. On the other hand, a part of each component of SiO 2 , MnO, and TiO 2 becomes hot metal, and the rest of each component becomes slag.
Assuming that all of the Fe in the charge becomes molten iron, the Fe (t / ch) in molten iron is obtained by the following formula.
Fe (t / ch) in hot metal = T.Fe (t / ch) in charge
Further, the amount of Mn in hot metal and the amount of Ti in hot metal are simply calculated as follows.

溶銑中Mn(t/ch)=装入MnO(t/ch)×Mn分配率(%)×55÷71
溶銑中Ti(t/ch)=装入TiO2(t/ch)×Ti分配率(%)×48÷(48+16×2)
ただし、Mn分配率(溶銑へ入る割合)を85%とし、Ti分配率を50%とした。
表5に既知の部分のみの溶銑成分(t/ch)を示し、表6に既知の部分のみの溶銑成分(%)を示す。
Mn (t / ch) in hot metal = charging MnO (t / ch) x Mn distribution rate (%) x 55 ÷ 71
Ti (t / ch) in molten iron = charged TiO 2 (t / ch) x Ti distribution rate (%) x 48 ÷ (48 + 16 x 2)
However, the Mn distribution rate (ratio of entering the hot metal) was 85%, and the Ti distribution rate was 50%.
Table 5 shows the hot metal component (t / ch) of only the known part, and Table 6 shows the hot metal component (%) of only the known part.

ところで、溶銑には、炭素が多く溶け込むが、その量は大きくは変化しない。そこで、表6に示すように、溶銑中[C]%を4.8%の固定値とした。また、溶銑中[Si]%は適宜、値を与えることとし、溶銑中[Si]%を0.4%とした例を表6に示す。
表5、表6に示す既知の成分から、下記3つの式を用いて解くと、表7、表8になる。
つまり、溶銑中[Si]%の値を与えると、下記3つの式を用いて解くと、溶銑中[Si](t/ch)を得られる。
By the way, although a lot of carbon dissolves in the hot metal, the amount does not change greatly. Therefore, as shown in Table 6, [C]% in the hot metal was set to a fixed value of 4.8%. Table 6 shows an example in which [Si]% in the hot metal is given a value as appropriate, and [Si]% in the hot metal is 0.4%.
Solving from the known components shown in Tables 5 and 6 using the following three equations, Tables 7 and 8 are obtained.
That is, when the value of [Si]% in hot metal is given, [Si] (t / ch) in hot metal can be obtained by solving using the following three equations.

溶銑成分合計(t/ch)=C(t/ch)+Fe(t/ch)+Si(t/ch)+Mn(t/ch)+Ti(t/ch)
すなわち、z=x+89.25+y+0.16+0.17
Si(t/ch)=溶銑成分合計(t/ch)×[Si]%
すなわち、y=z×0.4(%)
C(t/ch)=溶銑成分合計(t/ch)×[C]%
すなわち、x=z×4.8(%)
Total hot metal components (t / ch) = C (t / ch) + Fe (t / ch) + Si (t / ch) + Mn (t / ch) + Ti (t / ch)
That is, z = x + 89.25 + y + 0.16 + 0.17
Si (t / ch) = Hot metal component total (t / ch) x [Si]%
That is, y = z x 0.4 (%)
C (t / ch) = Hot metal component total (t / ch) x [C]%
That is, x = z x 4.8 (%)

そして、表4に示す各成分の装入量合計から、表5に示す各成分の溶銑に分配される量を差し引いて、スラグに分配される量(t/ch)を求める。表9に、スラグに分配される量(t/ch)を示す。   Then, the amount (t / ch) distributed to the slag is obtained by subtracting the amount distributed to the hot metal of each component shown in Table 5 from the total charged amount of each component shown in Table 4. Table 9 shows the amount (t / ch) distributed to the slag.

装入CaO量、装入Al2O3量、装入MgO量、スラグ中SiO2量、スラグ中MnO量、スラグ中TiO2量を合計し、計算スラグ量とした。表10に、計算スラグ量を示す。 The amount of charged CaO, amount of charged Al 2 O 3, amount of charged MgO, amount of SiO 2 in slag, amount of MnO in slag, amount of TiO 2 in slag were totaled to obtain the calculated amount of slag. Table 10 shows the calculated slag amount.

装入CaO量、装入Al2O3量、スラグ中SiO2量を、計算スラグ量で割り、スラグ中の(SiO2)%,(CaO)%,(Al2O3)%を計算した。表11に、スラグ中における各成分(%)を示す。 The amount of charged CaO, amount of charged Al 2 O 3 and the amount of SiO 2 in the slag were divided by the calculated amount of slag to calculate (SiO 2 )%, (CaO)%, (Al 2 O 3 )% in the slag. . Table 11 shows each component (%) in the slag.

スラグの塩基度は、スラグ中の(CaO)%,(SiO2)%を用いて、下式で計算する。
スラグの塩基度=(C/S)=(CaO)%÷(SiO2)%
表12に、スラグ塩基度を示す。
The basicity of slag is calculated by the following formula using (CaO)%, (SiO 2 )% in slag.
Slag basicity = (C / S) = (CaO)% ÷ (SiO 2 )%
Table 12 shows the slag basicity.

以上、例示した溶銑中[Si]%=0.4%より、スラグの塩基度は1.27、(Al2O3)%は15.1(%)と推定される。
上で述べた塩基度の計算方法に従って、溶銑中[Si]%が変化した際におけるスラグの塩基度(CaO)%/(SiO2)%の推定値の変化を、図15に示す。
図15に示すように、例えば、溶銑中[Si]%が0.27変化すると、スラグの塩基度が0.11程度変化することが推定される。
As described above, based on [Si]% = 0.4% in the hot metal exemplified, it is estimated that the basicity of slag is 1.27 and (Al 2 O 3 )% is 15.1 (%).
FIG. 15 shows changes in the estimated value of slag basicity (CaO)% / (SiO 2 )% when [Si]% in hot metal changes in accordance with the basicity calculation method described above.
As shown in FIG. 15, for example, when [Si]% in hot metal changes by 0.27, it is estimated that the basicity of slag changes by about 0.11.

図16に示すように、溶銑中[Si]%の変動により、スラグの塩基度が0.11変動したとしても、上で設定したスラグの塩基度1.22未満を保てるように、スラグの塩基度の目標値を1.1と設定した。
また、CaO,SiO2,Al2O3から成るスラグの状態図から、最も凝固点が低くなるよう、(Al2O3)%の目標値を13%とした。
As shown in FIG. 16, even if the basicity of slag changes by 0.11 due to the fluctuation of [Si]% in hot metal, the target value of basicity of slag is maintained so that the basicity of slag set above is less than 1.22. Was set to 1.1.
Further, from the phase diagram of slag composed of CaO, SiO 2 and Al 2 O 3 , the target value of (Al 2 O 3 )% was set to 13% so that the freezing point was lowest.

続いて、(A1)〜(A5)に沿って事前準備した上で、(B1)〜(B5)に沿って休風前に高炉1に投入する還元材比増加量及び副原料を決定する。
(B1)
(A2)で求めた休風前の還元材比増加量と溶銑温度低下の傾きとの関係と、予め設定されている休風時間と、休風前の溶銑温度とから、休風立ち上げ時における溶銑温度が、予め(A3)で求めた溶銑の下限温度を下回らないように、休風前の還元材比増加量を決定する。なお、この決定手順は、図32中の手順(6)に該当する。
Subsequently, after preparing in advance along (A1) to (A5), the reducing material ratio increase amount and the auxiliary material to be introduced into the blast furnace 1 before the wind break are determined along (B1) to (B5).
(B1)
From the relationship between the amount of reduction material ratio increase before resting and the slope of the hot metal temperature decrease obtained in (A2), the preset resting time, and the hot metal temperature before resting, The amount of increase in the reducing material ratio before resting is determined so that the hot metal temperature is not lower than the lower limit temperature of hot metal previously obtained in (A3). This determination procedure corresponds to the procedure (6) in FIG.

通常操業時には、溶銑温度が1510℃となるように、熱風の温度等を調整しているが、休風前においては溶銑温度が1520℃になるように調整している。ここでは、休風前の溶銑温度を1520℃とする。また、休風時間は、休風中に実施する工事の工程により決定する。
休風前の溶銑温度1520℃から、休風立ち上げまでの間に、溶銑温度が下限温度を下回らないような溶銑温度低下の傾きを求める。
During normal operation, the temperature of hot air is adjusted so that the hot metal temperature is 1510 ° C, but before hot air is adjusted, the hot metal temperature is adjusted to 1520 ° C. Here, the hot metal temperature before the break is 1520 ° C. In addition, the resting time is determined by the construction process to be performed during the resting period.
The slope of the hot metal temperature drop is determined so that the hot metal temperature does not fall below the lower limit temperature between the hot metal temperature 1520 ° C before the break and the start of the break.

