JP6595906B2 - Quick-hardening fiber grout composition - Google Patents
Quick-hardening fiber grout composition Download PDFInfo
- Publication number
- JP6595906B2 JP6595906B2 JP2015253714A JP2015253714A JP6595906B2 JP 6595906 B2 JP6595906 B2 JP 6595906B2 JP 2015253714 A JP2015253714 A JP 2015253714A JP 2015253714 A JP2015253714 A JP 2015253714A JP 6595906 B2 JP6595906 B2 JP 6595906B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- parts
- hardening
- cement
- preferable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011440 grout Substances 0.000 title claims description 37
- 239000000203 mixture Substances 0.000 title claims description 28
- 239000000835 fiber Substances 0.000 title claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 claims description 29
- 239000004568 cement Substances 0.000 claims description 27
- 239000003638 chemical reducing agent Substances 0.000 claims description 21
- 239000010440 gypsum Substances 0.000 claims description 20
- 229910052602 gypsum Inorganic materials 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 16
- 229920001778 nylon Polymers 0.000 claims description 16
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 12
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims description 11
- 150000008041 alkali metal carbonates Chemical class 0.000 claims description 11
- 238000004017 vitrification Methods 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- 150000004645 aluminates Chemical class 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 239000011575 calcium Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 22
- 238000004898 kneading Methods 0.000 description 16
- 238000011161 development Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 150000002978 peroxides Chemical class 0.000 description 8
- 238000010276 construction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000004088 foaming agent Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- -1 retarder Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000000404 calcium aluminium silicate Substances 0.000 description 1
- 235000012215 calcium aluminium silicate Nutrition 0.000 description 1
- WNCYAPRTYDMSFP-UHFFFAOYSA-N calcium aluminosilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O WNCYAPRTYDMSFP-UHFFFAOYSA-N 0.000 description 1
- 229940078583 calcium aluminosilicate Drugs 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- BHDAXLOEFWJKTL-UHFFFAOYSA-L dipotassium;carboxylatooxy carbonate Chemical compound [K+].[K+].[O-]C(=O)OOC([O-])=O BHDAXLOEFWJKTL-UHFFFAOYSA-L 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、主に、土木・建築業界において使用される速硬グラウト組成物に関する。 The present invention mainly relates to a fast-setting grout composition used in the civil engineering and construction industry.
土木・建築分野では、コンクリートとコンクリートの間隙に流動性が良好なグラウト材等を充填する場合が多々ある。現場では、作業効率上、早期に硬化する速硬性のグラウト材が魅力的であり、欠かすことの出来ないグラウト材となりつつある。特に、夜間の緊急工事や低温環境下での作業では速硬性のグラウト材が求められている(特許文献1、2)。 In the civil engineering / architecture field, there are many cases where a grout material having good fluidity is filled in the gap between concrete and concrete. In the field, fast-hardening grout materials that harden early are attractive for work efficiency, and are becoming indispensable grout materials. In particular, fast-hardening grout materials are required for emergency construction at night and work in a low-temperature environment (Patent Documents 1 and 2).
しかしながら、速硬性を具備したグラウト材には、カルシウムアルミネート等の速硬成分の使用が必須である。従来、速硬成分を用いることにより流動性及び可使時間の調整が必要となり、調整が難しかった。特に、低温環境下においては、短期強度の発現性が不良となる場合があり、さらに調整が難しいという課題があった。
従って、本発明は、速硬成分を具備した速硬グラウト組成物でありながら、流動性及び可使時間の調整が容易であり、且つ低温環境下での強度発現が良好なグラウト組成物を提供することを課題とする。
However, the use of fast-hardening components such as calcium aluminate is essential for grout materials with fast-hardening properties. Conventionally, it has been difficult to adjust the fluidity and pot life by using a fast-hardening component. In particular, in a low-temperature environment, the short-term strength may be poorly expressed, and there is a problem that adjustment is difficult.
Accordingly, the present invention provides a grout composition that is easy to adjust fluidity and pot life, and has good strength development in a low-temperature environment, even though it is a fast-hardening grout composition having a fast-hardening component. The task is to do.
そこで、本発明者は、カルシウムアルミネートを含有する速硬グラウト材の流動性及び可使時間の調整について種々検討してきた結果、セメント、カルシウムアルミネート及び石膏からなる結合材に対して、細骨材、アルカリ金属炭酸塩、遅延剤、減水剤及び繊維を特定量配合し、特に細骨材の量を少なくし、かつ繊維としてナイロン繊維を使用することにより、流動性及び可使時間の調整が容易となり、且つ低温環境下での強度発現が良好なグラウト組成物が得られることを見出し、本発明を完成した。 Therefore, the present inventor has made various studies on the adjustment of the fluidity and pot life of the quick-hardening grout material containing calcium aluminate. Mixing specific amounts of wood, alkali metal carbonate, retarder, water reducing agent and fiber, especially reducing the amount of fine aggregates and using nylon fiber as the fiber, the fluidity and pot life can be adjusted. The present invention has been completed by finding that a grout composition that is easy and has good strength development under a low temperature environment can be obtained.
すなわち、本発明は、次の〔1〕〜〔3〕を提供するものである。 That is, the present invention provides the following [1] to [3].
〔1〕セメント、カルシウムアルミネート、石膏類、細骨材、アルカリ金属炭酸塩、遅延剤、減水剤及びナイロン繊維を含有するグラウト組成物であって、セメント、カルシウムアルミネート及び石膏類からなる結合材100質量部に対して、細骨材3〜15質量部、アルカリ金属炭酸塩0.2〜1.0質量部、遅延剤0.05〜0.2質量部、減水剤0.15〜0.4質量部及びナイロン繊維0.05〜0.3質量部を含有することを特徴とする速硬繊維グラウト組成物。
〔2〕カルシウムアルミネートのCaOとAl2O3の含有モル比がCaO/Al2O3=1.0〜1.8であり、且つガラス化率が10%以上である〔1〕記載の速硬繊維グラウト組成物。
〔3〕ナイロン繊維の繊維長が3〜15mmである〔1〕又は〔2〕記載の速硬繊維グラウト組成物。
[1] A grout composition containing cement, calcium aluminate, gypsum, fine aggregate, alkali metal carbonate, retarder, water reducing agent, and nylon fiber, and comprising a cement, calcium aluminate, and gypsum 3 to 15 parts by mass of fine aggregate, 0.2 to 1.0 parts by mass of alkali metal carbonate, 0.05 to 0.2 parts by mass of retarder, and 0.15 to 0 of water reducing agent for 100 parts by mass of the material A quick-hardening fiber grout composition containing 4 parts by weight and 0.05 to 0.3 parts by weight of nylon fibers.
[2] The content molar ratio of CaO to Al 2 O 3 in calcium aluminate is CaO / Al 2 O 3 = 1.0 to 1.8, and the vitrification rate is 10% or more. Fast-hardening fiber grout composition.
[3] The fast-hardening fiber grout composition according to [1] or [2], wherein the fiber length of the nylon fiber is 3 to 15 mm.
流動性及び可使時間の調整が容易であり、且つ低温環境下での強度発現が良好なグラウト組成物が得られる。 A grout composition can be obtained in which the fluidity and pot life can be easily adjusted, and the strength development under a low temperature environment is good.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明における速硬繊維グラウト組成物とは、速硬性を備え繊維を含有するグラウト組成物を云う。 The fast-hardening fiber grout composition in the present invention refers to a grout composition having quick-hardness and containing fibers.
本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、また、石灰石粉末等の高炉徐冷スラグ微粉末を混合したフィラーセメント、各種の産業廃棄物を主原料として製造される環境調和型セメント、いわゆる、エコセメントなどが挙げられ、これらのうちの一種又は二種以上が併用可能である。本発明では初期強度発現性や材料分離抵抗性の観点から、普通ポルトランドセメントや早強ポルトランドセメントを選定することが好ましい。
本発明におけるセメントの使用量は、強度発現性、速硬性、混練時の練混ぜ易さの点から結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して、65〜80質量部が好ましく、68〜80質量部がより好ましく、70〜80質量部がさらに好ましい。
As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements obtained by mixing blast furnace slag, fly ash, or silica with these portland cements, Filler cement mixed with blast furnace slow-cooled slag fine powder such as limestone powder, environmentally friendly cement manufactured using various industrial wastes as the main raw material, so-called eco-cement, etc. More than one species can be used together. In the present invention, it is preferable to select ordinary Portland cement or early-strength Portland cement from the viewpoint of initial strength development and material separation resistance.
The amount of the cement used in the present invention is 65 to 80 parts by mass with respect to 100 parts by mass of the binder (cement, calcium aluminate and gypsum) in terms of strength development, quick curing, and ease of kneading. Is preferable, 68-80 mass parts is more preferable, and 70-80 mass parts is further more preferable.
本発明で使用するカルシウムアルミネートは、初期凝結や強度発現性が向上するものであり、CaO原料やAl2O3原料等を混合したものをキルンで焼成したり、電気炉で溶融したりするなどの熱処理をして得られるものをいい、注水後の初期にセメント組成物の凝結を起こさせる速硬成分である。 The calcium aluminate used in the present invention is improved in initial setting and strength development, and a mixture of a CaO raw material, an Al 2 O 3 raw material or the like is baked in a kiln or melted in an electric furnace. This is a fast-curing component that causes the cement composition to coagulate in the initial stage after water injection.
カルシウムアルミネートの鉱物成分としては、C3A(3CaO・Al2O3)、C12A7(12CaO・7Al2O3)、CA(CaO・Al2O3)およびCA2(CaO・2Al2O3)などで示されるカルシウムアルミネート熱処理物を粉砕したものなどが挙げられる。さらに、その他の成分として、SiO2を含有するアルミノ珪酸カルシウム、C12A7の1つのCaOをCaF2などのハロゲン化物で置き換えたC11A7・CaX2(Xはフッ素等のハロゲン)、SO3成分を含むC4As・SO3、ならびに、ナトリウム、カリウム、およびリチウム等のアルカリ金属が一部固溶したカルシウムアルミネートなどが挙げられ、これらの一種または二種以上が使用可能である。
これらの中では、反応活性の面でCaO/Al2O3のモル比が1.0〜1.8である熱処理物を急冷したカルシウムアルミネートが好ましい。CaO/Al2O3のモル比が1.0以上の場合、優れた短期強度発現性が得られ、また、1.8以下の場合、優れた流動性が得られる。
また、カルシウムアルミネートに十分な速硬性を付与させるためにガラス化率が10%以上のものが好ましい。ここでガラス化率は次の方法で導出することができる。すなわち、質量;MSのセメント組成物に含まれる各鉱物の質量を粉末X線回折により内部標準法等で定量し、定量できた含有鉱物相の総和質量;MCを算出し、残部が純ガラス相と見なし、次式でガラス化率を求める。
As mineral components of calcium aluminate, C 3 A (3CaO · Al 2 O 3 ), C 12 A 7 (12CaO · 7Al 2 O 3 ), CA (CaO · Al 2 O 3 ) and CA 2 (CaO · 2Al) Examples include those obtained by pulverizing a calcium aluminate heat-treated product represented by 2 O 3 ). Further, as other components, calcium aluminosilicate containing SiO 2 , C 11 A 7 · CaX 2 (X is a halogen such as fluorine) in which one CaO of C 12 A 7 is replaced with a halide such as CaF 2 , C 4 As · SO 3 containing SO 3 component and calcium aluminate in which alkali metals such as sodium, potassium and lithium are partly dissolved are listed. One or more of these can be used. .
Among these, calcium aluminate obtained by quenching a heat-treated product having a CaO / Al 2 O 3 molar ratio of 1.0 to 1.8 in terms of reaction activity is preferable. When the CaO / Al 2 O 3 molar ratio is 1.0 or more, excellent short-term strength development is obtained, and when it is 1.8 or less, excellent fluidity is obtained.
Moreover, in order to give calcium aluminate sufficient quick hardening, the thing of 10% or more of vitrification rate is preferable. Here, the vitrification rate can be derived by the following method. That is, the mass; the mass of each mineral contained in the cement composition of MS was quantified by internal standard method, etc. by powder X-ray diffraction, and the total mass of the contained mineral phase that could be quantified; MC was calculated, and the balance was the pure glass phase Therefore, the vitrification rate is obtained by the following formula.
本発明におけるカルシウムアルミネートの使用量は、速硬性、短期強度発現性の点から、結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して、10〜25質量部が好ましく、10〜22質量部がより好ましく、10〜20質量部がさらに好ましい。 The amount of calcium aluminate used in the present invention is preferably 10 to 25 parts by mass with respect to 100 parts by mass of the binder (cement, calcium aluminate and gypsum) from the viewpoint of fast curing and short-term strength development. -22 mass parts is more preferable, and 10-20 mass parts is further more preferable.
本発明で使用する石膏類は、凝結を促進させるものであり、例えば、無水石膏、半水石膏、および二水石膏であり、これらの1種または2種以上が使用可能である。これらの中では、凝結促進の効果の面から無水石膏が好ましい。
本発明における石膏類の使用量は、速硬性、長期強度発現性の点から、結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して、5〜20質量部が好ましく、5〜18質量部がより好ましく、5〜15質量部がさらに好ましい。
The gypsum used in the present invention promotes the setting, and is, for example, anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum, and one or more of these can be used. Among these, anhydrous gypsum is preferable in terms of the effect of promoting the setting.
The amount of gypsum used in the present invention is preferably 5 to 20 parts by mass with respect to 100 parts by mass of the binder (cement, calcium aluminate and gypsum) from the viewpoint of fast curing and long-term strength development. 18 mass parts is more preferable, and 5-15 mass parts is further more preferable.
本発明で使用する細骨材の具体例としては、例えば、珪砂系、石灰石系、高炉水砕スラグ系、及び再生骨材系等が挙げられ、本発明では、耐酸性等の観点から珪砂系を選定することが好ましい。
本発明における細骨材の使用量は、結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して、3〜15質量部とする。4〜13質量部が好ましく、5〜10質量部がより好ましく、6〜10質量部が最も好ましい。3質量部未満では可使時間の確保が困難になる恐れがあり、15質量部を超えると優れた流動性が得られない恐れや小間隙への充填性が悪くなる恐れがある。
Specific examples of the fine aggregate used in the present invention include, for example, a silica sand system, a limestone system, a blast furnace granulated slag system, and a recycled aggregate system. In the present invention, a silica sand system is used from the viewpoint of acid resistance and the like. Is preferably selected.
The amount of fine aggregate used in the present invention is 3 to 15 parts by mass with respect to 100 parts by mass of the binder (cement, calcium aluminate and gypsum). 4-13 mass parts is preferable, 5-10 mass parts is more preferable, and 6-10 mass parts is the most preferable. If the amount is less than 3 parts by mass, it may be difficult to ensure the pot life. If the amount exceeds 15 parts by mass, excellent fluidity may not be obtained, and the filling property in a small gap may be deteriorated.
本発明で使用するアルカリ金属炭酸塩は、特に限定されるものではない。例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等が挙げられる。初期凝結の効果ならびにコスト面を考慮すると、好ましくは、炭酸リチウム、炭酸ナトリウムがよい。
本発明におけるアルカリ金属炭酸塩の使用量は、結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して0.2〜1.0質量部とする。0.3〜0.8質量部が好ましく、0.4〜0.7質量部がより好ましく、0.4〜0.6質量部が最も好ましい。0.2質量部未満では初期凝結の促進に効果が低くなる恐れがあり、1.0質量部を超えると流動性を悪くする恐れがある。
The alkali metal carbonate used in the present invention is not particularly limited. For example, lithium carbonate, sodium carbonate, potassium carbonate, etc. are mentioned. Considering the effect of initial setting and cost, lithium carbonate and sodium carbonate are preferable.
The usage-amount of the alkali metal carbonate in this invention shall be 0.2-1.0 mass part with respect to 100 mass parts of binders (cement, calcium aluminate, and gypsum). 0.3-0.8 mass part is preferable, 0.4-0.7 mass part is more preferable, and 0.4-0.6 mass part is the most preferable. If the amount is less than 0.2 parts by mass, the effect of promoting the initial setting may be reduced. If the amount exceeds 1.0 parts by mass, the fluidity may be deteriorated.
本発明で使用する遅延剤は特に限定されるものではない。その具体例としては、例えば、クエン酸、酒石酸、リンゴ酸、グルコン酸、及びコハク酸等のオキシカルボン酸、或いはこれらのナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩、及びアルミニウム塩などの塩が好ましく、これらの一種又は二種以上が使用可能である。
本発明における遅延剤使用量は、結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して、0.05〜0.2質量部とする。0.06〜0.12質量部が好ましく、0.06〜0.1質量部がより好ましい。0.05質量部未満では可使時間の確保が困難になる恐れがあり、0.2質量部を超えると強度発現性が悪くなる恐れがある。
The retarder used in the present invention is not particularly limited. Specific examples thereof include, for example, oxycarboxylic acids such as citric acid, tartaric acid, malic acid, gluconic acid, and succinic acid, or sodium salts, potassium salts, calcium salts, magnesium salts, ammonium salts, and aluminum salts thereof. These salts are preferred, and one or more of these can be used.
The amount of retarder used in the present invention is 0.05 to 0.2 parts by mass with respect to 100 parts by mass of the binder (cement, calcium aluminate and gypsum). 0.06-0.12 mass part is preferable, and 0.06-0.1 mass part is more preferable. If it is less than 0.05 parts by mass, it may be difficult to ensure the pot life, and if it exceeds 0.2 parts by mass, the strength development may be deteriorated.
本発明において、流動性を得やすくするため、減水剤を使用することが好ましい。本発明で使用する減水剤とは、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤及び流動化剤等のセメント分散剤のことであり、これらの一種又は二種以上を用いることが出来る。具体的には、ナフタレンスルホン酸系減水剤、リグニンスルホン酸塩系減水剤、ポリカルボン酸系減水剤、メラミンスルホン酸塩系減水剤等が挙げられる。
本発明における減水剤の使用量は、結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して0.15〜0.4質量部とする。0.17〜0.3質量部が好ましく、0.2〜0.25質量部がより好ましい。0.15質量部未満では流動性が充分でない場合があり、0.4質量部を超えると材料分離を起こす場合がある。
In the present invention, it is preferable to use a water reducing agent in order to easily obtain fluidity. The water reducing agent used in the present invention is a cement dispersant such as a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a high performance AE water reducing agent and a fluidizing agent, and one or more of these are used. I can do it. Specific examples include naphthalene sulfonic acid-based water reducing agents, lignin sulfonate-based water reducing agents, polycarboxylic acid-based water reducing agents, and melamine sulfonate-based water reducing agents.
The usage-amount of the water reducing agent in this invention shall be 0.15-0.4 mass part with respect to 100 mass parts of binders (cement, calcium aluminate, and gypsum). 0.17-0.3 mass part is preferable, and 0.2-0.25 mass part is more preferable. If it is less than 0.15 parts by mass, fluidity may not be sufficient, and if it exceeds 0.4 parts by mass, material separation may occur.
本発明においては、繊維としてナイロン繊維を使用する。ナイロン繊維以外の繊維、例えばポリプロピレン繊維では、分散性及び流動性が悪く、狭い場所への充填性が悪く、硬化体性状のバラつきが大きいことから好ましくない。
本発明におけるナイロン繊維の使用量は、結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して、0.05〜0.3質量部とする。0.07〜0.27質量部が好ましく、0.1〜0.2質量部がより好ましい。0.05質量部未満では低温環境下における短期強度発現性が悪くなる恐れがあり、0.3質量部を超えると優れた流動性が得られない恐れがある。
本発明で使用するナイロン繊維は、繊維長3〜15mmが好ましい。3mm未満では低温環境下における短期強度発現性が悪くなる恐れがあり、15mmを超えると優れた流動性が得られない恐れがある。好ましい繊維長は3〜13mmであり、より好ましくは3〜12mmである。
In the present invention, nylon fibers are used as the fibers. Fibers other than nylon fibers, such as polypropylene fibers, are not preferred because they have poor dispersibility and fluidity, poor fillability in narrow spaces, and large variations in cured product properties.
The amount of nylon fiber used in the present invention is 0.05 to 0.3 parts by mass with respect to 100 parts by mass of the binder (cement, calcium aluminate and gypsum). 0.07-0.27 mass parts is preferable and 0.1-0.2 mass part is more preferable. If the amount is less than 0.05 parts by mass, the short-term strength development in a low-temperature environment may be deteriorated. If the amount exceeds 0.3 parts by mass, excellent fluidity may not be obtained.
The nylon fiber used in the present invention preferably has a fiber length of 3 to 15 mm. If it is less than 3 mm, the short-term strength development in a low temperature environment may be deteriorated, and if it exceeds 15 mm, excellent fluidity may not be obtained. The preferred fiber length is 3 to 13 mm, more preferably 3 to 12 mm.
本発明において、グラウト材を構造物と一体化させるために、まだ固まらない状態のグラウトモルタルが沈下や収縮するのを抑制する働きや、乾燥状態に置かれた際のひび割れ抵抗性を向上させるため、過酸化物質又はアルミニウム粉末等の発泡剤を使用することが好ましい。本発明に用いる発泡剤としては、過酸化物質を用いることが安定して硬化時の沈下を抑制できることから好ましい。本発明で使用する過酸化物質は、特に限定されるものではない。例えば、過炭酸ナトリウム、過炭酸カリウム、及び過炭酸アンモニウム等が挙げられ、これらの一種又は二種以上が使用可能である。
本発明において過酸化物質を用いる場合の使用量は、硬化時の沈下を抑制でき且つ高い初期強度が得られ易いことから、結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して、0.03〜0.1質量部が好ましく、0.04〜0.09質量部がより好ましく、0.04〜0.06質量部がさらに好ましい。
また、発泡剤としてアルミニウム粉末を用いる場合の使用量は、硬化時の沈下を抑制でき且つ高い初期強度が得られ易いことから、結合材(セメント、カルシウムアルミネート及び石膏類)100質量部に対して、0.003〜0.01質量部が好ましい。
水の使用量は、使用する目的・用途や各材料の配合割合によって変化するため特に限定されるものではないが、良好な流動性を得る点、大きな発熱量を抑制する点及び短期強度発現性確保の点から、水結合材比で34〜38%が好ましい。
In the present invention, in order to integrate the grout material with the structure, the grout mortar that has not yet solidified works to prevent subsidence or shrinkage, and to improve crack resistance when placed in a dry state. It is preferable to use a foaming agent such as a peroxide material or aluminum powder. As the foaming agent used in the present invention, it is preferable to use a peroxide material because it can stably suppress settlement during curing. The peroxide material used in the present invention is not particularly limited. For example, sodium percarbonate, potassium percarbonate, ammonium percarbonate and the like can be mentioned, and one or more of these can be used.
In the present invention, the amount used in the case of using a peroxide substance can suppress settlement at the time of curing and easily obtain a high initial strength, so that it is based on 100 parts by mass of the binder (cement, calcium aluminate and gypsum). 0.03-0.1 mass part is preferable, 0.04-0.09 mass part is more preferable, and 0.04-0.06 mass part is further more preferable.
In addition, the amount of aluminum powder used as a foaming agent can be set to suppress the settlement during curing, and high initial strength can be easily obtained. Therefore, the amount used is 100 parts by mass of the binder (cement, calcium aluminate and gypsum). 0.003-0.01 mass parts is preferable.
The amount of water used is not particularly limited because it varies depending on the purpose and application of use and the blending ratio of each material, but it has good fluidity, suppresses large calorific value, and develops short-term strength. From the viewpoint of securing, the water binder ratio is preferably 34 to 38%.
本発明では、消泡剤、増粘剤、防錆剤、収縮低減剤、ポリマー、ベントナイト等の粘土鉱物のうち一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。 In the present invention, one or two or more clay minerals such as an antifoaming agent, a thickening agent, a rust preventive agent, a shrinkage reducing agent, a polymer, and bentonite are used within a range that does not substantially impair the object of the present invention. It is possible.
本発明の速硬繊維グラウト組成物は、水を混練に用いる。良好な流動性を得る点、大きな発熱量を抑制する点及び短期強度発現性確保の点から、混練に用いる方法は特に限定されず、例えば水に本発明の速硬繊維グラウト組成物を全量加え混練する方法、水に本発明の速硬繊維グラウト組成物を混練しながら加えさらに混練する方法、本発明の速硬繊維グラウト組成物に水を混練しながら加え、さらに混練する方法等が挙げられる。また、混練に用いる器具や混練装置も特に限定されないが、ミキサを用いることが量を多く混練出来るので好ましい。用いることの出来るミキサとしては連続式ミキサでもバッチ式ミキサでも良く、例えば、グラウトミキサ、オムニミキサ、ハンドミキサ、左官ミキサ等が挙げられる。 The quick-hardening fiber grout composition of the present invention uses water for kneading. The method used for kneading is not particularly limited in terms of obtaining good fluidity, suppressing large calorific value, and ensuring short-term strength development, for example, adding all the fast-hardening fiber grout composition of the present invention to water. Examples thereof include a kneading method, a method in which the fast-hardening fiber grout composition of the present invention is added to water while kneading and further kneading, a method in which water is added to the quick-hardening fiber grout composition of the present invention while kneading and further kneading. . Moreover, although the apparatus and kneading apparatus used for kneading are not particularly limited, it is preferable to use a mixer because a large amount can be kneaded. The mixer that can be used may be a continuous mixer or a batch mixer, and examples thereof include a grout mixer, an omni mixer, a hand mixer, and a plaster mixer.
本発明の速硬繊維グラウト組成物は、速硬性に優れるにもかかわらず、流動性及び可使時間の調整が容易であり、かつ低温環境下でも強度発現性が良好であるこから、早期強度発現が要求されるトンネル工事等の緊急工事に有用である。 The fast-hardening fiber grout composition of the present invention is easy to adjust the fluidity and pot life despite being excellent in fast-hardening, and has good strength development even in a low-temperature environment. This is useful for emergency construction such as tunnel construction that is required.
以下、本発明の実施例に基づいて、本発明をさらに説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although this invention is further demonstrated based on the Example of this invention, this invention is not limited to these.
実施例1
使用材料を表1に示す。
Example 1
The materials used are shown in Table 1.
[配合設計]
セメント78質量部、カルシウムアルミネート13質量部、石膏9質量部からなる結合材100質量部に対して、過酸化物質、アルカリ金属炭酸塩、遅延剤、減水剤、繊維を表2となるように配合設計した。
[Formulation design]
Peroxide, alkali metal carbonate, retarder, water reducing agent, and fiber are as shown in Table 2 with respect to 100 parts by mass of the binder consisting of 78 parts by mass of cement, 13 parts by mass of calcium aluminate, and 9 parts by mass of gypsum. The formulation was designed.
[グラウト作製]
20℃環境下において、配合設計した粉体を20kg秤とり、26L円筒容器に秤とった水6.8Lに加え、ハンドミキサで60秒間混練させ、グラウトを作製した。また、5℃環境下において、水7.1Lとし、同様の方法でグラウトを作製した。
作製したグラウトの評価試験方法を以下に示す。
[Grout production]
Under an environment of 20 ° C., 20 kg of the blended and designed powder was weighed, added to 6.8 L of water weighed in a 26 L cylindrical container, and kneaded for 60 seconds with a hand mixer to prepare a grout. Further, in a 5 ° C. environment, 7.1 L of water was used, and a grout was produced by the same method.
The evaluation test method of the produced grout is shown below.
[品質評価試験]
・流動性試験
土木学会基準JSCE−F 541−1999「充填モルタルの流動性試験方法」に準じてJ10漏斗を用いて、混練直後及び混練開始から10分後の流下時間を測定した。速硬性グラウトモルタル(速硬性グラウト材)は、多くの緊急工事のグラウト工事に用いられていることから、充填可能な時間(可使時間)として長時間(例えば1時間)は必要ないが5分間以上は必要であることから、混練直後及び混練開始から10分の何れも流下時間が10秒の範囲内であったものを非常に良好(◎)、15秒の範囲内であったものを良好(○)、この範囲から外れるものを不良(×)と評価した。試験結果を表3に示す。
[Quality evaluation test]
- using a fluid testing Civil Engineering standard JSCE-F 541-1999 J 10 funnel according to "Test Method of Flowability for Filling Mortar", it was measured flow time immediately after and 10 minutes after the start of kneading kneading. Fast-hardening grout mortar (fast-hardening grout material) is used for grout construction in many emergency works, so it does not require a long time (for example, 1 hour) as a filling time (usable time), but 5 minutes Since the above is necessary, both the immediately after kneading and 10 minutes from the start of kneading were very good (◎) when the flow-down time was within the range of 10 seconds, and good when the flow time was within the range of 15 seconds (◯), those outside this range were evaluated as defective (x). The test results are shown in Table 3.
・初期膨張率試験
混練後直ちに直径50mm、高さ100mmの型枠に成型し、上部表面に直径40mm、高さ1.5mmのプラスチック板を置き、非接触センサーにて成形直後から24時間までの長さ変化測定を行い、材齢5分と材齢24時間の測定値を読み取り、材齢5分の初期膨張量(硬化前の膨張量)に対し材齢24時間の初期膨張量(硬化後の膨張量)が大きいものを良好(○)、小さいものを不良(×)と評価した。試験結果を表3に示す。実施例に当たる試験水準の「良好(○)」の評価の材齢5分の初期膨張量に対する材齢24時間の初期膨張量から求まる初期膨張率は、何れも0%よりも大きく且つ1%未満であり、過膨張による強度低下の恐れもないもであった。
・ Initial expansion coefficient test Immediately after kneading, it is molded into a mold with a diameter of 50 mm and a height of 100 mm, a plastic plate with a diameter of 40 mm and a height of 1.5 mm is placed on the upper surface, and a non-contact sensor is used for 24 hours immediately after molding. Measure the change in length, read the measured values at the age of 5 minutes and 24 hours, and the initial expansion amount after 24 hours of age (after hardening) with respect to the initial expansion amount (expansion amount before hardening) of the material age of 5 minutes (Large amount of expansion) was evaluated as good (◯) and small as poor (×). The test results are shown in Table 3. The initial expansion rate obtained from the initial expansion amount at the age of 24 hours with respect to the initial expansion amount at the age of 5 minutes at the evaluation of “good (◯)” at the test level corresponding to the examples is both greater than 0% and less than 1%. And there was no fear of strength reduction due to overexpansion.
・圧縮強度
土木学会基準JSCE−G 505−1999「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法」に準じ、20℃環境下において、材齢1時間、材齢1日及び材齢28日における圧縮強度を測定した。また、5℃環境下において、材齢1時間及び3時間における圧縮強度を測定した。供試体の寸法は、直径50mm、高さ100mmとした。また材齢28日については、材齢24時間で型枠を外すまで20℃の湿潤養生、その後直ちに20℃の水中に移し試験直前まで20℃の水中養生とした。試験結果を表4に示す。
-Compressive strength According to JSCE-G 505-1999 "Testing method for compressive strength of mortar or cement paste using cylindrical specimens", a material age of 1 hour, material age of 1 day and material age in a 20 ° C environment. The compressive strength at 28 days was measured. Moreover, the compressive strength in material age 1 hour and 3 hours was measured in 5 degreeC environment. The dimensions of the specimen were 50 mm in diameter and 100 mm in height. In addition, for the material age of 28 days, the wet curing at 20 ° C. was performed until the mold was removed at the age of 24 hours, and then immediately transferred to 20 ° C. water, followed by 20 ° C. water curing until just before the test. The test results are shown in Table 4.
試験結果を表3及び表4に示す。結合材100質量部に対して、細骨材3〜15質量部、過酸化物質0.03〜0.1質量部、アルカリ金属炭酸塩0.2〜1.0質量部、遅延剤0.05〜0.2質量部、減水剤0.15〜0.4質量部、ナイロン繊維0.05〜0.3質量部であれば良好な流動性ならびに充分な可使時間を確保出来、且つ低温環境下における材齢1時間の圧縮強度が良好であり、更に初期膨張性が良好である(No.A−1、−2、−3、−4、−5、−8、−9、−12、−13、−16、−17、−20、−21)。それに対して、A−23では混練開始から10分後のJ10漏斗流下値の低下が著しく、可使時間の確保が困難である。また、A−7、−10、−14、−19、−24では低温環境下での短期強度発現性が低い。A−6、−11、−15、−18、−22は流動性が悪い。 The test results are shown in Tables 3 and 4. 3 to 15 parts by mass of fine aggregate, 0.03 to 0.1 parts by mass of peroxide, 0.2 to 1.0 parts by mass of alkali metal carbonate, 0.05 to retarder with respect to 100 parts by mass of binder ~ 0.2 parts by mass, water reducing agent 0.15 to 0.4 parts by mass, nylon fiber 0.05 to 0.3 parts by mass can ensure good fluidity and sufficient pot life, and low temperature environment The compressive strength at an age of 1 hour is good, and the initial expansibility is good (No. A-1, -2, -3, -4, -5, -8, -9, -12, -13, -16, -17, -20, -21). In contrast, A-23 in lowering of J 10 funnel under a stream value after 10 minutes from the start of the kneading significantly, it is difficult to ensure the pot life. Moreover, A-7, -10, -14, -19, and -24 have low short-term strength development in a low temperature environment. A-6, -11, -15, -18, and -22 have poor fluidity.
実施例2
セメント78質量部、カルシウムアルミネート13質量部、石膏9質量部からなる結合材100質量部に対して、過酸化物質0.06質量部、アルカリ金属炭酸塩0.4質量部、遅延剤0.06質量部、減水剤0.25質量部、ナイロン繊維0.16質量部、細骨材6質量部になるように配合設計した。但し、カルシウムアルミネートについてCaO/Al2O3モル比及び上記ガラス化率が表5に示すものを使用した。それ以外は実施例1と同様に行った。
Example 2
With respect to 100 parts by mass of a binder composed of 78 parts by mass of cement, 13 parts by mass of calcium aluminate, and 9 parts by mass of gypsum, 0.06 parts by mass of a peroxide, 0.4 parts by mass of alkali metal carbonate, 0. The composition was designed to be 06 parts by mass, 0.25 parts by mass of a water reducing agent, 0.16 parts by mass of nylon fibers, and 6 parts by mass of fine aggregate. However, the calcium aluminate having a CaO / Al 2 O 3 molar ratio and the vitrification ratio shown in Table 5 was used. Other than that was carried out in the same manner as in Example 1.
試験結果を表6及び表7に示す。カルシウムアルミネートについてCaOとAl2O3の含有モル比がCaO/Al2O3=1.0〜1.8であり、且つガラス化率が10%以上であれば、良好な流動性ならびに充分な可使時間を確保出来、且つ低温環境下における材齢1時間の圧縮強度が特に良好である(B、C、D)。 The test results are shown in Tables 6 and 7. As for calcium aluminate, if the molar ratio of CaO and Al 2 O 3 is CaO / Al 2 O 3 = 1.0 to 1.8 and the vitrification rate is 10% or more, good fluidity and sufficient The pot life can be secured, and the compressive strength at an age of 1 hour in a low temperature environment is particularly good (B, C, D).
実施例3
セメント78質量部、カルシウムアルミネート13質量部、石膏9質量部からなる結合材100質量部に対して、過酸化物質0.06質量部、アルカリ金属炭酸塩0.4質量部、遅延剤0.06質量部、減水剤0.25質量部、ナイロン繊維0.16質量部、細骨材6質量部になるように配合設計した。但し、ナイロン繊維について繊維長が表8に示すものを使用した。それ以外は実施例1と同様に行った。
Example 3
With respect to 100 parts by mass of a binder composed of 78 parts by mass of cement, 13 parts by mass of calcium aluminate, and 9 parts by mass of gypsum, 0.06 parts by mass of a peroxide, 0.4 parts by mass of alkali metal carbonate, 0. The composition was designed to be 06 parts by mass, 0.25 parts by mass of a water reducing agent, 0.16 parts by mass of nylon fibers, and 6 parts by mass of fine aggregate. However, nylon fibers having a fiber length shown in Table 8 were used. Other than that was carried out in the same manner as in Example 1.
試験結果を表9及び表10に示す。ナイロン繊維の繊維長が3〜15mmであれば、良好な流動性ならびに充分な可使時間を確保出来、且つ低温環境下における材齢1時間の圧縮強度が特に良好である(F、G)。 The test results are shown in Table 9 and Table 10. If the fiber length of the nylon fiber is 3 to 15 mm, good fluidity and sufficient pot life can be secured, and the compressive strength at an age of 1 hour in a low temperature environment is particularly good (F, G).
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253714A JP6595906B2 (en) | 2015-12-25 | 2015-12-25 | Quick-hardening fiber grout composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253714A JP6595906B2 (en) | 2015-12-25 | 2015-12-25 | Quick-hardening fiber grout composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017114743A JP2017114743A (en) | 2017-06-29 |
JP6595906B2 true JP6595906B2 (en) | 2019-10-23 |
Family
ID=59233463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015253714A Active JP6595906B2 (en) | 2015-12-25 | 2015-12-25 | Quick-hardening fiber grout composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6595906B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7558625B2 (en) | 2021-03-16 | 2024-10-01 | 太平洋マテリアル株式会社 | Fast-hardening grout composition and fast-hardening grout |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002308660A (en) * | 2001-04-10 | 2002-10-23 | Gaeart Kumagai Co Ltd | Grout |
JP2004210585A (en) * | 2002-12-27 | 2004-07-29 | Taiheiyo Material Kk | Noncombustible spraying material |
JP5496755B2 (en) * | 2010-04-15 | 2014-05-21 | 電気化学工業株式会社 | Concrete ballast method for ballast roadbed |
JP2012140294A (en) * | 2010-12-28 | 2012-07-26 | Taiheiyo Materials Corp | Quick-hardening, highly flowable cement composition for low temperature |
KR101187409B1 (en) * | 2011-04-25 | 2012-10-02 | (주)에이엠에스 엔지니어링 | Magnesia silicate phosphate composite with eco-friendly and high-performance |
JP6133597B2 (en) * | 2012-12-29 | 2017-05-24 | 太平洋マテリアル株式会社 | Quick-setting mortar composition |
JP6133598B2 (en) * | 2012-12-29 | 2017-05-24 | 太平洋マテリアル株式会社 | Fast-hardening grout composition and fast-hardening grout material |
JP6258697B2 (en) * | 2013-12-25 | 2018-01-10 | 太平洋マテリアル株式会社 | Fast-setting grout composition |
-
2015
- 2015-12-25 JP JP2015253714A patent/JP6595906B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017114743A (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6258697B2 (en) | Fast-setting grout composition | |
CN105073681A (en) | Composition for use as a two component back filled grout comprising extracted silicate | |
JP6891041B2 (en) | Fast-strength ultra-high-strength grout composition | |
JP2018002524A (en) | Early-strength admixture for secondary product and early-strength concrete for secondary product | |
JP2007055843A (en) | Cement additive | |
JP2011136863A (en) | Superhigh strength grout composition | |
JP2013095624A (en) | Quick-hardening agent and quick-hardening cement composition | |
JP6595906B2 (en) | Quick-hardening fiber grout composition | |
JP6694313B2 (en) | Method for producing quick-hardening concrete | |
JP6423766B2 (en) | High fluidity concrete and method for placing lining concrete using the same | |
JP6783118B2 (en) | Cement composition and its manufacturing method | |
JP6177658B2 (en) | Quick setting admixture | |
JP5721212B2 (en) | Initial expansive cement composition | |
JP6756971B2 (en) | Cement clinker and cement composition | |
JP2011178604A (en) | Cement-containing powder composition and hydraulic composition | |
JP2008201605A (en) | Rapid-hardening material for highly flowable hydraulic composition and highly flowable hydraulic composition | |
KR20220158896A (en) | Composition for manufacturing carbon reduced composites and carbon reduced composites manufactured therefrom | |
JP5709046B2 (en) | Cement composition | |
JP2014129212A (en) | Quick-hardening additive and quick-hardening grout composition | |
JP2014015356A (en) | Cement admixture, cement composition, and cement mortar using them | |
JP5935916B1 (en) | Cement composition | |
JP2006282442A (en) | Quick-setting and high-fluidity mortar | |
JP6300365B2 (en) | Underwater inseparable fast-hardening concrete and method for producing the same | |
JP7195962B2 (en) | Construction method of tunnel lining concrete | |
JP7037877B2 (en) | Early-strength admixture for secondary products and early-strength concrete for secondary products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6595906 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |