JP6596264B2 - Ignition electrode for low temperature liquefied gas combustion and explosion test - Google Patents

Ignition electrode for low temperature liquefied gas combustion and explosion test Download PDF

Info

Publication number
JP6596264B2
JP6596264B2 JP2015165033A JP2015165033A JP6596264B2 JP 6596264 B2 JP6596264 B2 JP 6596264B2 JP 2015165033 A JP2015165033 A JP 2015165033A JP 2015165033 A JP2015165033 A JP 2015165033A JP 6596264 B2 JP6596264 B2 JP 6596264B2
Authority
JP
Japan
Prior art keywords
electrode
liquefied gas
temperature liquefied
low
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015165033A
Other languages
Japanese (ja)
Other versions
JP2017044493A (en
Inventor
全 水野
利充 水谷
一範 上森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2015165033A priority Critical patent/JP6596264B2/en
Publication of JP2017044493A publication Critical patent/JP2017044493A/en
Application granted granted Critical
Publication of JP6596264B2 publication Critical patent/JP6596264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、低温液化ガス又は低温液化ガスが共存する系の燃焼・爆発試験に用いる着火電極に関し、特に、低温液化ガスの液相中で着火させる低温液化ガス燃焼・爆発試験用着火電極に関する。   The present invention relates to an ignition electrode used for a combustion / explosion test in a system in which a low-temperature liquefied gas or a system coexisting with a low-temperature liquefied gas, and more particularly to an ignition electrode for a low-temperature liquefied gas combustion / explosion test.

可燃性の低温液化ガスは、安全に取り扱うために、爆発範囲、表面の触媒効果、最小着火エネルギー、爆発の威力の測定など、燃焼や爆発を起こす条件を測定する必要がある。
このような測定に用いる試験装置の例として、可燃性ガスを対象としたものとしては、例えば特許文献1に開示されている「爆発限界領域測定装置」や、特許文献2に開示されている「可燃性ガス・蒸気の爆発試験装置」のような簡易的な設備の例がある。
また、粉体を対象とした試験装置としては、例えば特許文献3に開示されている「粉塵爆発試験装置」、特許文献4に開示されている「粉塵爆発試験装置および粉塵爆発試験方法」、特許文献5に開示されている「粉体の最小着火エネルギー評価装置」や特許文献6に開示されている「粉体着火試験装置」がある。
これらは、大気圧で解放された空間での試験であり、常温以外の温度での試験や、液化ガスを伴う試験に応用することは困難であった。
In order to handle flammable low-temperature liquefied gas safely, it is necessary to measure conditions that cause combustion and explosion such as measurement of explosion range, surface catalytic effect, minimum ignition energy, and power of explosion.
As an example of a test apparatus used for such measurement, as an object for combustible gas, for example, an “explosion limit region measuring apparatus” disclosed in Patent Document 1 and disclosed in Patent Document 2 “ There is an example of a simple facility such as a “flammable gas / steam explosion test device”.
Further, as a test apparatus for powder, for example, “Dust explosion test apparatus” disclosed in Patent Document 3, “Dust explosion test apparatus and dust explosion test method” disclosed in Patent Document 4, patent There are a “minimum ignition energy evaluation apparatus for powder” disclosed in Document 5 and a “powder ignition test apparatus” disclosed in Patent Document 6.
These are tests in a space released at atmospheric pressure, and it was difficult to apply to tests at temperatures other than room temperature and tests involving liquefied gas.

低温液化ガスの爆発実験に関する先行技術としては、液体酸素と液体メタンの混合液を入れたステンレス容器の上方に設置した着火源により液体酸素と液体メタンの混合気を着火爆発させ、燃焼形態を検討した例が非特許文献1に開示されている。   Prior art related to the explosive experiment of low-temperature liquefied gas includes igniting and exploding a mixture of liquid oxygen and liquid methane with an ignition source installed above a stainless steel container containing a mixture of liquid oxygen and liquid methane. The examined example is disclosed in Non-Patent Document 1.

特開平8−145921号公報Japanese Patent Laid-Open No. 8-145921 特開2010−8135号公報JP 2010-8135 A 特開2000−310583号公報JP 2000-310583 A 特開2011−220813号公報JP 2011-220813 A 特開2013−152196号公報JP2013-152196A 特開平11−201925号公報JP-A-11-201925

金東俊他、火薬学会2008年度年会講演要旨集、pp.29-30(2008)Kanto Shun et al., The Abstracts of 2008 Annual Meeting of the Japanese Society for Thermopharmaceutical Science, pp.29-30 (2008)

可燃性ガス又は可燃性ガスと支燃性ガスの混合気を着火させる方法としては、放電が一般的である(例えば、ISO-10156:Gases and gas mixture-Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets)。
一方、液体状態の低温液化ガスを着火させる方法としては、低温液化ガスが共存する気相に放電着火して火炎を液相に伝播させる方法や液相中で直接放電して着火させる方法がある。
非特許文献1は気相中で着火する方法に該当するが、この方法においては外気から容器内への侵入熱により被検体試料である液体酸素と液体メタンの混合液の蒸発速度が非常に大きくなり、気相と液相の双方で被検体試料の組成を推定できないばかりでなく、多くの被検体試料を必要とするため、試験に用いる防護壁など安全面の環境整備や安全対策に非常に多くのコストが必要であった。
As a method of igniting a combustible gas or a mixture of a combustible gas and a combustion-supporting gas, discharge is a common method (for example, ISO-10156: Gases and gas mixture-Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets).
On the other hand, as a method of igniting a low-temperature liquefied gas in a liquid state, there are a method of igniting discharge in a gas phase in which a low-temperature liquefied gas coexists and propagating a flame to the liquid phase, or a method of igniting by directly discharging in the liquid phase .
Non-Patent Document 1 corresponds to a method of igniting in the gas phase, but in this method, the evaporation rate of the liquid mixture of liquid oxygen and liquid methane, which is the specimen, is very large due to the intrusion heat from the outside air into the container. Therefore, not only the composition of the analyte sample cannot be estimated in both the gas phase and the liquid phase, but also a large number of analyte samples are required. A lot of cost was necessary.

一方、液相中で直接放電して着火させる方法においては、放電電極の電極間距離と絶縁破壊強度の問題がある。
一般に、放電と放電電極の電極間距離の関係は、放電する雰囲気の絶縁破壊強度に依存し、気相中に比べて液相中の絶縁破壊強度は大きい場合が多い。例えば、常温の空気の絶縁破壊強度は3MV/mであるのに対し、液体窒素の絶縁破壊強度は56〜65MV/mとなる。
このことは、液相中の放電は非常に大きな起電力(電極間の電位差)を必要とするだけでなく、必要な放電を得るためには電極間距離を精度良く調整しなければならないことを示唆する。
On the other hand, the method of directly discharging and igniting in the liquid phase has problems of the distance between the discharge electrodes and the dielectric breakdown strength.
In general, the relationship between the discharge and the distance between the discharge electrodes depends on the dielectric breakdown strength of the discharge atmosphere, and the dielectric breakdown strength in the liquid phase is often larger than in the gas phase. For example, the dielectric breakdown strength of air at room temperature is 3 MV / m, whereas the dielectric breakdown strength of liquid nitrogen is 56 to 65 MV / m.
This means that the discharge in the liquid phase not only requires a very large electromotive force (potential difference between the electrodes), but also the distance between the electrodes must be accurately adjusted to obtain the required discharge. Suggest.

また、液体酸素と液体炭化水素などの混合液のように、常温に比較して著しく低い温度領域では、放電電極が熱収縮により常温時と比べて放電電極の電極間距離が変動する場合があった。更に、放電を繰り返し行うことで、放電電極先端の摩耗が避けられず、試験中に電極間距離を調整する機構が必要であった。電極間距離が変動すると放電の再現性が得られず、液相中における放電の再現性が確保できなければ、燃焼・爆発試験により低温液化ガスの最小着火エネルギーや爆発範囲などの測定を行うことができない。   In addition, in a temperature range that is significantly lower than room temperature, such as a liquid mixture of liquid oxygen and liquid hydrocarbon, the distance between the electrodes of the discharge electrode may fluctuate compared to that at room temperature due to heat shrinkage. It was. Furthermore, repeated discharges inevitably wear the tip of the discharge electrode, and a mechanism for adjusting the distance between the electrodes during the test is necessary. If the reproducibility of the discharge cannot be obtained if the distance between the electrodes varies, and the reproducibility of the discharge in the liquid phase cannot be secured, the minimum ignition energy and explosion range of the low-temperature liquefied gas should be measured by the combustion / explosion test. I can't.

さらに、大量の被検体試料を用いた爆発試験では、爆発の威力がより大きくなることから、できるだけ少量の被検体試料を用いることが好ましく、少量の被検体試料を用いる小型の爆発試験設備に適合するべく放電電極も小型かつシンプルな構造にすることが望まれていた。しかしながら、可燃性及び支燃性の低温液化ガスの液相中で再現性かつ精度よく着火させる着火放電装置はこれまでになかった。   Furthermore, in the explosion test using a large amount of specimen sample, it is preferable to use as little specimen sample as possible because the power of explosion is greater, and it is suitable for small explosion test equipment using a small quantity of specimen sample. Therefore, it has been desired to make the discharge electrode small and simple. However, there has never been an ignition discharge device that ignites reproducibly and accurately in the liquid phase of flammable and combustion-supporting low-temperature liquefied gas.

本発明は上記のような課題を解決するためになされたものであり、液体状態の低温液化ガス又は低温液化ガスが共存する系の燃焼・爆発試験を行うに際して、前記液体状態の低温液化ガス又は低温液化ガスが共存する系において着火させる低温液化ガス燃焼・爆発試験用着火電極を提供することを目的とする。   The present invention has been made to solve the above-described problems, and when performing a combustion / explosion test of a liquid state low-temperature liquefied gas or a system in which a low-temperature liquefied gas coexists, the liquid-state low-temperature liquefied gas or An object of the present invention is to provide a low temperature liquefied gas combustion / explosion ignition electrode for ignition in a system in which a low temperature liquefied gas coexists.

(1)本発明に係る低温液化ガス燃焼・爆発試験用着火電極は、低温液化ガス又は低温液化ガスが共存する系の燃焼・爆発試験装置に用いるものであって、
液体状態の低温液化ガスを貯留する液化容器における液溜部の内壁面に設けられた接地電極と、
該接地電極との電極間距離を調整可能に設けられた電極棒とを備えたことを特徴とするものである。
なお、低温液化ガス又は低温液化ガスが共存する系には、液体酸素+液体メタン、液体酸素+液体プロパンなど支燃性液化ガスと可燃性液化ガスの混合系と、液体酸素+固体金属粉、固体樹脂、活性表面をもつ固体混合物を含むこととし、これらを総称して「低温液化ガス又は低温液化ガスが共存する系」と呼ぶこととする。
(1) A low temperature liquefied gas combustion / explosion test ignition electrode according to the present invention is used for a combustion / explosion test apparatus of a system in which a low temperature liquefied gas or a low temperature liquefied gas coexists,
A ground electrode provided on the inner wall surface of the liquid reservoir in the liquefaction container for storing the low-temperature liquefied gas in a liquid state;
And an electrode rod provided so that the distance between the electrodes and the ground electrode can be adjusted.
The low-temperature liquefied gas or the system in which the low-temperature liquefied gas coexists include liquid oxygen + liquid methane, liquid oxygen + liquid propane and the like, and a mixed system of flammable liquefied gas and liquid oxygen + solid metal powder A solid resin and a solid mixture having an active surface are included, and these are collectively referred to as “a system in which a low-temperature liquefied gas or a low-temperature liquefied gas coexists”.

(2)上記(1)に記載のものにおいて、前記電極棒が挿入されて一端側が前記液化容器に連通する電極棒挿入管と、
前記電極棒が挿通されて前記電極棒挿入管の他端側をシールするシール部と、
前記電極間距離を調整する電極間距離調整部とを備えてなることを特徴とするものである。
(2) In the above described (1), an electrode rod insertion tube in which the electrode rod is inserted and one end side communicates with the liquefaction container;
A seal portion through which the electrode rod is inserted to seal the other end of the electrode rod insertion tube;
An inter-electrode distance adjusting unit that adjusts the inter-electrode distance is provided.

(3)上記(1)又は(2)に記載のものにおいて、前記接地電極は、前記液化容器において前記液体状態の低温液化ガスが貯留する液溜部の肉厚をtとすると、前記液溜部の内壁面との接触面積Sが4πt2以上であることを特徴とするものである。 (3) In the above-described (1) or (2), the ground electrode may be configured such that the thickness of a liquid reservoir portion in which the liquid low-temperature liquefied gas is stored in the liquefaction container is t. The contact area S with the inner wall surface of the portion is 4πt 2 or more.

本発明においては、液体状態の低温液化ガスを貯留する液化容器における液溜部の内壁面に設けられた接地電極と、該接地電極との電極間距離を調整可能に設けられた電極棒とを備えたことにより、少量の低温液化ガスの液相中において再現性及び精度良く放電して前記低温液化ガスを着火することができ、その結果、最小着火エネルギーや爆発範囲の推定、あるいは、粉体や触媒効果のある表面の効果、液化ガスが共存する系での燃焼・爆発試験を低温下で繰り返し行うことが可能となる。   In the present invention, the ground electrode provided on the inner wall surface of the liquid reservoir in the liquefaction container for storing the low-temperature liquefied gas in the liquid state, and the electrode rod provided in such a manner that the distance between the electrodes can be adjusted. As a result, it is possible to ignite the low-temperature liquefied gas by reproducibly and accurately discharging in the liquid phase of a small amount of low-temperature liquefied gas, and as a result, estimate the minimum ignition energy and explosion range, or powder It is possible to repeatedly perform combustion / explosion tests at low temperatures in a system in which a liquefied gas coexists with a surface effect having a catalytic effect.

本発明の実施の形態に係る低温液化ガス燃焼・爆発試験用着火電極の内部構造を説明する説明図である。It is explanatory drawing explaining the internal structure of the ignition electrode for low temperature liquefied gas combustion and an explosion test which concerns on embodiment of this invention. 本発明の実施の形態に係る低温液化ガス燃焼・爆発試験用着火電極の全体構成を説明する説明図である。It is explanatory drawing explaining the whole structure of the ignition electrode for low temperature liquefied gas combustion and an explosion test which concerns on embodiment of this invention. 本発明の実施の形態に係る液溜部の肉厚と接地電極の形状との関係を説明する説明図である。It is explanatory drawing explaining the relationship between the thickness of the liquid reservoir which concerns on embodiment of this invention, and the shape of a ground electrode. 本発明の実施の形態に係る着火回路のブロック図である。It is a block diagram of the ignition circuit which concerns on embodiment of this invention. 容器を放電電極の一方である接地極とした場合の放電を説明する説明図である。It is explanatory drawing explaining the discharge at the time of using a container as a ground electrode which is one side of a discharge electrode.

まず、液体状態の低温液化ガスの燃焼・爆発試験に用いる着火電極の望ましい形態について説明した後に、本発明に係る低温液化ガス燃焼・爆発試験用着火電極(以下、単に「着火電極」という場合もある)について説明する。   First, after describing the desirable form of the ignition electrode used for the combustion / explosion test of the liquid low-temperature liquefied gas, the ignition electrode for the low-temperature liquefied gas combustion / explosion test according to the present invention (hereinafter sometimes simply referred to as “ignition electrode”). Exist).

<着火電極の望ましい形態>
一般的に、液化した可燃性ガス及び支燃性ガスの液相中に着火電極を設ける場合、液体中に二本の電極を設ける方法と、接地極(アース)と一本の電極を設ける方法がある。
二本の電極を設ける方法は、電極間距離を予め決定することが容易であるが、構造や配線が複雑になるデメリットがある。
<Preferred form of ignition electrode>
In general, when providing an ignition electrode in the liquid phase of liquefied combustible gas and combustion-supporting gas, a method of providing two electrodes in the liquid, and a method of providing a ground electrode (earth) and one electrode There is.
The method of providing two electrodes makes it easy to determine the distance between the electrodes in advance, but has a disadvantage that the structure and wiring are complicated.

一方、接地極と一本の電極を設ける方法は、電極から接地極に向かって実際に放電される位置が特定されないため、電極と接地極との間の電極間距離(放電距離)を一定にすることが難しいと考えられる。例えば、接地極が図3に示すような半球部51aと円筒部51bにより構成される容器51であって、電極棒53から容器51に向かって放電される場合、放電箇所が容器51の半球部51aか円筒部51bであるかによって放電距離が異なり、放電距離が長くなると放電が生じにくいだけでなく放電しても放電エネルギーを推算するのが難しい場合がある。   On the other hand, the method of providing a ground electrode and one electrode does not specify the actual discharge position from the electrode toward the ground electrode, so the inter-electrode distance (discharge distance) between the electrode and the ground electrode is constant. It seems difficult to do. For example, when the ground electrode is a container 51 composed of a hemispherical part 51 a and a cylindrical part 51 b as shown in FIG. 3 and is discharged from the electrode rod 53 toward the container 51, the discharge location is the hemispherical part of the container 51. Depending on whether it is 51a or cylindrical part 51b, the discharge distance differs, and if the discharge distance is long, it is difficult not only to generate a discharge but also to estimate the discharge energy even if it is discharged.

さらに、放電を繰り返すことで、電極の端部が溶損などにより電極間距離が長くなる場合や、また、低温液化ガスを貯留して液相中で放電する場合には、温度変化による熱収縮の影響を受け、放電距離が常温時と変わってしまう場合がある。そこで、放電を繰り返し行った場合や低温液化ガスを貯留した場合においても再現性良く放電させるためには、電極間距離を任意に調整できる機構が必要である。   In addition, when the discharge is repeated, the distance between the electrodes becomes longer due to melting or the like, or when the low temperature liquefied gas is stored and discharged in the liquid phase, thermal contraction due to temperature change In some cases, the discharge distance may change from that at room temperature. Therefore, in order to discharge with good reproducibility even when discharging is repeatedly performed or when low-temperature liquefied gas is stored, a mechanism capable of arbitrarily adjusting the distance between electrodes is required.

以上より、着火電極の望ましい形態としては、構造や配線を簡易にするという観点から、一方を接地極とし、他方を一本の電極にしたものであり、かつ、放電箇所が特定でき、さらに、低温液化ガスの液相中で放電を行う際に電極間距離を任意に調整することが可能な機構を備えたものである。   From the above, as a desirable form of the ignition electrode, from the viewpoint of simplifying the structure and wiring, one is a ground electrode, the other is a single electrode, and the discharge location can be specified, When discharging is performed in the liquid phase of a low-temperature liquefied gas, a mechanism capable of arbitrarily adjusting the distance between the electrodes is provided.

次に、このような望ましい形態の着火電極を有する着火電極の各構成について図1〜図5に基づいて説明する。
本発明の実施の形態に係る着火電極1は、低温液化ガス又は低温液化ガスが共存する系の燃焼・爆発試験装置において前記低温液化ガスの液中で放電して前記低温液化ガスを着火させるものであって、液体状態の前記低温液化ガスを貯留する液化容器13における液溜部15の内壁面に設けられた接地電極17と、接地電極17との電極間距離を調整可能に設けられた電極棒19と、電極棒19が挿入されて一端側が液溜部15に連通する電極棒挿入管23と、電極棒19が挿通されて電極棒挿入管23の他端側をシールするシール部25と、前記電極間距離を調整する電極間距離調整部27とを備えてなるものである。
以下、各構成を詳細に説明する。
Next, each structure of the ignition electrode which has such a desirable form ignition electrode is demonstrated based on FIGS.
An ignition electrode 1 according to an embodiment of the present invention ignites the low-temperature liquefied gas by discharging in the liquid of the low-temperature liquefied gas in a combustion / explosion test apparatus of a system in which low-temperature liquefied gas or a low-temperature liquefied gas coexists. The ground electrode 17 provided on the inner wall surface of the liquid reservoir 15 in the liquefaction container 13 storing the low-temperature liquefied gas in the liquid state, and the electrode provided so that the distance between the electrodes can be adjusted. A rod 19; an electrode rod insertion tube 23 into which the electrode rod 19 is inserted and communicated with the liquid reservoir portion 15 at one end side; and a seal portion 25 through which the electrode rod 19 is inserted to seal the other end side of the electrode rod insertion tube 23 And an inter-electrode distance adjusting unit 27 for adjusting the inter-electrode distance.
Hereinafter, each configuration will be described in detail.

<液化容器>
液化容器13は、ガス導入部11から導入された前記気体状態の低温液化ガスを冷却して液化する冷却ブロック14と、液化されて液体状態となった前記低温液化ガスを貯留する液溜部15からなるものである。
ガス導入部11は気体状態の低温液化ガスを導入するために液化容器13の側面に設けられたものであり、ロー付けなどで配管を接合し、外部のガス供給源(一次側)に接続される。
<Liquefaction container>
The liquefaction container 13 includes a cooling block 14 that cools and liquefies the gaseous low-temperature liquefied gas introduced from the gas introduction unit 11, and a liquid storage unit 15 that stores the low-temperature liquefied gas that has been liquefied into a liquid state. It consists of
The gas introduction unit 11 is provided on the side surface of the liquefaction vessel 13 for introducing a gaseous low-temperature liquefied gas, and is connected to an external gas supply source (primary side) by joining a pipe by brazing or the like. The

冷却ブロック14は、ガス導入部11から前記気体状態の低温液化ガスの供給を受けると共に、例えば冷凍機(図示なし)から冷熱の供給を受けて前記気体状態の低温液化ガスをして液化するものであり、ガス導入部11から導入される前記気体状態の低温液化ガスを十分な冷熱を伝えられる熱伝導性の高い銅などで形成することが好ましい。   The cooling block 14 receives the supply of the gaseous low-temperature liquefied gas from the gas introduction unit 11 and receives cold supply from, for example, a refrigerator (not shown) to liquefy the gaseous low-temperature liquefied gas. It is preferable that the low-temperature liquefied gas in the gaseous state introduced from the gas introduction part 11 is formed of copper having high thermal conductivity capable of transmitting sufficient cold heat.

液溜部15は、図1に示すように、底部15aを有する筒状容器から成り、冷却ブロック14で冷却されて液化した前記低温液化ガスを貯留するものであり、冷却ブロック14にロー付け溶接などで接合されている。
さらに、液溜部15は、電極棒19との間で適正な放電距離を得るため、底部15aに突起形状の接地電極17を備えている。
As shown in FIG. 1, the liquid reservoir portion 15 is formed of a cylindrical container having a bottom portion 15 a and stores the low-temperature liquefied gas cooled and liquefied by the cooling block 14. Etc. are joined.
Furthermore, in order to obtain an appropriate discharge distance between the liquid reservoir 15 and the electrode rod 19, the bottom 15a is provided with a protruding ground electrode 17.

液溜部15は、熱伝導が良く、接合及び加工も比較的容易な銅や真鍮などで製作されることが望ましい。
さらに、液溜部15は、前記液化した低温液化ガスを貯留する条件に耐えうる強度を有している必要があるが、製作可能な範囲でできるだけ肉厚が薄く、最も少ない質量で製作されることが望ましい。その理由は以下の通りである。
The liquid reservoir 15 is preferably made of copper, brass, or the like, which has good heat conduction and is relatively easy to join and process.
Furthermore, the liquid reservoir 15 needs to have a strength that can withstand the conditions for storing the liquefied low-temperature liquefied gas, but it is as thin as possible and manufactured with the smallest mass as long as it can be manufactured. It is desirable. The reason is as follows.

通常、低温液化ガスの燃焼・爆発試験は、気体状態の低温液化ガスを液化して貯留する液化容器13を耐圧恒温容器内(図示なし)などに収容して行う。
液溜部15の肉厚が厚く、筒状胴部や底部15aの質量が大きいと、燃焼・爆発試験を行った際に液溜部15を形成する材料が前記耐圧恒温容器内で大量の破片となって飛散し、飛散する破片の運動エネルギーが大きくなって該耐圧恒温容器が損傷する危険性が増す。
Usually, the low temperature liquefied gas combustion / explosion test is performed by accommodating the liquefied container 13 for storing the liquefied gas in a gaseous state in a pressure and temperature controlled container (not shown).
If the thickness of the liquid reservoir 15 is large and the mass of the cylindrical body or the bottom 15a is large, the material forming the liquid reservoir 15 during the combustion / explosion test will cause a large amount of debris in the pressure-resistant thermostatic container. As a result, the kinetic energy of the scattered fragments increases and the risk of damage to the pressure resistant thermostatic container increases.

また、液溜部15の耐圧性が高いと、高い圧力を保持した上で液溜部15が損壊するため、損壊した液溜部15の材料は大きな運動エネルギーを蓄積した状態で飛散して前記耐圧恒温容器に衝突し、該耐圧恒温容器が損傷する危険性がさらに増す。   Further, if the pressure resistance of the liquid reservoir 15 is high, the liquid reservoir 15 is damaged while maintaining a high pressure. Therefore, the material of the damaged liquid reservoir 15 is scattered in a state where large kinetic energy is accumulated and The risk of collision with the pressure and temperature constant container and damage to the pressure and temperature constant container is further increased.

そのため、液溜部15は、着火放電により爆発が起きた場合の前記耐圧恒温容器などの周囲への損傷をできるだけ抑えるため、液溜部15の容器壁をできるだけ薄肉で製作することが望ましく、これにより損壊までの蓄積エネルギーを少なく、飛散する材料量も少なくなるため、前記耐圧恒温容器の損傷を低減させることができる。   Therefore, it is desirable that the liquid reservoir 15 be manufactured with the container wall of the liquid reservoir 15 as thin as possible in order to suppress damage to the surroundings of the pressure-resistant thermostatic container or the like when explosion occurs due to ignition discharge. As a result, the accumulated energy until breakage is reduced and the amount of scattered material is also reduced, so that damage to the pressure-resistant thermostatic container can be reduced.

一方、液溜部15の肉厚が薄くなりすぎると、燃焼・爆発試験を行うために繰り返し着火放電した時に液溜部15の壁面で電流密度が高くなると、液化容器13内における前記低温液化ガスの濃度が爆発範囲外であったり、着火エネルギーが少なかった場合等の理由により、放電によって着火しなくても液溜部15の壁面が破損し、液化した前記低温液化ガスを保持できなくなる場合がある。この場合においては、後述するように、液溜部15の肉厚tに見合って、接地電極17と液溜部15の内壁面との接触面の接触面積Sを確保することが必要となる。   On the other hand, if the wall thickness of the liquid reservoir 15 becomes too thin, if the current density increases on the wall surface of the liquid reservoir 15 when repeated ignition discharge is performed to perform a combustion / explosion test, the low-temperature liquefied gas in the liquefaction vessel 13 If the concentration of the liquid is outside the explosion range or the ignition energy is low, the wall surface of the liquid reservoir 15 may be damaged without being ignited by discharge, and the liquefied low-temperature liquefied gas may not be retained. is there. In this case, as described later, it is necessary to secure a contact area S of the contact surface between the ground electrode 17 and the inner wall surface of the liquid reservoir 15 in accordance with the thickness t of the liquid reservoir 15.

<接地電極>
接地電極17は、液溜部15の内壁面に設けられたものであり、少量の低温液化ガスを液溜部15に貯留した場合において、放電箇所を前記低温液化ガスの液相中とするため、液溜部15の底部15aに設けることが望ましい。
<Ground electrode>
The ground electrode 17 is provided on the inner wall surface of the liquid reservoir 15 so that when a small amount of the low-temperature liquefied gas is stored in the liquid reservoir 15, the discharge location is in the liquid phase of the low-temperature liquefied gas. It is desirable to provide the bottom 15 a of the liquid reservoir 15.

接地電極17は、放電箇所を特定するため、例えば図1及び図5に示す円錐形状のような突起とすることが望ましく、さらに、このような突起とすることで、放電した時の電流密度が前記突起の先端を最高値とし、液溜部15の内壁面と接触する接触面に向かって電流密度は減少する。仮に、放電箇所から離れた位置で電流密度が高くなる(電路が細くなる)と、当該位置での損傷を招く可能性がある。   In order to specify the discharge location, the ground electrode 17 is preferably a projection having a conical shape as shown in FIGS. 1 and 5, for example. Further, by using such a projection, the current density at the time of discharge is increased. The tip of the protrusion is set to the highest value, and the current density decreases toward the contact surface that contacts the inner wall surface of the liquid reservoir 15. If the current density increases at a position away from the discharge location (the electric circuit becomes narrow), damage at the position may be caused.

このことから、液溜部15の破損を防ぐため、接地電極17と液溜部15とが接触する接触面においては電流密度が十分に低下させる必要がある。そのためには、前記接触面の接触面積Sが、液溜部15の肉厚をtとすると、S≧4πt2の関係を満たすような形状とすることが望ましい。
こうすることで、放電した時の液溜部15における電流密度を低下させることで液溜部15の損傷を最小にしつつ液溜部15の肉厚を薄くすることができ、かつ、着火した場合の周囲への損傷の可能性を最小にすることができる。
Therefore, in order to prevent the liquid reservoir 15 from being damaged, it is necessary to sufficiently reduce the current density at the contact surface where the ground electrode 17 and the liquid reservoir 15 are in contact. For this purpose, it is desirable that the contact area S of the contact surface satisfy a relationship of S ≧ 4πt 2 where t is the thickness of the liquid reservoir 15.
By doing so, the thickness of the liquid reservoir portion 15 can be reduced while minimizing the damage to the liquid reservoir portion 15 by reducing the current density in the liquid reservoir portion 15 when discharged, and when ignition occurs The possibility of damage to the surroundings can be minimized.