次いで、休風前の還元材比増加量と、溶銑温度低下の傾きの関係から、溶銑温度が下限温度を下回らないために必要な休風前の還元材比増加量を決定する。
例えば、30時間の休風で1520℃から1360℃(下限温度)まで低下するとした場合、図17に示すように、溶銑温度低下の傾きは5.3(℃/h)となり、休風前の還元材比増加量は83(kg/tp)必要になることがわかる。
Next, from the relationship between the amount of increase in the reducing material ratio before the wind break and the slope of the hot metal temperature decrease, the amount of increase in the reducing material ratio before the wind break required to prevent the hot metal temperature from falling below the lower limit temperature is determined.
For example, if the temperature decreases from 1520 ° C. to 1360 ° C. (lower limit temperature) after 30 hours of off-air, the slope of the hot metal temperature decrease is 5.3 (° C./h) as shown in FIG. It can be seen that the specific increase amount is 83 (kg / tp).

このように、休風立ち上げの溶銑温度が下限温度を下回らないように、休風前の還元材比増加量を設定する。
(B2)
休風立ち上げ時における溶銑温度が溶銑の下限温度を下回らないように決定した休風前の還元材比増加量から、休風立ち上げ後における溶銑中[Si]%の最大値を推定する。なお、この推定手順は、図32中の手順(7)に該当する。
In this way, the reducing material ratio increase amount before the wind break is set so that the hot metal temperature for the wind break rise does not fall below the lower limit temperature.
(B2)
The maximum value of [Si]% in the hot metal after the start of the rest wind is estimated from the amount of reduction material ratio increase before the rest of the hot air determined so that the hot metal temperature at the start of the rest wind does not fall below the lower limit temperature of the hot metal. This estimation procedure corresponds to the procedure (7) in FIG.

図18に示すように、(A4)で求めた休風前の還元材比増加量と、休風立ち上げ後の溶銑中[Si]%の最大値の関係から、休風立ち上げ後の溶銑中[Si]%の最大値を推定する。
(B3)
推定した溶銑中[Si](%)の最大値から、スラグの塩基度(C/S)、及び(Al2O3)%の推定値を求める。なお、この推定手順は、図32中の手順(8)に該当する。
As shown in FIG. 18, the hot metal after the start of the rest wind is calculated from the relationship between the reduction material ratio increase before the rest wind obtained in (A4) and the maximum value of [Si]% in the hot metal after the start of the rest wind. Estimate the maximum value of medium [Si]%.
(B3)
From the estimated maximum value of [Si] (%) in the hot metal, the slag basicity (C / S) and the estimated value of (Al 2 O 3 )% are obtained. This estimation procedure corresponds to procedure (8) in FIG.

(A5)に記載しているスラグ中の塩基度の計算方法と同様に、溶銑中[Si]%の値から、スラグの塩基度、及び(Al2O3)%を計算して推定値を求める。
(B4)
休風立ち上げ後における溶銑中[Si]%の最大値での、スラグの塩基度(CaO)%/(SiO2)%、及び(Al2O3)%が適正条件を満たすように、副原料を決定する。なお、この決定手順は、図32中の手順(9)に該当する。
Similar to the calculation method of basicity in slag described in (A5), from the value of [Si]% in hot metal, the basicity of slag and (Al 2 O 3 )% are calculated and estimated values are calculated. Ask.
(B4)
Slag basicity (CaO)% / (SiO 2 )% and (Al 2 O 3 )% at the maximum value of [Si]% in hot metal after the start of resting wind Determine raw materials. This determination procedure corresponds to the procedure (9) in FIG.

副原料の使用量を変化させて、(A5)に記載しているスラグ中の塩基度の計算方法と同様に、スラグの塩基度及び(Al2O3)%を計算する。この計算を繰り返し行い、スラグの塩基度、及び(Al2O3)%が目標の値になる、高炉1に投入する副原料の使用量を決定する。
このように、決定した還元材比増加量及び副原料を、休風前の高炉1に投入した後、休風を行い、その後、休風立ち上げを行って当該高炉1の操業を再開する。
[実施例]
以下に、本発明の高炉休風方法の実施例について、図を基に説明する。
The basic amount of slag and (Al 2 O 3 )% are calculated in the same manner as in the method for calculating the basicity in slag described in (A5) by changing the amount of auxiliary material used. By repeating this calculation, the basicity of the slag and the amount of the auxiliary material to be introduced into the blast furnace 1 at which (Al 2 O 3 )% becomes the target values are determined.
In this way, after the determined reducing material ratio increase amount and the auxiliary material are put into the blast furnace 1 before the resting wind, the resting wind is performed, and then the resting wind start-up is performed to restart the operation of the blast furnace 1.
[Example]
Below, the Example of the blast furnace resting method of this invention is described based on figures.

まず、実施条件を以下に示す。
高炉1について、内容積が4500m3で、出銑口数が4個のベル・アーマー高炉を用いた。通常操業時の操業条件については、出銑量を8000〜8500(t/D)とし、溶銑温度を1480℃〜1540℃とした。また、還元材比を500〜530(kg/tp)とした。還元材には、コークス及び微粉炭を用いた。原料には、焼結鉱、ペレット、塊鉱石を用いた。休風の条件については、休風時間を24時間〜40時間とした。
First, implementation conditions are shown below.
For the blast furnace 1, a bell armor blast furnace with an internal volume of 4500 m 3 and a number of tap holes was used. Regarding the operating conditions during normal operation, the amount of molten iron was 8000 to 8500 (t / D), and the hot metal temperature was 1480 ° C to 1540 ° C. The reducing material ratio was 500 to 530 (kg / tp). Coke and pulverized coal were used as the reducing material. As the raw material, sintered ore, pellets and lump ore were used. Regarding the resting conditions, the resting time was 24 to 40 hours.

(A1)
図19に、休風前から休風立ち上げ後にかけての溶銑温度の推移を示す。
溶銑温度は、出銑口2から排出された溶銑滓が溶銑とスラグに分離される主樋スキンマー部5で測定した。出銑開始後、約300tの溶銑が排出されたタイミングから測定を開始し、30分〜1時間おきに測定した。
(A1)
FIG. 19 shows the transition of the hot metal temperature from before the wind break to after the wind break rise.
The hot metal temperature was measured at the main skin skinmer part 5 where the hot metal discharged from the spout 2 was separated into hot metal and slag. After the start of brewing, measurement was started from the timing when about 300 tons of hot metal was discharged, and measurement was performed every 30 minutes to 1 hour.

その結果、図19に示すように、休風前の最後に測定した溶銑温度が1524℃で、休風立ち上げ後の最初に測定した溶銑温度が1367℃であったため、休風の間に低下した溶銑温度は、1524−1367=157℃と求まる。
また、休風時間が30.2時間であることから、休風前から休風立ち上げの間の溶銑温度低下の傾きは、157÷30.2=−5.2(℃/h)と求まる。
As a result, as shown in FIG. 19, the hot metal temperature measured at the end before the wind break was 1524 ° C, and the hot metal temperature measured after the start of the wind break was 1367 ° C. The molten iron temperature obtained is 1524-1367 = 157 ° C.
In addition, since the rest time is 30.2 hours, the slope of the hot metal temperature drop from before the rest to the start of the rest wind is obtained as 157 ÷ 30.2 = −5.2 (° C./h).

ところで、(A1)を実施しないことで起こる不具合について、休風前から休風立ち上げの間における炉内の溶銑温度低下の傾きを求めなければ、(A2)の休風前の還元材比増加量と休風前から休風立ち上げの間における炉内の溶銑温度低下の傾きの関係を求めることができない。
(A2)
休風前の還元材比増加量と、炉内の溶銑温度低下の傾きの過去実績を、10点以上集めて、横軸を休風前の還元材比増加量とし、縦軸を溶銑温度低下の傾きとした上で、その過去実績をプロットして関係を求めた。その求めた関係を、図20に示す。
By the way, for problems caused by not implementing (A1), if the slope of the hot metal temperature drop in the furnace between the start of the rest and the start of the rest is not calculated, the reducing material ratio increase before the rest of (A2) The relationship between the amount and the slope of the hot metal temperature drop in the furnace between the start of the rest and the start of the rest cannot be obtained.
(A2)
Collected 10 or more points of past reductions in hot metal temperature increase before the break and the slope of the hot metal temperature drop in the furnace. Then, the past results were plotted to find the relationship. The obtained relationship is shown in FIG.

図20に、最小二乗法で求めた近似直線を点線で示す。また図20に、近似直線よりも、炉内の溶銑温度低下の傾きが大きいプロットの中で、最も近似直線から離れている点を通る直線を実線で示す。
この図20中の実線を、休風前の還元材比増加量と、炉内の溶銑温度低下の傾きの関係式とした。その関係式を式(1)に示す。
In FIG. 20, an approximate straight line obtained by the least square method is shown by a dotted line. Further, in FIG. 20, a straight line that passes through a point that is farthest from the approximate straight line in a plot in which the gradient of the hot metal temperature drop in the furnace is larger than the approximate straight line is indicated by a solid line.
The solid line in FIG. 20 is a relational expression between the amount of increase in the reducing material ratio before resting and the slope of the hot metal temperature decrease in the furnace. The relational expression is shown in Expression (1).

