JP6601237B2 - 試験装置、ネットワークシステム、及び試験方法 - Google Patents

試験装置、ネットワークシステム、及び試験方法 Download PDF

Info

Publication number
JP6601237B2
JP6601237B2 JP2016013818A JP2016013818A JP6601237B2 JP 6601237 B2 JP6601237 B2 JP 6601237B2 JP 2016013818 A JP2016013818 A JP 2016013818A JP 2016013818 A JP2016013818 A JP 2016013818A JP 6601237 B2 JP6601237 B2 JP 6601237B2
Authority
JP
Japan
Prior art keywords
test
network
quality
traffic
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016013818A
Other languages
English (en)
Other versions
JP2017135563A (ja
Inventor
慎也 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016013818A priority Critical patent/JP6601237B2/ja
Priority to US15/361,915 priority patent/US20170214598A1/en
Publication of JP2017135563A publication Critical patent/JP2017135563A/ja
Application granted granted Critical
Publication of JP6601237B2 publication Critical patent/JP6601237B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/24Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using dedicated network management hardware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/30Decision processes by autonomous network management units using voting and bidding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • H04L67/1034Reaction to server failures by a load balancer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/20Arrangements for monitoring or testing data switching networks the monitoring system or the monitored elements being virtualised, abstracted or software-defined entities, e.g. SDN or NFV

