JP6600982B2 - FIBER-REINFORCED PLASTIC MOLDED BODY, ITS MANUFACTURING METHOD, AND LAMINATE - Google Patents
FIBER-REINFORCED PLASTIC MOLDED BODY, ITS MANUFACTURING METHOD, AND LAMINATE Download PDFInfo
- Publication number
- JP6600982B2 JP6600982B2 JP2015096639A JP2015096639A JP6600982B2 JP 6600982 B2 JP6600982 B2 JP 6600982B2 JP 2015096639 A JP2015096639 A JP 2015096639A JP 2015096639 A JP2015096639 A JP 2015096639A JP 6600982 B2 JP6600982 B2 JP 6600982B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- reinforced plastic
- molding
- thermosetting resin
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002430 Fibre-reinforced plastic Polymers 0.000 title claims description 73
- 239000011151 fibre-reinforced plastic Substances 0.000 title claims description 73
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 229920005989 resin Polymers 0.000 claims description 123
- 239000011347 resin Substances 0.000 claims description 123
- 229920001187 thermosetting polymer Polymers 0.000 claims description 95
- 239000011342 resin composition Substances 0.000 claims description 87
- 239000000835 fiber Substances 0.000 claims description 81
- 239000002245 particle Substances 0.000 claims description 75
- 239000012783 reinforcing fiber Substances 0.000 claims description 64
- 238000000465 moulding Methods 0.000 claims description 57
- 229920005992 thermoplastic resin Polymers 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 36
- 239000003822 epoxy resin Substances 0.000 claims description 19
- 229920000647 polyepoxide Polymers 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 19
- 238000010137 moulding (plastic) Methods 0.000 claims description 16
- 238000003475 lamination Methods 0.000 claims description 14
- 238000007493 shaping process Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000010030 laminating Methods 0.000 claims description 10
- 239000004695 Polyether sulfone Substances 0.000 claims description 9
- 229920006393 polyether sulfone Polymers 0.000 claims description 9
- 239000004745 nonwoven fabric Substances 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 5
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 4
- 239000004697 Polyetherimide Substances 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 4
- 229920002530 polyetherether ketone Polymers 0.000 claims description 4
- 229920001601 polyetherimide Polymers 0.000 claims description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000009477 glass transition Effects 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 description 16
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 12
- 230000007547 defect Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- -1 urea compound Chemical class 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical group NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Description
本発明は、繊維強化プラスチック成形体及びその製造方法、並びに積層体に関する。 The present invention relates to a fiber-reinforced plastic molded body, a method for producing the same, and a laminate.
強化繊維とマトリクス樹脂組成物とを含有する炭素繊維強化プラスチック成形体は、力学物性に優れる等の理由から、航空機、自動車等の産業用途等に幅広く用いられおり、近年ではますます適用範囲が拡がってきている。例えば、強化繊維にマトリクス樹脂組成物が含浸されたシート状のプリプレグ基材が複数積層されたプリプレグ積層体が加熱加圧されて成形された繊維強化プラスチック成形体が知られている。
マトリクス樹脂組成物としては、含浸性や耐熱性に優れる点から、フェノール樹脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等を含有する熱硬化性樹脂組成物が用いられることが多い。なかでも、耐熱性、成形性に優れ、より機械強度が高い繊維強化プラスチック成形体が得られるため、エポキシ樹脂組成物が幅広く使用されている。
Carbon fiber reinforced plastic moldings containing reinforced fibers and matrix resin compositions are widely used in industrial applications such as aircraft and automobiles due to their excellent mechanical properties, etc. It is coming. For example, there is known a fiber-reinforced plastic molded body formed by heating and pressurizing a prepreg laminate in which a plurality of sheet-like prepreg base materials in which reinforcing fibers are impregnated with a matrix resin composition are laminated.
As the matrix resin composition, a thermosetting resin composition containing a phenol resin, a melamine resin, a bismaleimide resin, an unsaturated polyester resin, an epoxy resin, or the like is often used because of its excellent impregnation and heat resistance. . Among these, epoxy resin compositions are widely used because a fiber-reinforced plastic molded article having excellent heat resistance and moldability and higher mechanical strength can be obtained.
また、繊維強化プラスチック成形体としては、表面付近に存在する繊維が透けて見えることを抑制する(つまり十分に樹脂層内に埋まらず、露出した状態になることを防ぐ)目的で、プリプレグ積層体の表面に、強化繊維及び熱硬化性樹脂組成物を含有する樹脂フィルムがさらに積層された状態で加熱加圧されて成形された繊維強化プラスチック成形体が知られている。該樹脂フィルムは、プリプレグ基材に比べて熱硬化性樹脂組成物の割合が高く、強化繊維の割合が低くなっている。 Moreover, as a fiber reinforced plastic molded object, the prepreg laminated body is used for the purpose of suppressing the fiber existing near the surface from being seen through (that is, preventing the fiber from being sufficiently embedded in the resin layer and being exposed). There is known a fiber-reinforced plastic molded body that is molded by heating and pressing in a state where a resin film containing reinforcing fibers and a thermosetting resin composition is further laminated on the surface. The resin film has a higher ratio of the thermosetting resin composition and a lower ratio of reinforcing fibers than the prepreg base material.
繊維強化プラスチック成形体の製造方法としては、例えば、オートクレーブを用いる方法(特許文献1)、真空バッグによる方法(特許文献2)、圧縮成形法(特許文献3)等が知られている。しかし、これらの方法では、プリプレグ積層体を加熱加圧して硬化させる際、硬化までに160℃以上で2〜6時間程度の加熱が必要であり、エネルギー消費が大きいうえ生産性が低い。 As a method for producing a fiber-reinforced plastic molded body, for example, a method using an autoclave (Patent Document 1), a method using a vacuum bag (Patent Document 2), a compression molding method (Patent Document 3), and the like are known. However, in these methods, when the prepreg laminate is cured by heating and pressing, heating at 160 ° C. or higher for about 2 to 6 hours is required until curing, and energy consumption is large and productivity is low.
自動車用途に多用される成形方法としては、ハイサイクルプレス成形が知られている(特許文献4)。ハイサイクルプレス成形においては、製品の大量生産を可能にするために、高圧下において100〜150℃程度で数分から数十分程度の短時間で硬化させる。
しかし、プリプレグ積層体の表面に樹脂フィルムを積層して成形を行う場合、高圧下において、温度上昇により樹脂フィルムに含まれる熱硬化性樹脂組成物の粘度が低下することで、表面近傍の熱硬化性樹脂組成物が金型のエッジ部から過度に流出することがある。このように、表面の熱硬化性樹脂組成物が金型外へ過度に流出すると、得られる成形体の表面において、樹脂枯れにより繊維が露出したり、樹脂の過剰な流動に伴う繊維蛇行が生じたりする等の外観不良が発生する。この場合、成形体表面を塗装しても外観不良となる。
High cycle press molding is known as a molding method frequently used for automobile applications (Patent Document 4). In high cycle press molding, in order to enable mass production of products, curing is performed in a short time of about several minutes to several tens of minutes at about 100 to 150 ° C. under high pressure.
However, when molding is performed by laminating a resin film on the surface of the prepreg laminate, the viscosity of the thermosetting resin composition contained in the resin film is decreased due to an increase in temperature under high pressure. The conductive resin composition may flow out excessively from the edge portion of the mold. As described above, when the thermosetting resin composition on the surface excessively flows out of the mold, fibers are exposed due to resin withering on the surface of the obtained molded body, or fiber meandering due to excessive flow of the resin occurs. Deterioration of the appearance such as In this case, even if the molded body surface is painted, the appearance is poor.
本発明は、ハイサイクルプレス成形を採用した場合でも表面に樹脂枯れや繊維蛇行等の外観不良が生じることが抑制され、かつ表面における繊維が透けて見えることが抑制された繊維強化プラスチック成形体を製造できる繊維強化プラスチック成形体の製造方法を提供することを目的とする。また、本発明は、表面における樹脂枯れや繊維蛇行等の外観不良の発生、及び繊維が透けて見えることが抑制された繊維強化プラスチック成形体、及び該繊維強化プラスチック成形体の製造に用いる積層体を提供することを目的とする。 The present invention provides a fiber reinforced plastic molded article in which appearance defects such as resin withering and fiber meandering on the surface are suppressed even when high cycle press molding is adopted, and fibers on the surface are suppressed from being seen through. It aims at providing the manufacturing method of the fiber reinforced plastic molding which can be manufactured. Further, the present invention relates to a fiber reinforced plastic molded body in which occurrence of poor appearance such as resin withering and fiber meandering on the surface and suppression of fiber see-through are suppressed, and a laminate used for the production of the fiber reinforced plastic molded body The purpose is to provide.
本発明の繊維強化プラスチック成形体の製造方法は、下記の積層工程及び成形工程を有する方法である。
積層工程:強化繊維基材(A)に熱硬化性樹脂組成物(B)が含浸されたシート状のプリプレグ基材を複数積層したプリプレグ積層体の少なくとも一方の表面に、下記熱可塑性樹脂粒子(c1)を含有する熱硬化性樹脂組成物(C)で形成された樹脂フィルムを積層して積層体を得る工程。
成形工程:金型により前記積層体を加熱加圧して繊維強化プラスチック成形体を得る工程。
熱可塑性樹脂粒子(c1):ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリイミド及びポリエーテルイミドからなる群から選ばれる少なくとも1種の熱可塑性樹脂を含有する粒子。
The manufacturing method of the fiber reinforced plastic molding of this invention is a method which has the following lamination process and a formation process.
Lamination process: The following thermoplastic resin particles (on the surface of at least one of the prepreg laminates obtained by laminating a plurality of sheet-like prepreg substrates in which the reinforcing fiber substrate (A) is impregnated with the thermosetting resin composition (B) The process of obtaining the laminated body by laminating | stacking the resin film formed with the thermosetting resin composition (C) containing c1).