溶銑温度低下の傾き(℃/h)=−0.0347×休風前の還元材比増加量(kg/tp)+8.1965 ・・・(1)
ところで、(A2)を実施しないことで起こる不具合について、休風前の還元材比増加量と、休風前から休風立ち上げの間における炉内の溶銑温度低下の傾きの関係を求めなければ、高炉1内に投入する休風前の還元材比増加量を決定することができない。
Slope of hot metal temperature decrease (℃ / h) = -0.0347 x Reducing material ratio increase before rest (kg / tp) + 8.1965 (1)
By the way, for the troubles caused by not implementing (A2), the relationship between the reduction material ratio increase before the break and the slope of the hot metal temperature drop in the furnace between the break and start of the break must be obtained. In addition, it is not possible to determine the amount of reduction material ratio increase before resting in the blast furnace 1.

(A3)
10回以上の休風の過去実績データついて、休風立ち上げ時の溶銑滓の排出状況が良好なデータと、不良なデータに層別した。なお、休風立ち上げ時の溶銑滓の排出状況の層別については、以下の2点を基準で行った。
・炉内に残留する溶銑滓の増加により、炉内通気性に問題が生じ、通気不良となって減風に至った例。
(A3)
About past performance data of 10 times or more of wind breaks, data was divided into good data and bad data of hot metal discharge status at the start of the wind break. In addition, about the classification of the hot metal discharge situation at the time of a rest wind start-up, it performed based on the following two points.
・ An example where the increase in hot metal remaining in the furnace caused problems in the air permeability in the furnace, resulting in poor ventilation and reduced wind.

・炉外に排出させた溶銑滓が凝固し、出銑不可能となった例。
図21に、出銑口2から出た溶銑滓の流れの概略図を示す。図21に示すように、例えば、出銑口2から排出されたスラグが、スラグ処理設備(ドライピット3、水砕設備4)に流れるまでの間に凝固する場合、又はスラグの粘性が高く出銑樋を流れない場合、出銑が継続できなくなる、すなわち出銑不可能となる。
・ Examples where the hot metal discharged outside the furnace has solidified and cannot be discharged.
In FIG. 21, the schematic of the flow of the hot metal which came out from the spout opening 2 is shown. As shown in FIG. 21, for example, when the slag discharged from the tap outlet 2 solidifies before flowing into the slag treatment facility (dry pit 3, granulation facility 4), or the slag has a high viscosity. If it does not flow, the output cannot be continued, that is, it cannot be output.

上記の2点を、休風立ち上げ時の溶銑滓の排出不良データ(不可)とし、上記の2点のような問題が生じなかったデータを、立ち上げ時の溶銑滓の排出良好データ(良)とした。
溶銑滓の排出状況を層別したデータ(排出良好データ及び排出不良データ)について、横軸を休風時間とし、縦軸を休風立ち上げの溶銑温度とした上で、過去実績をプロットして関係を求めた。その求めた関係を、図22に示す。
The above two points are the hot metal discharge failure data (impossible) at the start of resting wind, and the data that did not cause problems like the above two points are the hot metal discharge good data (good) ).
For the hot metal discharge status stratified data (good discharge data and defective discharge data), plot the past results with the horizontal axis as the rest time and the vertical axis as the hot air temperature at the start of the rest. Sought a relationship. The obtained relationship is shown in FIG.

図22より、休風立ち上げ時の溶銑温度が1360℃を下回ると、溶銑滓の排出不良となるため、休風立ち上げ時の溶銑温度の下限温度を1360℃と決定した。
ところで、(A3)を実施しないことで起こる不具合について、溶銑滓の排出不良となってしまう、休風立ち上げ時の溶銑の下限温度が分からなければ、高炉1内に投入する休風前の還元材比増加量を決定することができない。
From FIG. 22, when the hot metal temperature at the start of the rest wind falls below 1360 ° C., the hot metal discharge is poor, so the lower limit temperature of the hot metal temperature at the start of the rest wind is determined to be 1360 ° C.
By the way, about the trouble that occurs by not carrying out (A3), if the lower limit temperature of the hot metal at the start of the rest wind is not known, the reduction before the rest of the wind put into the blast furnace 1 will be caused. The amount of material ratio increase cannot be determined.

(A4)
図23に、休風前から休風立ち上げ後にかけての溶銑中[Si]%の推移を示す。なお、溶銑中[Si]%は、溶銑に含まれる[Si]の質量%濃度である。
サンプリングは、250t〜280t毎に1回実施し、X線回折で分析した。図23に示すように、溶銑中[Si]%は、休風立ち上げ時に最大値となり、以降は減少し、通常操業時の溶銑中[Si]%へと戻る。
(A4)
FIG. 23 shows the transition of [Si]% in the hot metal from before the wind break to after the wind break rise. [Si]% in the hot metal is a mass% concentration of [Si] contained in the hot metal.
Sampling was performed once every 250 to 280 t and analyzed by X-ray diffraction. As shown in FIG. 23, [Si]% during hot metal reaches its maximum value when the wind is stopped, decreases thereafter, and returns to [Si]% during hot metal operation during normal operation.

10回以上の休風の過去実績データについて、休風前の還元材比増加量と、溶銑中[Si]%の最大値の過去実績データを集め、横軸を休風前の還元材比増加量とし、縦軸を溶銑中[Si]%の最大値とした上でそれらのデータをプロットして関係を求めた。その関係を、図24に示す。
図24中の実線は、最小二乗法で求めた近似直線である。この近似直線を、休風前の還元材比増加量と、休風立ち上げ後の溶銑中[Si]%の最大値の関係式とした。その関係式を式(2)に示す。
For past performance data of 10 or more wind breaks, collect the reduction material ratio increase before the wind break and the past performance data of the maximum value of [Si]% in hot metal, and the horizontal axis shows the reduction material ratio increase before the wind break The amount was plotted, and the vertical axis was the maximum value of [Si]% in the hot metal, and these data were plotted to obtain the relationship. The relationship is shown in FIG.
The solid line in FIG. 24 is an approximate straight line obtained by the least square method. This approximate straight line was used as a relational expression between the amount of increase in the reducing material ratio before the break and the maximum value of [Si]% in the hot metal after the break. The relational expression is shown in Expression (2).

溶銑中[Si]%の最大値=0.0104×休風前の還元材比増加量(kg/tp)+0.5695 ・・・(2)
ところで、(A4)を実施しないことで起こる不具合について、休風前の還元材比増加量と、休風立ち上げ後の溶銑中[Si]%の最大値の関係を求めなければ、スラグの塩基度、(Al2O3)%の推定値を求めることができない。
(A5)
ところで、結晶化温度を求めるにあたっては、下式を用いることとする。
Maximum value of [Si]% in hot metal = 0.0104 x reducing material ratio increase before rest (kg / tp) + 0.5695 (2)
By the way, for the trouble that occurs due to not implementing (A4), if the relationship between the reduced material ratio increase before the break and the maximum value of [Si]% in the hot metal after the break is started, the base of the slag The estimated value of (Al 2 O 3 )% cannot be obtained.
(A5)
By the way, in obtaining the crystallization temperature, the following equation is used.

結晶化温度(℃)=195×(C/S)+7.1×(MgO)%+11.5×(Al2O3)%+0.9×(TiO2)%+870.1
ただし、(MgO)%=6.8%、(Al2O3)%=14.0%、(TiO2)%=1.6%とした。
上式に従い、塩基度と結晶化温度の関係を求める。その関係を図25に示す。
また、粘度を求めるにあたっては、下式を用いることとする。
粘度={1+0.007×(1500−T)}×{12.6×(C/S)2−33.1×(C/S)−0.52×(MgO)%+0.42× (Al2O3)%−0.29×(TiO2)%+21.72}
ただし、(MgO)%=6.8%、(Al2O3)%=14.0%、(TiO2)%=1.6%とした。
Crystallization temperature (℃) = 195 × (C / S) + 7.1 × (MgO)% + 11.5 × (Al 2 O 3 )% + 0.9 × (TiO 2 )% + 870.1
However, (MgO)% = 6.8%, (Al 2 O 3 )% = 14.0%, and (TiO 2 )% = 1.6%.
According to the above formula, the relationship between basicity and crystallization temperature is determined. The relationship is shown in FIG.
Moreover, when calculating | requiring a viscosity, suppose that the following formula is used.
Viscosity = {1 + 0.007 × (1500−T)} × {12.6 × (C / S) 2 −33.1 × (C / S) −0.52 × (MgO)% + 0.42 × (Al 2 O 3 )% − 0.29 × (TiO 2 )% + 21.72}
However, (MgO)% = 6.8%, (Al 2 O 3 )% = 14.0%, and (TiO 2 )% = 1.6%.