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

本件は、試験装置、ネットワークシステム、及び試験方法に関する。
例えばサーバ仮想化技術やネットワーク仮想化技術の普及に伴い、ネットワークが複雑化している。サーバ仮想化技術は、1台のサーバに複数台のコンピュータを仮想的に形成し、各コンピュータに個別のOS(Operating System)やアプリケーションを実装するものである。また、ネットワーク仮想化技術は、各種のネットワーク機能を、アプリケーションを用いてサーバなどに仮想的に形成するものである。
さらに、例えばOSS(Open Source Software)の利用や新旧のシステムの連携などが必要となる場合、ネットワークはいっそう複雑化する。ネットワークが複雑化すると、潜在的な問題がネットワークの運用中に発生し、そのネットワークで提供中の通信サービスに影響を与えるおそれがある。なお、これは、上記のような仮想マシン(VM: Virtual Machine)に限らず、物理的なサーバや伝送装置などの物理的な通信装置についても同様である。
これに対し、運用中のネットワークに対し、例えば試験用トラフィックの入力や疑似的な障害の発生などの自動試験を実行するソフトウェアが研究開発されている。このようなソフトウェアとしては、例えばNetflix(登録商標)社が中心となって開発を進める「Chaos Monkey」が挙げられる。「Chaos Monkey」によると、登録されたクラウド上の仮想マシン群から試験対象の仮想マシンを無作為に選択し、その仮想マシンの停止などを強制的に実行して、障害からの復旧性能を試験することができる。
なお、試験に関し、例えば特許文献1には、複数のCPU(Central Processing Unit)の故障診断を行う点が記載されている。
国際公開2011/141992号
しかし、運用中のネットワークに対し試験を実行した場合、そのネットワークで提供中の通信サービスの品質への影響が懸念される。例えば、運用中のネットワーク内に、仮想ロードバランサにより負荷分散された3台の仮想ファイアウォールが存在する場合、1台の仮想ファイアウォール疑似的に障害を発生させる試験を行うと、疑似障害によって2台の仮想ファイアウォールの縮退運用となり、全体のトラフィック処理性能が3分の2に低下することによりスループットが低下するため、通信サービスの品質が低下する。
また、上記の3台の仮想ファイアウォールが全体で最大のトラフィック処理性能の90%でトラフィックを処理している場合、そのトラフィック量の10%以上の試験用トラフィックを入力すると、全体のトラフィック量が3台分のトラフィック処理性能を超える。このため、3台の仮想ファイアウォールではトラフィックを処理できなくなり、トラフィックの廃棄や遅延が発生するため、通信サービスの品質が低下する。
そこで本件は上記の課題に鑑みてなされたものであり、通信サービスの品質に対する運用中のネットワークの試験の影響を低減させた試験装置、ネットワークシステム、及び試験方法を提供することを目的とする。
本明細書に記載の試験装置は、運用中のネットワークに障害を発生させる試験を実行した場合の前記ネットワークによる通信サービスの品質を予測する予測部と、前記予測部が予測した品質に基づき前記試験の実行の可否を判定する判定部と、前記判定部の判定結果に従い前記ネットワークに対し前記試験を実行する実行部とを有し、前記ネットワークは、トラフィックをそれぞれ処理する物理的または仮想的な複数の通信装置が属する複数段のグループを含み、前記複数段のグループは、それぞれ、前記複数の通信装置により前記トラフィックを順次に処理し、前記予測部は、前記複数段のグループのうち、互いに隣接する一組のグループごとに前記複数の通信装置の接続に関する冗長構成の形態を特定し、前記冗長構成の形態に従って、前記障害が発生する通信装置を除き、前記複数段のグループの初段から最終段までのそれぞれの前記複数の通信装置を経由する経路を算出し、前記複数の通信装置の各々の転送可能な前記トラフィックの最大帯域に基づき、前記経路ごとに転送可能な前記トラフィックの帯域の合計を前記通信サービスの品質として算出する
本明細書に記載のネットワークシステムは、トラフィックを処理する物理的または仮想的な複数の通信装置が属する複数段のグループを含むネットワークと、前記ネットワークに対し試験を実行する試験装置とを有し、前記複数段のグループは、前記複数の通信装置により前記トラフィックを順次に処理し、前記試験装置は、運用中の前記ネットワークに障害を発生させる試験を実行した場合の前記ネットワークによる通信サービスの品質を予測する予測部と、前記予測部が予測した品質に基づき前記試験の実行の可否を判定する判定部と、前記判定部の判定結果に従い前記ネットワークに対し前記試験を実行する実行部とを有し、前記予測部は、前記複数段のグループのうち、互いに隣接する一組のグループごとに前記複数の通信装置の接続に関する冗長構成の形態を特定し、前記冗長構成の形態に従って、前記障害が発生する通信装置を除き、前記複数段のグループの初段から最終段までのそれぞれの前記複数の通信装置を経由する経路を算出し、前記複数の通信装置の各々の転送可能な前記トラフィックの最大帯域に基づき、前記経路ごとに転送可能な前記トラフィックの帯域の合計を前記通信サービスの品質として算出する
本明細書に記載の試験方法は、運用中のネットワークに障害を発生させる試験を実行した場合の前記ネットワークによる通信サービスの品質を予測し、該予測した品質に基づき前記試験の実行の可否を判定し、該判定結果に従い前記ネットワークに対し前記試験を実行し、前記ネットワークは、トラフィックをそれぞれ処理する物理的または仮想的な複数の通信装置が属する複数段のグループを含み、前記複数段のグループは、それぞれ、前記複数の通信装置により前記トラフィックを順次に処理し、前記通信サービスの品質の予測において、前記複数段のグループのうち、互いに隣接する一組のグループごとに前記複数の通信装置の接続に関する冗長構成の形態を特定し、前記冗長構成の形態に従って、前記障害が発生する通信装置を除き、前記複数段のグループの初段から最終段までのそれぞれの前記複数の通信装置を経由する経路を算出し、前記複数の通信装置の各々の転送可能な前記トラフィックの最大帯域に基づき、前記経路ごとに転送可能な前記トラフィックの帯域の合計を前記通信サービスの品質として算出する方法である。
通信サービスの品質に対する運用中のネットワークの試験の影響を低減することができる。
ネットワークシステムの一例を示す構成図である。 試験実行サーバの一例を示す構成図である。 冗長構成定義情報の一例を示す図である。 試験実行サーバの処理の一例を示すフローチャートである。 サービス品質の予測処理の一例を示すフローチャートである。 ネットワーク機能部の構成の一例を示す図である。 経路算出用のネットワーク機能部のトポロジーの一例を示す図である。 障害のネットワーク機能部を削除した場合のトポロジーの一例を示す図である。 経路ごとの転送可能なトラフィックの帯域の算出手法を示す図である(その1)。 経路ごとの転送可能なトラフィックの帯域の算出手法を示す図である(その2)。 経路ごとの転送可能なトラフィックの帯域の算出手法を示す図である(その3)。 経路ごとの転送可能なトラフィックの帯域の算出手法を示す図である(その4)。 試験実行サーバの処理の他例を示すフローチャートである。 サービス品質の予測処理の他例を示すフローチャートである。 ネットワーク機能部のグループの伝送可能なトラフィックの帯域の算出手法の一例を示す図である。
図1は、ネットワークシステムの一例を示す構成図である。ネットワークシステムは、試験装置の一例である試験実行サーバ1と、ネットワーク管理サーバ2と、ネットワーク3が仮想的に形成された物理サーバ4とを有する。ネットワーク3には、互いに接続された各種のネットワーク機能部(「NW機能」参照)A1,B1〜B3,C1〜C4,D1〜D3,E1,E2が接続されている。なお、ネットワーク3は、1台の物理サーバ4でなく、複数台の物理サーバ4に分かれて形成されてもよい。
物理サーバ4は、所定のアプリケーションを実行することにより、例えば仮想マシンとしてNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2を構成する。すなわち、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2は仮想的な通信装置の一例である。なお、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2は、物理的な通信装置であってもよい。
NW機能部B1〜B3,C1〜C4,D1〜D3,E1,E2は、グループB〜Eに分かれている。グループBにはNW機能部B1〜B3が属し、グループCにはNW機能部C1〜C4が属し、グループDにはNW機能部D1〜D3が属し、グループEにはNW機能部E1,E2が属する。
通信のトラフィックTrは、NW機能部A1、グループB、グループC、グループD、及びグループDを、この順に通って転送される(ネットワーク3内の矢印参照)。NW機能部B1〜B3,C1〜C4,D1〜D3,E1,E2は、入力されたトラフィックTrに対し、グループB〜Eごとに、例えばファイアウォール、プロキシーサーバ、及びロードバランサなどの機能を実行する。なお、NW機能部A1も同様に所定の機能を実行する。
各グループB〜Eの間において、NW機能部B1〜B3,C1〜C4,D1〜D3,E1,E2は個別の冗長構成の形態(「タイプ」参照)で動作する。なお、冗長構成のタイプについては後述する。
ネットワーク管理サーバ2はネットワーク3を管理する。ネットワーク管理サーバ2は、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の接続構成、冗長構成、トラフィックTrの経路、トラフィックTrの処理性能、及びリソースの管理などを行う。
試験実行サーバ1は、運用中のネットワーク3に対し所定の試験を実行する。これにより、ネットワーク3に存在する潜在的な問題を検出して解決する。しかし、運用中のネットワーク3に対し試験を実行した場合、そのネットワーク3で提供中の通信サービスの品質(以下、「サービス品質」と表記)への影響が懸念される。
そこで、試験実行サーバ1は、運用中のネットワーク3に対し試験を実行した場合の通信サービスの品質を予測し、予測した品質に基づき試験の実行の可否を判定することで、ネットワーク3の試験による通信サービスの品質に対する影響を低減する。つまり、試験実行サーバ1は、試験の実行に先立ち、試験の実行がネットワーク3に与える影響を予測し、その影響が許容範囲内であると判定した場合に試験を実行する。このため、ネットワーク3のトラフィックTrの処理性能に余力があるときだけ試験が実行される。
ネットワーク3に対する試験としては、例えば、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2に疑似的な障害を発生させるもの、及び試験用のトラフィックを入力するものが挙げられる。試験実行サーバ1は、試験の実行前に、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2のトラフィックTrの処理量や負荷(CPU使用率など)を計測し、または予備のリソースの使用可否などを確認する。
そして、試験実行サーバ1は、試験を実行した場合のネットワーク3の動作を想定し、事前に確認した状態における試験実行時のサービス品質を予測する。試験実行サーバ1は、予測にあたり、ネットワーク管理サーバ2からネットワーク3の構成や性能に関する情報を取得する。