Molding step: a step of heating and pressurizing the laminate with a mold to obtain a fiber-reinforced plastic molded body.
Thermoplastic resin particles (c1): particles containing at least one thermoplastic resin selected from the group consisting of polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide and polyetherimide.
前記樹脂フィルムは、繊維目付が50g/m2以下の強化繊維基材(D)を含有することが好ましい。
前記熱可塑性樹脂粒子(c1)の平均粒子径は、0.1〜100μmであることが好ましい。
前記強化繊維基材(D)は、強化繊維からなる不織布であることが好ましい。
前記熱可塑性樹脂粒子(c1)のガラス転移温度は、前記成形工程の金型温度以上であることが好ましい。
前記熱可塑性樹脂粒子(c1)は、ポリエーテルスルホン粒子であることが好ましい。
前記熱硬化性樹脂組成物(C)は、エポキシ樹脂を含有することが好ましい。
前記熱硬化性樹脂組成物(B)は、エポキシ樹脂を含有することが好ましい。
本発明の繊維強化プラスチックの製造方法は、前記成形工程に先立ち、前記積層工程で得た前記積層体を賦形してプリフォームを得る賦形工程をさらに有し、前記成形工程の前記積層体として該プリフォームを用いてもよい。
The resin film preferably contains a reinforcing fiber base (D) having a fiber basis weight of 50 g / m 2 or less.
The thermoplastic resin particles (c1) preferably have an average particle size of 0.1 to 100 μm.
The reinforcing fiber substrate (D) is preferably a nonwoven fabric made of reinforcing fibers.
The glass transition temperature of the thermoplastic resin particles (c1) is preferably equal to or higher than the mold temperature in the molding step.
The thermoplastic resin particles (c1) are preferably polyethersulfone particles.
The thermosetting resin composition (C) preferably contains an epoxy resin.
The thermosetting resin composition (B) preferably contains an epoxy resin.
The method for producing a fiber-reinforced plastic according to the present invention further includes a shaping step of shaping the laminate obtained in the lamination step to obtain a preform prior to the molding step, and the laminate in the molding step The preform may be used as
本発明の積層体は、強化繊維基材(A)に熱硬化性樹脂組成物(B)が含浸されたシート状のプリプレグ基材を複数積層したプリプレグ積層体の少なくとも一方の表面に、前記熱可塑性樹脂粒子(c1)を含有する熱硬化性樹脂組成物(C)で形成された樹脂フィルムがさらに積層された積層体である。
本発明の繊維強化プラスチック成形体は、本発明の積層体が加熱加圧されて成形された繊維強化プラスチック成形体である。
The laminate of the present invention is formed on the surface of at least one of the prepreg laminates obtained by laminating a plurality of sheet-like prepreg substrates in which the reinforcing fiber substrate (A) is impregnated with the thermosetting resin composition (B). It is a laminate in which a resin film formed of a thermosetting resin composition (C) containing the plastic resin particles (c1) is further laminated.
The fiber-reinforced plastic molded body of the present invention is a fiber-reinforced plastic molded body formed by heating and pressing the laminate of the present invention.
本発明の繊維強化プラスチック成形体の製造方法によれば、ハイサイクルプレス成形を採用した場合でも表面に樹脂枯れや繊維蛇行等の外観不良が生じることが抑制され、かつ表面における繊維が透けて見えることが抑制された繊維強化プラスチック成形体を製造できる。
本発明の積層体を用いれば、表面における樹脂枯れや繊維蛇行等の外観不良の発生、及び繊維が透けて見えることが抑制された繊維強化プラスチック成形体が得られる。
本発明の繊維強化プラスチック成形体は、表面における樹脂枯れや繊維蛇行等の外観不良の発生、及び繊維が透けて見えることが抑制されている。
According to the method for producing a fiber-reinforced plastic molded body of the present invention, even when high cycle press molding is employed, it is possible to suppress appearance defects such as resin withering and fiber meandering on the surface, and fibers on the surface can be seen through. It is possible to produce a fiber-reinforced plastic molded product in which this is suppressed.
By using the laminate of the present invention, it is possible to obtain a fiber-reinforced plastic molded product in which appearance defects such as resin withering and fiber meandering on the surface and fiber see-through are suppressed.
In the fiber-reinforced plastic molded body of the present invention, occurrence of poor appearance such as resin withering and fiber meandering on the surface, and fiber see-through are suppressed.
[繊維強化プラスチック成形体の製造方法]
本発明の繊維強化プラスチック成形体の製造方法は、下記の積層工程及び成形工程を有する。
積層工程:強化繊維基材(A)に熱硬化性樹脂組成物(B)が含浸されたシート状のプリプレグ基材を複数積層したプリプレグ積層体の少なくとも一方の表面に、熱可塑性樹脂粒子(c1)を含有する熱硬化性樹脂組成物(C)で形成された樹脂フィルムを積層して積層体を得る工程。
成形工程:金型により前記積層体を加熱加圧して繊維強化プラスチック成形体を得る工程。
[Production method of fiber reinforced plastic molding]
The manufacturing method of the fiber reinforced plastic molding of this invention has the following lamination process and a shaping | molding process.
Lamination process: Thermoplastic resin particles (c1) on at least one surface of a prepreg laminate in which a plurality of sheet-like prepreg substrates in which the reinforcing fiber substrate (A) is impregnated with the thermosetting resin composition (B) are laminated. The process of laminating | stacking the resin film formed with the thermosetting resin composition (C) containing), and obtaining a laminated body.
Molding step: a step of heating and pressurizing the laminate with a mold to obtain a fiber-reinforced plastic molded body.
(積層工程)
本発明では、強化繊維プラスチック成形体の材料として、強化繊維基材(A)に熱硬化性樹脂組成物(B)が含浸されたシート状のプリプレグ基材と、熱可塑性樹脂粒子(c1)を含有する熱硬化性樹脂組成物(C)で形成された樹脂フィルムとを用いる。
積層工程においては、プリプレグ積層体の少なくとも一方の表面に樹脂フィルムを積層する。すなわち本発明では、プリプレグ積層体の片面(すなわち一方の最外層の表面)のみに樹脂フィルムを積層してもよく、プリプレグ積層体の両面(すなわち両方の最外層の表面)に樹脂フィルムを積層してもよい。
(Lamination process)
In the present invention, as a material of the reinforced fiber plastic molded body, a sheet-like prepreg base material in which a reinforced fiber base material (A) is impregnated with a thermosetting resin composition (B), and thermoplastic resin particles (c1) are used. The resin film formed with the thermosetting resin composition (C) to contain is used.
In the lamination step, a resin film is laminated on at least one surface of the prepreg laminate. That is, in the present invention, the resin film may be laminated only on one side of the prepreg laminate (ie, the surface of one outermost layer), or the resin film is laminated on both sides of the prepreg laminate (ie, the surfaces of both outermost layers). May be.
例えば、プリプレグ積層体の上面のみに樹脂フィルムを積層する場合、シート状のプリプレグ基材を複数枚積層してプリプレグ積層体とし、プリプレグ積層体の最外層の表面に樹脂フィルムをさらに積層して積層体とする。
複数のプリプレグ基材の積層操作、及びプリプレグ積層体と樹脂フィルムの積層操作は、成形工程で用いる金型の外で行ってもよく、金型内で行ってもよい。
For example, when laminating a resin film only on the upper surface of a prepreg laminate, a plurality of sheet-like prepreg base materials are laminated to form a prepreg laminate, and a resin film is further laminated on the outermost surface of the prepreg laminate. Let it be the body.
The operation of laminating a plurality of prepreg base materials and the operation of laminating the prepreg laminate and the resin film may be performed outside the mold used in the molding process, or may be performed within the mold.
<積層体>
本発明に用いる積層体は、プリプレグ基材が複数積層されたプリプレグ積層体の少なくとも一方の表面に樹脂フィルムが積層されている。例えば、図1に示すように、シート状のプリプレグ基材10が複数枚積層されたプリプレグ積層体12の上に、樹脂フィルム14がさらに積層されて積層体1とされる。
<Laminated body>
In the laminate used in the present invention, a resin film is laminated on at least one surface of a prepreg laminate in which a plurality of prepreg substrates are laminated. For example, as shown in FIG. 1, a
≪プリプレグ基材≫
本発明に用いるプリプレグ基材は、強化繊維基材(A)に熱硬化性樹脂組成物(B)が含浸されたシート状のプリプレグ基材である。
強化繊維基材(A)を構成する強化繊維としては、特に限定されず、例えば、無機繊維、有機繊維、金属繊維、又はこれらを組み合わせたハイブリッド構成の強化繊維等を使用できる。
無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維等が挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステル繊維等が挙げられる。金属繊維としては、ステンレス、鉄等の繊維が挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、強化繊維プラスチック成形体の強度等の機械物性を考慮すると、炭素繊維が好ましい。
≪Prepreg base material≫
The prepreg base material used in the present invention is a sheet-like prepreg base material in which the reinforcing fiber base material (A) is impregnated with the thermosetting resin composition (B).
The reinforcing fiber constituting the reinforcing fiber base (A) is not particularly limited, and for example, inorganic fibers, organic fibers, metal fibers, or hybrid fibers that combine these can be used.
Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of the organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyester fibers. Examples of metal fibers include fibers such as stainless steel and iron, and carbon fibers coated with metal may be used. Among these, carbon fibers are preferable in consideration of mechanical properties such as strength of the reinforced fiber plastic molded body.
