JP6596243B2 - Seismic slit core material and seismic slit - Google Patents

Seismic slit core material and seismic slit Download PDF

Info

Publication number
JP6596243B2
JP6596243B2 JP2015124752A JP2015124752A JP6596243B2 JP 6596243 B2 JP6596243 B2 JP 6596243B2 JP 2015124752 A JP2015124752 A JP 2015124752A JP 2015124752 A JP2015124752 A JP 2015124752A JP 6596243 B2 JP6596243 B2 JP 6596243B2
Authority
JP
Japan
Prior art keywords
synthetic resin
foam plate
resin foam
metal foil
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015124752A
Other languages
Japanese (ja)
Other versions
JP2017008574A (en
Inventor
誠治 高橋
直親 小暮
亮祐 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57761179&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6596243(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2015124752A priority Critical patent/JP6596243B2/en
Publication of JP2017008574A publication Critical patent/JP2017008574A/en
Application granted granted Critical
Publication of JP6596243B2 publication Critical patent/JP6596243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、コンクリート構造物の構造柱と非構造壁との間に介在させる耐震スリットに用いられる耐震スリット芯材及び耐震スリットに関するものである。   The present invention relates to an earthquake resistant slit core material and an earthquake resistant slit used for an earthquake resistant slit interposed between a structural column and a non-structural wall of a concrete structure.

従来、ビル、マンション等のコンクリート構造物の構造柱と非構造壁との接合部等の構造体同士の境界部分に、垂直方向に伸びる耐震スリットを設けて、構造柱と非構造壁とを構造的に分断することで、地震の揺れによる構造柱の損傷等を低減させる方法がとられている。この種の耐震スリットは、地震時の衝撃により圧縮されるが、マグニチュード5以上7未満の所謂中地震程度の地震後にも初期性能を確保するため、地震後に元の形状に復元可能な変形復帰性を有することが不可欠である。これに加え、火災時には延焼を防止するための防火隔壁としての効果も求められるため、耐震スリットには耐火性能も必要である。   Conventionally, structural pillars and non-structural walls are structured by installing vertical earthquake-proof slits at the boundary between structural structures such as joints between structural columns and non-structural walls of concrete structures such as buildings and condominiums. The method of reducing the damage of the structural column due to the shaking of the earthquake, etc., is divided. This type of seismic slit is compressed by the impact at the time of earthquake, but in order to ensure the initial performance even after a so-called medium earthquake of magnitude 5 or more and less than 7, it can be restored to its original shape after the earthquake. It is essential to have In addition to this, since an effect as a fire barrier for preventing the spread of fire in a fire is also required, the earthquake resistant slit needs to have fire resistance.

ここで、耐震スリットは、多くの場合、耐震スリット芯材として、ポリスチレンフォーム等の合成樹脂発泡板と、その端面に配置したロックウールやセラミックファイバー等の耐火材との複合品が用いられている。しかし、耐火材としてロックウールやセラミックファイバー等の材料を用いた場合、その厚みは耐火性能を考慮して5mmを超える厚いものとなり、力骨材と合成樹脂発泡板との間に該耐火材を挿入した耐震スリットは、力骨材の耐震スリット芯材への掛かりが浅いものとなり、力骨材から耐震スリット芯材が離脱し易いものであった。
力骨材から耐震スリット芯材が離脱し易い耐震スリットは、施工時に大きな側圧を掛けられないことから、一回当たりのコンクリート打設高さを低くする必要があり、コンクリートの打込み回数が増えると言う課題があった。また、施工の際、コンクリート打設時の側圧により、耐震スリット芯材のみがズレることが発生してしまうと、このような場合、施工後の外観検査で壁内部での耐震スリット芯材のズレは発見し難く、検査で耐震スリット芯材のズレが見逃されて補修されない場合には、施工不良の状態となり、耐震性能の低下、クラック発生による漏水の原因となってしまう。
Here, in many cases, the earthquake-resistant slit uses a composite product of a synthetic resin foam plate such as polystyrene foam and a fire-resistant material such as rock wool or ceramic fiber disposed on the end face thereof as a core material for the earthquake-resistant slit. . However, when a material such as rock wool or ceramic fiber is used as the refractory material, the thickness becomes more than 5 mm in consideration of the fire resistance performance, and the refractory material is placed between the power frame material and the synthetic resin foam board. The inserted seismic slits were shallowly hooked on the seismic slit core material of the power aggregate, and the seismic slit core material was easily detached from the power aggregate.
The seismic slit, which is easy to remove the seismic slit core material from the power aggregate, cannot apply a large lateral pressure during construction, so it is necessary to lower the concrete placement height per time, and the number of times of concrete placement increases. There was a problem to say. In addition, if the seismic slit core material only shifts due to the side pressure at the time of concrete placement during construction, in such a case, the displacement of the seismic slit core material inside the wall in the appearance inspection after construction will occur. Is difficult to find, and if the inspection is not repaired due to missed displacement of the seismic slit core material, the construction will be in a poor state, causing a decrease in seismic performance and causing water leakage due to cracks.

上記問題を解決するため、耐震スリットの設置作業において、耐震スリット芯材の片面に壁の軸線方向に沿って突出する支持腕を設け、この支持腕の先端を型枠間に差し渡されたセパレータに取り付け、耐震スリット芯材を補強する方法が特許文献1に開示されている。
また、力骨材に補強係止片等からなる係止部を形成するとともに、それらの係止部に補強部材を係合して力骨材相互間を連結することにより、コンクリート打設時に耐震スリット芯材に作用する側圧に対する力骨材の支持強度を補強する方法が特許文献2に開示されている。
In order to solve the above-described problem, in the installation work of the earthquake-resistant slit, a separator provided with a support arm projecting along the axial direction of the wall on one side of the earthquake-resistant slit core material, the tip of this support arm being passed between the molds Patent Document 1 discloses a method for reinforcing a seismic slit core material.
In addition, a locking part made of reinforcing locking pieces or the like is formed on the strength aggregate, and a reinforcing member is engaged with the locking part to connect the power aggregates together, so that it is seismic resistant when placing concrete. Patent Document 2 discloses a method for reinforcing the support strength of a force aggregate against a lateral pressure acting on a slit core.

実開昭59−175545号公報Japanese Utility Model Publication No.59-175545 特開2002−194919号公報JP 2002-194919 A

しかしながら、上記特許文献1に記載された技術にあっては、耐震スリット芯材を保持するための支持腕の構成が複雑でコスト高となる上、支持腕をセパレータに取り付ける作業が煩雑になるという問題を有していた。また、上記した特許文献2に記載された技術においても、力骨材の構造が複雑であり、その製造コストが高くなるとともに、施工方法が煩雑になるという問題が存在した。   However, in the technique described in Patent Document 1, the structure of the support arm for holding the seismic slit core material is complicated and expensive, and the work of attaching the support arm to the separator is complicated. Had a problem. In the technique described in Patent Document 2 described above, there is a problem that the structure of the power aggregate is complicated, the manufacturing cost is increased, and the construction method is complicated.