試験実行サーバ1は、予測したサービス品質と試験実行前のサービス品質の差分が許容範囲内である場合、または予測したサービス品質が、要求されるサービス品質(SLA: Service level Agreement)を満たした場合、試験を実行する。以下に、試験実行サーバ1の動作を、SLAを用いた場合の例を挙げて説明する。
以下の例において、NW機能部A1が、NW機能部B1〜B3に対しトラフィックTrの負荷分散処理を行う仮想的なロードバランサであり、NW機能部B1〜B3が、ネットワーク攻撃を防御する仮想的なファイアウォールであると仮定する。
まず、NW機能部B1〜B3に障害を疑似的に発生させる試験の例を挙げる。試験実行サーバ1は、試験実行前に、NW機能部B1〜B3のトラフィック処理の負荷が最大値の66(%)であることを確認する。なお、NW機能部B1〜B3のトラフィック処理性能は同一であるものとする。
試験実行サーバ1は、NW機能部B1〜B3の中の1台に障害を疑似的に発生させた場合、NW機能部A1の負荷分散処理により、残りの2台のトラフィック処理の負荷は最大値の99(%)(=66+66/2)となることを予測する。このため、試験実行サーバ1は、NW機能部B1〜B3の処理の負荷が100(%)以下であるため、試験を実行した場合のサービス品質が一定のSLAを満たし、試験の実行が可能であると判定する。その判定の結果、試験実行サーバ1は、サービス品質を低下させずに、NW機能部B1〜B3の中の1台に障害を疑似的に発生させることができる。
次に、試験用のトラフィックを入力する試験の例を挙げる。試験実行サーバ1は、試験実行前に、ネットワーク管理サーバ2から、各NW機能部B1〜B3のトラフィックTrの転送性能が100(Mbps)であることを確認し、NW機能部B1〜B3のトラフィック処理の負荷が最大値の50(%)(つまり50(Mbps)の負荷)であることを確認する。
試験実行サーバ1は、150(Mbps)の試験用のトラフィックをNW機能部A1に入力した場合、NW機能部A1が、各NW機能部B1〜B3に対し均等に50(Mbps)の試験用のトラフィックを分散させるため、各NW機能部B1〜B3のトラフィック処理の負荷は100(%)以下になると予測する。
このため、試験実行サーバ1は、試験を実行した場合のサービス品質が一定のSLAを満たし、試験の実行が可能であると判定する。その判定の結果、試験実行サーバ1は、サービス品質を低下させずに、150(Mbps)以下の試験用のトラフィックをNW機能部A1に入力することができる。
次に、試験用のトラフィックを入力する試験の他例を挙げる。試験実行サーバ1は、試験実行前に、ネットワーク管理サーバ2から、各NW機能部B1〜B3のトラフィックTrの転送性能が100(Mbps)であることを確認し、NW機能部B1〜B3のトラフィック処理の負荷が最大値の70(%)(つまり70(Mbps)の負荷)であることを確認する。さらに、試験実行サーバ1は、ネットワーク管理サーバ2から、NW機能部B1〜B3のスケールアウト(リソース追加)の判定の閾値が、トラフィック処理の負荷の80(%)であること、及び予備のリソースが使用可能であることを確認する。なお、リソースとは、例えば、物理サーバ4のCPU使用率やメモリ使用率の割り当てである。
試験実行サーバ1は、60(Mbps)の試験用のトラフィックをNW機能部A1に入力した場合、NW機能部A1が、各NW機能部B1〜B3に対し均等に20(Mbps)の試験用のトラフィックを分散させるため、各NW機能部B1〜B3のトラフィック処理の負荷は90(%)になると予測する。このため、試験実行サーバ1は、負荷が上記の閾値を超えることにより、NW機能部B1〜B3のスケールアウトが行われるので、サービス品質を低下させずに試験の実行が可能であると判定する。その判定の結果、試験実行サーバ1は、サービス品質を低下させずに、60(Mbps)以下の試験用のトラフィックをNW機能部A1に入力することができる。
図2は、試験実行サーバ1の一例を示す構成図である。試験実行サーバ1は、CPU10、ROM(Read Only Memory)11、RAM(Random Access Memory)12、HDD(Hard Disk Drive)13、複数の通信ポート14、入力装置15、及び出力装置16を有する。CPU10は、互いに信号の入出力ができるように、ROM11、RAM12、HDD13、複数の通信ポート14、入力装置15、及び出力装置16と、バス19を介して接続されている。
ROM11は、CPU10を駆動するプログラムが格納されている。RAM12は、CPU10のワーキングメモリとして機能する。通信ポート14は、例えば無線LAN(Local Area Network)カードやNIC(Network Interface Card)であり、ネットワーク管理サーバ2及びネットワーク3との間でそれぞれパケットを送受信する。なお、パケットとしてIP(Internet Protocol)パケットが挙げられるが、これに限定されない。
入力装置15は、試験実行サーバ1に情報を入力する装置である。入力装置15としては、例えばキーボード、マウス、及びタッチパネルなどが挙げられる。入力装置15は、入力された情報を、バス19を介しCPU10に出力する。
出力装置16は、試験実行サーバ1の情報を出力する装置である。出力装置16としては、例えばディスプレイ、タッチパネル、及びプリンタなどが挙げられる。出力装置16は、CPU10からバス19を介して情報を取得して出力する。
CPU10は、ROM11からプログラムを読み込むと、機能として、ネットワーク監視部100、試験対象決定部101、品質予測部102、試験可否判定部103、試験実行部104、及びネットワーク情報取得部105が形成される。また、HDD13には、ネットワーク構成情報130、冗長構成定義情報131、及びネットワーク性能情報132が記憶されている。なお、各情報130〜132の記憶手段としては、HDD13に代えて、EPROM(Erasable Programmable ROM)などの不揮発性メモリなどが用いられてもよい。
ネットワーク情報取得部105は、例えば、通信ポート14を介し、ネットワーク管理サーバ2からネットワーク構成情報130、冗長構成定義情報131、及びネットワーク性能情報132を取得する。ネットワーク構成情報130は、ネットワーク3内のNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の構成に関する情報であり、例えば、接続構成、グループB〜Eの構成、スケールアウトの条件の情報などが含まれる。
冗長構成定義情報131は、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の間の冗長構成のタイプの定義を示す。より具体的には、冗長構成定義情報131は、グループB〜Eの間の冗長構成のタイプを示す。
ネットワーク性能情報132は、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の性能を示す。ネットワーク性能情報132は、例えばNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2のトラフィック処理の性能、つまりトラフィックTrの最大転送速度を示す。なお、ネットワーク構成情報130、冗長構成定義情報131、及びネットワーク性能情報132は、入力装置15から入力されたものであってもよい。
ネットワーク監視部100は、測定部の一例であり、試験が実行されていない場合のサービス品質を測定する。より具体的には、ネットワーク監視部100は、試験の実行前における実際のサービス品質を測定する。また、ネットワーク監視部100は、試験の終了後もサービス品質を測定する。
ネットワーク監視部100は、例えば、ネットワーク情報取得部105から情報の取得の完了が通知されると、ネットワーク構成情報130に基づき、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の監視を開始する。ネットワーク監視部100は、例えば、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の送受信パケット数、トラフィック処理の負荷(CPU使用率など)、予備のリソースの有無などを監視する。
試験対象決定部101は、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2から試験対象のNW機能部を決定する。試験対象のNW機能部は、ランダムに決定されてもよいし、所定の規則に従って決定されてもよい。試験対象決定部101は、試験対象のNW機能部を品質予測部102に通知する。
品質予測部102は、予測部の一例であり、運用中のネットワーク3に対し試験を実行した場合のサービス品質を予測する。品質予測部102は、サービス品質を予測にあたり、ネットワーク監視部100の監視結果、ネットワーク構成情報130、冗長構成定義情報131、及びネットワーク性能情報132を取得する。品質予測部102は、ネットワーク構成情報130から、例えば図1に示されるようなNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の構成を認識する。
品質予測部102は、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の間の冗長構成のタイプを特定し、特定した冗長構成のタイプに従いサービス品質を予測する。このため、品質予測部102は、冗長構成定義情報131に基づいてNW機能部A1及びグループB〜Eに冗長構成のタイプを対応付ける。冗長構成のタイプ対応付けは、例えば、入力装置15からの入力に従い行われてもよいし、各NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の所定の属性情報に従い行われてもよい。
図3には、冗長構成定義情報131の一例が示されている。冗長構成定義情報131は、振り分け機能部(「振り分け機能」参照)X1,X2と処理機能部(「処理機能」)Y1〜Y3,Z1〜Z3の関係に基づき冗長構成を、一例として6つのタイプ1S〜3S,1M〜3Mに分けて定義する。なお、処理機能部Y1〜Y3と処理機能部Z1〜Z3は、同数であるとは限られず、また、固定的に接続されているとは限らない。処理機能部Y1〜Y3と処理機能部Z1〜Z3の接続関係は、例えばトラフィックTrの種別やネットワークの制御手段により動的に変更される。
振り分け機能部X1,X2は、処理対象であるトラフィックTrを処理機能部Y1〜Y3,Z1〜Z3に振り分け、処理機能部Y1〜Y3,Z1〜Z3は、振り分けられたトラフィックTrを処理する。なお、トラフィックTrは、矢印で示されるように、振り分け機能部X1,X2から、処理機能部Y1〜Y3のグループ、処理機能部Z1〜Z3の順に転送される。以下に各タイプ1S〜3S,1M〜3Mについて述べる。
タイプ1S,1Mは転送先切り替えモデルに分類される。転送先切り替えモデルでは、振り分け機能部X1,X2が選択した処理機能部Y1〜Y3,Z1〜Z3だけにトラフィックTrが転送される。タイプ1Sの場合、振り分け機能部X1が、選択された処理機能Y1,Z1だけにトラフィックTrの処理を振り分ける。タイプ1Mの場合、複数の振り分け機能部X1,X2が、選択された処理機能Y1,Z1だけにトラフィックTrの処理を振り分ける。なお、処理機能部Y1〜Y3,Z1〜Z3の選択は、ネットワーク制御に従い切り替えられる。