強化繊維基材(A)の強化繊維は、長繊維であってもよく、短繊維であってもよく、剛性に優れる点から、長繊維が好ましい。強化繊維基材の形態としては、多数の長繊維を一方向に揃えてUDシート(一方向シート)とする形態、長繊維を製織してクロス材(織物)とする形態、短繊維からなる不織布とする形態等が挙げられる。
クロス材の織り方としては、例えば、平織、綾織、朱子織、三軸織等が挙げられる。
The reinforcing fiber of the reinforcing fiber base (A) may be a long fiber or a short fiber, and is preferably a long fiber from the viewpoint of excellent rigidity. As a form of the reinforcing fiber base, a form in which a large number of long fibers are aligned in one direction to form a UD sheet (unidirectional sheet), a form in which long fibers are woven to form a cloth material (woven fabric), and a non-woven fabric made of short fibers And the like.
Examples of the cloth weaving method include plain weave, twill weave, satin weave, and triaxial weave.
強化繊維基材(A)の繊維目付は、50〜800g/m2が好ましく、75〜300g/m2がより好ましい。強化繊維基材(A)の繊維目付が下限値以上であれば、所望の厚みを有する成形体を得るために必要な積層枚数が多くならず好ましい。強化繊維基材(A)の繊維目付が上限値以下であれば、良好な含浸状態のプリプレグ基材を得やすいため好ましい。 Fiber basis weight of the reinforcing fiber base material (A) is preferably from 50~800g / m 2, 75~300g / m 2 is more preferable. If the fiber basis weight of the reinforcing fiber substrate (A) is at least the lower limit value, it is preferable because the number of laminated layers required for obtaining a molded product having a desired thickness is not increased. If the fiber basis weight of the reinforcing fiber base (A) is not more than the upper limit value, it is preferable because a prepreg base material in a good impregnation state is easily obtained.
熱硬化性樹脂組成物(B)に用いる熱硬化性樹脂(b1)としては、例えば、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、マレイミド樹脂、フェノール樹脂等が挙げられる。補強繊維として炭素繊維を用いる場合は、炭素繊維との接着性の点から、エポキシ樹脂又はビニルエステル樹脂が好ましく、エポキシ樹脂が特に好ましい。
熱硬化性樹脂(b1)としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Examples of the thermosetting resin (b1) used in the thermosetting resin composition (B) include epoxy resins, vinyl ester resins, unsaturated polyester resins, polyimide resins, maleimide resins, and phenol resins. When carbon fiber is used as the reinforcing fiber, an epoxy resin or a vinyl ester resin is preferable, and an epoxy resin is particularly preferable from the viewpoint of adhesiveness with the carbon fiber.
As the thermosetting resin (b1), one type may be used alone, or two or more types may be used in combination.
熱硬化性樹脂組成物(B)には、熱硬化性樹脂(b1)に加えて、硬化剤が含有されていることが好ましい。例えば熱硬化性樹脂(b1)がエポキシ樹脂の場合、硬化剤としては、ジシアンジアミド又はイミダゾール系硬化剤が好ましい。
熱硬化性樹脂組成物(B)には、さらに硬化助剤が含有されていることが好ましい。例えば熱硬化性樹脂(b1)がエポキシ樹脂の場合、硬化助剤としては、尿素化合物が好ましい。
また、熱硬化性樹脂組成物(B)には、無機微粒子等の添加剤が含有されていてもよい。
The thermosetting resin composition (B) preferably contains a curing agent in addition to the thermosetting resin (b1). For example, when the thermosetting resin (b1) is an epoxy resin, the curing agent is preferably dicyandiamide or an imidazole curing agent.
The thermosetting resin composition (B) preferably further contains a curing aid. For example, when the thermosetting resin (b1) is an epoxy resin, a urea compound is preferable as the curing aid.
Further, the thermosetting resin composition (B) may contain additives such as inorganic fine particles.
熱硬化性樹脂組成物(B)の30℃における粘度は、1.0×102〜1.0×105Pa・sが好ましく、5.0×102〜9.8×104Pa・sがより好ましく、1.0×103〜9.7×104Pa・sがさらに好ましい。熱硬化性樹脂組成物(B)の粘度が下限値以上であれば、プリプレグ基材の取り扱い性が優れたものとなり、プリプレグ基材の作製や積層、成形等の作業が容易になる。熱硬化性樹脂組成物(B)の粘度が上限値以下であれば、強化繊維基材(A)に熱硬化性樹脂組成物(B)を含浸させやすく、含浸時に過度に加熱する必要がなくなる。またプリプレグ基材のドレープ性が損なわれにくい。 The viscosity at 30 ° C. of the thermosetting resin composition (B) is preferably 1.0 × 10 2 to 1.0 × 10 5 Pa · s, and 5.0 × 10 2 to 9.8 × 10 4 Pa · s. s is more preferable, and 1.0 × 10 3 to 9.7 × 10 4 Pa · s is more preferable. If the viscosity of the thermosetting resin composition (B) is equal to or higher than the lower limit, the handleability of the prepreg base material is excellent, and operations such as preparation, lamination, and molding of the prepreg base material are facilitated. If the viscosity of the thermosetting resin composition (B) is not more than the upper limit value, the reinforcing fiber base (A) can be easily impregnated with the thermosetting resin composition (B), and it is not necessary to heat excessively during the impregnation. . Moreover, the draping property of the prepreg base material is not easily impaired.
熱硬化性樹脂組成物(B)を2℃/分で昇温させる昇温粘度測定における最低粘度は、1.0〜50Pa・sが好ましい。前記最低粘度が前記範囲内であれば、成形時における熱硬化性樹脂組成物(B)の流動量を適正な範囲に抑制しやすい。前記最低粘度が前記範囲の下限値以上であれば、成形時における熱硬化性樹脂組成物(B)の過度な流動が抑制されやすく、成形体表面に凹凸等の外観不良がより生じにくくなる。前記最低粘度が前記範囲の上限値以下であれば、熱硬化性樹脂組成物(B)の流動量が少なくなりすぎることが抑制されやすく、繊維強化プラスチック成形体の隅々まで熱硬化性樹脂組成物(B)が行き渡りやすい。 As for the minimum viscosity in the temperature rising viscosity measurement which heats up a thermosetting resin composition (B) at 2 degree-C / min, 1.0-50 Pa.s is preferable. If the minimum viscosity is within the above range, the flow rate of the thermosetting resin composition (B) at the time of molding can be easily controlled within an appropriate range. If the minimum viscosity is not less than the lower limit of the above range, excessive flow of the thermosetting resin composition (B) at the time of molding is easily suppressed, and appearance defects such as irregularities are less likely to occur on the surface of the molded body. If the minimum viscosity is less than or equal to the upper limit of the above range, it is easy to suppress the flow amount of the thermosetting resin composition (B) from being excessively reduced, and the thermosetting resin composition is formed in every corner of the fiber-reinforced plastic molded body. Good (B) is easy to get around.
プリプレグ基材としては、例えば、強化繊維が二軸方向に織られた強化繊維基材(A)に熱硬化性樹脂組成物(B)が含浸されたクロスプリプレグ基材、強化繊維が一方向に引き揃えられた強化繊維基材(A)に熱硬化性樹脂組成物(B)が含浸されたプリプレグ基材(UDプリプレグ基材)等が挙げられる。また、強化繊維が一方向に引き揃えた強化繊維基材(A)に熱硬化性樹脂組成物(B)が含浸されたプリプレグ基材に切込みを入れ、プリプレグ基材中の強化繊維を短く分断したものを用いてもよい。 As a prepreg base material, for example, a cross prepreg base material in which a reinforcing fiber base material (A) in which reinforcing fibers are woven in biaxial directions is impregnated with a thermosetting resin composition (B), the reinforcing fibers are in one direction. Examples thereof include a prepreg base material (UD prepreg base material) in which the aligned reinforcing fiber base material (A) is impregnated with the thermosetting resin composition (B). In addition, the reinforcing fiber base (A) in which the reinforcing fibers are aligned in one direction is cut into the prepreg base material impregnated with the thermosetting resin composition (B), and the reinforcing fibers in the prepreg base material are cut short. You may use what you did.
プリプレグ基材中の強化繊維の繊維長は、12.7mm以上が好ましく、25.4mm以上がより好ましい。強化繊維の繊維長が前記下限値以上であれば、繊維強化プラスチック成形体の機械特性が充分に高くなりやすい。 The fiber length of the reinforcing fiber in the prepreg base material is preferably 12.7 mm or more, and more preferably 25.4 mm or more. If the fiber length of the reinforcing fiber is equal to or more than the lower limit value, the mechanical properties of the fiber-reinforced plastic molded body are likely to be sufficiently high.
プリプレグ積層体の積層構成は、特に限定されない。例えば、UDプリプレグ基材を用いる場合、上下に隣り合うUDプリプレグ基材の強化繊維の繊維軸が直交するように各UDプリプレグ基材を積層した構成が挙げられる。プリプレグ積層体においては、同一種類のプリプレグ基材のみを積層してもよく、異なる種類のプリプレグ基材を積層してもよい。
プリプレグ基材の積層数は、特に限定されず、要求される特性等に応じて適宜決定できる。
The laminated structure of the prepreg laminate is not particularly limited. For example, when using a UD prepreg base material, the structure which laminated | stacked each UD prepreg base material so that the fiber axis of the reinforced fiber of the UD prepreg base material adjacent on the upper and lower sides may be mentioned. In the prepreg laminate, only the same type of prepreg base material may be laminated, or different types of prepreg base materials may be laminated.
The number of laminated prepreg base materials is not particularly limited, and can be appropriately determined according to required characteristics.
≪樹脂フィルム≫
本発明に用いる樹脂フィルムは、熱可塑性樹脂粒子(c1)を含有する熱硬化性樹脂組成物(C)で形成された樹脂フィルムである。
熱可塑性樹脂粒子(c1)は、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリイミド及びポリエーテルイミドからなる群から選ばれる少なくとも1種の熱可塑性樹脂を含有する粒子である。
≪Resin film≫
The resin film used for this invention is a resin film formed with the thermosetting resin composition (C) containing a thermoplastic resin particle (c1).