接地電極17の長さは、低温液化ガスの液相の最小着火エネルギーを求める場合は、液中に潜る程度の長さになるが、それに限らず、低温液化ガスの気相の最小着火エネルギーを求める場合は接地電極17の先端が気相に出る長さとしても良く、その際は電極間距離を調整できるように、後述する電極棒19の挿入深さも適宜選択される。   When the minimum ignition energy of the liquid phase of the low-temperature liquefied gas is obtained, the length of the ground electrode 17 is such a length as to be submerged in the liquid, but not limited thereto, the minimum ignition energy of the gas phase of the low-temperature liquefied gas is determined. When it is desired, the length of the tip of the ground electrode 17 may be in the gas phase. In this case, the insertion depth of the electrode rod 19 to be described later is appropriately selected so that the distance between the electrodes can be adjusted.

<電極棒>
電極棒19は、接地電極17との間で放電させるものであり、電極棒19の先端が液溜部15に貯留された前記液体状態の低温液化ガスの液面より下方となるように、電極棒挿入管23を挿通して液溜部15に挿入されている。
さらに、電極棒19は、液化容器13との電気的絶縁を保つため、絶縁被覆21により被覆されている。
電極棒19の材質としては、銅など電気伝導が良い材料であることが望ましいが、電気伝導性が良くても酸素雰囲気化で容易に燃焼するアルミニウムなどは好ましくない。
<Electrode bar>
The electrode rod 19 is for discharging between the ground electrode 17 and the electrode rod 19 so that the tip of the electrode rod 19 is below the liquid level of the liquid low-temperature liquefied gas stored in the liquid reservoir 15. The rod insertion tube 23 is inserted into the liquid reservoir 15.
Furthermore, the electrode rod 19 is covered with an insulating coating 21 in order to maintain electrical insulation from the liquefaction container 13.
The electrode rod 19 is preferably made of a material having good electrical conductivity, such as copper, but aluminum that easily burns in an oxygen atmosphere is not preferred even if the electrical conductivity is good.

<電極棒挿入管>
電極棒挿入管23は、絶縁被覆21により被覆された電極棒19を挿通するものであり、一端側が冷却ブロック14に接続されて液溜部15に連通するものである。
<Electrode bar insertion tube>
The electrode rod insertion tube 23 is inserted through the electrode rod 19 covered with the insulating coating 21, and one end side thereof is connected to the cooling block 14 and communicates with the liquid reservoir 15.

<シール部>
シール部25は、電極棒19が貫通して電極棒挿入管23の他端側をシールするものであり、ナット29とグランド31を締め付けてシール部材25aを押圧することで、電極棒挿入管23のシール性を高める。
シール部材25aの材質にはテフロン(登録商標)など、絶縁性が良く、かつ、常温においてガスシール性が高い樹脂などが好ましい。
<Seal part>
The seal portion 25 is for the electrode rod 19 to penetrate and seal the other end side of the electrode rod insertion tube 23. By tightening the nut 29 and the gland 31 and pressing the seal member 25a, the electrode rod insertion tube 23 is sealed. Increases the sealing performance.
The material of the seal member 25a is preferably a resin such as Teflon (registered trademark) that has good insulation and high gas sealability at room temperature.

<電極間距離調整部>
電極間距離調整部27は、電極棒19の先端と接地電極17の先端との電極間距離を調整するものである。電極間距離調整部27の一例としては、図1に示すように、電極棒19にねじ切られた雄ネジ部27aと、電極棒挿入管23に固定された雌ネジ部27bを組み合わせたものがあり、電極棒19をまわすことで電極間距離を任意に調整することが可能である。
<Distance adjustment part between electrodes>
The interelectrode distance adjusting unit 27 adjusts the interelectrode distance between the tip of the electrode rod 19 and the tip of the ground electrode 17. As an example of the inter-electrode distance adjusting unit 27, there is a combination of a male threaded portion 27a threaded on the electrode rod 19 and a female threaded portion 27b fixed to the electrode rod insertion tube 23 as shown in FIG. The distance between the electrodes can be arbitrarily adjusted by turning the electrode rod 19.

上記構成の着火電極1を、例えば図4に示すような点火回路41に接続して放電する際に、液化容器13内における低温液化ガス組成、静電容量、放電させた時の最大電圧等を計測して最適な電極間距離を決定することができる。
さらに、着火電極1を用いることにより、液化容器13に貯留された液体状態の低温液化ガスの最小着火エネルギーを測定することができる。ただし、最小着火エネルギーを測定する際には、以下の点について留意する必要がある。
When the ignition electrode 1 having the above configuration is connected to an ignition circuit 41 as shown in FIG. 4 for discharging, for example, the low-temperature liquefied gas composition in the liquefaction vessel 13, the capacitance, the maximum voltage when discharged, etc. It is possible to determine the optimum interelectrode distance by measurement.
Furthermore, by using the ignition electrode 1, it is possible to measure the minimum ignition energy of the liquid low-temperature liquefied gas stored in the liquefaction container 13. However, the following points should be noted when measuring the minimum ignition energy.

まず、液化容器13内で放電により着火現象が起きるかどうかは、液化容器13内における低温液化ガス組成と放電エネルギーが大きく影響する。
例えば、可燃性物質と支燃性物質が完全燃焼に必要な当量比で存在した場合は、非常に少ない着火エネルギーでも着火する一方で、可燃性物質又は支燃性物質濃度のいずれかが非常に希薄な場合は、着火エネルギーが少ないと爆発範囲内であっても着火は起こらない。例えば、酸素ガス―メタンガス混合物質(室温)では当量比1の時、着火に要する最小着火エネルギーは約0.3mJであるが、当量比0.8又は1.2の時、最小着火エネルギーは約2mJである。ちなみに、爆発範囲を特定する時の着火エネルギーは10Jであり、一般の爆発範囲は、「10Jの放電でも爆発が起こる濃度領域」と考えるべきである。
First, whether or not an ignition phenomenon occurs due to discharge in the liquefaction vessel 13 is greatly influenced by the low-temperature liquefied gas composition and discharge energy in the liquefaction vessel 13.
For example, if the combustible material and the combustible material are present in the equivalent ratio required for complete combustion, either the combustible material or the combustible material concentration is very high while the ignition is performed with very low ignition energy. In a lean case, if the ignition energy is low, ignition will not occur even within the explosion range. For example, in an oxygen gas-methane gas mixed material (room temperature), when the equivalent ratio is 1, the minimum ignition energy required for ignition is about 0.3 mJ, but when the equivalent ratio is 0.8 or 1.2, the minimum ignition energy is about 2 mJ. By the way, the ignition energy when specifying the explosion range is 10 J, and the general explosion range should be considered as “a concentration range where an explosion occurs even at 10 J discharge”.

一方、放電エネルギーは、液化容器13内における低温液化ガス組成及び状態に大きく依存する。電極棒19の先端と接地電極17の先端との電極間距離が非常に短い場合は、絶縁破壊電圧が一定であるため、少ない電位差でも放電が起こり、放電エネルギーは少なく計測されるが、前記電極間距離が長くなると放電エネルギーが徐々に増してくる。更に前記電極間距離が長くなって、着火電極1に供給される電圧に対して絶縁破壊距離を超えると、放電自体をしなくなる。そのため、放電により着火させる場合には、前記電極間距離を適度に設定することが必要である。   On the other hand, the discharge energy largely depends on the low-temperature liquefied gas composition and state in the liquefaction vessel 13. When the distance between the tip of the electrode rod 19 and the tip of the ground electrode 17 is very short, the dielectric breakdown voltage is constant, so that the discharge occurs even with a small potential difference and the discharge energy is measured to be small. As the distance increases, the discharge energy gradually increases. Further, when the distance between the electrodes becomes longer and exceeds the dielectric breakdown distance with respect to the voltage supplied to the ignition electrode 1, the discharge itself is not performed. Therefore, when igniting by discharge, it is necessary to set the distance between the electrodes appropriately.

放電エネルギーは、本来、スパークイグナイタ43内に蓄えられた電気量と、放電後にスパークイグナイタ43に残存する電気量の差とすることが望ましいが、放電前後の電気量を精度良く計測することは非常に困難である。又、電流電圧計測機器45を用いて放電時の電流と電圧を測定して放電エネルギーを求める方法もあるが、機器応答精度等の制限により、特に瞬時の電流値を計測することが困難である。一方、着火電極1に静電容量計(図示なし)を接続して放電前に静電容量を計測しておき、放電時の電極間最大電位差の測定値から放電エネルギーを推算する方法は、比較的簡単で精度が高いとされている。   Although it is desirable that the discharge energy is originally a difference between the amount of electricity stored in the spark igniter 43 and the amount of electricity remaining in the spark igniter 43 after discharge, it is extremely difficult to accurately measure the amount of electricity before and after the discharge. It is difficult to. In addition, there is a method of obtaining the discharge energy by measuring the current and voltage at the time of discharge using the current / voltage measuring device 45, but it is difficult to measure the instantaneous current value due to the limitation of the device response accuracy. . On the other hand, a method of connecting a capacitance meter (not shown) to the ignition electrode 1 and measuring the capacitance before discharge and estimating the discharge energy from the measured value of the maximum potential difference between the electrodes during discharge is compared. Simple and accurate.

これらの留意点を念頭に、液化容器13内における低温液化ガス組成を一定に保ったまま、電極間距離を少しずつ変化させてその都度放電させ、着火の有無と、静電容量や最大電圧を計測する等して放電エネルギーを推算すれば、液化容器13内の前記低温液化ガス組成に対する最小着火エネルギーを観測することができる。   With these considerations in mind, while keeping the low-temperature liquefied gas composition in the liquefaction vessel 13 constant, the distance between the electrodes is changed little by little to discharge each time, and the presence or absence of ignition, the capacitance and the maximum voltage are determined. If the discharge energy is estimated by measuring or the like, the minimum ignition energy for the low-temperature liquefied gas composition in the liquefaction vessel 13 can be observed.

さらに、液化容器13内における低温液化ガス組成を変更し、所定の放電エネルギーを得るために電極間距離調整部27により電極棒19の先端と接地電極17の先端との電極間距離を調整して放電することにより、着火電極1を用いて爆発範囲を測定することができる。   Further, the inter-electrode distance between the tip of the electrode rod 19 and the tip of the ground electrode 17 is adjusted by the inter-electrode distance adjusting unit 27 by changing the low-temperature liquefied gas composition in the liquefaction vessel 13 and obtaining predetermined discharge energy. By discharging, the explosion range can be measured using the ignition electrode 1.

以上より、本実施の形態に係る着火電極1を用いて低温液化ガスの液相中で放電させることで前記低温液化ガスの着火源とすることができ、最小着火エネルギーの測定、液体状態での爆発範囲の測定、夾雑物の影響など、液化ガスの爆発、燃焼を伴う現象を繰り返しかつ精度良く測定・観察することが可能となる。   As described above, the ignition electrode 1 according to the present embodiment can be used as an ignition source of the low-temperature liquefied gas by discharging in the liquid phase of the low-temperature liquefied gas. It is possible to repeatedly and accurately measure and observe phenomena accompanied by explosion and combustion of liquefied gas, such as measurement of the explosion range and the influence of impurities.

本実施例1においては、接地電極を用いた放電箇所の特定ならびに電極間距離の調整による放電の可否について検証するため、図4に示す点火回路41に接続した着火電極1を用いて放電試験を行った。以下、当該放電試験の結果を説明する。   In Example 1, in order to verify whether or not discharge is possible by specifying the discharge location using the ground electrode and adjusting the distance between the electrodes, a discharge test was performed using the ignition electrode 1 connected to the ignition circuit 41 shown in FIG. went. Hereinafter, the results of the discharge test will be described.

まずは、着火電極1の液溜部15に接地電極17を設けずに放電を繰り返し行った場合の液溜部15における損傷の度合いを確認した。
本実施例1における放電試験においては、気体状態の窒素(N2)をガス導入部11から導入し、冷却ブロック14により窒素を液化して約5ccの液体窒素(LN2)を液溜部15に貯留した。
その後、スパークイグナイタ43により液体窒素中で放電を繰り返し行った。
First, the degree of damage in the liquid reservoir 15 when the discharge was repeatedly performed without providing the ground electrode 17 in the liquid reservoir 15 of the ignition electrode 1 was confirmed.
In the discharge test according to the first embodiment, gaseous nitrogen (N 2 ) is introduced from the gas introduction unit 11, and nitrogen is liquefied by the cooling block 14, and about 5 cc of liquid nitrogen (LN 2 ) is stored in the liquid storage unit 15. Reserved in.
Thereafter, the spark igniter 43 was repeatedly discharged in liquid nitrogen.

放電時の電流及び電圧を点火回路41における電流電圧計測機器45により測定した結果、繰返し放電において電流と電圧の双方にバラツキが生じた。
さらに、液溜部15が破損して液体窒素が漏洩、蒸発した。放電試験の終了後、着火電極1を常温に戻してから液溜部15の破損状況を観測した結果、液溜部15の底部15aに破損が認められた。なお、当該放電試験おいて、液溜部15の肉厚は0.2mmであった。
As a result of measuring the current and voltage at the time of discharge with the current / voltage measuring device 45 in the ignition circuit 41, both current and voltage varied in the repeated discharge.
Furthermore, the liquid reservoir 15 was damaged and liquid nitrogen leaked and evaporated. After the discharge test was completed, the ignition electrode 1 was returned to room temperature, and the damage state of the liquid reservoir 15 was observed. As a result, the bottom 15a of the liquid reservoir 15 was damaged. In the discharge test, the thickness of the liquid reservoir 15 was 0.2 mm.

次に、液溜部15の底部15aに接地電極17を設け、放電試験を行った。本実施例1において接地電極17は円錐形とし(図5参照)、液溜部15の底部15aと接触する面の直径をφd=1mmとした。   Next, a ground electrode 17 was provided on the bottom 15a of the liquid reservoir 15, and a discharge test was performed. In the first embodiment, the ground electrode 17 is conical (see FIG. 5), and the diameter of the surface of the liquid reservoir 15 that contacts the bottom 15a is φd = 1 mm.

上述の放電試験と同様、気体状態の窒素(N2)をガス導入部11から導入し、冷却ブロック14により窒素を約77Kまで冷却することで液化し、約5ccの液体窒素(LN2)を液溜部15に貯留した。 Similar to the above discharge test, nitrogen (N 2 ) in a gaseous state is introduced from the gas introduction part 11 and liquefied by cooling the nitrogen to about 77 K by the cooling block 14, and about 5 cc of liquid nitrogen (LN 2 ) is obtained. The liquid was stored in the liquid reservoir 15.

そして、まず、着火電極1に静電容量計(図示なし)を接続し、静電容量を測定する。
次に、着火電極1にスパークイグナイタ43と電流電圧計測機器45を接続し(図4参照)、スパークイグナイタ43により着火電極に適当な電圧を印加して着火電極1から放電させ、電流電圧計測機器45により放電電圧を測定した。
First, a capacitance meter (not shown) is connected to the ignition electrode 1 to measure the capacitance.
Next, the spark igniter 43 and the current / voltage measuring device 45 are connected to the ignition electrode 1 (see FIG. 4), and an appropriate voltage is applied to the ignition electrode by the spark igniter 43 to cause the ignition electrode 1 to discharge. The discharge voltage was measured by 45.

なお、本試験は、電極間距離調整部27により電極間距離を調整した場合と電極間距離を調整しない場合の双方について行った。
その結果、液溜部15の底部15aに接地電極17を設けることにより、電流と電圧の双方にバラツキを生じることなく、又、静電容量計測による放電エネルギーの推算値とも整合し、繰り返し放電を行うことができた。
This test was performed both when the inter-electrode distance was adjusted by the inter-electrode distance adjusting unit 27 and when the inter-electrode distance was not adjusted.
As a result, by providing the ground electrode 17 on the bottom portion 15a of the liquid reservoir 15, there is no variation in both current and voltage, and it is consistent with the estimated value of discharge energy by capacitance measurement, and repeated discharge. Could be done.

以上より、低温液化ガス燃焼・爆発試験用着火電極1において、低温液化ガスの液溜部15に先端が突起した接地電極17を設けることで、液体状態の低温液化ガス中においても安定して放電させることができ、さらに、着火電極の電極間距離を調整することにより、適切な放電距離の調整が可能なことが示された。   As described above, in the ignition electrode 1 for low-temperature liquefied gas combustion / explosion test, the ground electrode 17 having a protruding tip is provided in the liquid reservoir portion 15 of the low-temperature liquefied gas, thereby stably discharging even in the liquid low-temperature liquefied gas. In addition, it was shown that an appropriate discharge distance can be adjusted by adjusting the distance between the ignition electrodes.

本実施例2においては、実施例1と同様に図4に示す点火回路41に接続した着火電極1を用い、放電着火の可否及び再現性について検証実験を行った。以下、当該放電着火爆発試験の結果を説明する。   In Example 2, a verification experiment was conducted on the feasibility and reproducibility of discharge ignition using the ignition electrode 1 connected to the ignition circuit 41 shown in FIG. Hereinafter, the results of the discharge ignition explosion test will be described.

本実施例2における放電着火爆発試験においては、まず、液溜部15を90K以下まで冷却した上で、電極間距離調整部27により電極棒19の先端と接地電極17の先端との距離を調整した。
その後、気体状態の酸素O2をガス導入部11から導入し、冷却ブロック14により前記気体状態の酸素を液化して、約3ccの液体酸素(LO2)を液溜部15に貯留した。
次に、気体状態のメタンCH4を、液溜部15に貯留した前記液体酸素との気体状態での体積混合比が4vol%の濃度となる量をガス導入部11から導入し、冷却ブロック14により前記気体状態のCH4を液化した液体メタン(LCH4)を液溜部15にLO2と共に貯留した。
In the discharge ignition explosion test in Example 2, first, the liquid reservoir 15 is cooled to 90 K or less, and then the distance between the tip of the electrode rod 19 and the tip of the ground electrode 17 is adjusted by the interelectrode distance adjusting unit 27. did.
Thereafter, gaseous oxygen O 2 was introduced from the gas introduction part 11, the gaseous oxygen was liquefied by the cooling block 14, and about 3 cc of liquid oxygen (LO 2 ) was stored in the liquid reservoir 15.
Next, methane CH 4 in a gaseous state is introduced from the gas introduction unit 11 in an amount such that the volume mixing ratio in the gaseous state with the liquid oxygen stored in the liquid reservoir 15 is 4 vol%, and the cooling block 14 Thus, liquid methane (LCH 4 ) obtained by liquefying CH 4 in the gaseous state was stored in the liquid reservoir 15 together with LO 2 .

液溜部15にLO2と4vol%のLCH4の混合液を貯留した状態で、スパークイグナイタ43により前記混合液中で放電を繰り返したが、爆発は観測されなかった。
この状態から、気体状態のメタンをガス導入部11からさらに導入し、冷却ブロック14により前記気体状態のメタンを冷却して液化し、LCH4濃度を20vol%まで増加したLO2とLCH4の混合液を液溜部15に貯留し、該混合液中で放電を行った。
その結果、液溜部15で爆轟が観測され、低温液化ガスの液相中で燃焼爆発試験を実施できることが示された。
While discharge was repeated in the liquid mixture by the spark igniter 43 in a state where the liquid mixture of LO 2 and 4 vol% LCH 4 was stored in the liquid reservoir 15, no explosion was observed.
From this state, the methane in a gaseous state and further introduced through the gas inlet port 11, the methane in the gaseous state is liquefied by cooling the cooling block 14, the mixing of LO 2 and LCH 4 which increased the LCH 4 concentration up to 20 vol% The liquid was stored in the liquid reservoir 15 and discharged in the mixed liquid.
As a result, detonation was observed in the liquid reservoir 15 and it was shown that the combustion explosion test can be carried out in the liquid phase of low-temperature liquefied gas.

なお、本実施例2において、液溜部15の肉厚はt=0.2mmであり、一方、接地電極17は円錐形であって液溜部15との接触面の直径はφ1mmであった(図5参照)。この時、接地電極17と液溜部15との接触面の接触面積Sは、液溜部15の肉厚をtとすると、S≧4πt2の関係を満たす。そのため、前記接触面における電流密度を十分に低下させることができ、放電しても爆発が観測されなかった場合において、液溜部15の壁面が損傷することを防止することができた。 In Example 2, the thickness of the liquid reservoir 15 was t = 0.2 mm, while the ground electrode 17 was conical and the diameter of the contact surface with the liquid reservoir 15 was φ1 mm ( (See FIG. 5). At this time, the contact area S of the contact surface between the ground electrode 17 and the liquid reservoir 15 satisfies the relationship of S ≧ 4πt 2 where t is the thickness of the liquid reservoir 15. Therefore, the current density at the contact surface can be sufficiently reduced, and damage to the wall surface of the liquid reservoir 15 can be prevented when no explosion is observed even after discharge.

以上より、本発明に係る低温液化ガスの燃焼・爆発用着火電極を用いることで、低温液化ガスの液相中において、電極間距離を調整することで再現性良く放電させることができ、また、可燃性ガスと支燃性ガスを液化した混合液の液相中において着火し燃焼・爆発試験を実施できることが実証された。   As described above, by using the low temperature liquefied gas combustion / explosion ignition electrode according to the present invention, in the liquid phase of the low temperature liquefied gas, it is possible to discharge with good reproducibility by adjusting the distance between the electrodes, It was proved that the combustion and explosion tests can be performed by igniting in the liquid phase of a mixture of flammable gas and supporting gas.

1 着火電極
11 ガス導入部
13 液化容器
14 冷却ブロック
15 液溜部
15a 底部
17 接地電極
19 電極棒
21 絶縁被覆
23 電極棒挿入管
25 シール部
25a シール部材
27 電極間距離調整部
27a 雄ネジ部
27b 雌ネジ部
29 ナット
31 グランド
41 点火回路
43 スパークイグナイタ
45 電流電圧計測機器
51 容器
51a 半球部
51b 円筒部
DESCRIPTION OF SYMBOLS 1 Ignition electrode 11 Gas introduction part 13 Liquefaction container 14 Cooling block 15 Liquid storage part 15a Bottom part 17 Ground electrode 19 Electrode rod 21 Insulation coating 23 Electrode insertion tube 25 Seal part 25a Seal member 27 Interelectrode distance adjustment part 27a Male thread part 27b Female thread portion 29 Nut 31 Ground 41 Ignition circuit 43 Spark igniter 45 Current / voltage measuring device 51 Container 51a Hemisphere portion 51b Cylindrical portion

Claims (3)

低温液化ガス又は低温液化ガスが共存する系の燃焼・爆発試験装置に用いられて液相中で放電を行う低温液化ガス燃焼・爆発試験用着火電極であって、
液体状態の低温液化ガスを貯留する液化容器における液溜部の内壁面に設けられた突起形状の接地電極と、
該接地電極との電極間距離を調整可能に設けられた電極棒とを備えたことを特徴とする低温液化ガス燃焼・爆発試験用着火電極。
An ignition electrode for a low temperature liquefied gas combustion / explosion test used in a combustion / explosion test apparatus of a system in which low temperature liquefied gas or a low temperature liquefied gas coexists and discharges in a liquid phase ,
A projection-shaped ground electrode provided on the inner wall surface of the liquid reservoir in the liquefaction container for storing the low-temperature liquefied gas in a liquid state;
An ignition electrode for a low-temperature liquefied gas combustion / explosion test, comprising: an electrode rod provided such that the distance between the electrode and the ground electrode can be adjusted.
前記電極棒が挿入されて一端側が前記液化容器に連通する電極棒挿入管と、
前記電極棒が挿通されて前記電極棒挿入管の他端側をシールするシール部と、
前記電極間距離を調整する電極間距離調整部とを備えてなることを特徴とする請求項1に記載の低温液化ガス燃焼・爆発試験用着火電極。
An electrode rod insertion tube in which the electrode rod is inserted and one end side communicates with the liquefaction container;
A seal portion through which the electrode rod is inserted to seal the other end of the electrode rod insertion tube;
The ignition electrode for a low-temperature liquefied gas combustion / explosion test according to claim 1, further comprising an inter-electrode distance adjusting unit that adjusts the inter-electrode distance.
前記接地電極は、前記液化容器において前記液体状態の低温液化ガスが貯留する液溜部の肉厚をtとすると、前記液溜部の内壁面との接触面積Sが4πt2以上であることを特徴とする請求項1又は2に記載の低温液化ガス燃焼・爆発試験用着火電極。 The ground electrode has a contact area S with the inner wall surface of the liquid reservoir of 4πt 2 or more, where t is the thickness of the liquid reservoir in the liquefaction container where the liquid low-temperature liquefied gas is stored. The ignition electrode for a low-temperature liquefied gas combustion / explosion test according to claim 1 or 2.
JP2015165033A 2015-08-24 2015-08-24 Ignition electrode for low temperature liquefied gas combustion and explosion test Active JP6596264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165033A JP6596264B2 (en) 2015-08-24 2015-08-24 Ignition electrode for low temperature liquefied gas combustion and explosion test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165033A JP6596264B2 (en) 2015-08-24 2015-08-24 Ignition electrode for low temperature liquefied gas combustion and explosion test

Publications (2)

Publication Number Publication Date
JP2017044493A JP2017044493A (en) 2017-03-02
JP6596264B2 true JP6596264B2 (en) 2019-10-23

Family

ID=58209962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165033A Active JP6596264B2 (en) 2015-08-24 2015-08-24 Ignition electrode for low temperature liquefied gas combustion and explosion test

Country Status (1)

Country Link
JP (1) JP6596264B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718732C1 (en) * 2019-08-26 2020-04-14 Общество с ограниченной ответственностью "Новые физические принципы" Method for determining relative detonation capacity of gaseous and dispersed condensed combustible materials and device for implementation thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2444046A1 (en) * 2010-10-20 2012-04-25 Vynka Bvba Environmentally friendly absorbent structure
CN106053532B (en) * 2016-05-06 2018-08-28 东北大学 It is a kind of research smoldering dust on dust explosion influence property test device and method
CN109388914B (en) * 2018-11-27 2023-04-18 西安近代化学研究所 Explosive internal explosion power evaluation method based on prefabricated strip-shaped hole cylindrical device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042364Y2 (en) * 1979-05-11 1985-12-26 三菱重工業株式会社 Dust explosion test equipment
JPS57175945A (en) * 1981-04-23 1982-10-29 Kanegafuchi Chem Ind Co Ltd Detecting method for explosion of combustible gas and dust and its device
JPS5985954U (en) * 1982-12-01 1984-06-11 三菱重工業株式会社 Automatic measuring device for minimum ignition energy of dust
JP2610000B2 (en) * 1994-11-30 1997-05-14 田中科学機器製作株式会社 Flash point detector
JP6076166B2 (en) * 2013-03-26 2017-02-08 大陽日酸株式会社 Combustion and explosion test equipment
JP6178645B2 (en) * 2013-07-10 2017-08-09 大陽日酸株式会社 Low temperature container for liquefied gas combustion / explosion test and combustion / explosion test apparatus equipped with the container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718732C1 (en) * 2019-08-26 2020-04-14 Общество с ограниченной ответственностью "Новые физические принципы" Method for determining relative detonation capacity of gaseous and dispersed condensed combustible materials and device for implementation thereof

Also Published As

Publication number Publication date
JP2017044493A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6596264B2 (en) Ignition electrode for low temperature liquefied gas combustion and explosion test
JP6076166B2 (en) Combustion and explosion test equipment
Somandepalli et al. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries
JP6322103B2 (en) Liquefied container for low temperature liquefied gas combustion and explosion test
CN108548754B (en) Device and method for quickly extinguishing solid propellant under high pressure condition
JP7115694B2 (en) Internally generated gas real-time analyzer for secondary batteries
JP6178645B2 (en) Low temperature container for liquefied gas combustion / explosion test and combustion / explosion test apparatus equipped with the container
US5345013A (en) Safe handling of tetrafluoroethylene
Proust et al. Some fundamental combustion properties of" cryogenic" premixed hydrogen air flames
RU96635U1 (en) PRESSURE PULSE GENERATOR IN ACOUSTIC CAVITIES OF COMBUSTION CHAMBERS AND LIQUID ROCKET ENGINE GAS GENERATORS
JP6568780B2 (en) Low temperature liquefied gas stirring apparatus and method
JP2022137370A (en) Stirring method and apparatus for low-temperature liquefied gas mixture sample
Ding et al. Combustion Characteristics of Lithium-ion Electrolyte with a Focus on the Role of LiPF6 Salt and Liquid-Vapor Equilibrium.
Sankhé et al. Characterization of a spark discharge for dust cloud ignition
RU2523921C1 (en) Generator of pressure pulses in combustion chamber acoustic cavities and liquid-propellant engine gas generator
Shaffer et al. Structure and Measurement of Atmospheric and High-Pressure Ignition Plasma
Yates et al. Spark Ignition Parameters of Cryogenic Hydrogen in Oxygen and Nitrogen Mixtures
Fry et al. Blast initiation and propagation of cylindrical detonations in MAPP-Air mixtures
RU149484U1 (en) IGNITION DEVICE FOR IGNITION OF THE COMBUSTION CHAMBER OF A GAS TURBINE ENGINE
CN104160132A (en) Installation for treating a fuel to increase its caloric power
CN217278038U (en) FID (flame ionization Detector) with double ignition
JP2610000B2 (en) Flash point detector
Kelekar Investigation of a Cost-Effective Method of Nitrogen Inerting of Multicomponent Hydrocarbon Gas Mixtures in Large Storage Tanks
Proust et al. Ignition energy and flame propagation in ethylene oxide-air mixtures
Flores et al. An experimental evaluation of a torch ignition system for propulsion research

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R150 Certificate of patent or registration of utility model

Ref document number: 6596264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250