本発明は、上述した背景技術が有する課題に鑑みなされたものであって、その目的は、力骨材と耐震スリット芯材との嵌合強度に優れるとともに、変形復帰性及び耐火性能にも優れる耐震スリットの耐震スリット芯材及び耐震スリットを提供することにある。   The present invention has been made in view of the problems of the background art described above, and its purpose is excellent in the fitting strength between the power aggregate and the earthquake-resistant slit core material, and also in the deformation returnability and fire resistance performance. It is to provide an earthquake resistant slit core material and an earthquake resistant slit.

上記した目的を達成するため、本発明者等は、耐火材に着目し、鋭意研究を重ねた結果、薄くても耐火性能に優れた金属箔を耐火材として用いるとともに、該金属箔を所定以上の変形復帰性を有する合成樹脂発泡板と所定の構成で組み合わせることで、上記した課題を解決できることを見出し、本発明を完成させた。
すなわち、本発明は、次の(1)〜()に記載した耐震スリット芯材及び()に記載した耐震スリットとした。
(1)建築物の構造柱と非構造壁との間に介在させる耐震スリットの耐震スリット芯材であって、該耐震スリット芯材は、変形復帰性75%以上の合成樹脂発泡板と、その長手方向に沿った端面の少なくとも一面側に備えられた耐火材とからなり、上記合成樹脂発泡板は、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、硬質ウレタン系樹脂又はフェノール系樹脂からなり、かつ上記合成樹脂発泡板の長手方向寸法が100〜3000mm、短手寸法が90〜400mm、厚み方向の寸法が15〜60mmであり、上記耐火材が断面コの字状の金属箔であり、該断面コの字状の金属箔により合成樹脂発泡板の前記端面側が覆われており、上記断面コの字状の金属箔の突き出し部の長さが5〜20mmであり、上記断面コの字状の金属箔は、少なくとも上記突き出し部において合成樹脂発泡板の板面に接着固定されていることを特徴とする、耐震スリット芯材。
)上記合成樹脂発泡板が、その両板面に補強層を有することを特徴とする、上記(1)に記載の耐震スリット芯材。
)上記金属箔が、アルミ箔であることを特徴とする、上記(1)又は(2)に記載の耐震スリット芯材。
)上記金属箔が、粘着剤付きアルミ箔テープであることを特徴とする、上記(1)又は(2)に記載の耐震スリット芯材。
)合成樹脂発泡板と、その長手方向に沿った端面側の少なくとも一方側を挟持する力骨材とを備え、合成樹脂発泡板と力骨材との間に耐火材を有する、建築物の構造柱と非構造壁との間に介在させる耐震スリットにおいて、上記合成樹脂発泡板は、変形復帰性75%以上の合成樹脂発泡板からなり、上記合成樹脂発泡板は、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、硬質ウレタン系樹脂又はフェノール系樹脂からなり、かつ上記合成樹脂発泡板の長手方向寸法が100〜3000mm、短手寸法が90〜400mm、厚み方向の寸法が15〜60mmであり、上記耐火材が断面コの字状の金属箔であり、該断面コの字状の金属箔により合成樹脂発泡板の前記端面側が覆われており、上記断面コの字状の金属箔の突き出し部の長さが5〜20mmであり、上記断面コの字状の金属箔は、少なくとも上記突き出し部において合成樹脂発泡板の板面に接着固定されていることを特徴とする、耐震スリット。
In order to achieve the above object, the present inventors have focused on refractory materials and, as a result of intensive research, use a metal foil having excellent fire resistance performance even though it is thin as a refractory material. It was found that the above-mentioned problems can be solved by combining with a synthetic resin foam plate having a deformable recovery property in a predetermined configuration, and the present invention has been completed.
That is, this invention made it the earthquake-resistant slit core material described in the following (1)-( 4 ) and the earthquake-resistant slit described in ( 5 ).
(1) An earthquake-resistant slit core material of an earthquake-resistant slit interposed between a structural column of a building and a non-structural wall, the earthquake-resistant slit core material comprising a synthetic resin foam plate having a deformation recovery property of 75% or more, It consists of a refractory material provided on at least one side of the end face along the longitudinal direction, the synthetic resin foam plate is made of polystyrene resin, polycarbonate resin, polyolefin resin, rigid urethane resin or phenol resin, And the longitudinal direction dimension of the synthetic resin foamed plate is 100 to 3000 mm, the short dimension is 90 to 400 mm, the dimension in the thickness direction is 15 to 60 mm, and the refractory material is a U-shaped metal foil, said end face of the synthetic resin foam plate by shaped metal foil cross-section U is covered, the length of the protruding portion of the shaped metal foil of the cross section U is 5 to 20 mm, the cross-section The metal foil of the shaped, characterized in that it is bonded to the plate surface of the synthetic resin foam plate at least the protruding portion, seismic slit core.
( 2 ) The earthquake-resistant slit core material according to (1 ) above, wherein the synthetic resin foam plate has reinforcing layers on both plate surfaces.
( 3 ) The earthquake resistant slit core material according to (1) or (2 ) above, wherein the metal foil is an aluminum foil.
( 4 ) The earthquake resistant slit core material according to (1) or (2 ) above, wherein the metal foil is an aluminum foil tape with an adhesive.
( 5 ) A building comprising a synthetic resin foam plate and a force aggregate sandwiching at least one side of the end surface along the longitudinal direction thereof, and having a refractory material between the synthetic resin foam plate and the force aggregate. In the earthquake-proof slit interposed between the structural column and the non-structural wall, the synthetic resin foam plate is made of a synthetic resin foam plate having a deformation recovery property of 75% or more, and the synthetic resin foam plate is made of polystyrene resin or polycarbonate. Made of polyurethane resin, polyolefin resin, rigid urethane resin or phenol resin, and the synthetic resin foam plate has a longitudinal dimension of 100 to 3000 mm, a short dimension of 90 to 400 mm, and a thickness dimension of 15 to 60 mm. There, the refractory material is a shaped metal foil section co, the end face of the synthetic resin foam plate by shaped metal foil the cross section U is covered, shaped gold the section U The length of the protruding portion of the foil 5 to 20 mm, shaped metal foil of the cross section U is characterized by being bonded to the plate surface of the synthetic resin foam plate at least the protruding portion, seismic slit.

上記した本発明によれば、変形復帰性75%以上の合成樹脂発泡板と、その長手方向に沿った端面の少なくとも一面側に備えられた耐火材とからなり、該耐火材が断面コの字状の金属箔であり、該断面コの字状の金属箔により合成樹脂発泡板の前記端面側が覆われている耐震スリット芯材としたので、耐震スリットの施工後において地震時等の衝撃によって該耐震スリット芯材が圧縮変形した場合でも、変形復帰性に優れる合成樹脂発泡板共々金属箔からなる耐火材も元の状態に近い形まで戻ることができ、地震後においても耐震スリットの設置付近に間隙等が生じ難く、耐火性や耐水性等の初期性能を維持することができるものとなる。また、耐火材として薄くても耐火性能の高い金属箔を用いているので、力骨材と合成樹脂発泡板との間に介在させても、力骨材の嵌合強度を阻害せず、施工の際に、力骨材から耐震スリット芯材が離脱し難いものとなり、施工不良が生じ難いものとなるとともに、一度に打設可能なコンクリート打設高さが高くなり、コンクリート打込み回数が減らすことができる。   According to the present invention described above, the synthetic resin foam plate having a deformation recovery property of 75% or more and the refractory material provided on at least one side of the end surface along the longitudinal direction, the refractory material having a U-shaped cross section. Since the end face side of the synthetic resin foam plate is covered with the U-shaped metal foil, the metal foil is shaped like a metal foil. Even when the earthquake-resistant slit core material is compressively deformed, the fireproof material made of metal foil together with the synthetic resin foam plate that is excellent in deformation recovery can also return to its original shape, and even after the earthquake, it is in the vicinity of the installation of the earthquake-resistant slit A gap or the like hardly occurs, and initial performance such as fire resistance and water resistance can be maintained. In addition, because it uses a thin metal foil with high fire resistance performance as a refractory material, even if it is interposed between a strength aggregate and a synthetic resin foam plate, it does not hinder the strength strength of the strength aggregate. In this case, the seismic slit core material will not easily come off from the aggregate, making it difficult for construction failure to occur, increasing the concrete placement height that can be placed at once, and reducing the number of times the concrete is placed. Can do.

本発明に係る耐震スリット芯材の一実施形態を示した斜視図である。It is the perspective view which showed one Embodiment of the earthquake-resistant slit core material which concerns on this invention. 変形復帰性を評価する試験において、耐火材部分の厚さの測定位置を示した斜視図である。It is the perspective view which showed the measurement position of the thickness of a refractory material part in the test which evaluates a deformation | transformation return property. 施工性を評価する試験において、実際に各種耐震スリット芯材を用いて構築した耐震スリットの概念的な横断面図である。In the test which evaluates workability, it is a notional cross-sectional view of the earthquake-resistant slit actually constructed using various earthquake-resistant slit core materials.

本発明に係る耐震スリット芯材は、所定以上の変形復帰性を有する合成樹脂発泡板と、薄くても耐火性能に優れた金属箔からなる耐火材とを、合成樹脂発泡板の変形に耐火材が追従し易いように所定の構成で組み合わせたことを特徴とするものである。   The seismic slit core material according to the present invention comprises a synthetic resin foam plate having a predetermined or higher deformation recovery property, and a fireproof material made of a metal foil having excellent fire resistance performance even when it is thin. Are combined in a predetermined configuration so as to easily follow.

本発明で用いる合成樹脂発泡板は、変形復帰性75%以上であることが必要である。変形復帰性が上記のものであれば、中地震程度の地震時の衝撃によって該合成樹脂発泡板が圧縮変形した場合でも、元の状態に近い形まで戻ることができ、地震後においても設置位置付近に隙間が生じ難く、耐火性、耐水性等において初期性能を維持することができる。上記の観点から、変形復帰性は85%以上であることが好ましく、90%以上であることがより好ましい。
なお、上記変形復帰性は、独立行政法人都市構生機構制定の「機材の品質判定基準(平成26年5月版):スリット材の性能試験方法」に基づき測定することができる。
The synthetic resin foam board used in the present invention needs to have a deformation recovery property of 75% or more. If the deformability is as described above, even if the synthetic resin foam plate is compressed and deformed by an impact at the time of an earthquake of the middle level, it can return to its original shape and can be installed even after the earthquake. It is difficult for gaps to occur in the vicinity, and initial performance can be maintained in fire resistance, water resistance, and the like. From the above viewpoint, the deformation recovery property is preferably 85% or more, and more preferably 90% or more.
The reversion property can be measured based on “Equipment Quality Judgment Criteria (May 2014 Version): Slit Material Performance Test Method” established by the Incorporated Administrative Agency Urban Reorganization Organization.

上記変形復帰性能を満たすものであれば、合成樹脂発泡板は、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、硬質ウレタン系樹脂、あるいはフェノール系樹脂からなるいずれのものであってもよい。但し、中でも、ポリスチレン系樹脂、ポリカーボネート系樹脂が好ましく、特にはポリカーボネート系樹脂が好ましく用いられる。これは、ポリカーボネート系樹脂からなる発泡板は、変形復帰性能に優れるとともに、変形や割れが生じ難く、耐震スリット芯材として要求させる性能をバランスよく有しているために、特に好ましく用いられる。   The synthetic resin foam plate may be any of a polystyrene resin, a polycarbonate resin, a polyolefin resin, a hard urethane resin, or a phenol resin as long as it satisfies the deformation recovery performance. However, among these, polystyrene resins and polycarbonate resins are preferable, and polycarbonate resins are particularly preferably used. This is particularly preferably used because a foamed plate made of a polycarbonate-based resin is excellent in deformation recovery performance, hardly deforms or cracks, and has a balance of performance required as a seismic slit core material.

合成樹脂発泡板は、少なくともその両板面に補強層を有するものであることが好ましい。補強層としては、発泡板の成形時に形成される緻密な表層、所謂成形スキン層であってもよく、また他部材からなる補強シートを発泡板の板面に貼着したものとしてもよい。貼着する補強シートとしては、表面が平滑で、透水性の低いシートであれば、種々の素材のものを用いることができる。例えばポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート等の合成樹脂フィルム、アルミシート、またクラフト紙などが挙げられるが、より好ましくは、厚み50〜500μm、特に好ましくは100〜350μmのライナーとして用いられるクラフト紙である。このような補強シートを合成樹脂発泡板の両板面に貼着することにより、コンクリートと耐震スリット芯材との縁切りをより容易に行うことが可能となる。   The synthetic resin foam plate preferably has a reinforcing layer on at least both plate surfaces thereof. The reinforcing layer may be a dense surface layer formed during molding of the foamed plate, a so-called molded skin layer, or a reinforcing sheet made of another member may be adhered to the plate surface of the foamed plate. As the reinforcing sheet to be stuck, various materials can be used as long as the sheet has a smooth surface and low water permeability. For example, synthetic resin films such as polyethylene, polypropylene, polystyrene, and polycarbonate, aluminum sheets, and kraft paper can be mentioned. Kraft paper used as a liner having a thickness of 50 to 500 μm, particularly preferably 100 to 350 μm is more preferable. . By sticking such a reinforcing sheet to both plate surfaces of the synthetic resin foam plate, it becomes possible to more easily perform edge cutting between the concrete and the earthquake-resistant slit core material.

本発明で用いる合成樹脂発泡板は、上記したポリカーボネート系樹脂等よりなる基材樹脂を、従来公知の押出発泡成形、インジェクション発泡成形、プレス発泡成形、発泡粒子の型内成形などによって発泡成形させて製造されるが、中でも、押出発泡成形による方法が、好適な板状発泡体を容易に得ることができるので好ましい。   The synthetic resin foam plate used in the present invention is obtained by subjecting a base resin made of the above-described polycarbonate resin to foam molding by conventionally known extrusion foam molding, injection foam molding, press foam molding, in-mold molding of foam particles, and the like. Among them, the method by extrusion foaming is preferable because a suitable plate-like foam can be easily obtained.

合成樹脂発泡板の寸法は、施工される場所や、耐震スリットの寸法に対応するものであれば、特に制限はないが、長手方向の寸法は100〜3000mmであることが好ましく、より好ましくは1000〜2500mmである。また、短手方向の寸法は90〜400mmであることが好ましく、より好ましくは100〜300mmである。厚み方向の寸法は15〜60mmであることが好ましく、より好ましくは20〜50mmである。厚みが上記範囲内であれば、耐震スリットの耐震スリット芯材として、所望される耐震特性を発揮することができる。   The size of the synthetic resin foam plate is not particularly limited as long as it corresponds to the place of construction and the size of the earthquake-resistant slit, but the size in the longitudinal direction is preferably 100 to 3000 mm, more preferably 1000. ˜2500 mm. Moreover, it is preferable that the dimension of a transversal direction is 90-400 mm, More preferably, it is 100-300 mm. The dimension in the thickness direction is preferably 15 to 60 mm, and more preferably 20 to 50 mm. If thickness is in the said range, the desired earthquake resistance characteristic can be exhibited as an earthquake resistant slit core material of an earthquake resistant slit.

本発明で用いる耐火材は、薄くても耐火性能に優れた金属箔からなる。金属箔としては、アルミ箔、銅箔、錫箔、ニッケル箔、ステンレス箔、鉛箔、錫鉛合金箔、青銅箔、銀箔、イリジウム箔などを挙げることができるが、中でもアルミ箔、銅箔が好ましく、特にはアルミ箔が好適に用いられる。これは、アルミ箔は安価であるとともに、耐火性能が高いために好ましく用いられる。   The refractory material used in the present invention is made of a metal foil that is excellent in fire resistance even if it is thin. Examples of the metal foil include aluminum foil, copper foil, tin foil, nickel foil, stainless steel foil, lead foil, tin-lead alloy foil, bronze foil, silver foil, and iridium foil, among which aluminum foil and copper foil are preferable. In particular, aluminum foil is preferably used. This is preferably used because aluminum foil is inexpensive and has high fire resistance.

耐火材として用いる金属箔の適した厚みは、使用する金属箔の種類により異なるが、アルミ箔を用いる場合には、施工性と耐火性とのバランス、及び発泡板への変形追従性を考慮すると、6〜200μmの厚みであることが好ましく、20〜100μmの厚みであることがより好ましく、30〜60μmの厚みであることが更に好ましい。   The appropriate thickness of the metal foil used as the refractory material varies depending on the type of metal foil used, but when using aluminum foil, considering the balance between workability and fire resistance, and the ability to follow deformation to the foam plate The thickness is preferably 6 to 200 μm, more preferably 20 to 100 μm, and still more preferably 30 to 60 μm.

金属箔からなる耐火材は、断面コの字状とし、該断面コの字状の金属箔により、図1に示したように、合成樹脂発泡板の長手方向に沿った端面側が覆われている構成で、両者が組み合わされる。
断面コの字状の金属箔の突き出し部の長さは、施工性、耐火性、また合成樹脂発泡板への変形追従性等の観点から、5mm以上であることが好ましく、5〜20mmであることがより好ましく、7〜15mmであることが特に好ましい。
また、断面コの字状の金属箔は、少なくともその突き出し部において合成樹脂発泡板の板面に接着固定されていることが、合成樹脂発泡板への変形追従性の観点から好ましい。金属箔と合成樹脂発泡板とを接着固定させる方法としては、両者間に別途粘着剤或いは接着剤を介在させて両者を接着固定させてもよいが、施工性を考慮し、粘着剤付きの金属箔テープ、具体的には、粘着剤付きアルミ箔テープ、粘着剤付き銅箔テープ等を用いて行うことが好ましい。
The refractory material made of metal foil has a U-shaped cross section, and the end face side along the longitudinal direction of the synthetic resin foam plate is covered with the U-shaped metal foil as shown in FIG. In composition, both are combined.
The length of the protruding portion of the U-shaped metal foil in the cross section is preferably 5 mm or more and 5 to 20 mm from the viewpoints of workability, fire resistance, deformation followability to the synthetic resin foam plate, and the like. It is more preferable, and it is especially preferable that it is 7-15 mm.
Moreover, it is preferable from a viewpoint of the deformation | transformation followability to a synthetic resin foam board that it is adhesive-fixed to the board surface of a synthetic resin foam board at least in the protrusion part. As a method of adhering and fixing the metal foil and the synthetic resin foam plate, a pressure sensitive adhesive or an adhesive may be interposed between the two, and the two may be bonded and fixed. It is preferable to use a foil tape, specifically, an aluminum foil tape with an adhesive, a copper foil tape with an adhesive, or the like.

本発明に係る耐震スリット芯材は、その長手方向に沿った端面側の一端面側又は両端面側を狭持する力骨材を備えた耐震スリットとして用いられることが好ましい。耐震スリット芯材の両端面側に力骨材を備える場合には、耐火材としての断面コの字状の金属箔は、合成樹脂発泡板の上記端面の少なくとも一方側に備えられていればよいが、より確実に耐火性能を発現させるためには、両端面側に備えられていることが好ましい。さらに、耐震スリット芯材を垂直スリットの芯材として用いる場合には、下面となる端面側を断面コの字状の金属箔で覆ってもよい。   The earthquake-resistant slit core material according to the present invention is preferably used as an earthquake-resistant slit provided with a force aggregate that sandwiches one end surface side or both end surface sides along the longitudinal direction. In the case of providing strength aggregates on both end sides of the earthquake-resistant slit core material, the U-shaped metal foil as a refractory material only needs to be provided on at least one side of the end face of the synthetic resin foam plate. However, in order to exhibit fireproof performance more reliably, it is preferable to be provided on both end surfaces. Furthermore, when using an earthquake-resistant slit core material as a core material of a vertical slit, the end surface side which becomes the lower surface may be covered with a U-shaped metal foil.

以上、説明したように、本発明に係る耐震スリット芯材は、所定以上の変形復帰性を有する合成樹脂発泡板と、薄くても耐火性能に優れた金属箔からなる耐火材とを、合成樹脂発泡板の変形に耐火材が追従し易いように所定の構成で組み合わせたものであるので、耐震スリットの施工後において地震時の衝撃によって該耐震スリット芯材が圧縮変形した場合でも、変形復帰性に優れる合成樹脂発泡板共々金属箔からなる耐火材も元の状態に近い形まで戻ることができ、地震後においても耐震スリットの設置付近に間隙等が生じ難く、耐火性や耐水性等の初期性能を維持することができるものとなる。また、力骨材との嵌合強度に優れたものとなり、施工の際に、力骨材から耐震スリット芯材が離脱し難く、施工不良が生じ難いものとなるとともに、コンクリート打設時のコンクリート側圧に対する耐荷性能が高く、一度に打設可能なコンクリート打設高さが高くなり、コンクリート打込み回数が減らすことがでる。   As described above, the seismic slit core material according to the present invention includes a synthetic resin foam plate having a predetermined or higher deformation recovery property and a fireproof material made of a metal foil having excellent fire resistance performance even though it is thin. Because it is combined with a predetermined configuration so that the fire-resistant material can easily follow the deformation of the foam plate, even if the earthquake-resistant slit core material is compressed and deformed due to an impact at the time of earthquake after the construction of the earthquake-resistant slit, the deformation recovery property The refractory material made of metal foil can be returned to its original shape, and it is difficult to create gaps near the installation of the aseismic slit even after the earthquake. The performance can be maintained. In addition, it has excellent mating strength with the power aggregate, and it is difficult for the seismic slit core material to be detached from the power aggregate during construction. The load-bearing performance against side pressure is high, the concrete placement height that can be placed at a time is increased, and the number of times of concrete placement can be reduced.

−実施例1〜3、比較例1〜3−
次の種々の構成の耐震スリット芯材を作製した。
−実施例1−
合成樹脂発泡板:ポリスチレン系樹脂からなる発泡板(株式会社ジェイエスピー製 ミラフォーム3種品、厚さ25mm×幅210mm×長さ200mm、密度35kg/m3
耐火材:粘着剤付きアルミ箔テープ(日立マクセル株式会社製 スリオンテックアルミテープNo.8060、幅50mm、厚さ50μm)
構成:合成樹脂発泡板の長手方向に沿った両端面側を、断面コの字状の金属箔で覆った構成
−実施例2−
合成樹脂発泡板:フェノール系樹脂からなる発泡板(旭化成建材株式会社製オマフォーム、厚さ25mm×幅210mm×長さ200mm、密度27kg/m3
耐火材:粘着剤付きアルミ箔テープ(日立マクセル株式会社製 スリオンテックアルミテープNo.8060、幅50mm、厚さ50μm)
構成:合成樹脂発泡板の長手方向に沿った両端面側を、断面コの字状の金属箔で覆った構成
−実施例3−
合成樹脂発泡板:ポリカーボネート系樹脂からなる発泡板(株式会社ジェイエスピー製 ミラポリカフォーム、厚さ25mm×幅210mm×長さ200mm、密度60kg/m3
耐火材:粘着剤付きアルミ箔テープ(日立マクセル株式会社製 スリオンテックアルミテープNo.8060、幅50mm、厚さ50μm)
構成:合成樹脂発泡板の長手方向に沿った両端面側を、断面コの字状の金属箔で覆った構成
−比較例1−
合成樹脂発泡板:ポリスチレン系樹脂からなる発泡板(株式会社ジェイエスピー製 ミラフォーム3種品、厚さ25mm×幅210mm×長さ200mm、密度35kg/m3
耐火材:使用せず
構成:合成樹脂発泡板単体
−比較例2−
合成樹脂発泡板:ポリスチレン系樹脂からなる発泡板(株式会社ジェイエスピー製 ミラフォーム3種品、厚さ25mm×幅210mm×長さ200mm、密度35kg/m3
耐火材:粘着剤付きアルミ箔テープ(日立マクセル株式会社製 スリオンテックアルミテープNo.8060、幅25mm、厚さ50μm)
構成:合成樹脂発泡板の長手方向に沿った両端面を、平板状の金属箔で覆った構成
−比較例3−
合成樹脂発泡板:ポリスチレン系樹脂からなる発泡板(株式会社ジェイエスピー製 ミラフォーム3種品、厚さ25mm×幅210mm×長さ200mm、密度35kg/m3
耐火材:ロックウール(ニチアス株式会社製、密度120kg/m3、厚さ10mm)
構成:合成樹脂発泡板の長手方向に沿った一端面に、ロックウールを沿わせた構成
なお、上記各種合成樹脂発泡板の両板面には、王子マテリア株式会社製SRK(主成分セルロース、厚み300μm、坪量250g)を補強シートとして積層接着した。
-Examples 1-3, Comparative Examples 1-3-
The following various earthquake-resistant slit cores were prepared.
Example 1
Synthetic resin foam plate: Foam plate made of polystyrene resin (3 types of Mirafos manufactured by JSP Co., Ltd., thickness 25 mm x width 210 mm x length 200 mm, density 35 kg / m 3 )
Refractory material: Aluminum foil tape with adhesive (Sliontec aluminum tape No. 8060, width 50 mm, thickness 50 μm, manufactured by Hitachi Maxell, Ltd.)
Configuration: Configuration in which both end surfaces along the longitudinal direction of the synthetic resin foamed plate are covered with a metal foil having a U-shaped cross section—Example 2-
Synthetic resin foam plate: Foam plate made of phenolic resin (Omafoam, manufactured by Asahi Kasei Construction Materials Co., Ltd., thickness 25 mm × width 210 mm × length 200 mm, density 27 kg / m 3 )
Refractory material: Aluminum foil tape with adhesive (Sliontec aluminum tape No. 8060, width 50 mm, thickness 50 μm, manufactured by Hitachi Maxell, Ltd.)
Configuration: Configuration in which both end surfaces along the longitudinal direction of the synthetic resin foamed plate are covered with a U-shaped metal foil-Example 3
Synthetic resin foam plate: Foam plate made of polycarbonate-based resin (Mirapolyfoam made by JSP Co., Ltd., thickness 25 mm × width 210 mm × length 200 mm, density 60 kg / m 3 )
Refractory material: Aluminum foil tape with adhesive (Sliontec aluminum tape No. 8060, width 50 mm, thickness 50 μm, manufactured by Hitachi Maxell, Ltd.)
Configuration: Configuration in which both end surfaces along the longitudinal direction of the synthetic resin foamed plate are covered with a U-shaped metal foil-Comparative Example 1-
Synthetic resin foam plate: Foam plate made of polystyrene resin (Three types of Mirafos manufactured by JSP Co., Ltd., thickness 25 mm x width 210 mm x length 200 mm, density 35 kg / m 3 )
Refractory material: Not used Composition: Synthetic resin foam plate-Comparative Example 2-
Synthetic resin foam plate: Foam plate made of polystyrene resin (Three types of Mirafos manufactured by JSP Co., Ltd., thickness 25 mm x width 210 mm x length 200 mm, density 35 kg / m 3 )
Refractory material: Aluminum foil tape with adhesive (Sliontec aluminum tape No. 8060, width 25 mm, thickness 50 μm, manufactured by Hitachi Maxell, Ltd.)
Structure: Structure in which both end surfaces along the longitudinal direction of the synthetic resin foam plate are covered with a flat metal foil-Comparative Example 3-
Synthetic resin foam plate: Foam plate made of polystyrene resin (Three types of Mirafos manufactured by JSP Co., Ltd., thickness 25 mm x width 210 mm x length 200 mm, density 35 kg / m 3 )
Refractory material: Rock wool (Nichias Co., Ltd., density 120kg / m 3 , thickness 10mm)
Configuration: A configuration in which rock wool is placed along one end surface along the longitudinal direction of the synthetic resin foam plate. Note that SRK (main component cellulose, thickness) manufactured by Oji Materia Co., Ltd. is provided on both plate surfaces of the above various synthetic resin foam plates. 300 μm, basis weight 250 g) was laminated and adhered as a reinforcing sheet.

得られた上記各種の耐震スリット芯材について、変形復帰性、嵌合強度、耐火性能、そして実際の施工性について、測定或いは評価し、その結果を表1に示す。
なお、変形復帰性、嵌合強度等の測定或いは評価は、それぞれ下記の方法で行った。
About the various said earthquake-resistant slit core material obtained, deformation | transformation return property, fitting strength, fire resistance performance, and actual workability were measured or evaluated, and the results are shown in Table 1.
In addition, the measurement or evaluation of deformation recovery property, fitting strength, etc. was performed by the following methods, respectively.

〔変形復帰性〕
独立行政法人都市構生機構制定の「機材の品質判定基準」(平成23年4月版)2建築編の5.スリット材の別紙「スリット材の性能試験方法」2.圧縮試験(試験番号02)4)変形復帰性に準じて試験を行った。
試験方法は以下の通りである。
試験前に図2に示す位置の耐火材部分の最大厚さを測定した。試験体に厚さ15mmまでの変位量を与え圧縮し、その後荷重ゼロまで復帰させた。この操作を5回繰り返したのち、厚さが安定するまで静置した。安定後、試験前と同様の方法で厚さを測定し、これを復帰厚さとした。試験速度は往復とも500mm/minとし、下式に従って変形量を算出した。
変形復帰性(%)=(t2/t1)×100
ここに、
t1:試験前の耐火材部分の厚さの最大値(mm)
t2:試験後の耐火材部分の厚さの最大値(mm)
[Deformation recovery]
4. “Equipment Quality Judgment Criteria” (April 2011 Edition), 2 of the “Architecture Organization”, an independent administrative agency. Separate sheet for slit material “Performance test method for slit material” 2. Compression test (Test No. 02) A test was conducted according to 4) Deformability.
The test method is as follows.
Prior to the test, the maximum thickness of the refractory material portion at the position shown in FIG. 2 was measured. The specimen was compressed by giving a displacement of up to 15 mm in thickness, and then returned to zero load. This operation was repeated 5 times, and then allowed to stand until the thickness became stable. After stabilization, the thickness was measured in the same manner as before the test, and this was taken as the return thickness. The test speed was 500 mm / min for both directions, and the deformation amount was calculated according to the following formula.
Deformability recovery (%) = (t2 / t1) × 100
here,
t1: Maximum thickness of the refractory material before the test (mm)
t2: Maximum thickness of the refractory material after the test (mm)

〔嵌合強度〕
篏合強度の評価は、以下の方法により行った。
目地棒(長さ300mm)を鋼製型枠にスクリュー釘ピッチ50mmで固定し、力骨材と耐震スリット芯材(厚さ25mm,幅210mm,長さ200mm)を挟み込んだ。次に、耐震スリット芯材部分の全面に荷重を加えるため、サイズ:厚さ16mm×幅90mm×長さ200mmのゴム板がスリッ芯材に接する側に積層された板を耐震スリット芯材の上に置き、その上から加圧棒により耐震スリット芯材表面に荷重をかけた。加圧条件は、試験速度:10mm/min、加圧棒:r=17mm(直径34mm、長さ600mmの鉄パイプ)とした。
なお、評価方法としては、加圧棒の変位が5mm時に、たわみ荷重が500N以上のものを○、たわみ荷重が500N以下のものを×と評価した。
[Mating strength]
The composite strength was evaluated by the following method.
A joint rod (length: 300 mm) was fixed to a steel mold with a screw nail pitch of 50 mm, and a strong aggregate and a seismic slit core material (thickness 25 mm, width 210 mm, length 200 mm) were sandwiched. Next, in order to apply a load to the entire surface of the seismic slit core material, a plate laminated with a rubber plate of size: thickness 16 mm × width 90 mm × length 200 mm on the side in contact with the slip core material is placed on the seismic slit core material. Then, a load was applied to the surface of the seismic slit core material with a pressure rod. The pressurizing conditions were a test speed: 10 mm / min, a pressurizing rod: r = 17 mm (an iron pipe having a diameter of 34 mm and a length of 600 mm).
In addition, as an evaluation method, when the displacement of the pressure rod was 5 mm, a case where the deflection load was 500 N or more was evaluated as “◯”, and a case where the deflection load was 500 N or less was evaluated as “X”.

〔耐火性能〕
耐火性能の評価は、独立行政法人都市構生機構制定の「機材の品質判定基準(平成26年5月版):スリット材の性能試験方法」における耐火性能試験に準じて行った。
評価としては、試験終了時までに次の(1)から(4)までに適合するものを○とし、適合しないものを×とした。
(1)スリット部の裏面温度は、次式に適合すること。
最高温度≦180℃+初期温度
平均温度≦140℃+初期温度
この式における初期温度は、試験開始時のスリット部の裏面温度の平均とする。
(2)非加熱側へ10秒を超えて継続する火炎の噴出がないこと。
(3)非加熱面で10秒を超えて継続する発炎がないこと。
(4)火炎が通る亀裂等の損傷を生じないこと。
(Fire resistance)
The fire resistance performance was evaluated in accordance with the fire resistance performance test in “Equipment Quality Judgment Criteria (May 2014 Version): Slit Material Performance Test Method” established by the Independent Administrative Institution Urban Reorganization Organization.
As evaluation, the thing which conforms to following (1) to (4) by the end of a test was set as (circle), and the thing which is not suitable was set as x.
(1) The rear surface temperature of the slit part must conform to the following formula.
Maximum temperature ≤ 180 ° C + initial temperature
Average temperature ≦ 140 ° C. + initial temperature The initial temperature in this formula is the average of the back surface temperatures of the slits at the start of the test.
(2) There shall be no flame eruption that continues for more than 10 seconds to the non-heating side.
(3) There should be no flame that continues for more than 10 seconds on the non-heated surface.
(4) Do not cause damage such as cracks through which the flame passes.

〔施工性〕
図3は、種々の構成からなる耐震スリット芯材1を垂直スリットの芯材としてコンクリート建造物に適用したときの横断面図である。耐震スリット芯材1は、その両側端側が力骨材4,4で挟持された状態で、柱部(構造柱)2と壁部(非構造壁)3との境界付近に埋設される。さらに、それら力骨材4,4の背面側にはシーリング材5,5が充填されている。
耐震スリットの前記境界部付近への埋設は、対向して設置された型枠のそれぞれに目地棒を固定し、耐震スリット芯材1の両側端部に力骨材4,4をそれぞれ配置した耐震スリットを、力骨材4,4の背面側の溝を目地棒に嵌合させることにより固定し、次いで、型枠間にコンクリートを打設し、所定期間経過後に型枠を取り外し、その後、型枠とともに外された目地棒の跡にコーキング材5,5を充填するという作業手順で行った。
施工性の評価は、上記作業、特にコンクリートの打設作業が良好に行われたものを○、コンクリート打設時に耐震スリット芯材が安定せず、耐震スリット芯材の力骨材からの離脱等が懸念されたものを×と評価した。
[Workability]
FIG. 3 is a cross-sectional view when the seismic slit core material 1 having various configurations is applied to a concrete building as a core material of a vertical slit. The seismic slit core material 1 is embedded in the vicinity of the boundary between the column part (structural column) 2 and the wall part (non-structural wall) 3 with both side ends sandwiched between the force aggregates 4 and 4. Further, the sealing materials 5 and 5 are filled on the back side of the force aggregates 4 and 4.
The seismic slits are buried near the boundary part by fixing joint rods to the oppositely placed molds, and the seismic slit cores 1 are respectively provided with the strength frames 4 and 4 at both ends. The slit is fixed by fitting the groove on the back side of the power aggregates 4 and 4 to the joint rod, then concrete is placed between the molds, the mold is removed after a predetermined period, and then the mold It was carried out by the work procedure of filling the traces of the joint rods removed together with the frame with the caulking materials 5 and 5.
The evaluation of workability is ○ when the above work, especially the concrete placement work is performed well, the seismic slit core material is not stable at the time of concrete placement, the seismic slit core material is detached from the power aggregate, etc. Was evaluated as x.

Figure 0006596243
Figure 0006596243

表1より、合成樹脂発泡板としてポリスチレン系樹脂を使用した実施例1、フェノール系樹脂を使用した実施例2、およびポリカーボネート系樹脂を使用した実施例3は、耐震スリット芯材として要求される変形復帰性能、嵌合強度、耐火性能そして施工性の全て満足していることが分かる。また、地震発生時における元の形状への戻りやすさを示す、変形復帰性は、実施例3≒実施例1>実施例2であり、実施例2に比べ、実施例1、3の方がより元の形状に戻りやすく、耐震スリット芯材により適していることが分かる。
これに対し、合成樹脂発泡板は実施例1と同じものを使用しているが、比較例1〜3の耐震スリット芯材の構成では、耐震スリット芯材として要求される変形復帰性能、嵌合強度、耐火性能そして施工性の全ての性能を満足するものはなかったことが分かる。
比較例1のように耐火材が無い構成の耐震スリット芯材では、耐火性能を満足することができない。比較例2のように合成樹脂発泡板の木口面(長手方向に沿った端面)のみにアルミ箔テープを貼り付けた構成の耐震スリット芯材では、変形復帰性試験時にアルミ箔テープの一部が発泡板から剥がれ、変形したままとなり、合成樹脂発泡板の変形復帰に追従できないため、変形復帰性能を満足することができない。比較例3のように、金属箔の変わりに、厚さのある耐火材であるロックウールを使用した構成の耐震スリット芯材では、力骨材の合成樹脂発泡板への掛かりが浅くなるため、施工を簡略化するために耐震スリットとして要求される嵌合強度を得ることができない。
From Table 1, Example 1 using a polystyrene-based resin as a synthetic resin foam plate, Example 2 using a phenolic resin, and Example 3 using a polycarbonate-based resin are the deformations required as a seismic slit core material. It can be seen that the return performance, fitting strength, fire resistance and workability are all satisfied. Further, the deformation recovery property indicating the ease of returning to the original shape at the time of the occurrence of an earthquake is as follows: Example 3≈Example 1> Example 2. Compared with Example 2, Examples 1 and 3 are better. It can be seen that it is easier to return to its original shape and is more suitable for the earthquake resistant slit core material.
On the other hand, the same synthetic resin foam plate as in Example 1 is used, but in the configuration of the earthquake-resistant slit core material of Comparative Examples 1 to 3, the deformation return performance and fitting required as the earthquake-resistant slit core material It can be seen that none of the materials satisfied all of the strength, fire resistance and workability.
The earthquake resistant slit core material having no refractory material as in Comparative Example 1 cannot satisfy the fire resistance performance. In the seismic slit core material in which the aluminum foil tape is attached only to the mouth end surface (end surface along the longitudinal direction) of the synthetic resin foam plate as in Comparative Example 2, a part of the aluminum foil tape is not deformed during the deformation recovery test. Since it peels off from the foam plate and remains deformed and cannot follow the deformation recovery of the synthetic resin foam plate, the deformation recovery performance cannot be satisfied. As in Comparative Example 3, instead of metal foil, the seismic slit core material using rock wool, which is a thick refractory material, has a shallow effect on the synthetic resin foam plate of the power aggregate, The fitting strength required as an earthquake-resistant slit to simplify the construction cannot be obtained.

本発明に係る耐震スリット芯材は、変形復帰性及び耐火性能にも優れ、また、力骨材と耐震スリット芯材との嵌合強度に優れるため、コンクリート構造物の非構造壁と構造柱との間に設置される耐震スリットを形成するための耐震スリット芯材として、好適に使用することできるものである。   The seismic slit core material according to the present invention is excellent in deformation recovery properties and fire resistance performance, and is excellent in the fitting strength between the power aggregate and the seismic slit core material, so that the non-structural wall and structural column of the concrete structure As an earthquake-resistant slit core material for forming an earthquake-resistant slit installed between the two, it can be suitably used.

1 耐震スリット芯材
2 柱部
3 壁部
4 力骨材
5 シーリング材
1 Seismic slit core 2 Column 3 Wall 4 Strength aggregate 5 Sealing material

Claims (5)

建築物の構造柱と非構造壁との間に介在させる耐震スリットの耐震スリット芯材であって、該耐震スリット芯材は、変形復帰性75%以上の合成樹脂発泡板と、その長手方向に沿った端面の少なくとも一面側に備えられた耐火材とからなり、上記合成樹脂発泡板は、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、硬質ウレタン系樹脂又はフェノール系樹脂からなり、かつ上記合成樹脂発泡板の長手方向寸法が100〜3000mm、短手寸法が90〜400mm、厚み方向の寸法が15〜60mmであり、上記耐火材が断面コの字状の金属箔であり、該断面コの字状の金属箔により合成樹脂発泡板の前記端面側が覆われており、上記断面コの字状の金属箔の突き出し部の長さが5〜20mmであり、上記断面コの字状の金属箔は、少なくとも上記突き出し部において合成樹脂発泡板の板面に接着固定されていることを特徴とする、耐震スリット芯材。 An anti-seismic slit core material of an anti-seismic slit interposed between a structural column of a building and a non-structural wall, the anti-seismic slit core material comprising a synthetic resin foam plate having a deformation recovery property of 75% or more and a longitudinal direction thereof The synthetic resin foam plate is made of a polystyrene resin, a polycarbonate resin, a polyolefin resin, a hard urethane resin, or a phenol resin, and is made of the above-mentioned synthetic resin. The resin foam plate has a longitudinal dimension of 100 to 3000 mm, a short dimension of 90 to 400 mm, a thickness dimension of 15 to 60 mm, and the refractory material is a U-shaped metal foil. the shaped metal foil covered the end face of the synthetic resin foam plate, the length of the protruding portion of the shaped metal foil of the cross section U is 5 to 20 mm, shape of the cross section U The metal foil, characterized in that it is bonded to the plate surface of the synthetic resin foam plate at least the protruding portion, seismic slit core. 上記合成樹脂発泡板が、その両板面に補強層を有することを特徴とする、請求項1に記載の耐震スリット芯材。 The earthquake-resistant slit core material according to claim 1, wherein the synthetic resin foam plate has reinforcing layers on both plate surfaces. 上記金属箔が、アルミ箔であることを特徴とする、請求項1又は2に記載の耐震スリット芯材。 The earthquake resistant slit core material according to claim 1 or 2, wherein the metal foil is an aluminum foil. 上記金属箔が、粘着剤付きアルミ箔テープであることを特徴とする、請求項1又は2に記載の耐震スリット芯材。 The earthquake resistant slit core material according to claim 1 or 2, wherein the metal foil is an aluminum foil tape with an adhesive. 合成樹脂発泡板と、その長手方向に沿った端面側の少なくとも一方側を挟持する力骨材とを備え、合成樹脂発泡板と力骨材との間に耐火材を有する、建築物の構造柱と非構造壁との間に介在させる耐震スリットにおいて、上記合成樹脂発泡板は、変形復帰性75%以上の合成樹脂発泡板からなり、上記合成樹脂発泡板は、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、硬質ウレタン系樹脂又はフェノール系樹脂からなり、かつ上記合成樹脂発泡板の長手方向寸法が100〜3000mm、短手寸法が90〜400mm、厚み方向の寸法が15〜60mmであり、上記耐火材が断面コの字状の金属箔であり、該断面コの字状の金属箔により合成樹脂発泡板の前記端面側が覆われており、上記断面コの字状の金属箔の突き出し部の長さが5〜20mmであり、上記断面コの字状の金属箔は、少なくとも上記突き出し部において合成樹脂発泡板の板面に接着固定されていることを特徴とする、耐震スリット。 A structural structural column of a building comprising a synthetic resin foam plate and a power aggregate sandwiching at least one side of the end surface along the longitudinal direction thereof, and having a refractory material between the synthetic resin foam plate and the power aggregate In the earthquake-resistant slit interposed between the non-structural wall and the non-structural wall, the synthetic resin foam plate is made of a synthetic resin foam plate having a deformation recovery property of 75% or more, and the synthetic resin foam plate is made of a polystyrene resin, a polycarbonate resin, It consists of a polyolefin-based resin, a hard urethane-based resin or a phenol-based resin, and the synthetic resin foam plate has a longitudinal dimension of 100 to 3000 mm, a short dimension of 90 to 400 mm, and a thickness dimension of 15 to 60 mm, refractory material is a shaped metal foil section co, the end face of the synthetic resin foam plate by shaped metal foil the cross section U is covered, collision of shaped metal foil of the cross section U The length of the out portion is 5 to 20 mm, the shaped metal foil cross-section co is characterized by being adhesively fixed at least in the projecting portion on the plate surface of the synthetic resin foam plate, seismic slit.
JP2015124752A 2015-06-22 2015-06-22 Seismic slit core material and seismic slit Active JP6596243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124752A JP6596243B2 (en) 2015-06-22 2015-06-22 Seismic slit core material and seismic slit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124752A JP6596243B2 (en) 2015-06-22 2015-06-22 Seismic slit core material and seismic slit

Publications (2)

Publication Number Publication Date
JP2017008574A JP2017008574A (en) 2017-01-12
JP6596243B2 true JP6596243B2 (en) 2019-10-23

Family

ID=57761179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124752A Active JP6596243B2 (en) 2015-06-22 2015-06-22 Seismic slit core material and seismic slit

Country Status (1)

Country Link
JP (1) JP6596243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184616B2 (en) 2018-11-30 2022-12-06 株式会社東北イノアック Seismic slit material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4719286Y1 (en) * 1966-03-07 1972-07-01
JPS5444414Y2 (en) * 1974-05-27 1979-12-20
JP2001288926A (en) * 2000-04-05 2001-10-19 Akushisu Kk Slit material for earthquake resistance
JP2003221942A (en) * 2003-01-17 2003-08-08 Kanegafuchi Chem Ind Co Ltd Earthquake resisting slit material
JP2012255269A (en) * 2011-06-08 2012-12-27 Kikusui Chemical Industries Co Ltd Earthquake-resistant slit material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017008574A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
Tuwair et al. Evaluation of sandwich panels with various polyurethane foam-cores and ribs
US9611667B2 (en) Durable, fire resistant, energy absorbing and cost-effective strengthening systems for structural joints and members
Sohel et al. Behavior of steel–concrete–steel sandwich slabs subject to impact load
Qi et al. Bending performance of GFRP-wood sandwich beams with lattice-web reinforcement in flatwise and sidewise directions
Mousa et al. Structural behavior and modeling of full-scale composite structural insulated wall panels
Tejchman Evaluation of strength, deformability and failure mode of composite structural insulated panels
Yan et al. Design and behavior of steel–concrete–steel sandwich plates subject to concentrated loads
Zhou et al. Rehabilitation of notch damaged steel beams using a carbon fiber reinforced hybrid polymeric-matrix composite
JP5065907B2 (en) Sandwich plate with improved structure
Leo Braxtan et al. Bond performance of SFRM on steel plates subjected to tensile yielding
Osei-Antwi et al. Fracture in complex balsa cores of fiber-reinforced polymer sandwich structures
WO2014120311A2 (en) Blast-resistant reinforced cementitious panels and reinforcing structures for use therein
Al-Azzawi et al. FRP strengthening of web panels of steel plate girders against shear buckling Part-I: Static series of tests
JP6596243B2 (en) Seismic slit core material and seismic slit
CN210177698U (en) Frame-infilled wall flexible connection structure
Dvorak et al. Protection of sandwich plates from low-velocity impact
Yoon et al. Improvement of the adhesive peel strength of the secondary barrier with level difference for LNG containment system
Mostafa Numerical analysis on the effect of shear keys pitch on the shear performance of foamed sandwich panels
JP6134098B2 (en) Masonry structure
JP6637239B2 (en) Seismic slit material and slit core material for seismic slit material
Aljaberi et al. A comparative study of flexural behavior of reinforced masonry walls strengthened with near-surface mounted FRP bars or externally bonded FRP sheets
JP6042215B2 (en) Anticorrosion structure and its construction method
WO2007053119A1 (en) Method of applying a coating medium and a preformed panel
Mahendran et al. Flexural wrinkling behaviour of lightly profiled sandwich panels
JP6703443B2 (en) Laminated joint material, slit structure, and method of constructing slits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R150 Certificate of patent or registration of utility model

Ref document number: 6596243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250