上記式に従い、塩基度と粘度の関係を求める。その関係を図26に示す。
ここで、各溶銑温度を測定したところ、溶銑とスラグを分離する主樋スキンマー部5で測定した溶銑温度と、スラグ徐冷設備であるドライピット3入口におけるスラグの温度には、30℃〜40℃の差があることを確認した。
そして、(A3)で設定した溶銑の下限温度1360℃から、スラグの温度低下40℃を差し引くと、推定されるスラグの最低温度は1320℃となる。
The relationship between basicity and viscosity is determined according to the above formula. The relationship is shown in FIG.
Here, when each hot metal temperature was measured, the hot metal temperature measured by the main skin skinmer part 5 for separating the hot metal and the slag and the temperature of the slag at the inlet of the dry pit 3 which is a slag slow cooling facility were 30 ° C. to 40 ° C. It was confirmed that there was a difference in ° C.
Then, when the slag temperature drop of 40 ° C. is subtracted from the hot metal lower limit temperature of 1360 ° C. set in (A3), the estimated minimum slag temperature is 1320 ° C.

図27に示すように、スラグの塩基度と結晶化温度の関係より、スラグの塩基度が1.22以上であり、且つスラグの温度が1320℃となった場合には、結晶化温度を下回り、急激にスラグの粘度が上昇することとなる。
そこで、スラグの塩基度は1.22未満に設定する必要がある。
また、図28に示すように、スラグの塩基度と粘度の関係より、スラグの塩基度が1.0〜1.3の範囲では、スラグの塩基度が高い方がスラグの粘度が低い。よって、スラグの粘度の観点からは、スラグの塩基度は高い方が望ましいといえる。
As shown in FIG. 27, based on the relationship between the basicity of slag and the crystallization temperature, when the basicity of slag is 1.22 or more and the slag temperature is 1320 ° C., the crystallization temperature falls below the crystallization temperature. In addition, the viscosity of the slag will increase.
Therefore, the basicity of slag must be set to less than 1.22.
Moreover, as shown in FIG. 28, from the relationship between the basicity and viscosity of slag, when the basicity of slag is in the range of 1.0 to 1.3, the higher the basicity of slag, the lower the viscosity of slag. Therefore, it can be said that it is desirable that the slag has a higher basicity from the viewpoint of the viscosity of the slag.

図29に、休風における還元材比増加量と、溶銑中[Si]%の最大値の関係を示す。
図29を参照すると、還元材比の増加に伴い、溶銑中[Si]%の最大値は上昇するが、バラつきがあることがわかる。
図29に、最小二乗法で求めた近似直線の式を実線で示す。この近似直線の式を使用して、推定した溶銑中[Si]%の推定値と、過去実績の溶銑中[Si]%の差を計算して、もっとも差が大きい例を、図29中の点線で示す。図29中の2本の点線のように、最大で±0.27程度の差があることがわかる。
FIG. 29 shows the relationship between the amount of reduction material ratio increase during resting wind and the maximum value of [Si]% in hot metal.
Referring to FIG. 29, it can be seen that the maximum value of [Si]% in the hot metal increases as the reducing material ratio increases, but there is variation.
In FIG. 29, the equation of the approximate straight line obtained by the least square method is shown by a solid line. Using this approximate straight line equation, the difference between the estimated value of estimated [Si]% in hot metal and [Si]% in hot metal of the past results is calculated. Shown with dotted lines. As can be seen from the two dotted lines in FIG. 29, there is a difference of about ± 0.27 at the maximum.

溶銑中[Si]%が変動すると、スラグ中の塩基度(C/S)が変動する。そのスラグ中の塩基度(C/S)の計算方法を以下に示す。
すべての原料の装入量(t/ch)及び、鉱石、コークス、微粉炭や副原料などの高炉1に投入する各原料の成分(質量%濃度)から、T.Fe(鉄分),SiO2,MnO,TiO2,CaO,Al2O3,MgO各成分の装入量(t/ch)を求める(表1〜3参照)。
When [Si]% changes in hot metal, the basicity (C / S) in slag changes. The calculation method of basicity (C / S) in the slag is shown below.
From the raw material charge (t / ch) and the components (mass% concentration) of each raw material to be fed into the blast furnace 1 such as ore, coke, pulverized coal and auxiliary raw materials, T.Fe (iron content), SiO 2 , MnO, TiO 2 , CaO, Al 2 O 3 and MgO are charged (t / ch) (see Tables 1 to 3).

ここで、(t/ch)とは1回あたりの装入量(t)である。また、1日に必要な鉱石やコークス等の原燃料(装入物)をおよそ80〜100(回/日)程度に分けて装入している。
上記の各成分(表4参照)のうち、CaO,Al2O3,MgOは、すべてスラグになることとなる。対して、SiO2,MnO,TiO2の各成分の一部は溶銑になり、また各成分の残りはスラグになることとなる。
Here, (t / ch) is the charging amount (t) per one time. In addition, raw fuel (charges) such as ore and coke necessary for one day is divided into about 80 to 100 (times / day).
Of the above components (see Table 4), CaO, Al 2 O 3 and MgO all become slag. On the other hand, a part of each component of SiO 2 , MnO, and TiO 2 becomes hot metal, and the rest of each component becomes slag.

装入物中のFeは、すべて溶銑になるとして、下式で溶銑中Fe(t/ch)を求める。
溶銑中Fe(t/ch)=装入物中T.Fe(t/ch)
また、溶銑中Mn量、溶銑中Ti量は、簡易的に以下のように計算する。
溶銑中Mn(t/ch)=装入MnO(t/ch)×Mn分配率(%)×55÷71
溶銑中Ti(t/ch)=装入TiO2(t/ch)×Ti分配率(%)×48÷80
ただし、Mn分配率を85%とし、Ti分配率を50%とした。
Assuming that all of the Fe in the charge becomes molten iron, the Fe (t / ch) in molten iron is obtained by the following formula.
Fe (t / ch) in hot metal = T.Fe (t / ch) in charge
Further, the amount of Mn in hot metal and the amount of Ti in hot metal are simply calculated as follows.
Mn (t / ch) in hot metal = charging MnO (t / ch) x Mn distribution rate (%) x 55 ÷ 71
Hot metal Ti (t / ch) = charged TiO 2 (t / ch) x Ti distribution rate (%) x 48 ÷ 80
However, the Mn distribution rate was 85% and the Ti distribution rate was 50%.

ところで、溶銑には、炭素が多く溶け込むが、その量は大きくは変化しない。そこで、溶銑中[C]%を4.8%の固定値とした。
また、溶銑中[Si]%の値を与え、以下に示す3つの式より方程式を解くと、溶銑中Si(t/ch)を得られる(表5〜8参照)。
溶銑成分合計(t/ch)=C(t/ch)+Fe(t/ch)+Si(t/ch)+Mn(t/ch)+Ti(t/ch)
Si(t/ch)=溶銑成分合計(t/ch)×[Si]%
C(t/ch)=溶銑成分合計(t/ch)×[C]%
各成分の装入量合計(表4参照)から、各成分の溶銑に分配される量(表5参照)を差し引いて、スラグに分配される量(表9参照)を求める。
By the way, although a lot of carbon dissolves in the hot metal, the amount does not change greatly. Therefore, [C]% in the hot metal was set to a fixed value of 4.8%.
Moreover, when the value of [Si]% in the hot metal is given and the equation is solved by the following three equations, Si (t / ch) in the hot metal can be obtained (see Tables 5 to 8).
Total hot metal components (t / ch) = C (t / ch) + Fe (t / ch) + Si (t / ch) + Mn (t / ch) + Ti (t / ch)
Si (t / ch) = Hot metal component total (t / ch) x [Si]%
C (t / ch) = Hot metal component total (t / ch) x [C]%
The amount distributed to the slag (see Table 9) is obtained by subtracting the amount distributed to the hot metal of each component (see Table 5) from the total charged amount of each component (see Table 4).

装入CaO量、装入Al2O3量、装入MgO量、スラグ中SiO2量、スラグ中MnO量、スラグ中TiO2量を合計し、計算スラグ量(表10参照)とした。
装入CaO量、装入Al2O3量、スラグ中SiO2量を、計算スラグ量で割り、スラグ中の(SiO2)%,(CaO)%,(Al2O3)%を計算した(表11参照)。
スラグの塩基度は、スラグ中の(CaO)%,(SiO2)%を用いて下式で計算する(表12参照)。
The amount of charged CaO, amount of charged Al 2 O 3, amount of charged MgO, amount of SiO 2 in slag, amount of MnO in slag, amount of TiO 2 in slag were totaled to obtain the calculated amount of slag (see Table 10).
The amount of charged CaO, amount of charged Al 2 O 3 and the amount of SiO 2 in the slag were divided by the calculated amount of slag to calculate (SiO 2 )%, (CaO)%, (Al 2 O 3 )% in the slag. (See Table 11).
The basicity of slag is calculated by the following formula using (CaO)%, (SiO 2 )% in the slag (see Table 12).

スラグの塩基度=(C/S)=(CaO)%÷(SiO2)%
上で述べたスラグ中の塩基度の計算方法に従って、溶銑中[Si]%が変化した際におけるスラグの塩基度(CaO)%/(SiO2)%の推定値の変化を、図30に示す。
図30に示すように、溶銑中[Si]%が0.27変化すると、スラグの塩基度が0.11程度変化することが推定される。
Slag basicity = (C / S) = (CaO)% ÷ (SiO 2 )%
FIG. 30 shows changes in the estimated value of slag basicity (CaO)% / (SiO 2 )% when [Si]% in hot metal changes according to the above-described calculation method of basicity in slag. .
As shown in FIG. 30, when [Si]% in hot metal changes by 0.27, it is estimated that the basicity of slag changes by about 0.11.

図31に示すように、溶銑中[Si]%の変動により、スラグ塩基度が0.11変動したとしても、上で設定したスラグの塩基度1.22未満に保てるように、スラグの塩基度の目標値を1.1と設定した。
また、CaO,SiO2,Al2O3から成るスラグの状態図から、最も凝固点が低くなるよう、(Al2O3)%の目標値を13%とした。
As shown in FIG. 31, even if the slag basicity fluctuates by 0.11 due to the variation of [Si]% in the hot metal, the target value of the slag basicity is set so that the basicity of the slag set above is kept below 1.22. Set to 1.1.
Further, from the phase diagram of slag composed of CaO, SiO 2 and Al 2 O 3 , the target value of (Al 2 O 3 )% was set to 13% so that the freezing point was lowest.

このように、(A1)〜(A5)までが、休風前の還元材比増加量及び副原料を決定するにあたっての事前準備工程である。
ところで、(A5)を実施しないことで起こる不具合について、休風立ち上時の溶銑滓の排出良好となるスラグの塩基度、(Al2O3)%の適正条件を求めなければ、副原料の添加量を決定することができない。
(B1)
まず、溶銑温度低下の傾きを求める。式(1)及び、休風時間:36時間、休風前の溶銑温度:1520℃、溶銑の下限温度:1360℃、として計算すると、
溶銑温度低下の傾き(℃/h)=−(下限温度(℃)−休風前の溶銑温度(℃))/休風時間(h)
=−(1360−1520)/36=4.44
このように得られた、溶銑温度低下の傾き=4.44を、式(1)に代入することで、休風前の還元材比増加量を求めることができる。
As described above, (A1) to (A5) are the preliminary preparation steps for determining the reducing material ratio increase amount and auxiliary materials before the break.
By the way, with regard to the troubles caused by not implementing (A5), if the basic condition of slag that makes good hot metal discharge at the start of rest time, and the proper condition of (Al 2 O 3 )% are not required, The amount added cannot be determined.
(B1)
First, the slope of the hot metal temperature drop is obtained. When calculating with equation (1) and the rest time: 36 hours, hot metal temperature before rest: 1520 ° C, lower limit temperature of hot metal: 1360 ° C,
Slope of hot metal temperature drop (° C / h) =-(minimum temperature (° C)-hot metal temperature (° C) before resting air) / resting time (h)
=-(1360-1520) /36=4.44
By substituting the slope of the hot metal temperature decrease = 4.44 obtained in this way into the equation (1), the reduction material ratio increase before the break can be obtained.

休風前の還元材比増加量(kg/tp)=(8.1965−4.44)/0.0347=108
この結果より、休風前の還元材比増加量を110(kg/tp)とした。
ところで、(B1)を実施しないことで起こる不具合について、休風前の還元材比増加量を決定しないと、休風立ち上げ後の溶銑中[Si]%を推定することができない。
(B2)
次いで、上記の(B1)で求めた、休風前の還元材比増加量=110(kg/tp)を、式(2)に代入して、休風立ち上げ後の溶銑中[Si]%の最大値を推定した。
Reducing material ratio increase before rest (kg / tp) = (8.1965−4.44) /0.0347=108
From this result, the amount of increase in the reducing agent ratio before the wind break was set to 110 (kg / tp).
By the way, regarding the trouble caused by not performing (B1), [Si]% in the hot metal after the start of the rest wind cannot be estimated unless the reducing material ratio increase amount before the rest is determined.
(B2)
Next, the reduction material ratio increase before the wind break = 110 (kg / tp) obtained in (B1) above is substituted into the formula (2), and [Si]% in the hot metal after the wind break is started. The maximum value of was estimated.

溶銑中[Si]%の最大値=0.0104×休風前の還元材比増加量(kg/tp)+0.5695
=0.0104×110+0.5695=1.7
休風立ち上げ後の溶銑中[Si]%の最大値は、1.7(%)と推定される。
ところで、(B2)を実施しないことで起こる不具合について、休風立ち上げ後の溶銑中[Si]%の最大値を推定しなければ、スラグの塩基度、及び(Al2O3)%を推定することができない。
(B3)
ここでまず、表13〜24を参照しながら、通常操業時のスラグの塩基度、及び(Al2O3
)%を推定する手順ついて、説明する。なお、表13〜24に示すデータは通常操業時の一例である。
Maximum value of [Si]% in hot metal = 0.0104 x Reducing material ratio increase before rest (kg / tp) + 0.5695
= 0.0104 × 110 + 0.5695 = 1.7
The maximum value of [Si]% in hot metal after the start of resting wind is estimated to be 1.7 (%).
By the way, for the troubles caused by not implementing (B2), if the maximum value of [Si]% in hot metal after the start of resting is not estimated, the basicity of slag and (Al 2 O 3 )% are estimated. Can not do it.
(B3)
First, referring to Tables 13 to 24, the basicity of slag during normal operation and (Al 2 O 3
) A procedure for estimating% will be described. The data shown in Tables 13 to 24 is an example during normal operation.

すべての原料の装入量(t/ch)及び、鉱石、コークス、微粉炭や副原料などの高炉1に投入する各原料の成分(質量%濃度)から、T.Fe(鉄分),SiO2,MnO,TiO2,CaO,Al2O3,MgO各成分の装入量(t/ch)を、下式より求める(表13〜15参照)。
各原料毎の各成分の装入量(t/ch)=各原料中の各成分(%)×各原料の装入量(t/ch)
From the raw material charge (t / ch) and the components (mass% concentration) of each raw material to be fed into the blast furnace 1 such as ore, coke, pulverized coal and auxiliary raw materials, T.Fe (iron content), SiO 2 , MnO, TiO 2 , CaO, Al 2 O 3 , MgO, the charging amount (t / ch) of each component is obtained from the following formula (see Tables 13 to 15).
Charge of each component for each raw material (t / ch) = Each component in each raw material (%) x Charge of each raw material (t / ch)

下記の各成分(表16参照)のうち、CaO,Al2O3,MgOは、すべてスラグになることとなる。対して、SiO2,MnO,TiO2の各成分の一部は溶銑になり、また各成分の残りはスラグになることとなる。またT.Feは、すべて溶銑になることとなる。 Of the following components (see Table 16), CaO, Al 2 O 3 and MgO all become slag. On the other hand, a part of each component of SiO 2 , MnO, and TiO 2 becomes hot metal, and the rest of each component becomes slag. All T.Fe will become hot metal.

上記した成分の装入量を用いて、下式より、各溶銑中の成分を計算する。
溶銑中Fe(t/ch)=装入物中T.Fe(t/ch)
溶銑中Mn(t/ch)=装入MnO(t/ch)×Mn分配率(%)×55÷71
溶銑中Ti(t/ch)=装入Ti(t/ch)×Ti分配率(%)×48÷(48+16×2)
ただし、Mn分配率を85%とし、Ti分配率を50%とした。
The component in each hot metal is calculated from the following equation using the amount of the above-described component.
Fe (t / ch) in hot metal = T.Fe (t / ch) in charge
Mn (t / ch) in hot metal = charging MnO (t / ch) x Mn distribution rate (%) x 55 ÷ 71
Hot metal Ti (t / ch) = charging Ti (t / ch) x Ti distribution rate (%) x 48 ÷ (48 + 16 x 2)
However, the Mn distribution rate was 85% and the Ti distribution rate was 50%.

表18に示すように、溶銑中[C]%を4.8(%)とした。また、溶銑中[Si]%は適宜、値を与えることとし、ここでは溶銑中[Si]%を0.4(%)とした例を示す。   As shown in Table 18, [C]% in the hot metal was 4.8 (%). Further, [Si]% in the hot metal is given a value as appropriate, and here, an example in which [Si]% in the hot metal is 0.4 (%) is shown.

このように、表17、表18に示す既知の成分から、下記方程式を用いて解くと、表19、表20に示すようになる。
溶銑成分合計(t/ch)=C(t/ch)+Fe(t/ch)+Si(t/ch)+Mn(t/ch)+Ti(t/ch)
すなわち、z=x+96.38+y+0.18+0.18
Si(t/ch)=溶銑成分合計(t/ch)×[Si]%
すなわち、y=z×0.4(%)
C(t/ch)=溶銑成分合計(t/ch)×[C]%
すなわち、x=z×4.8(%)
As described above, when known components shown in Tables 17 and 18 are solved using the following equations, Tables 19 and 20 are obtained.
Total hot metal components (t / ch) = C (t / ch) + Fe (t / ch) + Si (t / ch) + Mn (t / ch) + Ti (t / ch)
That is, z = x + 96.38 + y + 0.18 + 0.18
Si (t / ch) = Hot metal component total (t / ch) x [Si]%
That is, y = z x 0.4 (%)
C (t / ch) = Hot metal component total (t / ch) x [C]%
That is, x = z x 4.8 (%)

各成分の装入量合計(表16参照)から、各成分の溶銑に分配される量(表17参照)を差し引いて、スラグに分配される量(表21参照)を計算する。   The amount distributed to the slag (see Table 21) is calculated by subtracting the amount distributed to the hot metal of each component (see Table 17) from the total charged amount of each component (see Table 16).