タイプ2S,2Mは転送先振り分けモデルに分類される。転送先振り分けモデルでは、複数の処理機能部Y1〜Y3,Z1〜Z3にトラフィックTrが振り分けられる。タイプ2Sの場合、振り分け機能部X1が、所定の制御に従い処理機能部Y1〜Y3,Z1〜Z3の各々にトラフィックTrの処理を振り分ける。タイプ2Mの場合、複数の振り分け機能部X1,X2が、それぞれ、所定の制御に従い処理機能部Y1〜Y3,Z1〜Z3の各々にトラフィックTrの処理を振り分ける。
タイプ3S,3Mは振り分け機能内蔵モデルに分類される。振り分け機能内蔵モデルでは、処理機能部Y1〜Y3,Z1〜Z3自体がトラフィックTrの処理を振り分けることが可能であるため、振り分け機能部X1,X2は不要である。タイプ3Sの場合、処理機能Y1が、グループ内の他の処理機能Y2,Y3と処理機能部Z1〜Z3に処理を振り分ける。タイプ3Mの場合、複数の処理機能Y1,Y2が、グループ内の他の処理機能Y1〜Y3と処理機能部Z1〜Z3に処理を振り分ける。
再び図2を参照すると、品質予測部102は、冗長構成定義情報131に基づいて、図1に示されるNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の間の冗長構成のタイプを特定する。例えば、NW機能部A1とグループBのNW機能部B1〜B3の間はタイプ2Sの冗長構成として特定され、グループBのNW機能部B1〜B3とグループCのNW機能部C1〜C4の間はタイプ2Mの冗長構成として特定される。また、グループCのNW機能部C1〜C4とグループDのNW機能部D1〜D3の間はタイプ2Mの冗長構成として特定される。
なお、グループDのNW機能部D1〜D3とグループEのNW機能部E1,E2の間は、冗長構成されていないため、タイプの特定が行われない。また、グループEのNW機能部E1,E2とネットワーク3外のNW機能部の間はタイプ3Mの冗長構成として特定される。
品質予測部102は、特定した冗長構成のタイプに従いサービス品質を予測するため、障害発生時の経路切り替えや負荷分散を考慮した高精度な予測が可能である。なお、品質予測部102は、グループDのNW機能部D1〜D3とグループEのNW機能部E1,E2の間のように、冗長構成がない場合、ネットワーク構成情報130やネットワーク性能情報132から取得した固定的な経路及び負荷に基づいてサービス品質を予測する。品質予測部102は、予測したサービス品質を試験可否判定部103に通知する。
試験可否判定部103は、判定部の一例であり、品質予測部102が予測したサービス品質に基づき試験の実行の可否を判定する。より具体的には、試験可否判定部103は、予測したサービス品質と試験実行前のサービス品質の差分が許容範囲内である場合、または予測したサービス品質が、要求されるサービス品質を満たした場合、試験可能と判定する。なお、以下の説明では、予測したサービス品質と試験実行前のサービス品質の差分が許容範囲内である場合に試験可能と判定する例を挙げる。
試験可否判定部103は、ネットワーク監視部100の監視結果から試験実行前の実際のサービス品質を取得し、品質予測部102が予測したサービス品質と比較する。例えば、サービス品質としてトラフィックTrのスループット(処理レート)を用いる場合、予測したスループットが90(Mbps)であり、試験実行前のスループットが100(Mbps)であるとする。
試験可否判定部103は、サービス品質の差分の許容範囲が20(Mbps)に設定されている場合、予測したスループットと試験実行前のスループットの差分が10(Mbps)(=100−90)であるため、差分が許容範囲内となり、試験可能と判定する。また、サービス品質の差分の許容範囲が0(Mbps)に設定されている場合、差分が許容範囲外となり、試験不可能と判定する。なお、本例の差分とは、試験実行前のスループットから予測したスループットを除算した値である。
このように、試験可否判定部103は、ネットワーク監視部100が測定したサービス品質と品質予測部102が予測したサービス品質を比較し、その比較結果に基づき試験の実行の可否を判定する。このため、試験前のサービス品質を基準として、試験の実行によるサービス品質の低下が防止される。
試験可否判定部103は、試験可否の判定結果を試験実行部104に通知する。試験実行部104は、実行部の一例であり、その判定結果に従いネットワーク3に対し試験を実行する。より具体的には、試験実行部104は、試験可否判定部103が試験可能と判定した場合、試験を実行し、試験可否判定部103が試験不可能と判定した場合、試験を実行しない。
このため、試験実行部104は、ネットワーク3で提供中の通信サービスに対する試験の影響に応じ試験を実行し、または試験を事前に中止することができる。したがって、運用中のネットワーク3の試験によるサービス品質に対する影響が低減される。
試験としては、上述したように、試験対象のNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2に障害を疑似的に発生させる試験(以下、「障害試験」と表記)、及びネットワーク3に、負荷として試験用のトラフィックを入力する試験(以下、「負荷試験」と表記)が挙げられる。
障害試験の場合、品質予測部102は、ネットワーク3内の試験対象のNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2に障害が発生した場合のサービス品質を予測する。また、試験可否判定部103は、品質予測部102が予測したサービス品質に基づき、障害試験の実行の可否を判定する。このため、サービス品質に対する障害試験の影響が低減される。
負荷試験の場合、品質予測部102は、ネットワーク3内の試験対象のNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2に試験用のトラフィックが入力された場合のサービス品質を予測する。また、試験可否判定部103は、品質予測部102が予測したサービス品質に基づき、負荷試験の実行の可否を判定する。このため、サービス品質に対する負荷試験の影響が低減される。次に、試験実行サーバ1の処理を述べる。
図4は、試験実行サーバ1の処理の一例を示すフローチャートである。ネットワーク情報取得部105は、冗長構成定義情報131を取得して登録する(ステップSt1)。冗長構成定義情報131は、入力装置15を介して取得されてもよいし、ネットワーク管理サーバ2から取得されてもよい。取得された冗長構成定義情報131は、HDD13に保持される。
次に、ネットワーク情報取得部105は、ネットワーク構成情報130及びネットワーク性能情報132を取得して登録する(ステップSt2)。ネットワーク構成情報130及びネットワーク性能情報132は、入力装置15を介して取得されてもよいし、ネットワーク管理サーバ2から取得されてもよい。取得されたネットワーク構成情報130及びネットワーク性能情報132は、HDD13に保持される。なお、ネットワーク構成情報130としては、例えば、ETSI NFV ISGが定義する「Network Descriptor」やOpen Stackソフトウェアで用いられる「Heat Template」が挙げられる。ETSI NFV ISGは、European Telecommunication Standards Institute Network Function Virtualization Industry Specification Groupの略称である。
次に、品質予測部102は、ネットワーク構成情報130と冗長構成定義情報131を参照して、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の間の冗長構成のタイプ1S〜3S,1M〜3Mを特定する(ステップSt3)。このとき、品質予測部102は、上述したように、NW機能部A1及びグループB〜Eの間にそれぞれ冗長構成のタイプ1S〜3S,1M〜3Mを対応付ける。対応付けは、例えば、試験実行サーバ1のオペレータによる入力装置15からの入力、またはNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2の属性情報に従い行われる。なお、冗長構成が存在しないNW機能の場合、本処理は行われない。
次に、試験対象決定部101は、ネットワーク構成情報130に基づいて、ランダムに、あるいは所定の規則に従い試験対象のNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2を決定する(ステップSt4)。例えば、障害試験の場合、疑似的な障害が発生するNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2が決定され、負荷試験の場合、負荷としての試験用のトラフィックが入力されるNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2が決定される。
次に、品質予測部102は、決定されたNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2が含まれる冗長構成のタイプ1S〜3S,1M〜3Mを検出する(ステップSt41)。例えば、NW構成C1が試験対象として決定された場合、品質予測部102は、NW構成C1のグループCとその前段のグループBの間の冗長構成のタイプ2S、及びNW構成C1とその後段のグループDとの間の冗長構成のタイプ2Sをそれぞれ検出する。
次に、ネットワーク監視部100は、現在のネットワーク3における実際のサービス品質を測定する(ステップSt5)。このとき、ネットワーク監視部100は、品質予測部102が検出した冗長構成のタイプ1S〜3S,1M〜3Mにおいて、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2のうち、振り分け機能部X1,X2に相当するNW機能部が送信するトラフィック量の合計を測定する。また、ネットワーク監視部100は、品質予測部102が検出した冗長構成のタイプ1S〜3S,1M〜3Mにおいて、NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2のうち、最終段の処理機能部Y1〜Y3,Z1〜Z3に相当するNW機能部が受信するトラフィック量の合計を測定する。
上記の例の場合、ネットワーク監視部100は、グループB,Cの間に冗長構成について、NW機能部C1〜C4が受信するトラフィック量を測定し、グループC,Dの間に冗長構成について、NW機能部D1〜D3が受信するトラフィック量を測定する。このように、ネットワーク監視部100は、現在のネットワーク3における実際のサービス品質を測定する。
次に、品質予測部102は、運用中のネットワーク3に対し試験を実行した場合のサービス品質を予測する(ステップSt7)。上記の例の場合、障害試験を行うとすると、品質予測部102は、障害を発生させるNW機能部C1をネットワーク3から除くことにより、グループC内の残りのNW機能部C2〜C4と前段のグループB及び後段のグループDの間のトポロジーを生成する。そして、品質予測部102は、そのトポロジーにおける始点(グループB)と終点(グループD)の間の最短経路の各々のトラフィックTrの最大スループットの合計を、サービス品質として算出する。なお、本処理については、他の例を挙げて後述する。
次に、試験可否判定部103は、ネットワーク監視部100が測定したサービス品質と品質予測部102が予測したサービス品質を比較する(ステップSt8)。このとき、試験可否判定部103は、上述したように、測定されたサービス品質と予測されたサービス品質の差分を算出する。上記の例の場合、サービス品質としてトラフィックTrのスループットが用いられるため、測定されたスループットと予測されたスループットの差分が算出される。このため、試験可否判定部103は、スループットの差分に基づきサービス品質に対する試験の影響を検出できる。