The thermoplastic resin particles (c1) are particles containing at least one thermoplastic resin selected from the group consisting of polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide and polyetherimide.
熱可塑性樹脂粒子(c1)の平均粒子径は、0.1〜100μmが好ましく、1〜50μmがより好ましい。熱可塑性樹脂粒子(c1)の平均粒子径が下限値以上であれば、成形時における熱硬化性樹脂組成物(C)の過度な流動が抑えられやすい。その結果、得られる繊維強化プラスチック成形体の表面に樹脂枯れや繊維蛇行等の外観不良が生じることが抑制されやすくなる。熱可塑性樹脂粒子(c1)の平均粒子径が上限値以下であれば、表面の平滑性に優れた強化繊維プラスチック成形体が得られやすい。
なお、熱可塑性樹脂粒子(c1)の平均粒子径は、レーザー回折法で測定される体積基準での累積頻度50%の粒径(D50)を意味する。
The average particle diameter of the thermoplastic resin particles (c1) is preferably 0.1 to 100 μm, and more preferably 1 to 50 μm. If the average particle diameter of the thermoplastic resin particles (c1) is not less than the lower limit value, excessive flow of the thermosetting resin composition (C) during molding can be easily suppressed. As a result, it becomes easy to suppress appearance defects such as resin withering and fiber meandering on the surface of the obtained fiber reinforced plastic molding. If the average particle diameter of the thermoplastic resin particles (c1) is not more than the upper limit value, it is easy to obtain a reinforced fiber plastic molded article having excellent surface smoothness.
The average particle diameter of the thermoplastic resin particles (c1) means a particle diameter (D50) having a cumulative frequency of 50% on a volume basis measured by a laser diffraction method.
熱可塑性樹脂粒子(c1)のガラス転移温度(Tg)は、成形工程の金型温度以上であることが好ましく、金型温度より20℃以上高いことがより好ましく、金型温度より40℃以上高いことがさらに好ましい。繊維強化プラスチック成形体を製造する際の一般の金型温度を考慮すると、熱可塑性樹脂粒子(c1)のTgは、140℃以上が好ましく、180℃以上がより好ましい。熱可塑性樹脂粒子(c1)のTgが前記下限値以上であれば成形時における熱硬化性樹脂組成物(C)の過度な流動が抑えられる効果がより得られやすくなり、繊維強化プラスチック成形体の表面に樹脂枯れや繊維蛇行等の外観不良がより生じにくくなる。 The glass transition temperature (Tg) of the thermoplastic resin particles (c1) is preferably equal to or higher than the mold temperature in the molding step, more preferably 20 ° C. higher than the mold temperature, and 40 ° C. higher than the mold temperature. More preferably. Considering a general mold temperature when producing a fiber-reinforced plastic molded body, the Tg of the thermoplastic resin particles (c1) is preferably 140 ° C. or higher, and more preferably 180 ° C. or higher. If the Tg of the thermoplastic resin particles (c1) is equal to or higher than the lower limit, an effect of suppressing excessive flow of the thermosetting resin composition (C) at the time of molding can be more easily obtained, and the fiber-reinforced plastic molded article can be obtained. Appearance defects such as resin withering and fiber meandering are less likely to occur on the surface.
熱可塑性樹脂粒子(c1)としては、耐熱性の点から、ポリエーテルスルホン粒子が特に好ましい。 As the thermoplastic resin particles (c1), polyethersulfone particles are particularly preferable from the viewpoint of heat resistance.
熱硬化性樹脂組成物(C)に用いる熱硬化性樹脂(c2)としては、例えば、熱硬化性樹脂(b1)で挙げたものと同じものが挙げられる。
熱硬化性樹脂組成物(C)に用いる熱硬化性樹脂(c2)としては、耐熱性と機械的強度の点から、エポキシ樹脂が好ましい。
As a thermosetting resin (c2) used for a thermosetting resin composition (C), the same thing as what was mentioned by the thermosetting resin (b1) is mentioned, for example.
As a thermosetting resin (c2) used for a thermosetting resin composition (C), an epoxy resin is preferable from the point of heat resistance and mechanical strength.
熱硬化性樹脂組成物(C)には、熱硬化性樹脂(c2)に加えて、硬化剤が含有されていることが好ましい。例えば熱硬化性樹脂(c1)がエポキシ樹脂の場合、硬化剤としては、イミダゾール系硬化剤が好ましい。
熱硬化性樹脂組成物(C)には、さらに硬化助剤が含有されていることが好ましい。例えば熱硬化性樹脂(c1)がエポキシ樹脂の場合、硬化助剤としては、尿素化合物が好ましい。
また、熱硬化性樹脂組成物(C)には、熱可塑性樹脂粒子(c1)を分散させるための分散剤、無機微粒子等の添加剤が含有されていてもよい。
The thermosetting resin composition (C) preferably contains a curing agent in addition to the thermosetting resin (c2). For example, when the thermosetting resin (c1) is an epoxy resin, an imidazole-based curing agent is preferable as the curing agent.
The thermosetting resin composition (C) preferably further contains a curing aid. For example, when the thermosetting resin (c1) is an epoxy resin, a urea compound is preferable as the curing aid.
Further, the thermosetting resin composition (C) may contain additives such as a dispersant for dispersing the thermoplastic resin particles (c1) and inorganic fine particles.
熱硬化性樹脂組成物(C)中の熱可塑性樹脂粒子(c1)と熱硬化性樹脂(c2)の合計質量に対する熱可塑性樹脂粒子(c1)の質量の割合は、3〜50質量%が好ましく、5〜35質量%がより好ましい。熱可塑性樹脂粒子(c1)の割合が前記下限値以上であれば、成形時の熱硬化性樹脂組成物(C)の過度な流動を抑制して、成形体表面に樹脂枯れや繊維蛇行等の外観不良が生じることを抑制する効果が得られやすい。熱可塑性樹脂粒子(c1)の割合が前記上限値以下であれば、タック性などの取り扱い性が好ましい。 The ratio of the mass of the thermoplastic resin particles (c1) to the total mass of the thermoplastic resin particles (c1) and the thermosetting resin (c2) in the thermosetting resin composition (C) is preferably 3 to 50% by mass. 5 to 35% by mass is more preferable. If the ratio of the thermoplastic resin particles (c1) is equal to or more than the lower limit value, excessive flow of the thermosetting resin composition (C) during molding is suppressed, and the molded body surface is subjected to resin withering, fiber meandering, and the like. It is easy to obtain the effect of suppressing appearance defects. When the ratio of the thermoplastic resin particles (c1) is not more than the above upper limit value, handleability such as tackiness is preferable.
熱硬化性樹脂組成物(C)の30℃における粘度は、1.0×102〜1.0×105Pa・sが好ましく、5.0×102〜9.8×104Pa・sがより好ましく、1.0×103〜9.7×104Pa・sがさらに好ましい。熱硬化性樹脂組成物(C)の粘度が下限値以上であれば、樹脂フィルムの取り扱い性が優れたものとなる。熱硬化性樹脂組成物(C)の粘度が上限値以下であれば、強化繊維基材(D)に熱硬化性樹脂組成物(C)を含浸させやすくなる。 The viscosity at 30 ° C. of the thermosetting resin composition (C) is preferably 1.0 × 10 2 to 1.0 × 10 5 Pa · s, and 5.0 × 10 2 to 9.8 × 10 4 Pa · s. s is more preferable, and 1.0 × 10 3 to 9.7 × 10 4 Pa · s is more preferable. If the viscosity of a thermosetting resin composition (C) is more than a lower limit, the handleability of a resin film will be excellent. If the viscosity of a thermosetting resin composition (C) is below an upper limit, it will become easy to impregnate a reinforcing fiber base material (D) with a thermosetting resin composition (C).
熱硬化性樹脂組成物(C)を2℃/分で昇温させる昇温粘度測定における最低粘度は、1.0〜50Pa・sが好ましい。前記最低粘度が前記範囲内であれば、成形時における熱硬化性樹脂組成物(C)の流動量を適正な範囲に抑制しやすい。前記最低粘度が前記範囲の下限値以上であれば、成形時における熱硬化性樹脂組成物(C)の過度な流動が抑制されやすく、成形体表面に樹脂枯れや繊維蛇行等の外観不良がより生じにくくなる。前記最低粘度が前記範囲の上限値以下であれば、熱硬化性樹脂組成物(C)の流動量が少なくなりすぎることが抑制されやすい。 As for the minimum viscosity in the temperature rising viscosity measurement which heats up a thermosetting resin composition (C) at 2 degree-C / min, 1.0-50 Pa.s is preferable. If the minimum viscosity is within the above range, the flow rate of the thermosetting resin composition (C) during molding can be easily controlled within an appropriate range. If the minimum viscosity is not less than the lower limit of the above range, excessive flow of the thermosetting resin composition (C) at the time of molding is easily suppressed, and appearance defects such as resin withering and fiber meandering are more likely to occur on the surface of the molded body. It becomes difficult to occur. If the minimum viscosity is not more than the upper limit of the range, it is easy to suppress the flow rate of the thermosetting resin composition (C) from being excessively reduced.
樹脂フィルムには、繊維目付が50g/m2以下の強化繊維基材(D)が含有されることが好ましい。これにより、繊維強化プラスチック成形体の表面に樹脂枯れや繊維蛇行等の外観不良が生じることを抑制しつつ、機械的強度をより高めることができる。 The resin film preferably contains a reinforcing fiber substrate (D) having a fiber basis weight of 50 g / m 2 or less. Thereby, the mechanical strength can be further increased while suppressing the occurrence of appearance defects such as resin withering and fiber meandering on the surface of the fiber-reinforced plastic molded body.
強化繊維基材(D)を構成する強化繊維としては、特に限定されず、例えば、強化繊維基材(A)で挙げたものと同じものが挙げられる。
強化繊維基材は、長尺のものがロール状に巻き取られた状態とされ、その状態から引き出されつつ使用されることが多い。この場合、ロール状の状態から引き出される際にその張力によって強化繊維基材が幅方向に収縮しやすい。強化繊維基材(D)の強化繊維としては、ロール状の状態から引き出されて使用される場合でも基材が幅方向に収縮しにくく、また吸水性が低い強化繊維を用いることが好ましい。具体的には、強化繊維基材(D)の強化繊維としては、炭素繊維、ガラス繊維が好ましい。
It does not specifically limit as a reinforcing fiber which comprises a reinforcing fiber base material (D), For example, the same thing as what was mentioned by the reinforcing fiber base material (A) is mentioned.
The reinforcing fiber base is in a state where a long one is wound into a roll shape, and is often used while being drawn out from the state. In this case, the reinforcing fiber base is easily contracted in the width direction due to the tension when drawn out from the roll state. As the reinforcing fibers of the reinforcing fiber substrate (D), it is preferable to use reinforcing fibers that are less likely to shrink in the width direction and have a low water absorption even when used from a roll-like state. Specifically, carbon fibers and glass fibers are preferable as the reinforcing fibers of the reinforcing fiber substrate (D).
強化繊維基材(D)の強化繊維は、長繊維であってもよく、短繊維であってもよい。
強化繊維基材(D)の形態としては、多数の長繊維を一方向に揃えてUDシート(一方向シート)とする形態、長繊維を製織してクロス材(織物)とする形態、短繊維からなる不織布とする形態等が挙げられる。なかでも、表面の平滑性に優れた繊維強化プラスチックが得られやすい点から、強化繊維基材(D)としては強化繊維からなる不織布が好ましい。
The reinforcing fibers of the reinforcing fiber base (D) may be long fibers or short fibers.
The form of the reinforcing fiber base (D) includes a form in which a large number of long fibers are aligned in one direction to form a UD sheet (unidirectional sheet), a form in which long fibers are woven to form a cloth material (woven fabric), and short fibers The form made into the nonwoven fabric which consists of etc. is mentioned. Especially, the nonwoven fabric which consists of a reinforced fiber is preferable as a reinforced fiber base material (D) from the point which is easy to obtain the fiber reinforced plastic excellent in surface smoothness.
強化繊維基材(D)の繊維目付は、強化繊維基材(D)が成形体表面で透けて見えることを抑制しやすい点から、プリプレグ基材に用いる強化繊維基材(A)の繊維目付よりも小さいことが好ましい。強化繊維基材(D)の繊維目付の上限値は、50g/m2であり、30g/m2が好ましい。
強化繊維基材(D)の繊維目付の下限値は、強化繊維基材(D)の製造が容易になる点から、1g/m2が好ましい。
The fiber basis weight of the reinforcing fiber base material (D) is that the reinforcing fiber base material (D) used for the prepreg base material is easy to suppress the see-through of the reinforcing fiber base material (D) on the surface of the molded body. Is preferably smaller. The upper limit value of the fiber basis weight of the reinforcing fiber base (D) is 50 g / m 2 , and preferably 30 g / m 2 .
The lower limit value of the fiber basis weight of the reinforcing fiber base (D) is preferably 1 g / m 2 from the viewpoint of easy production of the reinforcing fiber base (D).
樹脂フィルムが強化繊維基材(D)を含有する場合、樹脂フィルム中の強化繊維の繊維長は、5〜50mmが好ましく、10〜30mmがより好ましい。強化繊維の繊維長が前記下限値以上であれば、繊維強化プラスチック成形体の機械特性が充分に高くなりやすい。強化繊維の繊維長が前記上限値以下であれば、積層体の成形性が向上する。 When the resin film contains the reinforcing fiber base (D), the fiber length of the reinforcing fiber in the resin film is preferably 5 to 50 mm, and more preferably 10 to 30 mm. If the fiber length of the reinforcing fiber is equal to or more than the lower limit value, the mechanical properties of the fiber-reinforced plastic molded body are likely to be sufficiently high. If the fiber length of the reinforcing fiber is not more than the above upper limit value, the moldability of the laminate is improved.
樹脂フィルムが強化繊維基材(D)を含有する場合、樹脂フィルムにおける繊維体積含有率(Vf)は、50体積%以上が好ましく、70体積%以上がより好ましい。Vfが下限値以上であれば、繊維強化プラスチック成形体の機械特性が充分に高くなりやすい。
なお、樹脂フィルムのVfは、プリプレグ基材のVfと同様の方法で測定される値を意味する。
When the resin film contains the reinforcing fiber substrate (D), the fiber volume content (Vf) in the resin film is preferably 50% by volume or more, and more preferably 70% by volume or more. When Vf is equal to or higher than the lower limit, the mechanical properties of the fiber-reinforced plastic molded body are likely to be sufficiently high.
In addition, Vf of a resin film means the value measured by the method similar to Vf of a prepreg base material.
樹脂フィルムが強化繊維基材(D)を含有する場合、樹脂フィルム中の樹脂含有量は、強化繊維基材(D)よりも多いことが好ましい。この場合、樹脂フィルム中の樹脂含有量は、50〜500g/m2が好ましく、100〜300g/m2がより好ましい。樹脂フィルム中の樹脂含有量が下限値以上であれば、強化繊維基材(D)が成形体表面に露出しにくく、表面の平滑性に優れた繊維強化プラスチック成形体が得られやすい。樹脂フィルム中の樹脂含有量が上限値以下であれば、樹脂フィルムの取り扱いが容易になる。 When the resin film contains the reinforcing fiber substrate (D), the resin content in the resin film is preferably larger than that of the reinforcing fiber substrate (D). In this case, the resin content in the resin film is preferably 50~500g / m 2, 100~300g / m 2 is more preferable. If the resin content in the resin film is equal to or higher than the lower limit, the reinforcing fiber base (D) is hardly exposed on the surface of the molded body, and a fiber-reinforced plastic molded body having excellent surface smoothness is easily obtained. If resin content in a resin film is below an upper limit, handling of a resin film will become easy.
樹脂フィルムの厚さは、20〜400μmが好ましく、40〜300μmがより好ましい。樹脂フィルムの厚さが下限値以上であれば、成形体表面における繊維の遮蔽性に優れ好ましい。樹脂フィルムの厚さが上限値以下であれば、成形体の厚みが必要以上に厚くならないため好ましい。 The thickness of the resin film is preferably 20 to 400 μm, and more preferably 40 to 300 μm. If the thickness of a resin film is more than a lower limit, it is excellent in the fiber-shielding property in the molded object surface, and preferable. If the thickness of the resin film is less than or equal to the upper limit value, it is preferable because the thickness of the molded body does not increase more than necessary.
プリプレグ積層体の1つの表面に積層する樹脂フィルムの数は、特に限定されず、1枚であってもよく、2枚以上であってもよい。
なお、本発明に用いる樹脂フィルムは、強化繊維基材(D)を含有しない樹脂フィルムであってもよい。
The number of resin films laminated on one surface of the prepreg laminate is not particularly limited, and may be one or may be two or more.
In addition, the resin film which does not contain a reinforced fiber base material (D) may be sufficient as the resin film used for this invention.
[成形工程]
積層工程で得た積層体を、金型により加熱加圧して繊維強化プラスチック成形体を得る。
金型を用いた積層体の成形方法としては、公知の成形方法を採用でき、例えば、オートクレーブ成形、オーブン成形、内圧成形、プレス成形等が挙げられる。
プレス成形は、他の成形方法に比べて、表層に樹脂フィルムから形成された樹脂層を有する繊維強化プラスチック成形体を得ることが容易であるものの、成形圧力が高く、金型外に樹脂が流出しやすい傾向がある。そのため、成形時の金型からの樹脂流出を抑制できる本発明は、成形工程でプレス成形を採用する場合により有効であり、ハイサイクルプレス成形を採用する場合に特に有効である。
[Molding process]
The laminated body obtained in the laminating step is heated and pressed with a mold to obtain a fiber-reinforced plastic molded body.
As a method for forming a laminate using a mold, a known forming method can be employed, and examples thereof include autoclave forming, oven forming, internal pressure forming, and press forming.
Compared to other molding methods, press molding makes it easier to obtain a fiber-reinforced plastic molded body having a resin layer formed from a resin film on the surface, but the molding pressure is high and the resin flows out of the mold. It tends to be easy to do. Therefore, the present invention that can suppress the resin outflow from the mold during molding is more effective when press molding is employed in the molding process, and is particularly effective when high cycle press molding is employed.
例えば、図2に例示した金型100により積層体1をプレス成形する場合について説明する。金型100は、上面側に凸部112が設けられた下型110と、下面側に凹部122が設けられた上型120とを備える。上型120を下型110に近接させて金型100を閉じたときに、金型100内の凸部112と凹部122の間に目的の繊維強化プラスチック成形体の形状と相補的な形状のキャビティが形成されるようになっている。
For example, the case where the
図2(a)に示すように、加熱された金型100における下型110の凸部112上に、樹脂フィルム14が上になるように積層体1を配置する。
次いで、図2(b)に示すように、上型120を下型110に近接させて金型100を閉じ、積層体1を加熱加圧して成形する。金型100により加圧されながら加熱されることで、積層体1中の熱硬化性樹脂組成物(B)及び熱硬化性樹脂組成物(C)が流動しつつ硬化する。このとき、樹脂フィルム14に熱可塑性樹脂粒子(c1)が含有されていることで熱硬化性樹脂組成物(C)が過度に流動することが抑制されるため、金型100のエッジ部から熱硬化性樹脂組成物(C)が流出することが抑制される(つまり過度な流出を防ぐことができる)。
硬化後、図2(c)に示すように、金型100を開いて繊維強化プラスチック成形体2を取り出す。
As shown in FIG. 2A, the
Next, as shown in FIG. 2B, the
After curing, as shown in FIG. 2 (c), the
成形条件は、前述の積層体を用いる以外は、公知の成形条件を採用することができる。
成形時の金型温度は、100〜180℃が好ましく、120〜160℃がより好ましい。
成形時の面圧は、1〜15MPaが好ましく、4〜10MPaがより好ましい。
成形時間は、1〜15分が好ましく、2〜5分がより好ましい。
As the molding conditions, known molding conditions can be adopted except that the above-described laminate is used.