装入CaO量、装入Al2O3量、装入MgO量、スラグ中SiO2量、スラグ中MnO量、スラグ中TiO2量を合計し、計算スラグ量(表22参照)とした。 The amount of charged CaO, amount of charged Al 2 O 3, amount of charged MgO, amount of SiO 2 in slag, amount of MnO in slag, amount of TiO 2 in slag were totaled to obtain the calculated amount of slag (see Table 22).

装入CaO量、装入Al2O3量、スラグ中SiO2量を、計算スラグ量で割り、スラグ中の(SiO2)%,(CaO)%,(Al2O3)%を計算した(表23参照)。 The amount of charged CaO, amount of charged Al 2 O 3 and the amount of SiO 2 in the slag were divided by the calculated amount of slag to calculate (SiO 2 )%, (CaO)%, (Al 2 O 3 )% in the slag. (See Table 23).

スラグの塩基度は、スラグ中の(CaO)%,(SiO2)%を用いて計算する(表24参照)。 The basicity of the slag is calculated using (CaO)%, (SiO 2 )% in the slag (see Table 24).

通常操業時においては、例示した溶銑中[Si]%=0.4%より、スラグの塩基度は1.27、(Al2O3)%は15.3%と推定される。
続いて、表25〜36を参照しながら、推定した溶銑中[Si]%の最大値における、スラグの塩基度、及び(Al2O3)%を推定する手順の比較例について、説明する。表25〜36に示すデータは、本発明の高炉休風方法と比較するために挙げた一例である。
During normal operation, the basicity of slag is estimated to be 1.27, and (Al 2 O 3 )% is estimated to be 15.3%, based on [Si]% = 0.4% in the illustrated hot metal.
Subsequently, a comparative example of the procedure for estimating the basicity of slag and (Al 2 O 3 )% in the estimated maximum value of [Si]% in molten iron will be described with reference to Tables 25 to 36. The data shown in Tables 25-36 is an example given for comparison with the blast furnace quiescent method of the present invention.

すべての原料の装入量(t/ch)及び、鉱石、コークス、微粉炭や副原料などの高炉1に投入する各原料の成分(質量%濃度)から、T.Fe(鉄分),SiO2,MnO,TiO2,CaO,Al2O3,MgO各成分の装入量(t/ch)を、下式より求める(表25〜27参照)。
各原料毎の各成分の装入量(t/ch)=各原料中の各成分(%)×各原料の装入量(t/ch)
From the raw material charge (t / ch) and the components (mass% concentration) of each raw material to be fed into the blast furnace 1 such as ore, coke, pulverized coal and auxiliary raw materials, T.Fe (iron content), SiO 2 , MnO, TiO 2 , CaO, Al 2 O 3 , MgO, the charging amount (t / ch) is obtained from the following formula (see Tables 25 to 27).
Charge of each component for each raw material (t / ch) = Each component in each raw material (%) x Charge of each raw material (t / ch)

下記の各成分(表28参照)のうち、CaO,Al2O3,MgOは、すべてスラグになることとなる。対して、SiO2,MnO,TiO2の各成分の一部は溶銑になり、また各成分の残りはスラグになることとなる。またT.Feは、すべて溶銑になることとなる。 Of the following components (see Table 28), CaO, Al 2 O 3 and MgO all become slag. On the other hand, a part of each component of SiO 2 , MnO, and TiO 2 becomes hot metal, and the rest of each component becomes slag. All T.Fe will become hot metal.

上記した成分の装入量を用いて、下式より、各溶銑中の成分を計算する。
溶銑中Fe(t/ch)=装入物中T.Fe(t/ch)
溶銑中Mn(t/ch)=装入MnO(t/ch)×Mn分配率(%)×55÷71
溶銑中Ti(t/ch)=装入Ti(t/ch)×Ti分配率(%)×48÷(48+16×2)
ただし、Mn分配率(%)を85%とし、Ti分配率(%)を50%とした。
The component in each hot metal is calculated from the following equation using the amount of the above-described component.
Fe (t / ch) in hot metal = T.Fe (t / ch) in charge
Mn (t / ch) in hot metal = charging MnO (t / ch) x Mn distribution rate (%) x 55 ÷ 71
Hot metal Ti (t / ch) = charging Ti (t / ch) x Ti distribution rate (%) x 48 ÷ (48 + 16 x 2)
However, the Mn distribution rate (%) was 85%, and the Ti distribution rate (%) was 50%.

表30に示すように、溶銑中[C]%を4.8%とした。また、溶銑中[Si]%は適宜、値を与えることとし、ここでは溶銑中[Si]%を1.7%とした例を示す。   As shown in Table 30, the [C]% in the hot metal was 4.8%. Also, [Si]% in the hot metal is given a value as appropriate, and here, an example in which [Si]% in the hot metal is 1.7% is shown.

このように、表29、表30に示す既知の成分から、下記方程式を用いて解くと、表31、表32に示すようになる。
溶銑成分合計(t/ch)=C(t/ch)+Fe(t/ch)+Si(t/ch)+Mn(t/ch)+Ti(t/ch)
すなわち、z=x+78.21+y+0.14+0.16
Si(t/ch)=溶銑成分合計(t/ch)×[Si]%
すなわち、y=z×1.7(%)
C(t/ch)=溶銑成分合計(t/ch)×[C]%
すなわち、x=z×4.8(%)
As described above, when the known components shown in Tables 29 and 30 are solved using the following equations, Tables 31 and 32 are obtained.
Total hot metal components (t / ch) = C (t / ch) + Fe (t / ch) + Si (t / ch) + Mn (t / ch) + Ti (t / ch)
That is, z = x + 78.21 + y + 0.14 + 0.16
Si (t / ch) = Hot metal component total (t / ch) x [Si]%
That is, y = z x 1.7 (%)
C (t / ch) = Hot metal component total (t / ch) x [C]%
That is, x = z x 4.8 (%)

各成分の装入量合計(表28参照)から、各成分の溶銑に分配される量(表29参照)を差し引いて、スラグに分配される量(表33参照)を計算する。   The amount distributed to the slag (see Table 33) is calculated by subtracting the amount distributed to the hot metal of each component (see Table 29) from the total charged amount of each component (see Table 28).

装入CaO量、装入Al2O3量、装入MgO量、スラグ中SiO2量、スラグ中MnO量、スラグ中TiO2量を合計し、計算スラグ量(表34参照)とした。 The amount of charged CaO, amount of charged Al 2 O 3, amount of charged MgO, amount of SiO 2 in slag, amount of MnO in slag, amount of TiO 2 in slag were totaled to obtain a calculated slag amount (see Table 34).

装入CaO量、装入Al2O3量、スラグ中SiO2量を、計算スラグ量で割り、スラグ中の(SiO2)%,(CaO)%,(Al2O3)%を計算した(表35参照)。 The amount of charged CaO, amount of charged Al 2 O 3 and the amount of SiO 2 in the slag were divided by the calculated amount of slag to calculate (SiO 2 )%, (CaO)%, (Al 2 O 3 )% in the slag. (See Table 35).

スラグの塩基度は、スラグ中の(CaO)%,(SiO2)%を用いて計算する(表36参照)。 The basicity of the slag is calculated using (CaO)%, (SiO 2 )% in the slag (see Table 36).

以上、例示した溶銑中[Si]%の最大値=1.7%より、スラグの塩基度は1.69、(Al2O3)%は17.7%と推定される。
このように、スラグの塩基度は1.22を超え、(Al2O3)%は13%を超えているので、溶銑・スラグの流動性が低下することとなり、炉内から溶銑滓を排出することが困難(出銑不能)となる虞がある。
As described above, based on the maximum value of [Si]% in the hot metal illustrated as 1.7%, it is estimated that the basicity of slag is 1.69 and (Al 2 O 3 )% is 17.7%.
In this way, the basicity of slag exceeds 1.22, and (Al 2 O 3 )% exceeds 13%, so the hot metal and slag fluidity will decrease, and hot metal will be discharged from the furnace. May become difficult (cannot be found).

ところで、(B3)を実施しないことで起こる不具合について、溶銑中[Si]%の最大値から、スラグの塩基度、及び(Al2O3)%の推定値を求めなければ、適正条件を満たすような副原料の添加量を決定することができない。
(B4)
ここで、表37〜50を参照しながら、推定した溶銑中[Si]%の最大値における、スラグの塩基度、及び(Al2O3)%を推定する手順ついて、説明する。なお、表37〜50に示すデータは本実施例を示す一例である。
By the way, with regard to the troubles caused by not implementing (B3), the basic condition of slag and the estimated value of (Al 2 O 3 )% are not obtained from the maximum value of [Si]% in the hot metal, satisfying the appropriate condition The addition amount of such auxiliary materials cannot be determined.
(B4)
Here, a procedure for estimating the basicity of slag and (Al 2 O 3 )% at the maximum value of [Si]% in the molten iron will be described with reference to Tables 37 to 50. The data shown in Tables 37 to 50 is an example showing this embodiment.

本実施例においては、副原料使用量を変化させながら、(A5)に示す計算方法でスラグ成分を計算し、スラグの塩基度が目標値である1.1、(Al2O3)%は目標値である13%となるように、石灰を3.0(t/ch)から7.9(t/ch)に、硅石を0から5.9(t/ch)に増加させることとした(表37参照)。
すべての原料の装入量(t/ch)及び、鉱石、コークス、微粉炭や副原料などの高炉1に投入する各原料の成分(質量%濃度)から、T.Fe(鉄分),SiO2,MnO,TiO2,CaO,Al2O3,MgO各成分の装入量(t/ch)を、下式より求める(表37〜39参照)。
In this example, while changing the amount of auxiliary material used, calculate the slag component by the calculation method shown in (A5), the basicity of the slag is 1.1, (Al 2 O 3 )% is the target value The lime was increased from 3.0 (t / ch) to 7.9 (t / ch) and the meteorite was increased from 0 to 5.9 (t / ch) (see Table 37).
From the raw material charge (t / ch) and the components (mass% concentration) of each raw material to be fed into the blast furnace 1 such as ore, coke, pulverized coal and auxiliary raw materials, T.Fe (iron content), SiO 2 , MnO, TiO 2 , CaO, Al 2 O 3 , and MgO are charged in amounts (t / ch) from the following formulas (see Tables 37 to 39).

各原料毎の各成分の装入量(t/ch)=各原料中の各成分(%)×各原料の装入量(t/ch)   Charge of each component for each raw material (t / ch) = Each component in each raw material (%) x Charge of each raw material (t / ch)

下記の各成分(表40参照)のうち、CaO,Al2O3,MgOは、すべてスラグになることとなる。対して、SiO2,MnO,TiO2の各成分の一部は溶銑になり、また各成分の残りはスラグになることとなる。またT.Feは、すべて溶銑になることとなる。 Of the following components (see Table 40), CaO, Al 2 O 3 and MgO all become slag. On the other hand, a part of each component of SiO 2 , MnO, and TiO 2 becomes hot metal, and the rest of each component becomes slag. All T.Fe will become hot metal.

上記、成分の装入量を用いて、下式より、各溶銑中の成分を計算する。
溶銑中Fe(t/ch)=装入物中T.Fe(t/ch)
溶銑中Mn(t/ch)-=装入MnO(t/ch)×Mn分配率(%)×55÷71
溶銑中Ti(t/ch)=装入Ti(t/ch)×Ti分配率(%)×48÷(48+16×2)
ただし、Mn分配率(%)を85%とし、Ti分配率(%)を50%とした。
The component in each hot metal is calculated from the following equation using the amount of component charge.
Fe (t / ch) in hot metal = T.Fe (t / ch) in charge
Mn (t / ch) in hot metal-= charging MnO (t / ch) x Mn distribution rate (%) x 55/71
Hot metal Ti (t / ch) = charging Ti (t / ch) x Ti distribution rate (%) x 48 ÷ (48 + 16 x 2)
However, the Mn distribution rate (%) was 85%, and the Ti distribution rate (%) was 50%.

表42に示すように、溶銑中[C]%は4.8%とした。また、溶銑中[Si]%は、適宜、値を与えることとし、ここでは、溶銑中[Si]%を1.7%とした例を示す。   As shown in Table 42, [C]% in the hot metal was 4.8%. Further, [Si]% in the hot metal is given a value as appropriate, and here, an example in which [Si]% in the hot metal is 1.7% is shown.

このように、表41、表42に示す既知の成分から、下記方程式を用いて解くと、表43、表44に示すようになる。
溶銑成分合計(t/ch)=C(t/ch)+Fe(t/ch)+Si(t/ch)+Mn(t/ch)+Ti(t/ch)
すなわち、z=x+78.29+y+0.14+0.16
Si(t/ch)=溶銑成分合計(t/ch)×[Si]%
すなわち、y=z×1.7(%)
C(t/ch)=溶銑成分合計(t/ch)×[C]%
すなわち、x=z×4.8(%)
Thus, when the known components shown in Table 41 and Table 42 are solved using the following equations, Table 43 and Table 44 are obtained.
Total hot metal components (t / ch) = C (t / ch) + Fe (t / ch) + Si (t / ch) + Mn (t / ch) + Ti (t / ch)
That is, z = x + 78.29 + y + 0.14 + 0.16
Si (t / ch) = Hot metal component total (t / ch) x [Si]%
That is, y = z x 1.7 (%)
C (t / ch) = Hot metal component total (t / ch) x [C]%
That is, x = z x 4.8 (%)

各成分の装入量合計(表40参照)から、各成分の溶銑に分配される量(表41参照)を差し引いて、スラグに分配される量(表45参照)を計算する。   The amount distributed to the slag (see Table 45) is calculated by subtracting the amount distributed to the hot metal of each component (see Table 41) from the total charged amount of each component (see Table 40).

装入CaO量、装入Al2O3量、装入MgO量、スラグ中SiO2量、スラグ中MnO量、スラグ中TiO2量を合計し、計算スラグ量(表46参照)とした。 The amount of charged CaO, amount of charged Al 2 O 3, amount of charged MgO, amount of SiO 2 in slag, amount of MnO in slag, amount of TiO 2 in slag were totaled to obtain a calculated slag amount (see Table 46).

装入CaO量、装入Al2O3量、スラグ中SiO2量を、計算スラグ量で割り、スラグ中の(SiO2)%,(CaO)%,(Al2O3)%を計算した(表47参照)。 The amount of charged CaO, amount of charged Al 2 O 3 and the amount of SiO 2 in the slag were divided by the calculated amount of slag to calculate (SiO 2 )%, (CaO)%, (Al 2 O 3 )% in the slag. (See Table 47).

スラグの塩基度は、スラグ中の(CaO)%,(SiO2)%を用いて計算する(表48参照)。 The basicity of the slag is calculated using (CaO)%, (SiO 2 )% in the slag (see Table 48).

例示した溶銑中[Si]%の最大値=1.7%より、スラグの塩基度は1.1、(Al2O3)%は13.0%と推定される。
以上の結果より、炉内からの溶銑滓の排出が悪化することなく、高炉1の休風立ち上げを行うことができた。
ところで、(B4)を実施しないことで起こる不具合について、副原料を添加し、適正条件を満たすようなスラグ塩基度、(Al2O3)%にしなければ、スラグの流動性が低下してしまう。このように、スラグの流動性が低下すると、炉内からの溶銑滓排出が困難となり、出銑不能などの大きなトラブルに至ってしまう虞がある。
From the exemplified maximum value of [Si]% in the hot metal = 1.7%, it is estimated that the basicity of slag is 1.1 and (Al 2 O 3 )% is 13.0%.
From the above results, the blast furnace 1 was able to start up without taking off the hot metal discharge from the furnace.
By the way, about the trouble that occurs by not carrying out (B4), the auxiliary material is added and the slag basicity that satisfies the proper condition is not set to (Al 2 O 3 )%, the slag fluidity will decrease. . Thus, when the fluidity of the slag is lowered, it becomes difficult to discharge the hot metal from the furnace, which may lead to a large trouble such as inability to discharge.

表49、50に、本発明にかかる高炉休風方法の他の実施例の結果について示す。
表49、50に示すように、他の実施条件における休風についても、本発明の手法を実施することで、溶銑滓の排出を悪化させることなく、休風を立ち上げることができた。
Tables 49 and 50 show the results of other examples of the blast furnace resting method according to the present invention.
As shown in Tables 49 and 50, with regard to the resting wind under other implementation conditions, the resting wind could be started up without deteriorating the hot metal discharge by implementing the method of the present invention.

以上述べた本発明によれば、図32の手順(2)に示すように、休風前の還元材比増加量と、溶銑温度低下の傾きとの関係を求め、図32の手順(3)に示すように、溶銑の下限温度を決めることで、休風の準備段階で、休風時間に応じた還元材比増加量を決めることができる。
また、図32の手順(3)に示すように、休風立ち上げの溶銑滓の排出を良好、不良に層別することで、目標とする溶銑の下限温度を決めることができる。
According to the present invention described above, as shown in the procedure (2) in FIG. 32, the relationship between the reducing material ratio increase before the wind break and the slope of the hot metal temperature decrease is obtained, and the procedure (3) in FIG. As shown in FIG. 5, by determining the lower limit temperature of the hot metal, it is possible to determine the amount of reduction material ratio increase according to the rest time in the rest stage.
Further, as shown in the procedure (3) of FIG. 32, the target lower limit temperature of the hot metal can be determined by stratifying the hot metal discharge at the start of the rest wind as good and bad.

また、図32の手順(4)に示すように、休風前の還元材比増加量と、休風立ち上げの溶銑中[Si]%の最大値との関係を求めることで、休風前に溶銑中[Si]%の最大値を予測することができ、予めスラグの成分調整をすることができる。
本発明を実施することで、高炉1の休風(休止)、休風立ち上げ(稼働再開)に関して、トラブル無く、且つ円滑に立ち上げることができるので、休風立ち上げでの溶銑滓の排出不良に起因する炉内通気性の悪化や、それに伴う送風量の低減をさせることなく、通常操業へ移行することができる。
In addition, as shown in the procedure (4) of FIG. 32, by calculating the relationship between the amount of reduction material ratio increase before the wind break and the maximum value of [Si]% in the hot metal at the start of the wind break, In addition, the maximum value of [Si]% in the hot metal can be predicted, and the slag component can be adjusted in advance.
By implementing the present invention, it is possible to smoothly and smoothly start up the blast furnace 1 with respect to the resting (resting) and the resting (starting operation). It is possible to shift to normal operation without deteriorating the in-furnace air permeability caused by the defect and reducing the air flow accompanying it.

なお、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する領域を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な事項を採用している。   In the embodiment disclosed this time, matters not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, etc. of components deviate from the areas normally practiced by those skilled in the art. However, matters that can be easily assumed by those skilled in the art are employed.

1 高炉
2 出銑口
3 ドライピット
4 水砕設備
5 主樋スキンマー部
1 Blast Furnace 2 Outlet 3 Dry Pit 4 Granulation Facility 5 Main Skinner

Claims (1)

休風前の溶銑温度と、前記休風立ち上げ後の溶銑温度と、休風時間より、前記休風前から休風立ち上げの間における溶銑温度低下の傾きを予め求めておき、
前記休風前における還元材比増加量と、求められた前記休風前から前記休風立ち上げの間における溶銑温度低下の傾きとの関係を予め求めておき、
前記休風立ち上げにおける溶銑滓の排出状況を、当該溶銑滓の排出良好データと、当該溶銑滓の排出不良データとに層別し、層別された前記溶銑滓の排出データより、前記休風立ち上げにおける前記溶銑滓の排出状況が、良好となる前記溶銑の下限温度を予め求めておき、
前記休風前における還元材比増加量と、前記休風立ち上げ後における前記溶銑中の[Si](質量%濃度)の最大値との関係を予め求めておき、
前記休風立ち上げにおいて前記溶銑滓の排出状況が良好となるスラグの塩基度(CaO(質量%濃度)/SiO2(質量%濃度))、及びスラグ中(Al2O3)(質量%濃度)の適正条件を予め求めておき、
その上で、
前記還元材比増加量と前記溶銑温度低下の傾きとの関係と、前記休風時間と、前記休風前の溶銑温度とから、休風立ち上げ時における溶銑温度が、予め求めた前記溶銑の下限温度を下回らないように、前記還元材比増加量を決定し、
前記休風立ち上げ時における溶銑温度が前記溶銑の下限温度を下回らないように決定した前記還元材比増加量から、前記休風立ち上げ後における前記溶銑中の[Si](質量%濃度)の最大値を推定し、
推定した前記溶銑中の[Si](質量%濃度)の最大値から、前記スラグの塩基度(CaO(質量%濃度)/SiO2(質量%濃度))、及びスラグ中(Al2O3)(質量%濃度)の推定値を求め、
前記休風立ち上げ後における前記溶銑中の[Si](質量%濃度)の最大値での、前記スラグの塩基度(CaO(質量%濃度)/SiO2(質量%濃度))、及びスラグ中(Al2O3)(質量%濃度)が前記適正条件を満たすように、高炉に投入する副原料を決定し、
決定した前記還元材比増加量及び前記副原料を、前記休風前の高炉に投入した後、前記休風を行い、その後、前記休風立ち上げを行って当該高炉の操業を再開する
ことを特徴とする高炉休風方法。
From the hot metal temperature before resting time, the hot metal temperature after the start of the resting wind, and the resting time, the slope of the hot metal temperature decrease during the resting wind start from before the resting time is obtained in advance,
Obtaining in advance the relationship between the reduced material ratio increase amount before the resting wind and the slope of the hot metal temperature decrease during the resting wind start-up from the determined resting air,
The discharge condition of put that soluble Zukukasu the deactivation air launch, the discharge good data of the hot metal debris to stratify in the discharge failure data of the hot metal debris, from the discharge data of the molten iron slag which is stratified, Obtaining the lower limit temperature of the hot metal in which the hot metal discharge state at the start of the rest wind is favorable,
Preliminarily determining the relationship between the amount of reduction material ratio increase before the pause and the maximum value of [Si] (mass% concentration) in the hot metal after the start of the pause,
Basicity Luz lug Do discharge conditions favorable of the molten iron slag in said holiday wind raising (CaO (wt% concentration) / SiO 2 (wt% concentration)), and slag (Al 2 O 3) (mass (Concentration) is determined in advance,
Moreover,
From the relationship between the reducing material ratio increase amount and the slope of the hot metal temperature decrease, the hot air time and the hot metal temperature before the hot air breakage, the hot metal temperature at the start of the hot air breakage is determined in advance. Determine the reducing material ratio increase amount so as not to fall below the lower limit temperature,
From the amount of reduction material ratio increase determined so that the hot metal temperature at the start of the rest wind does not fall below the lower limit temperature of the hot metal, [Si] (mass% concentration) in the hot metal after the start of the rest wind Estimate the maximum value,
From the estimated maximum value of [Si] (mass% concentration) in the hot metal, the basicity of the slag (CaO (mass% concentration) / SiO 2 (mass% concentration)), and in the slag (Al 2 O 3 ) Obtain an estimate of (mass% concentration)
Basicity of the slag (CaO (mass% concentration) / SiO 2 (mass% concentration)) at the maximum value of [Si] (mass% concentration) in the hot metal after the start of the rest wind, and in the slag In order to satisfy the above-mentioned proper condition (Al 2 O 3 ) (mass% concentration), the auxiliary material to be charged into the blast furnace is determined
After the determined reducing material ratio increase amount and the auxiliary material are put into the blast furnace before the resting air, the resting air is performed, and then the resting air is started up to restart the operation of the blast furnace. Characterized blast furnace air suspension method.
JP2016086311A 2016-04-22 2016-04-22 Blast furnace resting method Active JP6602254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016086311A JP6602254B2 (en) 2016-04-22 2016-04-22 Blast furnace resting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016086311A JP6602254B2 (en) 2016-04-22 2016-04-22 Blast furnace resting method

Publications (2)

Publication Number Publication Date
JP2017193771A JP2017193771A (en) 2017-10-26
JP6602254B2 true JP6602254B2 (en) 2019-11-06

Family

ID=60154738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016086311A Active JP6602254B2 (en) 2016-04-22 2016-04-22 Blast furnace resting method

Country Status (1)

Country Link
JP (1) JP6602254B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230175085A1 (en) * 2020-05-15 2023-06-08 Jfe Steel Corporation Blast furnace operation method
WO2021230027A1 (en) * 2020-05-15 2021-11-18 Jfeスチール株式会社 Blast furnace operation method
CN115433792B (en) * 2022-09-30 2023-06-27 中冶赛迪信息技术(重庆)有限公司 Blast furnace damping down method and system

Also Published As

Publication number Publication date
JP2017193771A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6602254B2 (en) Blast furnace resting method
CN108642220A (en) A method of discharge blast furnace harmful element simultaneously clears up blast furnace design
JP4926790B2 (en) Blast furnace operation method
CN106319115A (en) Method for quick repair of blast furnace hearth local damage
JP2007270190A (en) Operation method of blast furnace after having lowered stock level and stopped blasting
CN104313212A (en) Molten iron heat preservation agent, preparation method of molten iron heat preservation agent and method for preserving temperature of molten iron
Kurunov et al. Analysis of the behavior of alkalis in a blast furnace
JP3832451B2 (en) Blast furnace operation method
JP5862470B2 (en) Blast furnace resting method
JP3465471B2 (en) Blast furnace operation method
JP3879539B2 (en) Blast furnace operation method
JP6743621B2 (en) Blast furnace operation method
Semenov et al. Development of stabilization measures aimed at removing zinc with smelting products and accumulating titanium in the hearth of a blast furnace
JP3171066B2 (en) Blast furnace operation method
JP2000273510A (en) Operation of blast furnace at repairing of inner wall of blast furnace
KR100435491B1 (en) Operating method for removing scabs in the lower part of the blast furnace
CN114774600A (en) Process method for centralized alkali discharge of blast furnace
KR101007401B1 (en) Method for accelerating slag coating on inner stave blast furnace wall
JPH09227911A (en) Operation of blast furnace
KR101525190B1 (en) METHOD FOR REMOVING EXTRANEOUS MATTER IN IN GAS DUCT OF melting FURNACE
CN104792189A (en) Method for controlling slag buildup of transition section of copper smelting waste heat boiler flue
JP2003013122A (en) Method for operating blast furnace
JP3017009B2 (en) Blast furnace operation method
JP3617464B2 (en) Blast furnace operation method
CN115637302A (en) Blast furnace smelting method of vanadium titano-magnetite suitable for high zinc, high lead and high alkali conditions

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R150 Certificate of patent or registration of utility model

Ref document number: 6602254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150