試験可否判定部103は、サービス品質の差分が許容範囲内であるか否かを判定する(ステップSt9)。上記の例の場合、試験可否判定部103は、スループットの差分を、許容範囲として設定された所定値より大きいか否かを判定する。サービス品質の差分が許容範囲内ではない場合(ステップSt9のNo)、上記のステップSt4の処理が再び実行される。
サービス品質の差分が許容範囲内である場合(ステップSt9のYes)、試験実行部104は、ネットワーク3に対し試験を実行する(ステップSt10)。このように、試験実行部104は、試験可否判定部103の判定結果に従い試験を実行するため、サービス品質に対する試験の影響が大きい場合、試験を事前に中止することができる。
試験実行部104は、障害試験の場合、試験対象のNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2に、例えばシャットダウンを指示することで、その動作を停止させる。また、負荷試験の場合、試験実行部104は、試験対象のNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2に試験用のトラフィックTrを入力する。
次に、ネットワーク監視部100は、試験実行後の実際のサービス品質を測定する(ステップSt11)。測定処理は、ステップSt5と同様に行われる。次に、試験実行部104は、ステップSt5で測定したサービス品質とステップSt11で測定したサービス品質の差分が許容範囲内であるか否かを判定する(ステップSt12)。
これにより、試験可否判定部103は、試験実行前後のサービス品質を比較する。上記の例の場合、試験可否判定部103は、試験実行前後のスループットの差分を算出し、その差分が、許容範囲として設定された所定値より大きいか否かを判定する。
試験実行部104は、サービス品質の差分が許容範囲外である場合(ステップSt12のNo)、実行中の試験を中断する(ステップSt14)。このため、サービス品質に対する試験の影響の拡大を防ぐことができる。試験の中断後、上記のステップSt4の処理が再び実行される。
また、サービス品質の差分が許容範囲内である場合(ステップSt12のYes)、試験実行部104は、例えば入力装置15からの入力に基づき、試験を継続するか否かを判定する(ステップSt13)。このとき、出力装置16は、試験実行サーバ1のオペレータに試験の結果を通知するため、その内容を出力してもよい。
試験実行サーバ1は、試験が継続される場合(ステップSt13のYes)、上記のステップSt4の処理を再び実行し、試験が継続されない場合(ステップSt13のNo)、処理を終了する。このようにして、試験実行サーバ1は処理を実行する。
次に、上記のステップSt7の処理について例を挙げて説明する。
図5は、サービス品質の予測処理の一例を示すフローチャートである。本処理は、図4のステップSt7において実行される。また、本処理は、障害試験の場合において実行される。
品質予測部102は、ネットワーク構成情報130から得られたネットワーク3の構成に基づき、経路算出用のトポロジーを生成する(ステップSt21)。本例では、図1の例とは異なる構成を挙げる。
図6には、NW機能部の構成の一例が示されている。本例のNW機能部の構成は、図1のNW機能部の構成にNW機能部A2を加えたものに相当する。NW機能部A1,A2はグループAに属する。
また、本例では、グループA,Bの間の冗長構成はタイプ2Mであると仮定する。このため、グループBのNW機能部B1〜B3は、前段のグループAから入力されたトラフィックTrを、所定の制御に従い後段のグループCに転送する。より具体的には、NW機能部B1は、NW機能部A1から入力されたトラフィックTrをNW機能部C1に転送し(実線の矢印参照)、NW機能部A2から入力されたトラフィックTrをNW機能部C2に転送する(点線の矢印参照)。
NW機能部B2は、NW機能部A1から入力されたトラフィックTrをNW機能部C2に転送し(実線の矢印参照)、NW機能部A2から入力されたトラフィックTrをNW機能部C3に転送する(点線の矢印参照)。NW機能部B3は、NW機能部A1から入力されたトラフィックTrをNW機能部C3に転送し(実線の矢印参照)、NW機能部A2から入力されたトラフィックTrをNW機能部C4に転送する(点線の矢印参照)。
品質予測部102は、冗長構成の制御ロジックを単純化して、グループA〜Cが互いにフルメッシュの形態で接続されていると仮定し、経路算出用のNW機能部A1,A2,B1〜B3,C1〜C4のトポロジーを生成する。
図7には、経路算出用のNW機能部A1,A2,B1〜B3,C1〜C4のトポロジーの一例が示されている。NW機能部A1,A2,B1〜B3,C1〜C4は、矢印で示されるように、互いにフルメッシュの形態で接続されている。
再び図5を参照すると、品質予測部102は、トポロジーから、障害を発生させるNW機能部A1,A2,B1〜B3,C1〜C4、つまり、試験対象決定部101により決定されたNW機能部A1,A2,B1〜B3,C1〜C4を削除する(ステップSt22)。
図8には、障害のNW機能部B2を削除した場合のトポロジーの一例が示されている。試験対象をNW機能部B2とした場合、品質予測部102は、図7のトポロジーから障害のNW機能部B2を削除する(点線参照)。
再び図5を参照すると、品質予測部102は、ネットワーク性能情報132に基づき、各NW機能部B1〜B3,C1〜C4のトラフィック処理能力を設定する(ステップSt23)。より具体的には、品質予測部102は、各NW機能部B1〜B3,C1〜C4の転送可能なトラフィックTrの最大帯域を設定(以下、「帯域設定値」と表記)する。なお、各NW機能部B1〜B3,C1〜C4の最大帯域の例は図8に示されている。ここで、NW機能部A1,A2が送信するトラフィックTrの帯域は、ネットワーク監視部100により、それぞれ200(Mbps)及び150(Mbps)であると測定されている。
次に、品質予測部102は、NW機能部A1,A2,C1〜C4からトラフィックTrの経路の始点及び終点を選択する(ステップSt24)。次に、品質予測部102は、選択した始点及び終点を結ぶ最短経路を算出する(ステップSt25)。最短経路の算出手法としては、例えばダイクストラ法が用いられる。
品質予測部102は、算出の結果、最短経路が得られた場合(ステップSt25aの
Yes)、ステップSt23で設定した帯域設定値に基づき、算出した最短経路の帯域を算出する(ステップSt26)。品質予測部102は、算出した帯域をHDD13などに保持しておく。次に、品質予測部102は、算出した帯域を最短経路上の各NW機能部A1,A2,C1〜C4の帯域設定値からそれぞれ差し引くことで各々の帯域設定値を更新する(ステップSt27)。
次に、品質予測部102は、NW機能部A1,A2,C1〜C4からトラフィックTrの経路の他の始点及び終点を選択する(ステップSt29)。その後、上記のステップSt25の処理が再び実行される。
また、品質予測部102は、算出の結果、最短経路が得られなかった場合(ステップSt25aのNo)、ステップSt26で算出して保持しておいた各帯域を累計する(ステップSt28)。これにより、NW機能部B2に障害を発生させた場合、NW機能部B1が含まれる冗長構成により転送可能なトラフィックTrの帯域が算出される。つまり、NW機能部B2に障害を発生させた場合のサービス品質が予測される。その後、図4のステップSt8の処理が実行される。
図9〜図12には、上記のステップSt25〜St29に関し、経路ごとの転送可能なトラフィックの帯域の算出手法が示されている。まず、品質予測部102は、図9に示されるように、始点としてNW機能部A1を選択し、終点としてNW機能部C1を選択し、始点及び終点の間の最短経路R1を算出する。最短経路R1は、NW機能部A1,B1,C1を、この順に経由する。
次に、品質予測部102は、最短経路R1の転送可能な帯域を算出する。最短経路R1の転送可能な帯域は、NW機能部A1,B1,C1の帯域の設定値のうち、最も小さい100(Mbps)と算出される。品質予測部102は、最短経路R1の転送可能な帯域を保持しておき、NW機能部A1,B1,C1の帯域の設定値を更新する。
より具体的には、品質予測部102は、NW機能部A1,B1,C1の帯域の設定値から最短経路R1の転送可能な帯域(100(Mbps))を差し引く。例えば、NW機能部A1の帯域の設定値は、初期値の200(Mbps)から100(Mbps)を差し引くことで100(Mbps)となる。また、NW機能部B1の帯域の設定値は、初期値の150(Mbps)から100(Mbps)を差し引くことで50(Mbps)となる。また、NW機能部C1の帯域の設定値は、初期値の100(Mbps)から100(Mbps)を差し引くことで0(Mbps)となる。
次に、品質予測部102は、図10に示されるように、始点としてNW機能部A1を選択し、終点としてNW機能部C2を選択し、始点及び終点の間の最短経路R2を算出する。最短経路R2は、NW機能部A1,B3,C2を、この順に経由する。
次に、品質予測部102は、最短経路R2の転送可能な帯域を算出する。最短経路R2の転送可能な帯域は、NW機能部A1,B3,C2の帯域の設定値のうち、最も小さい100(Mbps)と算出される。品質予測部102は、最短経路R2の転送可能な帯域を保持しておき、NW機能部A1,B3,C2の帯域の設定値を更新する。なお、更新手法は上述した通りである。
次に、品質予測部102は、図11に示されるように、始点としてNW機能部A2を選択し、終点としてNW機能部C3を選択し、始点及び終点の間の最短経路R3を算出する。最短経路R3は、NW機能部A2,B1,C3を、この順に経由する。
次に、品質予測部102は、最短経路R3の転送可能な帯域を算出する。最短経路R3の転送可能な帯域は、NW機能部A2,B1,C3の帯域の設定値のうち、最も小さい50(Mbps)と算出される。品質予測部102は、最短経路R3の転送可能な帯域を保持しておき、NW機能部A2,B1,C3の帯域の設定値を更新する。なお、更新手法は上述した通りである。
次に、品質予測部102は、図12に示されるように、始点としてNW機能部A2を選択し、終点としてNW機能部C4を選択し、始点及び終点の間の最短経路R4を算出する。最短経路R4は、NW機能部A2,B3,C4を、この順に経由する。
次に、品質予測部102は、最短経路R4の転送可能な帯域を算出する。最短経路R4の転送可能な帯域は、NW機能部A2,B3,C4の帯域の設定値のうち、最も小さい50(Mbps)と算出される。品質予測部102は、最短経路R4の転送可能な帯域を保持しておき、NW機能部A2,B3,C4の帯域の設定値を更新する。なお、更新手法は上述した通りである。
これにより、グループBのNW機能部B1,B3の帯域の設定値は、ともに0(Mbps)となる。したがって、品質予測部102は、トラフィックTrを転送できる他の経路が存在しないと判定し、保持している最短経路R1〜R4の各帯域を累計する。
これにより、品質予測部102は、NW機能部B1に障害を発生させた場合、NW機能部B1を含む冗長構成のスループットを300(Mbps)(=100+100+50+50)と算出する。なお、試験可否判定部103は、品質予測部102が算出したスループット(300(Mbps))を、ネットワーク監視部100が測定したスループットと比較し、その比較結果に基づき試験の実行可否を判定する。
このように、本例の品質予測部102は、特定した冗長構成のタイプに従いサービス品質を予測するため、障害発生時の経路切り替えや負荷分散を考慮した高精度な予測が可能である。
しかし、本例の試験実行サーバ1は、冗長構成定義情報131の取得及び登録と、各NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2への冗長構成定義情報131の対応付けの処理(上記のステップSt3の処理)が必要である。このため、ネットワーク3のNW機能数が多いほど、処理が複雑化し、処理の手間が増加する。
そこで、試験実行サーバ1は、以下の例のように、冗長構成の形態ではなく、負荷分散されるNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2のグループB〜Eの構成を特定し、特定したグループB〜Eの構成に従いサービス品質を予測してもよい。この場合、冗長構成定義情報131の取得及び登録と、各NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2への冗長構成定義情報131の対応付けの処理が省かれるため、処理が簡単化され、処理の手間が低減される。
図13は、本例の試験実行サーバ1の処理の他例を示すフローチャートである。図13において、図4と共通する処理については同一の符号を付し、その説明を省略する。
まず、ネットワーク情報取得部105は、ネットワーク構成情報130及びネットワーク性能情報132を取得して登録する(ステップSt2)。次に、品質予測部102は、ネットワーク構成情報130を参照して、負荷分散処理が行われるNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2のグループB〜Eの構成を特定する(ステップSt3a)。品質予測部102は、例えば、グループBのNW機能部B1〜B3の間で処理が分散され、グループCのNW機能部C1〜C4の間で処理が分散されることを特定する。
次に、試験対象決定部101は、試験対象のNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2を特定する(ステップSt4)。次に、品質予測部102は、試験対象のNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2のグループB〜Eを検出する(ステップSt41a)。品質予測部102は、例えば、試験対象のNW機能部C1が決定された場合、NW機能部C1のグループCを検出する。
次に、品質予測部102は、運用中のネットワーク3に対し試験を実行した場合のサービス品質を予測する(ステップSt7a)。本処理については、図14を参照して述べる。なお、ステップSt8以降の処理は、図4を参照して述べた通りである。
図14は、サービス品質の予測処理の他例を示すフローチャートである。本処理は上記のステップSt7aにおいて実行される。
品質予測部102は、ステップSt41aにおいて検出したグループCの各NW機能部C1〜C4に対し、ネットワーク性能情報132に基づくトラフィック処理能力を設定する(ステップSt51)。品質予測部102は、例えば、各NW機能部C1〜C4の転送可能なトラフィックTrの最大帯域を設定する。なお、各NW機能部C1〜C4の最大帯域の例は図15に示されている。
次に、品質予測部102は、グループCのNW機能部C1〜C4から、障害を発生させるNW機能部C1を削除する(ステップSt52)。次に、品質予測部102は、各グループB〜Eの伝送可能なトラフィックの帯域を算出する(ステップSt53)。
図15には伝送可能なトラフィックの帯域の算出手法の一例が示されている。本例では、グループCの帯域の算出手法が挙げられている。NW機能部C2〜C4の伝送可能なトラフィックの帯域は300(Mbps)(=100+100+100)と算出される。なお、他のグループB,D,Eについても同様に帯域が算出される。そして、算出されたグループB〜Eごとの伝送可能な帯域に基づいて試験実行の可否が判定される(上記のステップSt9の処理)。このようにして、サービス品質の予測処理は行われる。
本例では、冗長構成定義情報131の取得及び登録と、各NW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2への冗長構成定義情報131の対応付けの処理が省かれるため、処理が簡単化され、処理の手間が低減される。
これまで述べたように、実施例の試験実行サーバ1は、品質予測部102と、試験可否判定部103と、試験実行部104とを有する。品質予測部102は、運用中のネットワーク3に対し試験を実行した場合のネットワーク3による通信サービスの品質を予測する。
試験可否判定部103は、品質予測部102が予測した品質に基づき試験の実行の可否を判定する。試験実行部104は、試験可否判定部103の判定結果に従いネットワーク3に対し試験を実行する。
上記の構成によると、品質予測部102は、運用中のネットワーク3に対し試験を実行した場合のネットワーク3による通信サービスの品質を予測し、試験可否判定部103は、品質予測部102が予測した品質に基づき試験の実行の可否を判定する。また、試験実行部104は、試験可否判定部103の判定結果に従いネットワーク3に対し試験を実行するため、ネットワーク3で提供中の通信サービスに対する試験の影響に応じ試験を実行し、または試験を事前に中止することができる。したがって、運用中のネットワーク3の試験によるサービス品質に対する影響が低減される。
また、実施例のネットワークシステムは、運用中のネットワーク3に接続され、ネットワーク3による通信サービスを処理する仮想的なNW機能部A1,B1〜B3,C1〜C4,D1〜D3,E1,E2と、ネットワーク3に対し試験を実行する試験実行サーバ1とを有する。
実施例の試験実行サーバ1は、品質予測部102と、試験可否判定部103と、試験実行部104とを有する。品質予測部102は、運用中のネットワーク3に対し試験を実行した場合のネットワーク3による通信サービスの品質を予測する。
試験可否判定部103は、品質予測部102が予測した品質に基づき試験の実行の可否を判定する。試験実行部104は、試験可否判定部103の判定結果に従いネットワーク3に対し試験を実行する。
実施例のネットワークシステムは、上記の試験実行サーバ1と同様の構成を含むので、上述した内容と同様の作用効果を奏する。
また、実施例の試験方法は以下のステップを含む。
ステップ(1):運用中のネットワーク3に対し試験を実行した場合のネットワーク3による通信サービスの品質を予測する。
ステップ(2):その予測した品質に基づき試験の実行の可否を判定する。
ステップ(3):その判定結果に従いネットワーク3に対し試験を実行する。
実施例の試験方法は、上記の試験実行サーバ1と同様の構成を含むので、上述した内容と同様の作用効果を奏する。
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
なお、以上の説明に関して更に以下の付記を開示する。
(付記1) 運用中のネットワークに対し試験を実行した場合の前記ネットワークによる通信サービスの品質を予測する予測部と、
前記予測部が予測した品質に基づき前記試験の実行の可否を判定する判定部と、
前記判定部の判定結果に従い前記ネットワークに対し前記試験を実行する実行部とを有することを特徴とする試験装置。
(付記2) 前記予測部は、前記ネットワークに障害が発生した場合の前記通信サービスの品質を予測し、
前記判定部は、前記予測部が予測した品質に基づき、前記ネットワークに前記障害を疑似的に発生させる前記試験の実行の可否を判定することを特徴とする付記1に記載の試験装置。
(付記3) 前記予測部は、前記ネットワークに所定のトラフィックが入力された場合の前記通信サービスの品質を予測し、
前記判定部は、前記予測部が予測した品質に基づき、前記ネットワークに前記所定のトラフィックを入力する前記試験の実行の可否を判定することを特徴とする付記1に記載の試験装置。
(付記4) 前記試験が実行されていない場合の前記通信サービスの品質を測定する測定部を、さらに有し、
前記判定部は、前記測定部が測定した品質と前記予測部が予測した品質を比較し、該比較結果に基づき前記試験の実行の可否を判定することを特徴とする付記1乃至3の何れかに記載の試験装置。
(付記5) 前記ネットワークには、前記通信サービスを処理する物理的または仮想的な複数の通信装置が接続され、
前記予測部は、前記複数の通信装置の間の冗長構成の形態を特定し、特定した前記冗長構成の形態に従い前記通信サービスの品質を予測することを特徴とする付記1乃至4の何れかに記載の試験装置。
(付記6) 前記ネットワークには、前記通信サービスを処理する物理的または仮想的な複数の通信装置が接続され、
前記予測部は、前記複数の通信装置のうち、負荷分散処理が行われる通信装置のグループを特定し、特定した前記グループの構成に従い前記通信サービスの品質を予測することを特徴とする付記1乃至4の何れかに記載の試験装置。
(付記7) 運用中のネットワークに接続され、前記ネットワークによる通信サービスを処理する物理的または仮想的な複数の通信装置と、
前記ネットワークに対し試験を実行する試験装置とを有し、
前記試験装置は、
運用中のネットワークに対し試験を実行した場合の前記ネットワークによる通信サービスの品質を予測する予測部と、
前記予測部が予測した品質に基づき前記試験の実行の可否を判定する判定部と、
前記判定部の判定結果に従い前記ネットワークに対し前記試験を実行する実行部とを有することを特徴とするネットワークシステム。
(付記8) 前記予測部は、前記ネットワークに障害が発生した場合の前記通信サービスの品質を予測し、
前記判定部は、前記予測部が予測した品質に基づき、前記ネットワークに前記障害を疑似的に発生させる前記試験の実行の可否を判定することを特徴とする付記7に記載のネットワークシステム。
(付記9) 前記予測部は、前記ネットワークに所定のトラフィックが入力された場合の前記通信サービスの品質を予測し、
前記判定部は、前記予測部が予測した品質に基づき、前記ネットワークに前記所定のトラフィックを入力する前記試験の実行の可否を判定することを特徴とする付記7に記載のネットワークシステム。
(付記10) 前記試験が実行されていない場合の前記通信サービスの品質を測定する測定部を、さらに有し、
前記判定部は、前記測定部が測定した品質と前記予測部が予測した品質を比較し、該比較結果に基づき前記試験の実行の可否を判定することを特徴とする付記7乃至9の何れかに記載のネットワークシステム。
(付記11) 運用中のネットワークに対し試験を実行した場合の前記ネットワークによる通信サービスの品質を予測し、
該予測した品質に基づき前記試験の実行の可否を判定し、
該判定結果に従い前記ネットワークに対し前記試験を実行することを特徴とする試験方法。
(付記12) 前記ネットワークに障害が発生した場合の前記通信サービスの品質を予測し、
該予測した品質に基づき、前記ネットワークに前記障害を疑似的に発生させる前記試験の実行の可否を判定することを特徴とする付記11に記載の試験方法。
(付記13) 前記ネットワークに所定のトラフィックが入力された場合の前記通信サービスの品質を予測し、
該予測した品質に基づき、前記ネットワークに前記所定のトラフィックを入力する前記試験の実行の可否を判定することを特徴とする付記11に記載の試験方法。
(付記14) 前記試験が実行されていない場合の前記通信サービスの品質を測定し、
該測定した品質と前記予測した品質を比較し、該比較結果に基づき前記試験の実行の可否を判定することを特徴とする付記11乃至13の何れかに記載の試験方法。
1 試験実行サーバ
100 ネットワーク監視部
101 試験対象決定部
102 品質予測部
103 試験可否判定部
104 試験実行部
105 ネットワーク情報取得部
130 ネットワーク構成情報
131 冗長構成定義情報
132 ネットワーク性能情報

Claims (4)

  1. 運用中のネットワークに障害を発生させる試験を実行した場合の前記ネットワークによる通信サービスの品質を予測する予測部と、
    前記予測部が予測した品質に基づき前記試験の実行の可否を判定する判定部と、
    前記判定部の判定結果に従い前記ネットワークに対し前記試験を実行する実行部とを有し、
    前記ネットワークは、トラフィックをそれぞれ処理する物理的または仮想的な複数の通信装置が属する複数段のグループを含み、
    前記複数段のグループは、それぞれ、前記複数の通信装置により前記トラフィックを順次に処理し、
    前記予測部は、
    前記複数段のグループのうち、互いに隣接する一組のグループごとに前記複数の通信装置の接続に関する冗長構成の形態を特定し、
    前記冗長構成の形態に従って、前記障害が発生する通信装置を除き、前記複数段のグループの初段から最終段までのそれぞれの前記複数の通信装置を経由する経路を算出し、
    前記複数の通信装置の各々の転送可能な前記トラフィックの最大帯域に基づき、前記経路ごとに転送可能な前記トラフィックの帯域の合計を前記通信サービスの品質として算出することを特徴とする試験装置。
  2. 前記試験が実行されていない場合の前記通信サービスの品質を測定する測定部を、さらに有し、
    前記判定部は、前記測定部が測定した品質と前記予測部が予測した品質を比較し、該比較結果に基づき前記試験の実行の可否を判定することを特徴とする請求項に記載の試験装置。
  3. トラフィックを処理する物理的または仮想的な複数の通信装置が属する複数段のグループを含むネットワークと、
    前記ネットワークに対し試験を実行する試験装置とを有し、
    前記複数段のグループは、前記複数の通信装置により前記トラフィックを順次に処理し、
    前記試験装置は、
    運用中の前記ネットワークに障害を発生させる試験を実行した場合の前記ネットワークによる通信サービスの品質を予測する予測部と、
    前記予測部が予測した品質に基づき前記試験の実行の可否を判定する判定部と、
    前記判定部の判定結果に従い前記ネットワークに対し前記試験を実行する実行部とを有し、
    前記予測部は、
    前記複数段のグループのうち、互いに隣接する一組のグループごとに前記複数の通信装置の接続に関する冗長構成の形態を特定し、
    前記冗長構成の形態に従って、前記障害が発生する通信装置を除き、前記複数段のグループの初段から最終段までのそれぞれの前記複数の通信装置を経由する経路を算出し、
    前記複数の通信装置の各々の転送可能な前記トラフィックの最大帯域に基づき、前記経路ごとに転送可能な前記トラフィックの帯域の合計を前記通信サービスの品質として算出することを特徴とするネットワークシステム。
  4. 運用中のネットワークに障害を発生させる試験を実行した場合の前記ネットワークによる通信サービスの品質を予測し、
    該予測した品質に基づき前記試験の実行の可否を判定し、
    該判定結果に従い前記ネットワークに対し前記試験を実行し、
    前記ネットワークは、トラフィックをそれぞれ処理する物理的または仮想的な複数の通信装置が属する複数段のグループを含み、
    前記複数段のグループは、それぞれ、前記複数の通信装置により前記トラフィックを順次に処理し、
    前記通信サービスの品質の予測において、
    前記複数段のグループのうち、互いに隣接する一組のグループごとに前記複数の通信装置の接続に関する冗長構成の形態を特定し、
    前記冗長構成の形態に従って、前記障害が発生する通信装置を除き、前記複数段のグループの初段から最終段までのそれぞれの前記複数の通信装置を経由する経路を算出し、
    前記複数の通信装置の各々の転送可能な前記トラフィックの最大帯域に基づき、前記経路ごとに転送可能な前記トラフィックの帯域の合計を前記通信サービスの品質として算出することを特徴とする試験方法。
JP2016013818A 2016-01-27 2016-01-27 試験装置、ネットワークシステム、及び試験方法 Active JP6601237B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016013818A JP6601237B2 (ja) 2016-01-27 2016-01-27 試験装置、ネットワークシステム、及び試験方法
US15/361,915 US20170214598A1 (en) 2016-01-27 2016-11-28 Test device, network system, and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013818A JP6601237B2 (ja) 2016-01-27 2016-01-27 試験装置、ネットワークシステム、及び試験方法

Publications (2)

Publication Number Publication Date
JP2017135563A JP2017135563A (ja) 2017-08-03
JP6601237B2 true JP6601237B2 (ja) 2019-11-06

Family

ID=59360748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013818A Active JP6601237B2 (ja) 2016-01-27 2016-01-27 試験装置、ネットワークシステム、及び試験方法

Country Status (2)

Country Link
US (1) US20170214598A1 (ja)
JP (1) JP6601237B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10579408B2 (en) 2017-03-13 2020-03-03 Nicira, Inc. Distributed network emulation implemented by a host in a virtualized computing environment
US10425279B2 (en) * 2017-03-13 2019-09-24 Nicira, Inc. Distributed network emulation implemented by a network management entity in a virtualized computing environment
CN108471367A (zh) * 2018-03-19 2018-08-31 天筑科技股份有限公司 基于串口的通信基站机房内动力设备的仿真系统及方法
KR102467254B1 (ko) * 2018-05-18 2022-11-14 주식회사 케이티 네트워크 스위치 장치와 가입자 단말 사이의 인터넷 속도를 예측하는 장치 및 방법
JP7034014B2 (ja) * 2018-06-19 2022-03-11 三菱電機株式会社 障害対応訓練装置、障害対応訓練方法および障害対応訓練プログラム
JP7298343B2 (ja) * 2019-07-01 2023-06-27 日本電信電話株式会社 故障影響推定装置、故障影響推定方法、及びプログラム
CN113055218B (zh) * 2019-12-29 2022-08-05 中国移动通信集团浙江有限公司 Nfv网络的冗余性评价方法、装置及计算设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130061098A1 (en) * 2010-05-10 2013-03-07 Toyoya Jidosha Kabushiki Kaisha Failure check apparatus and failure check method

Also Published As

Publication number Publication date
US20170214598A1 (en) 2017-07-27
JP2017135563A (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6601237B2 (ja) 試験装置、ネットワークシステム、及び試験方法
US11677813B2 (en) Dynamic configuration of inter-chip and on-chip networks in cloud computing system
US11290375B2 (en) Dynamic deployment of network applications having performance and reliability guarantees in large computing networks
JP2020504552A (ja) リソース割り当てシステム、方法、およびプログラム
WO2018137254A1 (zh) 一种基于调用链的并发控制的方法、装置及控制节点
US20150264117A1 (en) Processes for a highly scalable, distributed, multi-cloud application deployment, orchestration and delivery fabric
Gedia et al. Performance evaluation of SDN-VNF in virtual machine and container
US9043658B1 (en) Automatic testing and remediation based on confidence indicators
JP2009258978A (ja) 計算機システム及び通信経路の監視方法
JP6604218B2 (ja) 試験装置、ネットワークシステム、及び試験方法
CN106681839B (zh) 弹性计算动态分配方法
EP3624401B1 (en) Systems and methods for non-intrusive network performance monitoring
US20180357099A1 (en) Pre-validation of a platform
US20150263980A1 (en) Method and apparatus for rapid instance deployment on a cloud using a multi-cloud controller
Kim et al. SDN and NFV benchmarking for performance and reliability
CN114650254A (zh) 一种确定业务路径的方法、装置以及计算机可读存储介质
CN113872997A (zh) 基于容器集群服务的容器组pod重建方法及相关设备
Zhu et al. Service function chain mapping with resource fragmentation avoidance
CN113612778A (zh) 一种资源池化的防火墙集群系统及通信方法
CN105591786B (zh) 一种业务链的管理方法、引流点、控制器及增值业务节点
US20210392082A1 (en) Methods and apparatus for data traffic control in networks
CN108141374B (zh) 一种网络亚健康诊断方法及装置
CN110928679A (zh) 一种资源分配方法及装置
JP6196505B2 (ja) クラウド制御システム、及びその制御プログラムの実行方法
JP5856699B1 (ja) 階層型パス制御システム、パス制御方法およびプログラム、並びに、下位制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R150 Certificate of patent or registration of utility model

Ref document number: 6601237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150