100-180 degreeC is preferable and the mold temperature at the time of shaping | molding has more preferable 120-160 degreeC.
The surface pressure during molding is preferably 1 to 15 MPa, and more preferably 4 to 10 MPa.
The molding time is preferably 1 to 15 minutes, and more preferably 2 to 5 minutes.
[賦形工程]
本発明の繊維強化プラスチックの製造方法においては、成形工程に先立ち、積層工程で得た積層体を賦形してプリフォームを得る賦形工程をさらに有していてもよい。すなわち、本発明の繊維強化プラスチックの製造方法においては、積層工程、賦形工程及び成形工程をこの順に行う方法であってもよい。この場合は、積層工程で得た積層体を賦形工程において賦形してプリフォームを得た後、該プリフォームを成形工程で加熱加圧して成形することで繊維強化プラスチックを製造する。
[Shaping process]
In the manufacturing method of the fiber reinforced plastic of this invention, you may have further the shaping | molding process which shapes the laminated body obtained at the lamination process and obtains a preform prior to a formation process. That is, in the manufacturing method of the fiber reinforced plastic of this invention, the method of performing a lamination process, a shaping process, and a shaping | molding process in this order may be sufficient. In this case, a fiber reinforced plastic is manufactured by shaping the laminate obtained in the lamination step in the shaping step to obtain a preform, and then molding the preform by heating and pressing in the molding step.
積層体の賦形方法は、目的の繊維強化プラスチック成形体の形状を踏まえた中間的な形状に賦形できる方法であればよく、本発明の積層体を用いる以外は公知の方法を採用することができる。 The method for shaping the laminate is not particularly limited as long as it can be shaped into an intermediate shape based on the shape of the target fiber-reinforced plastic molded article, and a known method is adopted except that the laminate of the present invention is used. Can do.
以上説明した本発明の繊維強化プラスチック成形体の製造方法においては、熱可塑性樹脂粒子(c1)を含有する熱硬化性樹脂組成物(C)で形成された樹脂フィルムをプリプレグ積層体の表面に積層した積層体を用いる。樹脂フィルム中に熱可塑性樹脂粒子(c1)が含有されていることで、成形時において金型内で熱硬化性樹脂組成物(C)が過度に流動することが抑制される。これにより、ハイサイクルプレス成形を採用した場合であっても、樹脂フィルムに含まれる熱硬化性樹脂組成物(C)が金型外に流出することが抑制される。そのため、得られる繊維強化プラスチック成形体の表面に樹脂枯れや繊維蛇行等の外観不良が生じることが抑制される。
また、本発明の繊維強化プラスチック成形体の製造方法においては、プリプレグ積層体の表面に樹脂フィルムを積層して成形を行うため、得られる繊維強化プラスチック成形体の表面において繊維が透けて見えることも抑制される。
In the method for producing a fiber-reinforced plastic molded body of the present invention described above, a resin film formed of a thermosetting resin composition (C) containing thermoplastic resin particles (c1) is laminated on the surface of a prepreg laminate. The laminated body used is used. By containing the thermoplastic resin particles (c1) in the resin film, the thermosetting resin composition (C) is suppressed from excessively flowing in the mold during molding. Thereby, even if it is a case where high cycle press molding is employ | adopted, it is suppressed that the thermosetting resin composition (C) contained in a resin film flows out of a metal mold | die. Therefore, appearance defects such as resin withering and fiber meandering are suppressed from occurring on the surface of the obtained fiber-reinforced plastic molded body.
Further, in the method for producing a fiber reinforced plastic molded body of the present invention, since the resin film is laminated on the surface of the prepreg laminate, the fiber may be seen through the surface of the obtained fiber reinforced plastic molded body. It is suppressed.
[繊維強化プラスチック成形体]
本発明の繊維強化プラスチック成形体は、前述した積層体を加熱加圧して成形された繊維強化プラスチック成形体である。
本発明の繊維強化プラスチック成形体は、プリプレグ積層体から形成された複合材料部と、該複合材料部の表面において樹脂フィルムから形成された樹脂層と、を備える。前記複合材料部は、強化繊維基材(A)及び熱硬化性樹脂組成物(B)の硬化物を含有する。前記樹脂層は、熱硬化性樹脂組成物(C)の硬化物、及び必要に応じて用いられる強化繊維基材(D)を含有する。
本発明の繊維強化プラスチック成形体の形状及び大きさは、特に限定されず、用途に応じて適宜決定できる。
[Fiber-reinforced plastic molding]
The fiber-reinforced plastic molded body of the present invention is a fiber-reinforced plastic molded body molded by heating and pressing the above-described laminate.
The fiber-reinforced plastic molded body of the present invention includes a composite material portion formed from a prepreg laminate, and a resin layer formed from a resin film on the surface of the composite material portion. The said composite material part contains the hardened | cured material of a reinforced fiber base material (A) and a thermosetting resin composition (B). The said resin layer contains the hardened | cured material of a thermosetting resin composition (C), and the reinforced fiber base material (D) used as needed.
The shape and size of the fiber-reinforced plastic molded body of the present invention are not particularly limited and can be appropriately determined according to the application.
例えば、積層体1を金型100により成形して得た繊維強化プラスチック成形体2は、図3に示すように、プリプレグ積層体12から形成された複合材料部20と、複合材料部20の表面に形成され、樹脂フィルム14から形成された樹脂層22と、を備える。複合材料部20は、強化繊維基材(A)及び熱硬化性樹脂組成物(B)の硬化物を含有する。樹脂層22は、熱硬化性樹脂組成物(C)の硬化物、及び必要に応じて用いられる強化繊維基材(D)を含有する。
また、この例の繊維強化プラスチック成形体2は、平板部3の両方の端部から、樹脂層22と反対側に向かって側部4が垂直に延出した態様になっている。
For example, a fiber reinforced plastic molded
Further, the fiber reinforced plastic molded
本発明の繊維強化プラスチック成形体においては、成形時に樹脂フィルムに含まれる熱硬化性樹脂組成物(C)が過度に流動することが抑制されているため、表面における樹脂枯れや繊維蛇行等の外観不良の発生、及び繊維が透けて見えることが抑制されている。 In the fiber-reinforced plastic molded body of the present invention, since the thermosetting resin composition (C) contained in the resin film during molding is suppressed from excessively flowing, appearance such as resin withering and fiber meandering on the surface Generation | occurrence | production of a defect and fiber see-through are suppressed.
以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[平均粒子径の測定]
熱可塑性樹脂粒子を空気中に分散させ、日機装株式会社製AEROTRAC SPR MDEL:7340を用いてレーザー回折法にて体積基準の粒度分布を測定し、該粒度分布における累積頻度50%の粒径(D50)を熱可塑性樹脂粒子の平均粒子径とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
[Measurement of average particle size]
The thermoplastic resin particles are dispersed in the air, and the volume-based particle size distribution is measured by laser diffraction using an AEROTRAC SPR MDEL: 7340 manufactured by Nikkiso Co., Ltd., and the particle size (D50) having a cumulative frequency of 50% in the particle size distribution. ) As the average particle diameter of the thermoplastic resin particles.
[樹脂組成物の粘度測定]
樹脂組成物の粘度は、以下の測定条件で測定した。
装置:レオメーター(ティー・エイ・インスツルメント社製、「VAR−100」)、
使用プレート:25φパラレルプレート、
プレートギャップ:0.5mm、
測定周波数:10rad/秒、
昇温速度:2℃/分、
測定開始温度:30℃、
応力:300Pa。
[Measurement of viscosity of resin composition]
The viscosity of the resin composition was measured under the following measurement conditions.
Apparatus: Rheometer (manufactured by TA Instruments, "VAR-100"),
Plate used: 25φ parallel plate,
Plate gap: 0.5mm,
Measurement frequency: 10 rad / sec,
Temperature increase rate: 2 ° C / min,
Measurement start temperature: 30 ° C.
Stress: 300 Pa.
[樹脂フロー率の測定及び評価]
各例における成形前の積層体の質量をM0(g)とし、成形後にバリを除いた繊維強化プラスチック成形体の質量をM1(g)として、下式を用いて樹脂フロー率(質量%)を算出した。
樹脂フロー率(%)=[(M0−M1)/M0]×100
(評価基準)
樹脂フローの評価は以下の基準に従って行った。
○:樹脂フロー率が2%未満である。
×:樹脂フロー率が2%以上である。
[Measurement and evaluation of resin flow rate]
The mass of the laminate before molding in each example is M 0 (g), and the mass of the fiber-reinforced plastic molded body excluding burrs after molding is M 1 (g). ) Was calculated.
Resin flow rate (%) = [(M 0 −M 1 ) / M 0 ] × 100
(Evaluation criteria)
The resin flow was evaluated according to the following criteria.
○: Resin flow rate is less than 2%.
X: The resin flow rate is 2% or more.
[塗装外観(湿熱試験後)評価]
塗装外観評価は、以下のように行った。
成形体表面におよそ80μm厚みの塗装を行い、50℃、95%RHの条件下で240時間保持した後の塗膜表面を目視で評価した。
(評価基準)
塗装外観評価は以下の基準に従って行った。
○:繊維の透けが認められない。
×:繊維の透けが認められる。
[Evaluation of paint appearance (after wet heat test)]
The coating appearance evaluation was performed as follows.
The surface of the molded body was coated with a thickness of about 80 μm, and the coating film surface after being maintained for 240 hours under the conditions of 50 ° C. and 95% RH was visually evaluated.
(Evaluation criteria)
The coating appearance evaluation was performed according to the following criteria.
○: No fiber sheer is observed.
X: The transparency of a fiber is recognized.
[使用原料]
本実施例に使用した原料を以下に示す。
(熱硬化性樹脂(c2))
c2−1:エポキシ樹脂A(粘度(90℃):1.3Pa・s)。
c2−1:エポキシ樹脂B(粘度(30℃):5.0Pa・s)。
[Raw materials]
The raw materials used in this example are shown below.
(Thermosetting resin (c2))
c2-1: Epoxy resin A (viscosity (90 ° C.): 1.3 Pa · s).
c2-1: Epoxy resin B (viscosity (30 ° C.): 5.0 Pa · s).
(熱可塑性樹脂粒子(c1))
c1−1:ポリエーテルスルホン粒子(製品名「Uldtrasone E2020SR micro」、BASF社製、平均粒子径(D50):22μm)。
(Thermoplastic resin particles (c1))
c1-1: Polyethersulfone particles (product name “Udtrazone E2020SR micro”, manufactured by BASF, average particle size (D50): 22 μm).
(他の熱可塑性樹脂粒子(比較対象))
x−1:フェノキシ樹脂粒子(製品名「PKHP−80」、InChem社製、平均粒子径(D50):60μm)。
x−2:ポリアミド12粒子(製品名「Vestosint2158」、Evonik Industries AG社製、平均粒子径(D50):21μm)。
x−3:アクリル樹脂粒子(製品名「LP−3121」、三菱レイヨン社製、平均粒子径(D50):70μm)。
(Other thermoplastic resin particles (for comparison))
x-1: Phenoxy resin particles (product name “PKHP-80”, manufactured by InChem, average particle diameter (D50): 60 μm).
x-2:
x-3: Acrylic resin particles (product name “LP-3121”, manufactured by Mitsubishi Rayon Co., Ltd., average particle diameter (D50): 70 μm).
(熱可塑性樹脂(比較対象))
y−1:ポリエーテルスルホン(製品名「Uldtrasone E2020SR micro」、BASF社製、エポキシ樹脂に溶解させて使用)。
(Thermoplastic resin (for comparison))
y-1: Polyethersulfone (product name “Ultrasone E2020SR micro”, manufactured by BASF, dissolved in epoxy resin and used).
(硬化剤)
e−1:3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(DCMU)(製品名「DCMU−99」、保土ヶ谷化学社製)。
e−2:イミダゾール系エポキシ樹脂硬化剤(製品名「ノバキュアHX3722」、旭化成イーマテリアルズ社製)。
e−3:イミダゾール系エポキシ樹脂硬化剤(製品名「キュアゾール2PHZ−PW」、四国化成社製)。
(Curing agent)
e-1: 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU) (product name “DCMU-99”, manufactured by Hodogaya Chemical Co., Ltd.).
e-2: Imidazole-based epoxy resin curing agent (product name “Novacure HX3722”, manufactured by Asahi Kasei E-Materials).
e-3: Imidazole-based epoxy resin curing agent (product name “CURESOL 2PHZ-PW”, manufactured by Shikoku Kasei Co., Ltd.).
[実施例1]
熱硬化性樹脂(c2−1)95質量部と熱硬化性樹脂(c2−2)12.5質量部とを溶解釜に投入し、80℃に加熱して混合した後に60℃程度まで冷却した。さらに熱可塑性樹脂粒子(c1−1)5質量部と、硬化剤(e−1)5質量部と、硬化剤(e−2)10質量部と、硬化剤(e−3)5質量部とを加え、60℃で撹拌混合して熱硬化性樹脂組成物(C−1)を得た。
次いで、ヒラノテクシード製マルチコーター M−500型を用いて、離型紙上に熱硬化性樹脂組成物(C−1)を塗布し、樹脂含有量が150g/m2のシートを得た。
次いで、離型紙から剥離した前記シートをガラス繊維不織布(10g/m2、H&V社製)に含浸させて、樹脂フィルムを得た。
パイロフィルプリプレグ(製品名「TR366E250S」、三菱レイヨン社製)を、強化繊維の繊維軸方向が揃うように5枚積層したプリプレグ積層体の上面に、前記樹脂フィルムを配置して積層体とした。図1に例示した金型100により、面圧8MPa、金型温度140℃、成形時間5分の条件で前記積層体をプレス成形し、繊維強化プラスチック成形体(成形板)を得た。
[Example 1]
95 parts by mass of thermosetting resin (c2-1) and 12.5 parts by mass of thermosetting resin (c2-2) were put into a melting pot, heated to 80 ° C., mixed, and then cooled to about 60 ° C. . Furthermore, 5 parts by mass of thermoplastic resin particles (c1-1), 5 parts by mass of curing agent (e-1), 10 parts by mass of curing agent (e-2), and 5 parts by mass of curing agent (e-3) And stirred and mixed at 60 ° C. to obtain a thermosetting resin composition (C-1).
Subsequently, the thermosetting resin composition (C-1) was apply | coated on the release paper using the multicoater M-500 type | mold made from Hirano tech seed, and the sheet | seat whose resin content is 150 g / m < 2 > was obtained.
Next, the sheet peeled from the release paper was impregnated into a glass fiber nonwoven fabric (10 g / m 2 , manufactured by H & V) to obtain a resin film.
The resin film was placed on the upper surface of a prepreg laminate in which five pyrofil prepregs (product name “TR366E250S”, manufactured by Mitsubishi Rayon Co., Ltd.) were laminated so that the fiber axis directions of the reinforcing fibers were aligned, to obtain a laminate. The laminate was press molded with the
[実施例2〜5]
各成分の組成及び樹脂含有量を表1に示すように変更した以外は、実施例1と同様にして熱硬化性樹脂組成物(C−2)〜(C−5)を調製し、樹脂フィルムを作製した。該樹脂フィルムを用いて、実施例1と同様にして繊維強化プラスチック成形体を得た。
[Examples 2 to 5]
Except having changed the composition and resin content of each component as shown in Table 1, thermosetting resin compositions (C-2) to (C-5) were prepared in the same manner as in Example 1, and resin films Was made. Using this resin film, a fiber-reinforced plastic molded body was obtained in the same manner as in Example 1.
[比較例1]
熱可塑性樹脂粒子(c1−1)を用いなかった以外は、実施例1と同様にして熱硬化性樹脂組成物(X−1)を調製した。熱硬化性樹脂組成物(X−1)を用いた以外は、実施例1と同様にして樹脂フィルムを作製し、該樹脂フィルムを用いて実施例1と同様にして繊維強化プラスチック成形体を得た。
[Comparative Example 1]
A thermosetting resin composition (X-1) was prepared in the same manner as in Example 1 except that the thermoplastic resin particles (c1-1) were not used. A resin film was produced in the same manner as in Example 1 except that the thermosetting resin composition (X-1) was used, and a fiber-reinforced plastic molded article was obtained in the same manner as in Example 1 using the resin film. It was.
[比較例2]
熱硬化性樹脂(c2−1)95質量部と、熱硬化性樹脂(c2−2)12.5質量部と、熱可塑性樹脂(y−1)7.7質量部とを溶解釜に投入し、80℃に加熱して混合した後に60℃程度まで冷却した。さらに硬化剤(e−1)5質量部と、硬化剤(e−2)10質量部と、硬化剤(e−3)5質量部とを加え、60℃で撹拌混合して熱硬化性樹脂組成物(X−2)を得た。熱硬化性樹脂組成物(X−2)を用いた以外は、実施例1と同様にして樹脂フィルムを作製し、該樹脂フィルムを用いて実施例1と同様にして繊維強化プラスチック成形体を得た。
[Comparative Example 2]
95 parts by mass of thermosetting resin (c2-1), 12.5 parts by mass of thermosetting resin (c2-2), and 7.7 parts by mass of thermoplastic resin (y-1) are charged into a melting pot. The mixture was heated to 80 ° C. and mixed, and then cooled to about 60 ° C. Furthermore, 5 parts by mass of the curing agent (e-1), 10 parts by mass of the curing agent (e-2), and 5 parts by mass of the curing agent (e-3) are added and stirred and mixed at 60 ° C. A composition (X-2) was obtained. A resin film was produced in the same manner as in Example 1 except that the thermosetting resin composition (X-2) was used, and a fiber-reinforced plastic molded article was obtained in the same manner as in Example 1 using the resin film. It was.
[比較例3〜5]
表1に示すように、熱可塑性樹脂粒子(c1−1)の代わりに他の熱可塑性樹脂粒子(x−1)〜(x−3)を用いた以外は、実施例1と同様にして熱硬化性樹脂組成物(X−3)〜(X−5)を調製した。熱硬化性樹脂組成物(X−3)〜(X−5)を用いた以外は、実施例1と同様にして樹脂フィルムを作製し、該樹脂フィルムを用いて実施例1と同様にして繊維強化プラスチック成形体を得た。
[Comparative Examples 3 to 5]
As shown in Table 1, heat was applied in the same manner as in Example 1 except that other thermoplastic resin particles (x-1) to (x-3) were used instead of the thermoplastic resin particles (c1-1). Curable resin compositions (X-3) to (X-5) were prepared. A resin film was produced in the same manner as in Example 1 except that the thermosetting resin compositions (X-3) to (X-5) were used, and fibers were produced in the same manner as in Example 1 using the resin film. A reinforced plastic molding was obtained.
各例における熱硬化性樹脂組成物(C−1)〜(C−5)、(X−1)〜(X−5)の30℃における粘度と、最低粘度を測定した結果を表1に示す。また、各例における樹脂フロー率の測定結果及び評価結果、並びに塗装外観の評価結果を表1に示す。
なお、表1における最低粘度の温度の欄は、最低粘度が測定されたときの樹脂組成物の温度を意味する。
Table 1 shows the results of measuring the viscosity at 30 ° C. and the minimum viscosity of the thermosetting resin compositions (C-1) to (C-5) and (X-1) to (X-5) in each example. . In addition, Table 1 shows the measurement results and evaluation results of the resin flow rate and the evaluation results of the coating appearance in each example.
In addition, the column of the temperature of the minimum viscosity in Table 1 means the temperature of the resin composition when the minimum viscosity is measured.
表1に示すように、熱可塑性樹脂粒子(c1)を含有する熱硬化性樹脂組成物(C−1)〜(C−5)で形成された樹脂フィルムを用いた実施例1〜5では、成形時の熱硬化性樹脂組成物(C−1)〜(C−5)の過度な流動が抑制されており、塗装外観も優れていた。
樹脂フィルムに熱可塑性樹脂粒子(c1)を用いない比較例1、熱可塑性樹脂粒子(c1)の代わりに粒子状でない熱可塑性樹脂(y−1)を用いた比較例2、及び熱可塑性樹脂粒子(c1)の代わりに他の熱可塑性樹脂粒子(x−1)を用いた比較例3では、熱硬化性樹脂組成物の過度な流動が充分に抑制されず、塗装外観が劣っていた。
熱可塑性樹脂粒子(c1)の代わりに熱可塑性樹脂粒子(x−2)、(x−3)を用いた比較例4、5では、塗装外観が劣っていた。
As shown in Table 1, in Examples 1 to 5 using resin films formed of thermosetting resin compositions (C-1) to (C-5) containing thermoplastic resin particles (c1), Excessive flow of the thermosetting resin compositions (C-1) to (C-5) at the time of molding was suppressed, and the coating appearance was also excellent.
Comparative Example 1 in which the thermoplastic resin particles (c1) are not used for the resin film, Comparative Example 2 in which the thermoplastic resin (y-1) that is not particulate is used instead of the thermoplastic resin particles (c1), and the thermoplastic resin particles In Comparative Example 3 using other thermoplastic resin particles (x-1) instead of (c1), excessive flow of the thermosetting resin composition was not sufficiently suppressed, and the coating appearance was poor.
In Comparative Examples 4 and 5 using the thermoplastic resin particles (x-2) and (x-3) instead of the thermoplastic resin particles (c1), the coating appearance was inferior.
1 積層体
2 繊維強化プラスチック成形体
3 平板部
4 側部
10 プリプレグ基材
12 プリプレグ積層体
14 樹脂フィルム
20 複合材料部
22 樹脂層
100 金型
110 下型
112 凸部
120 上型
122 凹部
DESCRIPTION OF
Claims (11)
積層工程:強化繊維基材(A)に熱硬化性樹脂組成物(B)が含浸されたシート状のプリプレグ基材を複数積層したプリプレグ積層体の少なくとも一方の表面に、下記熱可塑性樹脂粒子(c1)を含有する熱硬化性樹脂組成物(C)と繊維目付が50g/m 2 以下の強化繊維基材(D)とを含有し、樹脂含有量が50〜500g/m 2 である樹脂フィルムを積層して積層体を得る工程。
成形工程:金型により前記積層体を加熱加圧して繊維強化プラスチック成形体を得る工程。
熱可塑性樹脂粒子(c1):ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリイミド及びポリエーテルイミドからなる群から選ばれる少なくとも1種の熱可塑性樹脂を含有する粒子。 The manufacturing method of the fiber reinforced plastic molding which has a following lamination process and a formation process.
Lamination process: The following thermoplastic resin particles (on the surface of at least one of the prepreg laminates obtained by laminating a plurality of sheet-like prepreg substrates in which the reinforcing fiber substrate (A) is impregnated with the thermosetting resin composition (B) c1) contains a thermosetting resin composition containing the (C) fiber basis weight of 50 g / m 2 or less reinforcing fiber base and (D) a resin film resin content of 50 to 500 g / m 2 A step of stacking layers to obtain a laminate.
Molding step: a step of heating and pressurizing the laminate with a mold to obtain a fiber-reinforced plastic molded body.
Thermoplastic resin particles (c1): particles containing at least one thermoplastic resin selected from the group consisting of polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide and polyetherimide.
前記成形工程の前記積層体として該プリフォームを用いる、請求項1〜7のいずれか一項に記載の繊維強化プラスチック成形体の製造方法。 Prior to the molding step, further comprising a shaping step of shaping the laminate obtained in the lamination step to obtain a preform,
The method for producing a fiber-reinforced plastic molded body according to any one of claims 1 to 7 , wherein the preform is used as the laminated body in the molding step.
熱可塑性樹脂粒子(c1):ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリイミド及びポリエーテルイミドからなる群から選ばれる少なくとも1種の熱可塑性樹脂を含有する粒子。 The following thermoplastic resin particles (c1) are applied to at least one surface of a prepreg laminate in which a plurality of sheet-like prepreg substrates impregnated with the thermosetting resin composition (B) are reinforced on the reinforcing fiber substrate (A). the thermosetting resin composition containing (C) and fiber basis weight and containing a 50 g / m 2 or less reinforcing fiber base (D), the resin film is further laminated resin content of 50 to 500 g / m 2 Laminated body.
Thermoplastic resin particles (c1): particles containing at least one thermoplastic resin selected from the group consisting of polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide and polyetherimide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015096639A JP6600982B2 (en) | 2015-05-11 | 2015-05-11 | FIBER-REINFORCED PLASTIC MOLDED BODY, ITS MANUFACTURING METHOD, AND LAMINATE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015096639A JP6600982B2 (en) | 2015-05-11 | 2015-05-11 | FIBER-REINFORCED PLASTIC MOLDED BODY, ITS MANUFACTURING METHOD, AND LAMINATE |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016210114A JP2016210114A (en) | 2016-12-15 |
JP6600982B2 true JP6600982B2 (en) | 2019-11-06 |
Family
ID=57551011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015096639A Active JP6600982B2 (en) | 2015-05-11 | 2015-05-11 | FIBER-REINFORCED PLASTIC MOLDED BODY, ITS MANUFACTURING METHOD, AND LAMINATE |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6600982B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6521090B2 (en) * | 2016-08-29 | 2019-05-29 | 三菱ケミカル株式会社 | Thermosetting resin composition, prepreg, and fiber reinforced plastic molding and method for producing the same |
JP6675666B1 (en) * | 2019-08-26 | 2020-04-01 | 石川樹脂工業株式会社 | Manufacturing method of carbon fiber reinforced resin molded product |
JP6712430B1 (en) * | 2019-12-24 | 2020-06-24 | 株式会社The MOT Company | Method for producing thermoplastic fiber-reinforced resin molded product |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4428978B2 (en) * | 2003-09-30 | 2010-03-10 | 東邦テナックス株式会社 | Epoxy resin composition |
JP6046739B2 (en) * | 2011-12-09 | 2016-12-21 | サイテク・テクノロジー・コーポレーシヨン | Surface film for composite structure and method for producing the same |
GB201222934D0 (en) * | 2012-12-19 | 2013-01-30 | Cytec Ind Inc | Particle toughening for improving fracture toughness |
-
2015
- 2015-05-11 JP JP2015096639A patent/JP6600982B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016210114A (en) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6555360B2 (en) | Prepreg, prepreg laminate, and fiber reinforced composite material | |
AU2013331261B2 (en) | Surface engineering of thermoplastic materials and tooling | |
JP5532549B2 (en) | Method for forming prepreg and fiber-reinforced composite material | |
JP6161108B2 (en) | Fiber-reinforced composite material and method for producing the same | |
TW201903013A (en) | Metal-fiber reinforced resin material composite and method of producing the same | |
JP5327964B2 (en) | Pre-preg for press molding and method for producing molded product using the same | |
JP2008088276A (en) | Partially impregnated prepreg and method for producing fiber-reinforced composite material by using the same | |
EP3331689B1 (en) | Moulding materials with improved surface finish | |
JP6600982B2 (en) | FIBER-REINFORCED PLASTIC MOLDED BODY, ITS MANUFACTURING METHOD, AND LAMINATE | |
JP2010018724A (en) | Prepreg layered substrate and fiber-reinforced plastic | |
WO2018147331A1 (en) | Fiber reinforced resin sheet | |
JP6698634B2 (en) | Fast curable composition | |
JPWO2018193908A1 (en) | Fiber-reinforced composite material molded article and method for producing the same | |
JP2022140568A (en) | Sizing agent, sizing agent-attached carbon fiber and method for producing the same, water dispersion of sizing agent, prepreg and method for producing the same, and method for producing carbon fiber-reinforced composite material | |
JP5441437B2 (en) | Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same | |
WO2021106584A1 (en) | Method for manufacturing sheet molding compound and molded article | |
JP5966969B2 (en) | Manufacturing method of prepreg | |
JPWO2020031771A1 (en) | Reinforcing fiber tape material and its manufacturing method, reinforcing fiber laminate using reinforcing fiber tape material and fiber reinforced resin molded body | |
JP2008174610A (en) | Impact-resistant prepreg and method for producing the same | |
EP3393769B1 (en) | Electrically conductive materials, related process and use | |
JPWO2019107276A1 (en) | Carbon fiber bundle, prepreg, fiber reinforced composite material | |
JP6907468B2 (en) | Manufacturing method of fiber reinforced composite material | |
WO2021187453A1 (en) | Resin composition, pre-preg, molded article, and pre-preg manufacturing method | |
JP2014111772A (en) | Method for forming fiber-reinforced composite material | |
CN110684321A (en) | Epoxy resin composition for fiber-reinforced composite material and prepreg using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180420 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190923 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6600982 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |