JP6593413B2 - Heater unit for wafer heating - Google Patents

Heater unit for wafer heating Download PDF

Info

Publication number
JP6593413B2
JP6593413B2 JP2017196683A JP2017196683A JP6593413B2 JP 6593413 B2 JP6593413 B2 JP 6593413B2 JP 2017196683 A JP2017196683 A JP 2017196683A JP 2017196683 A JP2017196683 A JP 2017196683A JP 6593413 B2 JP6593413 B2 JP 6593413B2
Authority
JP
Japan
Prior art keywords
heating
wafer
wafer mounting
heating zone
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017196683A
Other languages
Japanese (ja)
Other versions
JP2019071349A (en
Inventor
桂児 北林
晃 三雲
成伸 先田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2017196683A priority Critical patent/JP6593413B2/en
Priority to PCT/JP2018/037503 priority patent/WO2019073941A1/en
Priority to KR1020197011870A priority patent/KR20190053941A/en
Publication of JP2019071349A publication Critical patent/JP2019071349A/en
Application granted granted Critical
Publication of JP6593413B2 publication Critical patent/JP6593413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体ウエハを載せた状態で下面側から加熱するヒータユニットに関する。   The present invention relates to a heater unit that heats from the lower surface side with a semiconductor wafer placed thereon.

LSIやメモリなどの半導体デバイスを製造する半導体製造装置では、半導体ウエハに対してCVDやスパッタリング等による成膜、レジストの塗布、露光及び現像等のフォトリソグラフィ―、パターニングのためのエッチング等の一連の工程からなる薄膜処理が施される。これらの薄膜処理では、一般に半導体ウエハを所定の温度に加熱した状態で処理を行うため、例えばフォトリソグラフィ―が行われるコータデベロッパ装置では、被処理物の半導体ウエハを載置してその下面から加熱するサセプタとも称するウエハ加熱用ヒータユニットが用いられている。   In semiconductor manufacturing equipment for manufacturing semiconductor devices such as LSI and memory, a series of processes such as film formation by CVD or sputtering, photolithography such as resist application, exposure and development, etching for patterning, etc. on a semiconductor wafer Thin film processing consisting of processes is performed. In these thin film processes, the semiconductor wafer is generally processed while being heated to a predetermined temperature. For example, in a coater / developer apparatus in which photolithography is performed, a semiconductor wafer as an object to be processed is placed and heated from its lower surface. A heater unit for heating a wafer, also called a susceptor, is used.

上記ウエハ加熱用ヒータユニットは、例えば特許文献1に示されるように、上面に平坦なウエハ載置面を備えたセラミックス製の円板状部材からなるウエハ載置台と、これを下面側から支持する筒状支持体とから構成されており、該ウエハ載置台の内部には電熱コイルやパターニングされた金属薄膜等の発熱回路がウエハ載置面に平行に埋設されている。該発熱回路の両端部にはウエハ載置台の下面側に設けた1対の電極端子が電気的に接続しており、この1対の電極端子及びその引出線を介して外部電源から該発熱回路に給電が行われる。   For example, as disclosed in Patent Document 1, the wafer heating heater unit supports a wafer mounting table made of a ceramic disk-shaped member having a flat wafer mounting surface on the upper surface, and supports this from the lower surface side. A heating support circuit such as an electric heating coil or a patterned metal thin film is embedded in the wafer mounting table in parallel with the wafer mounting surface. A pair of electrode terminals provided on the lower surface side of the wafer mounting table are electrically connected to both ends of the heat generating circuit, and the heat generating circuit is connected from an external power source via the pair of electrode terminals and the lead wires. Is supplied with power.

上記したウエハ加熱用ヒータユニットでは、製品となる半導体デバイスの品質にばらつきが生じないように、ウエハ載置面での均熱性を高めて半導体ウエハを全面に亘って均一に加熱することが求められている。そのため、該発熱回路の回路パターンを緻密にして温度ムラが生じないようにしたり、ウエハ載置面に画定した複数の加熱ゾーン(マルチゾーン)の各々に対して個別に温度制御を行うべく、当該複数の加熱ゾーンの各々にウエハ載置面に平行に延在する発熱回路を配して個別に給電したりすることが行われている。   In the above-described heater unit for heating a wafer, it is required to heat the semiconductor wafer uniformly over the entire surface by improving the heat uniformity on the wafer mounting surface so that the quality of the semiconductor device as a product does not vary. ing. Therefore, the circuit pattern of the heat generating circuit is made minute so as not to cause temperature unevenness, or the temperature is individually controlled for each of a plurality of heating zones (multi-zones) defined on the wafer mounting surface. A heating circuit that extends in parallel with the wafer mounting surface is arranged in each of the plurality of heating zones to supply power individually.

特開2003−17224号公報JP 2003-17224 A

上記のようにウエハ載置面に画定した複数の加熱ゾーンに其々複数の発熱回路を配することで複数の加熱ゾーンを個別に温度制御することが可能になるものの、各加熱ゾーンに配した発熱回路の発熱量を電圧や電流で制御する制御系では、一般に温度検出器として各加熱ゾーンごとに1個の温度センサーが設けられるため、加熱ゾーンの面積が広くなると1個の温度センサーで加熱ゾーンの温度を適切に検出するのが困難になり、良好に温度制御できないことがあった。   Although it becomes possible to individually control the temperature of the plurality of heating zones by arranging a plurality of heating circuits in the plurality of heating zones defined on the wafer mounting surface as described above, the heating zones are arranged in each heating zone. In a control system that controls the amount of heat generated by the heat generation circuit with voltage or current, generally, one temperature sensor is provided for each heating zone as a temperature detector. Therefore, when the area of the heating zone increases, heating is performed with one temperature sensor. It may be difficult to properly detect the temperature of the zone, and the temperature may not be controlled well.

従来は上記の温度検出上の問題に起因するウエハ載置面の均熱性への悪影響は無視できる程度に小さかったため問題視されることはほとんどなかったが、近年の半導体デバイスの微細化に伴い、半導体ウエハが載置されるウエハ載置面の温度はより精密な制御が求められるようになってきている。そのため、これまで問題視されていなかった上記の問題が顕在化しつつある。本発明は、このような事情に鑑みてなされたものであり、ウエハ載置面に画定される複数の加熱ゾーンの各々において、温度を適切に検出して制御することでウエハ載置面の均熱性を高めることが可能なウエハ加熱用ヒータユニットを提供することを目的とする。   Conventionally, the adverse effect on the thermal uniformity of the wafer mounting surface due to the above temperature detection problem was so small that it could be ignored, but with the recent miniaturization of semiconductor devices, More precise control is required for the temperature of the wafer mounting surface on which the semiconductor wafer is mounted. Therefore, the above-mentioned problems that have not been regarded as problems so far are becoming apparent. The present invention has been made in view of such circumstances, and in each of a plurality of heating zones defined on the wafer mounting surface, the temperature of the wafer mounting surface is appropriately detected and controlled. It is an object of the present invention to provide a wafer heating heater unit capable of enhancing thermal properties.

上記目的を達成するため、本発明に係るウエハ加熱用ヒータユニットは、半導体ウエハが載置されるウエハ載置面を備えた円板状のウエハ載置台と、前記ウエハ載置台を支持する円板状の支持板と、前記ウエハ載置台と前記支持板との間に挟持された円形薄膜状の発熱モジュールとを有するウエハ加熱用ヒータユニットであって、前記発熱モジュールは前記ウエハ載置面に平行に延在する複数の発熱回路を有しており、前記複数の発熱回路によって前記ウエハ載置面に画定される複数の加熱ゾーンは、前記ウエハ載置面の半径方向において互いに隣接するいずれの加熱ゾーン同士においても、前記各加熱ゾーンの中心位置の離間距離が其々の加熱ゾーンの中心位置から前記加熱ゾーンの境界までの最長距離の50%以上であることを特徴としている。   In order to achieve the above object, a heater unit for heating a wafer according to the present invention includes a disk-shaped wafer mounting table having a wafer mounting surface on which a semiconductor wafer is mounted, and a disk that supports the wafer mounting table. A wafer heating heater unit having a circular support plate, and a circular thin film heating module sandwiched between the wafer mounting table and the supporting plate, the heating module being parallel to the wafer mounting surface And the plurality of heating zones defined on the wafer mounting surface by the plurality of heating circuits are adjacent to each other in the radial direction of the wafer mounting surface. Also in the zones, the separation distance of the center position of each heating zone is 50% or more of the longest distance from the center position of each heating zone to the boundary of the heating zone. There.

本発明によれば、ウエハ載置面上に画定される複数の加熱ゾーンの各々において温度を適切に検出して制御することができるので、該ウエハ載置面の均熱性を高めることが可能になる。   According to the present invention, it is possible to appropriately detect and control the temperature in each of the plurality of heating zones defined on the wafer mounting surface, so that it is possible to improve the thermal uniformity of the wafer mounting surface. Become.

本発明に係るウエハ加熱用ヒータユニットの一具体例の縦断面図である。It is a longitudinal cross-sectional view of one specific example of the heater unit for wafer heating which concerns on this invention. 図1のウエハ加熱用ヒータユニットが有する複数の発熱回路によって画定されるウエハ載置面の複数の加熱ゾーンの区分パターンを示す平面図である。It is a top view which shows the division | segmentation pattern of the some heating zone of the wafer mounting surface demarcated by the some heat generating circuit which the heater unit for wafer heating of FIG. 1 has. 図2の区分パターンにおいて、互いに隣接する加熱ゾーン同士の両中心位置の離間距離と、其々の加熱ゾーンの中心位置からゾーン境界までの最長距離との関係を示す平面図である。FIG. 3 is a plan view showing the relationship between the distance between the center positions of adjacent heating zones and the longest distance from the center position of each heating zone to the zone boundary in the division pattern of FIG. 2. 本発明の比較例1及び2のウエハ加熱用ヒータユニットのウエハ載置面上に画定される複数の加熱ゾーンの区分パターンを示す平面図である。It is a top view which shows the division pattern of the several heating zone defined on the wafer mounting surface of the heater unit for wafer heating of the comparative examples 1 and 2 of this invention.

最初に本発明の実施形態を列記して説明する。本発明のウエハ加熱用ヒータユニットの実施形態は、半導体ウエハが載置されるウエハ載置面を備えた円板状のウエハ載置台と、前記ウエハ載置台を支持する円板状の支持板と、前記ウエハ載置台と前記支持板との間に挟持された円形薄膜状の発熱モジュールとを有するウエハ加熱用ヒータユニットであって、前記発熱モジュールは前記ウエハ載置面に平行に延在する複数の発熱回路を有しており、前記複数の発熱回路によって前記ウエハ載置面に画定される複数の加熱ゾーンは、前記ウエハ載置面の半径方向において互いに隣接するいずれの加熱ゾーン同士においても、前記各加熱ゾーンの中心位置の離間距離が其々の加熱ゾーンの中心位置から前記加熱ゾーンの境界までの最長距離の50%以上であることを特徴としている。これにより、ウエハ載置面上に画定される複数の加熱ゾーンの各々において温度を適切に検出して制御することができるので、該ウエハ載置面の均熱性を高めることが可能になる。   First, embodiments of the present invention will be listed and described. An embodiment of a heater unit for heating a wafer according to the present invention includes a disk-shaped wafer mounting table provided with a wafer mounting surface on which a semiconductor wafer is mounted, and a disk-shaped support plate that supports the wafer mounting table. A heater unit for heating a wafer having a circular thin film heating module sandwiched between the wafer mounting table and the support plate, wherein the heating module extends in parallel to the wafer mounting surface. The plurality of heating zones defined on the wafer mounting surface by the plurality of heating circuits are any heating zones adjacent to each other in the radial direction of the wafer mounting surface, The separation distance of the center position of each heating zone is 50% or more of the longest distance from the center position of each heating zone to the boundary of the heating zone. As a result, the temperature can be appropriately detected and controlled in each of the plurality of heating zones defined on the wafer placement surface, so that it is possible to improve the thermal uniformity of the wafer placement surface.

上記本発明のウエハ加熱用ヒータユニットの実施形態においては、前記複数の加熱ゾーンは、前記発熱モジュールにおいて、円形中央部を周方向に3等分した中央部扇状加熱ゾーンと、環状周縁部を周方向に6等分した周縁部扇状加熱ゾーンと、前記円形中央部と前記環状周縁部との間の環状中間部を周方向に6等分した中間部扇状加熱ゾーンとからなるのが好ましい。これにより半導体ウエハが載置される載置面の均熱性をより一層高めることができる。また、上記本発明のウエハ加熱用ヒータユニットの実施形態においては、前記複数の加熱ゾーンのうち周方向に隣接する加熱ゾーン同士の間及び/又は半径方向に隣接する加熱ゾーン同士の間に前記半導体ウエハのリフトピン用の挿通孔が設けられているのが好ましい。これにより、リフトピン用の挿通孔による載置面の均熱性への悪影響を抑えることができる。   In the embodiment of the heater unit for heating a wafer of the present invention, the plurality of heating zones include a central fan-shaped heating zone obtained by dividing the circular central portion into three equal parts in the circumferential direction, and an annular peripheral portion in the heating module. It is preferable to include a peripheral fan-shaped heating zone divided into six equal parts in the direction and an intermediate fan-shaped heating zone obtained by dividing the annular intermediate part between the circular central part and the annular peripheral part into six equal parts in the circumferential direction. Thereby, the thermal uniformity of the mounting surface on which the semiconductor wafer is mounted can be further enhanced. Moreover, in the embodiment of the heater unit for heating a wafer according to the present invention, the semiconductor is between the heating zones adjacent in the circumferential direction and / or between the heating zones adjacent in the radial direction among the plurality of heating zones. An insertion hole for a lift pin of the wafer is preferably provided. Thereby, the bad influence to the thermal uniformity of the mounting surface by the insertion hole for lift pins can be suppressed.

次に、本発明のウエハ加熱用ヒータユニットの一具体例について説明する。図1に示すように、この本発明の一具体例のウエハ加熱用ヒータユニット10は、半導体ウエハWを載置するウエハ載置面11aを上面に備えた円板形状のウエハ載置台11と、このウエハ載置台11とほぼ同等の外径を有する円板形状からなり、該ウエハ載置台11をその下面側から全面に亘って支持する支持板12と、これらウエハ載置台11と支持板12との間に電気的絶縁状態で挟持され、このウエハ載置台11とほぼ同等の外径を有する円形薄膜状の発熱モジュール13とを有している。このウエハ加熱用ヒータユニット10は、支持板12の下面側に設けられた複数の柱状の脚部20によって支持されている。   Next, a specific example of the wafer heating heater unit of the present invention will be described. As shown in FIG. 1, a heater unit 10 for heating a wafer according to a specific example of the present invention includes a disk-shaped wafer mounting table 11 having a wafer mounting surface 11a on which a semiconductor wafer W is mounted on the upper surface, The wafer mounting table 11 has a disk shape having an outer diameter substantially equal to that of the wafer mounting table 11. The supporting plate 12 supports the wafer mounting table 11 from the lower surface to the entire surface, and the wafer mounting table 11 and the supporting plate 12. And a heat generating module 13 in the form of a circular thin film having an outer diameter substantially equal to that of the wafer mounting table 11. The wafer heating heater unit 10 is supported by a plurality of columnar legs 20 provided on the lower surface side of the support plate 12.

上記のウエハ載置台11は、ウエハ載置面11aの全面に亘って極めて高い温度均一性、すなわち高い均熱性を実現すべく熱伝導率の高い材質からなるのが好ましく、例えば銅やアルミニウムなどの金属がより好ましい。ウエハ載置台11の材質は、炭化珪素、窒化アルミニウム、Si−SiC、Al−SiCなどの剛性(ヤング率)の高いセラミックスやセラミックス複合体でもよく、これによりウエハ載置面11aの平坦性を常時維持することが可能になるうえ、ウエハ載置面11aの反り防止を目的としてウエハ載置台11を分厚くする必要がなくなるので熱容量を小さくでき、よって昇降温速度を速めることが可能になる。   The wafer mounting table 11 is preferably made of a material having a high thermal conductivity so as to realize extremely high temperature uniformity, that is, high heat uniformity over the entire surface of the wafer mounting surface 11a, such as copper or aluminum. Metal is more preferred. The material of the wafer mounting table 11 may be a ceramic (ceramic composite) having a high rigidity (Young's modulus) such as silicon carbide, aluminum nitride, Si—SiC, or Al—SiC. In addition, it is not necessary to increase the thickness of the wafer mounting table 11 for the purpose of preventing warpage of the wafer mounting surface 11a, so that the heat capacity can be reduced, and thus the temperature raising / lowering speed can be increased.

支持板12の材質も、剛性(ヤング率)の高い炭化珪素、窒化アルミニウム、Si−SiC、Al−SiCなどのセラミックスやセラミックス複合体を用いることが好ましい。特に、ウエハ載置台11の材質が金属の場合、後述するように発熱モジュール13を挟んでウエハ載置台11と支持板12とを重ね合わせて機械的に結合することで、ウエハ載置面11aの反りを抑えることができるので、ウエハ載置面11aにおいて高い均熱性と平坦性を兼ね備えたヒータユニット10を実現することができる。   The material of the support plate 12 is also preferably a ceramic or a ceramic composite such as silicon carbide, aluminum nitride, Si—SiC, or Al—SiC having high rigidity (Young's modulus). In particular, when the material of the wafer mounting table 11 is metal, the wafer mounting table 11 and the support plate 12 are overlapped and mechanically coupled with each other with the heat generating module 13 interposed therebetween, as described later. Since the warpage can be suppressed, the heater unit 10 having both high heat uniformity and flatness on the wafer mounting surface 11a can be realized.

これらウエハ載置台11と支持板12とはネジ止めになどによって互いに機械的に結合することが好ましい。特に、ウエハ載置台11と支持板12とが互いに異なる材質からなる場合は、ウエハ載置台11及び支持板12が其々の温度に応じてウエハ載置面11aの方向に自由に熱膨張できるように、例えば支持板12に厚み方向に貫通したネジ孔(図示せず)に下側から雄ネジ(図示せず)を挿通し、ウエハ載置台11の下面側に設けた雌ネジ部(図示せず)に螺合させると共に、該雄ネジの座面とその当接部となる支持板12の下面との間に例えばベアリング(図示せず)を介在させることが好ましい。なお、この場合は発熱モジュール13においても、上記支持板12のネジ孔に対応する位置に上記雌ネジ部の挿通孔が設けられることになる。   It is preferable that the wafer mounting table 11 and the support plate 12 are mechanically coupled to each other by screwing or the like. In particular, when the wafer mounting table 11 and the support plate 12 are made of different materials, the wafer mounting table 11 and the support plate 12 can be freely thermally expanded in the direction of the wafer mounting surface 11a according to the respective temperatures. For example, a male screw (not shown) is inserted from below into a screw hole (not shown) penetrating the support plate 12 in the thickness direction, and a female screw portion (not shown) provided on the lower surface side of the wafer mounting table 11 is inserted. And a bearing (not shown), for example, is interposed between the seat surface of the male screw and the lower surface of the support plate 12 serving as the contact portion. In this case, also in the heat generating module 13, the insertion hole of the female screw portion is provided at a position corresponding to the screw hole of the support plate 12.

ここで、上記ネジ止め部は後述の発熱回路の有効径外に配置することが好ましい。このようにすることで、局所的なクールスポットがほとんど生じない温度均一性の高い載置台を実現することができる。また、上記ネジ止め部を発熱回路の有効径内に配置する場合は、複数の加熱ゾーンのうち周方向に隣接する加熱ゾーン同士の間及び/又は半径方向に隣接する加熱ゾーン同士の間に配置し、且つこの配置位置を通るウエハ載置面の半径方向の線分に関して上記区分パターンが線対称となるようにすることが好ましく、これにより上記ネジ止め部による温度均一性の悪化を抑えることができる。上記のネジ止め部は、前述のリフトピン挿通孔と同一の該半径方向の線分上に位置し且つ該線分に関して上記区分パターンが線対称であるのが更に好ましい。上記のように、載置台、発熱ユニット、支持板のいずれか又は全てに干渉する機械部品や電装部品などの特異点が存在する場合は、これら特異点を、発熱回路の有効径外に配置するか、あるいは有効径内の場合は隣接する加熱ゾーンの間であって且つ区分パターンの対称線となる位置に配することで、温度均一性を損なうことなく所望の機能を発揮させることができる。なお、発熱回路の有効径とは、ウエハ載置面11aのうち、後述する発熱回路13aが真下に配されている円形領域の直径である。   Here, the screwing portion is preferably arranged outside the effective diameter of a heat generating circuit described later. By doing in this way, it is possible to realize a mounting table with high temperature uniformity in which local cool spots hardly occur. Moreover, when arrange | positioning the said screwing part in the effective diameter of a heat generating circuit, it arrange | positions between the heating zones adjacent to the circumferential direction among several heating zones, and / or between the heating zones adjacent to a radial direction. In addition, it is preferable that the segmented pattern be axisymmetric with respect to the radial line segment of the wafer mounting surface passing through the arrangement position, thereby suppressing deterioration in temperature uniformity due to the screwing portion. it can. More preferably, the screwing portion is located on the same radial line segment as the lift pin insertion hole described above, and the segmented pattern is axisymmetric with respect to the line segment. As described above, when there are singularities such as mechanical parts and electrical parts that interfere with any or all of the mounting table, heating unit, and support plate, these singularities are placed outside the effective diameter of the heating circuit. Alternatively, in the case of within the effective diameter, the desired function can be exhibited without impairing the temperature uniformity by disposing it at a position that is between adjacent heating zones and that is a symmetrical line of the division pattern. The effective diameter of the heat generating circuit is a diameter of a circular area in the wafer mounting surface 11a where a heat generating circuit 13a described later is arranged directly below.

上記のウエハ載置台11と支持板12との間に挟持される発熱モジュール13は、上記のウエハ載置面11aに平行な面上に延在する複数の発熱回路13aを有している。これら複数の発熱回路13aは、上記のウエハ載置台11及び支持板12から電気的に絶縁状態となるように絶縁体で覆われており、このような形態の発熱モジュール13は、例えばステンレス箔等の導電性金属箔にエッチングやレーザー加工でパターニング加工を施すことで複数の発熱回路13aを形成した後、これを上下から例えばポリイミドシート等の耐熱性絶縁シートで挟み込むことで作製することができる。   The heat generating module 13 sandwiched between the wafer mounting table 11 and the support plate 12 has a plurality of heat generating circuits 13a extending on a surface parallel to the wafer mounting surface 11a. The plurality of heat generating circuits 13a are covered with an insulator so as to be electrically insulated from the wafer mounting table 11 and the support plate 12, and the heat generating module 13 having such a configuration includes, for example, a stainless steel foil or the like. A plurality of heat generating circuits 13a can be formed by patterning the conductive metal foil by etching or laser processing, and then sandwiched by a heat resistant insulating sheet such as a polyimide sheet from above and below.

あるいは、発熱回路13aの回路パターンのライン幅が細かったり、発熱回路13aに用いる導電性金属箔の厚みが薄かったり等の理由により発熱回路13aを取り扱うのが困難な場合は、パターニング加工前の導電性金属箔と電気絶縁のためのポリイミドシート等の耐熱絶縁シートとを予め重ね合わせて熱圧着し、この熱圧着後に導電性金属箔のみをエッチングなどでパターニング加工することで、ベースとなる全面ポリイミドフィルムとパターン箔(すなわち箔状の発熱回路13a)とを一体化させ、この一体化された箔状の発熱回路13aの上から更にポリイミドフィルムを重ね合わせて熱圧着することで上記の発熱モジュール13を作製してもよい。   Alternatively, if it is difficult to handle the heat generating circuit 13a because the line width of the circuit pattern of the heat generating circuit 13a is narrow or the thickness of the conductive metal foil used for the heat generating circuit 13a is difficult, the conductive pattern before the patterning process is used. The conductive polyimide foil and a heat-resistant insulating sheet such as a polyimide sheet for electrical insulation are preliminarily superposed and thermocompression bonded, and after this thermocompression bonding, only the conductive metal foil is patterned by etching, etc. The film and the pattern foil (that is, the foil-like heat generating circuit 13a) are integrated, and a polyimide film is further superposed on the integrated foil-like heat generating circuit 13a, followed by thermocompression bonding. May be produced.

このように、ウエハ載置面11aに平行に延在する複数の発熱回路13aを発熱モジュール13内に設けることによって、ウエハ載置面11aを複数の加熱ゾーンに区分することができる。これら複数の発熱回路13aによって画定される複数の加熱ゾーンの区分パターンには特に限定はないが、円板形状のウエハ載置台11は一般的に中央部よりも表面積の広い周縁部からの放熱が多いため、定常状態では当該周縁部が局所的に低温になりやすい。一方で、半導体ウエハが載置台に載置されると、一般にウエハ径よりも載置台の外径が大きいため、載置台には中央部が外周部よりも低温の同心円状のセンタークール型の温度分布が生じる。その後、載置台の温度は制御系の働きにより所定の温度まで昇温するが、上記の温度分布の影響を受けるので半導体ウエハの過渡的な温度分布も同心円状のセンタークールとなる。このようなセンタークール型の温度分布を補正するため、加熱ゾーンの区分パターンは半径方向に同心円状に分割することが好ましい。また、ヒータユニット10が搭載される真空チャンバーの壁面にはロードロック等が設けられているためウエハ載置台11の周囲の環境は周方向に均等ではない。そこで図2に示すように、ウエハ載置面11aを同心円状に分割したうえで更に周方向に均等に分割した区分パターンが好ましい。   As described above, by providing the heat generating module 13 with a plurality of heat generating circuits 13a extending in parallel to the wafer mounting surface 11a, the wafer mounting surface 11a can be divided into a plurality of heating zones. There is no particular limitation on the division pattern of the plurality of heating zones defined by the plurality of heating circuits 13a, but the disk-shaped wafer mounting table 11 generally radiates heat from the peripheral portion having a larger surface area than the central portion. For this reason, the peripheral edge tends to be locally low in a steady state. On the other hand, when a semiconductor wafer is mounted on a mounting table, since the outer diameter of the mounting table is generally larger than the wafer diameter, the center of the mounting table is a concentric center cool type temperature that is lower than the outer periphery. Distribution occurs. Thereafter, the temperature of the mounting table is raised to a predetermined temperature by the action of the control system, but since it is affected by the above temperature distribution, the transient temperature distribution of the semiconductor wafer also becomes a concentric center cool. In order to correct such a center-cool type temperature distribution, it is preferable to divide the heating zone section pattern into concentric circles in the radial direction. Further, since a load lock or the like is provided on the wall surface of the vacuum chamber on which the heater unit 10 is mounted, the environment around the wafer mounting table 11 is not uniform in the circumferential direction. Therefore, as shown in FIG. 2, it is preferable to divide the wafer mounting surface 11a into concentric circles, and then further divide the wafer mounting surface 11a evenly in the circumferential direction.

すなわち、この図2に示す複数の加熱ゾーンの区分パターンでは、ウエハ載置面11aが円形中央部Aと、該円形中央部Aの外側の環状中間部Bと、該環状中間部Bの外側の環状周縁部Cとに同心円状に区分されており、更に、該円形中央部Aは中央部扇状加熱ゾーンA1〜A3として周方向に3等分されており、該環状中間部Bは中間部扇状加熱ゾーンB1〜B6として周方向に6等分されており、該環状周縁部Cは周縁部扇状加熱ゾーンC1〜C6として周方向に6等分されている。   That is, in the divided pattern of the plurality of heating zones shown in FIG. 2, the wafer mounting surface 11a has a circular central portion A, an annular intermediate portion B outside the circular central portion A, and an outer portion of the annular intermediate portion B. It is divided concentrically into an annular peripheral edge C. Further, the circular central part A is divided into three equal parts in the circumferential direction as central fan-shaped heating zones A1 to A3, and the annular intermediate part B is an intermediate fan-shaped part. The circumferential zones C are equally divided into six heating zones B1 to B6, and the annular peripheral edge C is equally divided into six circumferentially fan-shaped heating zones C1 to C6.

更に、本発明の一具体例のヒータユニット10においては、上記のようにして区分された15ゾーンからなる加熱ゾーンは、ウエハ載置面11aの半径方向において互いに隣接するいずれの加熱ゾーン同士においても、それらの両中心位置の離間距離が、其々の加熱ゾーンの中心位置からゾーン境界までの最長距離の50%以上になっている。ここで加熱ゾーンの中心位置とは、円形や三角形等の一般的な形状の場合は幾何学的な中心点と定義することができ、線対称な形状の場合はその対称軸となる対称線分の中間点と定義することができる。例えば図2に示すような扇状の加熱ゾーンの場合は、その周方向の中間角度位置であって且つ半径方向の中間地点が中心位置となる。   Furthermore, in the heater unit 10 of one specific example of the present invention, the heating zone composed of the 15 zones divided as described above is the heating zone adjacent to each other in the radial direction of the wafer mounting surface 11a. The separation distance between these two center positions is 50% or more of the longest distance from the center position of each heating zone to the zone boundary. Here, the center position of the heating zone can be defined as a geometric center point in the case of a general shape such as a circle or a triangle, and in the case of a line-symmetric shape, a symmetrical line segment serving as the axis of symmetry. Can be defined as an intermediate point. For example, in the case of a fan-shaped heating zone as shown in FIG. 2, the intermediate position in the circumferential direction and the intermediate point in the radial direction become the center position.

上記の隣接する加熱ゾーン同士における両中心位置の離間距離と、各加熱ゾーンの中心位置からゾーン境界までの最長距離との関係について、図3を参照しながらより詳細に説明する。先ずウエハ載置面11aの半径方向において互いに隣接する円形中央部Aと環状中間部Bとの関係について検討する。円形中央部Aのうち中央部扇状加熱ゾーンA1が半径方向に隣接する加熱ゾーンは、中間部扇状加熱ゾーンB1及びB2の2つである。   The relationship between the distance between the center positions of adjacent heating zones and the longest distance from the center position of each heating zone to the zone boundary will be described in more detail with reference to FIG. First, the relationship between the circular central portion A and the annular intermediate portion B adjacent to each other in the radial direction of the wafer mounting surface 11a will be examined. Among the circular central portion A, the heating zones in which the central fan-shaped heating zone A1 is adjacent in the radial direction are the two intermediate fan-shaped heating zones B1 and B2.

これらのうち、中央部扇状加熱ゾーンA1と中間部扇状加熱ゾーンB1との関係では、中央部扇状加熱ゾーンA1の中心位置OA1及び中間部扇状加熱ゾーンB1の中心位置OB1の離間距離は線分LA1B1の距離である。そして、中央部扇状加熱ゾーンA1では、その中心位置OA1からそのゾーン境界までの最長の直線距離は、中心位置OA1と扇形の角部に該当するPA1とを結ぶ線分LA1の距離である。一方、中間部扇状加熱ゾーンB1では、その中心位置OB1からそのゾーン境界までの最長の直線距離は、中心位置OB1と扇形の角部に該当するPB1とを結ぶ線分LB1の距離である。 Of these, the relationship between the central portion fan heating zone A1 and the intermediate portion diverging heating zone B1, the distance of the center position O B1 of the center position O A1 and the intermediate portion diverging heating zone B1 of the central fan heating zone A1 is a line This is the distance of the minute LA1B1 . In the central sector heating zone A1, the longest straight line distance from the center position O A1 to the zone boundary is the distance of the line segment L A1 connecting the center position O A1 and P A1 corresponding to the corner of the sector. It is. On the other hand, in the intermediate sector heating zone B1, the longest straight line distance from the center position O B1 to the zone boundary is the distance of the line segment L B1 connecting the center position O B1 and P B1 corresponding to the corner of the sector. It is.

図3から分かるように、線分LA1の距離と両中心位置の離間距離である線分LA1B1の距離とを比べると、上記の線分LA1の距離の50%の長さは、上記の線分LA1B1の距離よりも短くなっている。また、線分LB1の距離と両中心位置の離間距離である線分LA1B1の距離とを比べると、上記の線分LB1の距離の50%の長さは、上記の線分LA1B1の距離よりも短くなっている。なお、図3に示す区分パターンは中間部扇状加熱ゾーンB1とB2との境界線を対称線として線対称になっており、よって互いに隣接する中央部扇状加熱ゾーンA1と間部扇状加熱ゾーンB2との関係も、上記した中央部扇状加熱ゾーンA1と中間部扇状加熱ゾーンB1との関係と同様である。また、中央部扇状加熱ゾーンA2と間部扇状加熱ゾーンB3及びB4との関係、及び中央部扇状加熱ゾーンA3と間部扇状加熱ゾーンB5及びB6との関係も上記した中央部扇状加熱ゾーンA1と中間部扇状加熱ゾーンB1との関係と同様である。 As can be seen from FIG. 3, compared to the distance of the line segment L A1B1 a distance of the distance and both the center position of the line segment L A1, 50% of the length of the distance of the line segment L A1, said It is shorter than the distance of line segment L A1B1 . Also, compared to the distance of the line segment L A1B1 a distance of the distance and both the center position of the line segment L B1, 50% of the length of the distance of the line segment L B1, the above line segment L A1B1 Shorter than the distance. In addition, the division pattern shown in FIG. 3 is axisymmetric with respect to the boundary line between the intermediate fan-shaped heating zones B1 and B2, and thus the adjacent central fan-shaped heating zone A1 and intermediate fan-shaped heating zone B2 This relationship is also the same as the relationship between the central fan-shaped heating zone A1 and the intermediate fan-shaped heating zone B1. Further, the relationship between the central fan-shaped heating zone A2 and the intermediate fan-shaped heating zones B3 and B4 and the relationship between the central fan-shaped heating zone A3 and the intermediate fan-shaped heating zones B5 and B6 are the same as the above-described central fan-shaped heating zone A1. This is the same as the relationship with the intermediate fan-shaped heating zone B1.

上記の関係は、ウエハ載置面11aの半径方向において互いに隣接する環状中間部Bと環状周縁部Cとの関係においても同様のことがいえる。すなわち、環状中間部Bのうちの中間部扇状加熱ゾーンB1が隣接する加熱ゾーンは周縁部扇状加熱ゾーンC1である。中間部扇状加熱ゾーンB1の中心位置OB1及び周縁部扇状加熱ゾーンC1の中心位置OC1の離間距離は線分LB1C1の距離である。そして、中間部扇状加熱ゾーンB1では、前述したように、その中心位置OB1からそのゾーン境界までの最長の直線距離は、中心位置OB1と扇形の角部に該当するPB1とを結ぶ線分LB1の距離である。一方、周縁部扇状加熱ゾーンC1では、その中心位置OC1からそのゾーン境界までの最長の直線距離は、中心位置OC1と扇形の角部に該当するPC1とを結ぶ線分LC1の距離である。 The same can be said for the relationship between the annular intermediate portion B and the annular peripheral portion C adjacent to each other in the radial direction of the wafer mounting surface 11a. That is, the heating zone adjacent to the intermediate fan heating zone B1 in the annular intermediate portion B is the peripheral fan heating zone C1. Distance of the center position O C1 of the center position O B1 and periphery fan heating zone C1 of the intermediate portion diverging heating zone B1 is the distance of the line segment L B1C1. In the intermediate fan-shaped heating zone B1, as described above, the longest straight line distance from the center position O B1 to the zone boundary is a line connecting the center position O B1 and P B1 corresponding to the fan-shaped corner. This is the distance of the minute L B1 . On the other hand, the periphery fan heating zone C1, the longest linear distance from the center position O C1 to the zone boundary, the distance of the line segment L C1 connecting the P C1 corresponding to the corners of the fan and the center position O C1 It is.

図3から分かるように、線分LB1の距離と両中心位置の離間距離である線分LB1C1の距離とを比べると、上記の線分LB1の距離の50%の長さは、上記の線分LB71C1の距離よりも短くなっている。また、線分LC1の距離と両中心位置の離間距離である線分LB1C1の距離とを比べると、上記の線分LC1の距離の50%の長さは、上記の線分LB1C1の距離よりも短くなっている。なお、中間部扇状加熱ゾーンB2と周縁部扇状加熱ゾーンC2との関係、中間部扇状加熱ゾーンB3と周縁部扇状加熱ゾーンC3との関係、中間部扇状加熱ゾーンB4と周縁部扇状加熱ゾーンC4との関係、中間部扇状加熱ゾーンB5と周縁部扇状加熱ゾーンC5との関係、及び中間部扇状加熱ゾーンB6と周縁部扇状加熱ゾーンC6との関係のいずれにおいても、上記した中間部扇状加熱ゾーンB1と周縁部扇状加熱ゾーンC1との関係と同様である。 As it can be seen from FIG. 3, compared to the distance of the line segment L B1C1 a distance of the distance and both the center position of the line segment L B1, 50% of the length of the distance of the line segment L B1, the above It is shorter than the distance of the line segment L B71C1 . Also, compared to the distance of the line segment L B1C1 a distance of the distance and both the center position of the line segment L C1, 50% of the length of the distance of the line segment L C1, the above line segment L B1C1 Shorter than the distance. It should be noted that the relationship between the intermediate fan heating zone B2 and the peripheral fan heating zone C2, the relationship between the intermediate fan heating zone B3 and the peripheral fan heating zone C3, the intermediate fan heating zone B4 and the peripheral fan heating zone C4, In the relationship between the intermediate fan heating zone B5 and the peripheral fan heating zone C5, and the relationship between the intermediate fan heating zone B6 and the peripheral fan heating zone C6, the above-described intermediate fan heating zone B1. And the peripheral fan-shaped heating zone C1.

本発明の一具体例のウエハ加熱用ヒータユニット10は、上記の区分パターンを有することにより、載置面11aをより精密に温度制御することが可能になる。なお、本発明の一具体例のウエハ加熱用ヒータユニット10は、上記の複数の加熱ゾーンのうち周方向に隣接する加熱ゾーン同士の間に半導体ウエハのリフトピン用の挿通孔が設けられていてもよい。例えば図2には、中央部扇状加熱ゾーンA1とA2との間、A2とA3との間、及びA3とA1との間に3個のリフトピン用挿通孔Q1〜Q3が其々設けられた例が示されている。このように周方向に隣接する加熱ゾーン同士の間にリフトピン用挿通孔を設けることで、当該挿通孔による載置面11aへの均熱性の悪影響を抑えることができる。あるいは、リフトピン用挿通孔は半径方向に隣接する加熱ゾーン同士の間に設けても良いし、周方向に隣接する加熱ゾーン同士の間であって且つ半径方向に隣接する加熱ゾーン同士の間に設けても良い。   The wafer heating heater unit 10 of one specific example of the present invention has the above-described division pattern, so that the temperature of the mounting surface 11a can be more precisely controlled. The heater unit 10 for heating a wafer according to a specific example of the present invention may include an insertion hole for a lift pin of a semiconductor wafer between the heating zones adjacent in the circumferential direction among the plurality of heating zones. Good. For example, FIG. 2 shows an example in which three lift pin insertion holes Q1 to Q3 are provided between the central fan-shaped heating zones A1 and A2, between A2 and A3, and between A3 and A1, respectively. It is shown. Thus, by providing the lift pin insertion hole between the heating zones adjacent in the circumferential direction, it is possible to suppress the adverse effect of the thermal uniformity on the placement surface 11a due to the insertion hole. Alternatively, the lift pin insertion holes may be provided between the heating zones adjacent in the radial direction, or between the heating zones adjacent in the circumferential direction and between the heating zones adjacent in the radial direction. May be.

各加熱ゾーン内に設けられている図示しない発熱回路の回路パターンについては特に限定はなく、様々な回路パターンを有することができる。例えば、同心円状の複数の湾曲導電部と、これら湾曲導電部の隣接するもの同士を接続する直線導電部とで一筆書き状に形成された回路パターンにすることができる。この場合、発熱回路の両端部に其々2つの電極端子(図示せず)が接続されることになる。   There is no particular limitation on the circuit pattern of a heating circuit (not shown) provided in each heating zone, and various circuit patterns can be provided. For example, a circuit pattern formed in a single stroke can be formed by a plurality of concentric curved conductive portions and a linear conductive portion connecting adjacent ones of the curved conductive portions. In this case, two electrode terminals (not shown) are connected to both ends of the heat generating circuit.

なお、複数の発熱回路は、加熱ゾーンごとに発熱密度が異なるようにしてもよい。例えば前述したように、一般にウエハ径よりも載置台の外径が大きいため、半導体ウエハが載置台に載置されると当該載置台には中央部が外周部よりも低温の同心円状のセンタークール型の温度分布が生じる。その後、載置台の温度は制御系の働きにより所定の温度まで昇温するが、上記の温度分布の影響を受けるので半導体ウエハの過渡的な温度分布も同心円状のセンタークールとなる。このようなセンタークール型の温度分布を補正するため、中央部扇状加熱ゾーンA1〜A3の発熱密度を高く設計することで、ウエハ載置時の過渡的な温度均一性を一層向上することができる。発熱密度を高くする方法としては、発熱回路の回路パターンのピッチを狭くしたり発熱体回路を構成する導電線の幅を細くしたりすることで実現できる。   The plurality of heat generating circuits may have different heat generation densities for each heating zone. For example, as described above, since the outer diameter of the mounting table is generally larger than the wafer diameter, when a semiconductor wafer is mounted on the mounting table, the central portion of the mounting table has a concentric center cooler at a lower temperature than the outer peripheral portion. A temperature distribution of the mold occurs. Thereafter, the temperature of the mounting table is raised to a predetermined temperature by the action of the control system, but since it is affected by the above temperature distribution, the transient temperature distribution of the semiconductor wafer also becomes a concentric center cool. In order to correct such a center-cool type temperature distribution, by designing the heat generation density of the central fan-shaped heating zones A1 to A3 to be high, the transient temperature uniformity during wafer mounting can be further improved. . A method of increasing the heat generation density can be realized by reducing the pitch of the circuit pattern of the heat generating circuit or by narrowing the width of the conductive line constituting the heat generating circuit.

なお、発熱モジュール13においては、ウエハ載置面11aに平行な全面積に対して発熱回路の有効面積(すなわち、発熱モジュール13の上記全面積から、互いに隣接する加熱ゾーン同士の離間スペース、ネジ孔やリフトピンの挿通孔、測温センサー設置部位等の発熱がないスペースを引いたもの)の比率、すなわち有効発熱領域の比率が80%以上であるのが好ましい。   In addition, in the heat generating module 13, the effective area of the heat generating circuit with respect to the entire area parallel to the wafer mounting surface 11a (that is, the space between the heating zones adjacent to each other, the screw hole from the total area of the heat generating module 13). And the ratio of the effective heat generation area is preferably 80% or more.

本発明の一具体例のウエハ加熱用ヒータユニット10は、複数の加熱ゾーンの各々において例えば抵抗値が調整された測温素子からなる測温センサー(図示せず)を前述した中心位置に該当する位置に設けると共に、各測温センサーの検出値に基づいて当該加熱ゾーン内の発熱回路を個別に制御するのが好ましい。これにより載置面11aを局所的に加熱することができるので、例えばロードロックの開閉等により載置面11aが部分的に冷却されるような場合であっても均熱性を良好に維持することが可能になる。上記の測温センサーは例えばウエハ載置台11の下面側に測温センサーが収まる大きさのザグリ穴を設け、その底面に接着剤を塗布して測温センサーを接着固定することで各加熱ゾーンの温度を良好に検知することができる。   The heater unit 10 for heating a wafer according to a specific example of the present invention corresponds to the above-described center position of a temperature measuring sensor (not shown) including a temperature measuring element whose resistance value is adjusted in each of a plurality of heating zones. It is preferable that the heating circuit in the heating zone is individually controlled based on the detection value of each temperature sensor while being provided at the position. As a result, the mounting surface 11a can be locally heated, so that, for example, even if the mounting surface 11a is partially cooled by opening / closing a load lock or the like, good thermal uniformity is maintained. Is possible. For example, the temperature measuring sensor is provided with a counterbore hole having a size that can accommodate the temperature measuring sensor on the lower surface side of the wafer mounting table 11, and an adhesive is applied to the bottom surface of the wafer mounting table 11 so that the temperature measuring sensor is bonded and fixed. The temperature can be detected well.

再度図1に戻ると、本発明の一具体例のウエハ加熱用ヒータユニット10は、支持板12の下方に冷却ユニット30が設けられている。この冷却ユニット30は、一点鎖線で示すように支持板12の下面側に当接する当接位置と、実線で示すように支持板12から離間する離間位置との間で往復動可能な可動式冷却板31と、この可動式冷却板31が上記離間位置にある時に当接する固定式冷却ステージ32とを有している。これら可動式冷却板31及び固定式冷却ステージ32の材質は、熱伝導性が高い銅、アルミニウム、ニッケル、マグネシウム、チタン、若しくはこれらの少なくともいずれかを主成分とする合金又はステンレスからなる群から選択することが好ましい。   Returning to FIG. 1 again, the wafer heating heater unit 10 according to an embodiment of the present invention is provided with a cooling unit 30 below the support plate 12. The cooling unit 30 is movable cooling that can reciprocate between a contact position that contacts the lower surface side of the support plate 12 as indicated by a one-dot chain line and a spaced position that is separated from the support plate 12 as indicated by a solid line. A plate 31 and a fixed cooling stage 32 that abuts when the movable cooling plate 31 is in the separated position. The material of the movable cooling plate 31 and the fixed cooling stage 32 is selected from the group consisting of copper, aluminum, nickel, magnesium, titanium having high thermal conductivity, an alloy mainly containing at least one of these, or stainless steel. It is preferable to do.

この固定式冷却ステージ32は、図示しないチラーなどの冷却装置で冷却されたフッ素系冷媒等の不凍液、空気、汎用的な水等の冷媒が循環する冷媒流路32aを有している。この冷媒流路の形態は特に限定はなく、例えば金属製の板状部材の下面側に冷媒流路としてCuなどの金属製のパイプを沿わせ、この金属製パイプの両端にステンレス製の継ぎ手を取り付けると共に、金属製パイプを押さえ板で板状部材に押さえつけた状態で該押さえ板と板状部材とをネジなどにより機械的に結合する構造にすることができる。   The fixed cooling stage 32 has a refrigerant flow path 32a in which an antifreeze liquid such as a fluorine-based refrigerant cooled by a cooling device such as a chiller (not shown), a refrigerant such as air, and general water is circulated. The form of the refrigerant flow path is not particularly limited. For example, a metal pipe such as Cu is provided as a refrigerant flow path on the lower surface side of the metal plate-like member, and a stainless steel joint is provided at both ends of the metal pipe. In addition to the attachment, the pressing plate and the plate-like member can be mechanically coupled with a screw or the like in a state where the metal pipe is pressed against the plate-like member with the holding plate.

あるいは、より高い熱効率を得るため、金属製の板状部材の下面側に例えば渦巻き状のザグリ溝を設け、このザグリ溝中に渦巻き状に成形した冷媒流通用の金属製パイプを設置した構造でもよい。この場合、金属製パイプと冷却板との良好な熱伝達を保つため、コーキング材、シーラント、接着剤などにより金属製パイプの表面とザグリ溝の内面とを接着固定するのが好ましい。あるいは、同じ材質の略同形状の2枚の板状部材を用意し、それらの一方又は両方の片面に機械加工で流路となる溝を形成し、この流路側の面が対向するように2枚の板状部材を重ね合わせて例えばロウ付けなどの結合法で一体化した構造でもよい。   Alternatively, in order to obtain higher thermal efficiency, a structure in which, for example, a spiral counterbore groove is provided on the lower surface side of the metal plate-like member, and a metal pipe for circulating the refrigerant formed in a spiral shape in the counterbore groove is installed. Good. In this case, in order to maintain good heat transfer between the metal pipe and the cooling plate, it is preferable to bond and fix the surface of the metal pipe and the inner surface of the counterbored groove with a caulking material, a sealant, an adhesive, or the like. Alternatively, two plate-like members of substantially the same shape made of the same material are prepared, and a groove to be a flow path is formed by machining on one or both surfaces of the two members so that the flow path side faces each other. For example, a structure in which a plurality of plate-like members are overlapped and integrated by a joining method such as brazing may be used.

可動式冷却板31は、エアシリンダなどからなる昇降機構33に取り付けられている。これにより、昇降機構33を作動させることで固定式冷却板31を前述した当接位置と、離間位置との間で往復動させることが可能になる。なお、可動式冷却板31を使用せずに冷媒流路を有する冷却ステージ32自体を支持板12の下面側に当接する位置と該下面側から離間する位置との間で往復動させてもよい。   The movable cooling plate 31 is attached to an elevating mechanism 33 composed of an air cylinder or the like. Accordingly, by operating the elevating mechanism 33, the fixed cooling plate 31 can be reciprocated between the contact position described above and the separation position. Instead of using the movable cooling plate 31, the cooling stage 32 itself having the refrigerant flow path may be reciprocated between a position where it abuts on the lower surface side of the support plate 12 and a position where it is separated from the lower surface side. .

上記の可動式冷却板31の上面や固定式冷却ステージ32の上面、及び/又は支持板12の下面には介在層(図示せず)を設けてもよい。この介在層は、厚み方向にクッション性(柔軟性)を有しているのが好ましく、また耐熱性を有しているのが好ましい。更に、例えば1W/m・K以上の高い熱伝導率を有していることが好ましい。このような材質としては、発泡金属、金属メッシュ、グラファイトシート、又はフッ素樹脂、ポリイミド樹脂、若しくはシリコーン樹脂等の樹脂シートを挙げることができる。なお、上記の樹脂シートにカーボンなどの熱伝導性フィラーを含有することで、熱抵抗をより小さくすることが可能になる。なお、本発明の一具体例のウエハ加熱用ヒータユニット10及び冷却ユニット30は好適にはステンレスからなる容器40内に収められているのが好ましい。   An intervening layer (not shown) may be provided on the upper surface of the movable cooling plate 31, the upper surface of the fixed cooling stage 32, and / or the lower surface of the support plate 12. This intervening layer preferably has cushioning properties (flexibility) in the thickness direction, and preferably has heat resistance. Furthermore, it is preferable to have a high thermal conductivity of, for example, 1 W / m · K or more. Examples of such a material include foam metal, metal mesh, graphite sheet, or resin sheet such as fluororesin, polyimide resin, or silicone resin. In addition, it becomes possible to make thermal resistance smaller by containing thermal conductive fillers, such as carbon, in said resin sheet. In addition, it is preferable that the wafer heating heater unit 10 and the cooling unit 30 of one specific example of the present invention are preferably housed in a container 40 made of stainless steel.

以上、本発明のウエハ加熱用ヒータユニットについて一実施形態を挙げて説明したが、本発明は係る実施形態に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施することが可能である。すなわち、本発明の技術的範囲は、特許請求の範囲及びその均等物に及ぶものである。   As mentioned above, although one embodiment was mentioned and demonstrated about the heater unit for wafer heating of this invention, this invention is not limited to this embodiment, It implements in the various aspects of the range which does not deviate from the main point of this invention. It is possible. That is, the technical scope of the present invention extends to the claims and their equivalents.

[実施例1]
図1に示すような下方に冷却ユニット30が設けられたウエハ加熱用ヒータユニット10を作製してそのウエハ載置面11aの均熱性を評価した。具体的には、先ずウエハ載置台11として直径320mm×厚み3mmの円板状の銅板を準備した。この銅板のウエハ載置面11aとなる面とは反対側の面の後述する中心位置に15個のザグリ穴を形成し、これらザグリ穴の各々に、セラミックス製(W2mm×D2mm×H1mm)の測温素子をシリコーン接着剤を用いて接着固定した。
[Example 1]
A wafer heating heater unit 10 having a cooling unit 30 provided below as shown in FIG. 1 was produced, and the thermal uniformity of the wafer mounting surface 11a was evaluated. Specifically, first, a disk-shaped copper plate having a diameter of 320 mm and a thickness of 3 mm was prepared as the wafer mounting table 11. Fifteen counterbore holes are formed at the center position, which will be described later, of the surface opposite to the wafer mounting surface 11a of the copper plate, and each of these counterbore holes is made of a ceramic (W2 mm × D2 mm × H1 mm) measurement. The temperature element was bonded and fixed using a silicone adhesive.

次に支持板12として直径320mm×厚み3mmの円板状のSi−SiC板を準備した。このSi−SiC板には、上記測温素子のリード線や、後述するネジなどの挿通用の貫通孔を設けた。次に発熱モジュール13の複数の発熱回路13aとなる抵抗発熱体として、厚さ20μmのステンレス箔に該複数の発熱回路13aの回路パターンをエッチングで形成し、それらの各々の両終端部に給電ケーブルを取り付けた後、この抵抗発熱体を上下両面から厚み50μmのポリイミドシートで覆って熱圧着し、直径320mmの円形フィルム状の発熱モジュール13を準備した。   Next, a disc-shaped Si—SiC plate having a diameter of 320 mm and a thickness of 3 mm was prepared as the support plate 12. The Si-SiC plate was provided with a lead wire for the temperature measuring element and a through hole for insertion such as a screw to be described later. Next, as a resistance heating element to be a plurality of heat generating circuits 13a of the heat generating module 13, a circuit pattern of the plurality of heat generating circuits 13a is formed by etching on a stainless steel foil having a thickness of 20 μm, and a power supply cable is connected to each of both end portions thereof. Then, the resistance heating element was covered with a polyimide sheet having a thickness of 50 μm from both the upper and lower surfaces and thermocompression bonded to prepare a heating module 13 in the form of a circular film having a diameter of 320 mm.

ここで、上記の発熱モジュール13の複数の発熱回路13aが其々設けられる複数の加熱ゾーンは、図2の区分パターンとなるようにした。具体的には、円形の発熱モジュール13の中心点に対してφ120mm、φ246mm、φ302mmの3つの同心円で円形中央部Aと、環状中間部Bと、環状周縁部Cとに3区分し、更にφ120mmの円形中央部Aを周方向に3等分して中央部扇状加熱ゾーンA1〜A3とし、外径φ246mm、内径φ120mmの環状中間部Bを周方向に6等分して中間部扇状加熱ゾーンB1〜B6とし、外径φ302mm、内径φ246mmの環状周縁部Cを周方向に6等分して周縁部扇状加熱ゾーンC1〜C6とした。これら合計15区画の加熱ゾーンの其々に設けた15個の発熱回路13aが個別に制御されるように、上記測温素子は各区画の中心位置に配置した。なお、発熱回路の上記給電ケーブルも各区画ごとに引き出されることになる。   Here, the plurality of heating zones in which the plurality of heat generating circuits 13a of the heat generating module 13 are respectively provided have the division pattern of FIG. Specifically, with respect to the center point of the circular heat generating module 13, three concentric circles of φ120 mm, φ246 mm, and φ302 mm are divided into a circular central portion A, an annular intermediate portion B, and an annular peripheral portion C, and further, φ120 mm The circular central portion A is divided into three equal parts in the circumferential direction to form central fan-shaped heating zones A1 to A3, and the annular intermediate part B having an outer diameter of φ246 mm and an inner diameter of φ120 mm is divided into six equal parts in the circumferential direction. To B6, an annular peripheral edge C having an outer diameter of φ302 mm and an inner diameter of φ246 mm was equally divided into six in the circumferential direction to form peripheral fan-shaped heating zones C1 to C6. The temperature measuring elements were arranged at the center positions of the respective sections so that the fifteen heating circuits 13a provided in the heating zones of the total 15 sections were individually controlled. Note that the power supply cable of the heat generation circuit is also drawn out for each section.

このようにして作製した発熱モジュール13を上記のウエハ載置台11と支持板12との間に挟み込み、支持板12に予め設けておいた貫通孔にネジを挿通してウエハ載置台11に螺合した。これにより、発熱モジュール13を挟んでウエハ載置台11と支持板12とが互いに機械的に結合されたウエハ加熱用ヒータユニット10を作製した。なお、上記のネジには、熱膨張量差でウエハ載置台11や支持板12が変形しないように、座面にベアリングを備えた締結ネジを用いた。この締結ねじを、PCD120mmに3本、PCD310mmに6本設けた。また、測温素子のリード線からの熱逃げを抑制するため、支持板12から取り出した測温素子のリード線を支持板12に30mmの長さに渡り接触させた状態でシリコーン樹脂で接着固定した。   The heat generating module 13 produced in this way is sandwiched between the wafer mounting table 11 and the support plate 12, and a screw is inserted into a through hole provided in the support plate 12 in advance to be screwed into the wafer mounting table 11. did. As a result, a wafer heating heater unit 10 in which the wafer mounting table 11 and the support plate 12 were mechanically coupled to each other with the heat generating module 13 interposed therebetween was produced. In addition, the fastening screw provided with the bearing on the seat surface was used for said screw so that the wafer mounting base 11 and the support plate 12 might not deform | transform by the thermal expansion amount difference. Three fastening screws were provided for PCD 120 mm and six for PCD 310 mm. In addition, in order to suppress the heat escape from the lead wire of the temperature measuring element, the lead wire of the temperature measuring element taken out from the support plate 12 is bonded and fixed with a silicone resin in a state of being in contact with the support plate 12 for a length of 30 mm. did.

次に、このウエハ加熱用ヒータユニット10の下方に設ける冷却ユニット30として、可動式冷却板31用の直径320mm×厚み12mmの円板状のアルミニウム合金板と、固定式冷却ステージ32用の直径320mm×厚み12mm の円板状のアルミニウム合金板とを準備した。可動式冷却板31用のアルミニウム合金板には、上記支持板12に当接する上面側に、支持板12と可動式冷却板31の全面が接触するように柔軟性を有したシリコーンシートを配置した。一方、固定式冷却ステージ32用のアルミニウム合金板の下面に、ねじを用いて冷媒流路32a用の外径6mm×肉厚1mmのリン脱酸銅パイプを取り付けた。そして、この銅パイプの両端に、冷媒を供給・排出するための継ぎ手を取り付けた。   Next, as a cooling unit 30 provided below the wafer heating heater unit 10, a disk-shaped aluminum alloy plate having a diameter of 320 mm × a thickness of 12 mm for the movable cooling plate 31 and a diameter of 320 mm for the fixed cooling stage 32. X A disk-shaped aluminum alloy plate having a thickness of 12 mm was prepared. In the aluminum alloy plate for the movable cooling plate 31, a flexible silicone sheet is disposed on the upper surface side in contact with the support plate 12 so that the entire surface of the support plate 12 and the movable cooling plate 31 are in contact with each other. . On the other hand, a phosphorus-deoxidized copper pipe having an outer diameter of 6 mm and a wall thickness of 1 mm for the refrigerant flow path 32a was attached to the lower surface of the aluminum alloy plate for the stationary cooling stage 32 using screws. Then, joints for supplying and discharging the refrigerant were attached to both ends of the copper pipe.

このようにして作製した冷却ユニット30としての両アルミニウム合金板に、上記給電ケーブル、測温素子のリード線、及び後述する容器40の底部から立設する脚部20が挿通する貫通孔を設けた。更に固定式冷却ステージ32用のアルミニウム合金板には、可動式冷却板31のエアシリンダからなる昇降機構33のロッドが挿通する貫通孔を設けた。上記の冷却ユニット30を肉厚1.5mmの側壁を有し且つ上部が開放されたステンレス製の容器40内に設置した。固定式冷却ステージ32の下側に昇降機構33を取り付け、そのロッドを上記したロッド挿通用の貫通孔に挿通させてその先端に可動式冷却板31を取り付けた。このようにして、冷却ユニット30を備えた試料1のウエハ加熱用ヒータユニット10を作製した。なお、昇降機構33のロッドが退避している時の支持板12の下面と可動式冷却板31の上面との離間距離は10mmであった。   Both aluminum alloy plates as the cooling unit 30 thus produced were provided with through-holes through which the feeding cable, the lead wires of the temperature measuring element, and the legs 20 standing from the bottom of the container 40 described later are inserted. . Further, the aluminum alloy plate for the fixed cooling stage 32 was provided with a through hole through which the rod of the elevating mechanism 33 composed of an air cylinder of the movable cooling plate 31 was inserted. The cooling unit 30 was installed in a stainless steel container 40 having a wall having a wall thickness of 1.5 mm and having an open top. The elevating mechanism 33 is attached to the lower side of the fixed cooling stage 32, the rod is inserted into the above-described through hole for inserting the rod, and the movable cooling plate 31 is attached to the tip thereof. In this way, the heater unit 10 for heating the wafer of the sample 1 provided with the cooling unit 30 was produced. The distance between the lower surface of the support plate 12 and the upper surface of the movable cooling plate 31 when the rod of the elevating mechanism 33 was retracted was 10 mm.

比較のため、ウエハ載置台11と支持板12との間に挟持させる発熱モジュールの区分パターンを図2に代えて図4(a)及び(b)の区分パターンにした以外は上記試料1と同様にして冷却ユニットを備えた試料2及び3のウエハ加熱用ヒータユニット作製した。すなわち、試料2のウエハ加熱用ヒータユニットの発熱モジュールにおいてはその中心点に対してφ95mm、φ246mm、φ302mmの3つの同心円で円形中央部Dと、環状中間部Eと、環状周縁部Fとに3分割し、円形中央部D及び環状中間部Eについては周方向に分割せずに其々そのまま円形加熱ゾーン及び環状加熱ゾーンとし、外径φ302mm、内径φ246mmの環状周縁部Fのみ周方向に4等分して周縁部扇状加熱ゾーンF1〜F4とした。これら合計6区画の加熱ゾーンの各々の中心位置に測温素子を設けた。但し、環状中間部Eについては、発熱モジュールの中心点に対してφ151mmの周上の1か所に測温素子を設けた。   For comparison, the same as the sample 1 except that the segment pattern of the heat generating module sandwiched between the wafer mounting table 11 and the support plate 12 is changed to the segment pattern of FIGS. 4A and 4B instead of FIG. Thus, a heater unit for heating the wafer of Samples 2 and 3 equipped with a cooling unit was prepared. That is, in the heating module of the heater unit for heating the wafer of sample 2, three concentric circles of φ95 mm, φ246 mm, and φ302 mm with respect to the center point are arranged in a circular central portion D, an annular intermediate portion E, and an annular peripheral portion F. The circular central portion D and the annular intermediate portion E are not divided in the circumferential direction, but are used as a circular heating zone and an annular heating zone, respectively, and only the annular peripheral portion F having an outer diameter of φ302 mm and an inner diameter of φ246 mm is 4 in the circumferential direction. To obtain peripheral edge fan-shaped heating zones F1 to F4. A temperature measuring element was provided at the central position of each of the six heating zones. However, for the annular intermediate portion E, a temperature measuring element was provided at one place on the circumference of φ151 mm with respect to the center point of the heat generating module.

一方、試料3のウエハ加熱用ヒータユニットの発熱モジュールにおいては、その中心点に対してφ95mm、φ171.5mm、φ246mm、φ302mmの4つの同心円で円形中央部Gと、内側環状中間部Hと、外側環状中間部Iと、環状周縁部Jとに4分割し、更に外径φ171.5mm、内径φ95mmの内側環状中間部Hを周方向に2等分して内側中間部扇状加熱ゾーンH1〜H2とし、外形φ246mm、内径φ171.5mmの外側環状中間部Iを周方向に4等分して外側中間部扇状加熱ゾーンI1〜I4とし、外径φ302mm、内径φ246mmの環状周縁部Jを周方向に8等分して周縁部扇状加熱ゾーンJ1〜J8とした。これら合計15区画の加熱ゾーンの各々の中心位置に測温素子を設けた。上記試料1〜3のヒータユニットにおける複数の加熱ゾーンの区分パターンをまとめたものを表1に示す。   On the other hand, in the heat generating module of the heater unit for heating the wafer of sample 3, the circular central part G, the inner annular intermediate part H, and the outer side are formed by four concentric circles of φ95 mm, φ171.5 mm, φ246 mm, and φ302 mm with respect to the center point. It is divided into an annular intermediate portion I and an annular peripheral edge portion J, and the inner annular intermediate portion H having an outer diameter of φ171.5 mm and an inner diameter of φ95 mm is equally divided into two in the circumferential direction to form inner intermediate fan-shaped heating zones H1 to H2. The outer annular intermediate portion I having an outer diameter φ246 mm and an inner diameter φ171.5 mm is equally divided into four in the circumferential direction to form outer intermediate fan-shaped heating zones I1 to I4, and an annular peripheral portion J having an outer diameter φ302 mm and an inner diameter φ246 mm is 8 in the circumferential direction. Equally divided into peripheral fan heating zones J1 to J8. A temperature measuring element was provided at the center position of each of the heating zones of a total of 15 sections. Table 1 shows a summary of the division patterns of the plurality of heating zones in the heater units of Samples 1 to 3.

Figure 0006593413
Figure 0006593413

上記にて作製した試料1〜3のヒータユニットに対して、先ずウエハ載置面11aの平面度を市販の三次元測定器にて測定した。次に、これら試料1〜3のヒータユニットの各々に対して複数の発熱回路13aに給電して常温から110℃まで昇温させた後、設定温度110℃で温度制御しながら1時間保持した。その後、測温センサーが埋設された市販のウエハ温度計をウエハ載置面11aに設置し、ウエハ載置面11a内の最大温度と最小温度の差である均熱レンジを計測した。その結果を下記表2に示す。   First, the flatness of the wafer mounting surface 11a was measured with a commercially available three-dimensional measuring device for the heater units of Samples 1 to 3 prepared above. Next, each of the heater units of Samples 1 to 3 was supplied with power to the plurality of heat generating circuits 13a and heated from room temperature to 110 ° C., and then held for 1 hour while controlling the temperature at a set temperature of 110 ° C. Thereafter, a commercially available wafer thermometer with a temperature sensor embedded therein was placed on the wafer placement surface 11a, and a soaking range, which is the difference between the maximum temperature and the minimum temperature in the wafer placement surface 11a, was measured. The results are shown in Table 2 below.

Figure 0006593413
Figure 0006593413

上記表2の結果から分かるように、試料2のヒータユニットでは均熱レンジが0.17℃となり、試料3のヒータユニットでは均熱レンジが0.21℃となった。詳細な温度分布によると、試料2では環状中間部Eの加熱ゾーンにおいて最大温度と最小温度が存在しており、ウエハ載置台11と支持板12とを締結しているボルト近傍が低温域となっていた。一方、試料3では外側環状中間部Iのうちの1か所の加熱ゾーンが高温域となっていた。   As can be seen from the results in Table 2, the soaking range of the heater unit of Sample 2 was 0.17 ° C., and the soaking range of the heater unit of Sample 3 was 0.21 ° C. According to the detailed temperature distribution, the sample 2 has a maximum temperature and a minimum temperature in the heating zone of the annular intermediate portion E, and the vicinity of the bolt that fastens the wafer mounting table 11 and the support plate 12 is a low temperature region. It was. On the other hand, in the sample 3, one heating zone in the outer annular intermediate portion I was a high temperature region.

試料3のヒータユニットの発熱回路への出力を確認すると、高温域となっていた上記外側環状中間部Iの1か所の加熱ゾーンでは出力がなく、これに隣接する内側環状中間部Hの加熱ゾーンへの出力が相対的に大きかった。これは、互いに隣接する加熱ゾーン同士の両中心位置が其々の加熱ゾーンの大きさに比べて近づきすぎており、具体的には、これら両中心位置の離間距離が其々の加熱ゾーンの中心位置からゾーン境界までの最長距離の50%未満となっているため、隣接する内側環状中間部Hの発熱回路の影響を大きく受けて外側環状中間部Iでは出力しなくても設定温度以上に到達していたことによるものと考えられる。すなわち、隣接する加熱ゾーン間で温度制御に干渉が生じたことが原因と推察される。   When the output to the heating circuit of the heater unit of the sample 3 is confirmed, there is no output in one heating zone of the outer annular intermediate portion I, which has been in a high temperature range, and the heating of the inner annular intermediate portion H adjacent thereto is not performed. The output to the zone was relatively large. This is because the center positions of the heating zones adjacent to each other are too close to the size of each heating zone. Specifically, the separation distance between these two center positions is the center of each heating zone. Since it is less than 50% of the longest distance from the position to the zone boundary, it is greatly affected by the heat generation circuit of the adjacent inner annular intermediate portion H and reaches the set temperature or higher even if it is not output at the outer annular intermediate portion I It is thought that it was due to what was done. That is, it is inferred that there was interference in temperature control between adjacent heating zones.

一方、試料1のヒータユニットでは均熱レンジが0.06℃であり、これは、互いに隣接する加熱ゾーン同士の両中心位置の離間距離が其々の加熱ゾーンの中心位置からゾーン境界までの最長距離の50%以上であるため、上記の試料2や3で確認された局所的な温度低下や隣接する加熱ゾーン同士の温度制御の干渉による特異的な温度分布は確認されなかった。更に、ウエハ載置台11と支持板12とを締結する締結ボルト周辺の温度も特異的でなかった。これは、締結ボルトの位置を、円形中央部Aの加熱ゾーンとその外周側の環状中間部Bの加熱ゾーンとの境界上に配置したことにより、当該締結ボルトの影響を複数の加熱ゾーンで分散できたことによるものと推察される。   On the other hand, the heater unit of sample 1 has a soaking range of 0.06 ° C., which is the longest distance from the center position of each heating zone to the zone boundary. Since it was 50% or more of the distance, the specific temperature distribution due to the local temperature decrease confirmed in Samples 2 and 3 and the interference of temperature control between adjacent heating zones was not confirmed. Furthermore, the temperature around the fastening bolt that fastens the wafer mounting table 11 and the support plate 12 was not specific. This is because the position of the fastening bolt is arranged on the boundary between the heating zone of the circular central portion A and the heating zone of the annular intermediate portion B on the outer peripheral side, thereby dispersing the influence of the fastening bolt in a plurality of heating zones. It is presumed that this was done.

[実施例2]
ウエハ載置台11の材質を銅に代えてSi−SiCにした以外は上記の実施例1の試料1〜3と同様にして其々試料4〜6のヒータユニットを製作し、実施例1と同様の評価を行った。その結果をウエハ載置台11の平面度と併せて下記表3に示す。
[Example 2]
Except that the material of the wafer mounting table 11 is changed to Si—SiC instead of copper, the heater units of the samples 4 to 6 are manufactured in the same manner as the samples 1 to 3 of the first embodiment, and the same as the first embodiment. Was evaluated. The results are shown in Table 3 below together with the flatness of the wafer mounting table 11.

Figure 0006593413
Figure 0006593413

上記表3から実施例1と同様の傾向があることが分かる。また、実施例1に比べて試料4〜6のヒータユニットはいずれも若干の均熱性の向上が認められた。これは、ウエハ載置台11の材質を剛性の高いSi−SiCに代えたことで、ウエハ載置台11の平面度が安定し、よってウエハ載置面11aとウエハとの距離が全面に亘って均等になったことによるものと推察される。   It can be seen from Table 3 that there is a tendency similar to that in Example 1. Further, as compared with Example 1, all of the heater units of Samples 4 to 6 were slightly improved in heat uniformity. This is because the wafer mounting table 11 is replaced with highly rigid Si—SiC, so that the flatness of the wafer mounting table 11 is stabilized, and the distance between the wafer mounting surface 11a and the wafer is uniform over the entire surface. This is probably due to the fact that

10 ウエハ加熱用ヒータユニット
11 ウエハ載置台
11a ウエハ載置面
12 支持板
13 発熱モジュール
13a 発熱回路
20 脚部
30 冷却ユニット
31 可動式冷却板
32 固定式冷却ステージ
32a 冷媒流路
33 昇降機構
40 容器
A 円形中央部
A1〜A3 中央部扇状加熱ゾーン
B 環状中間部
B1〜B6 中間部扇状加熱ゾーン
C 環状周縁部
C1〜C6 周縁部扇状加熱ゾーン
A1、LB1、LC1、LA1B1、LB1C1 線分
A1、OB1、OC1 中心位置
A1、PB1、PC1 角部
Q1〜Q3 リフトピン用挿通孔
D 円形中央部
E 環状中間部
F 環状周縁部
F1〜F4 周縁部扇状加熱ゾーン
G 円形中央部
H 内側環状中間部
H1〜H2 内側中間部扇状加熱ゾーン
I 外側環状中間部
I1〜I4 外側中間部扇状加熱ゾーン
J 環状周縁部
J1〜J8 周縁部扇状加熱ゾーン
W 半導体ウエハ
DESCRIPTION OF SYMBOLS 10 Heater unit for wafer heating 11 Wafer mounting base 11a Wafer mounting surface 12 Support plate 13 Heat generating module 13a Heat generating circuit 20 Leg 30 Cooling unit 31 Movable cooling plate 32 Fixed cooling stage 32a Refrigerant flow path 33 Elevating mechanism 40 Container A Circular central part A1 to A3 Central part fan-shaped heating zone B Annular intermediate part B1 to B6 Intermediate part fan-shaped heating zone C Annular peripheral part C1 to C6 Peripheral part fan-shaped heating zone L A1 , L B1 , L C1 , L A1B1 , L B1C1 line min O A1, O B1, O C1 center position P A1, P B1, insertion P C1 corner Q1~Q3 lift pin hole D circular central portion E annular middle portion F peripheral annular portion F1~F4 periphery fan heating zone G circular Central part H Inner ring intermediate part H1-H2 Inner intermediate part fan-shaped heating zone I Outer ring intermediate part I1-I Outer intermediate portion diverging heating zone J annular periphery J1~J8 periphery fan heating zones W semiconductor wafer

Claims (3)

半導体ウエハが載置されるウエハ載置面を備えた円板状のウエハ載置台と、前記ウエハ載置台を支持する円板状の支持板と、前記ウエハ載置台と前記支持板との間に挟持された円形薄膜状の発熱モジュールとを有するウエハ加熱用ヒータユニットであって、
前記発熱モジュールは前記ウエハ載置面に平行に延在する複数の発熱回路と、これら複数の発熱回路を挟み込む耐熱性絶縁シートとで構成され、前記複数の発熱回路によって前記ウエハ載置面に画定される複数の加熱ゾーンは、各々その中心位置に測温センサーを有しており、前記測温センサーは前記ウエハ載置台の下面側に設けられており、前記ウエハ載置面の半径方向において互いに隣接するいずれの加熱ゾーン同士においても、それらの両中心位置の離間距離が其々の加熱ゾーンの中心位置から前記加熱ゾーンの境界までの最長距離の50%以上であるウエハ加熱用ヒータユニット。
A disk-shaped wafer mounting table having a wafer mounting surface on which a semiconductor wafer is mounted, a disk-shaped supporting plate that supports the wafer mounting table, and the wafer mounting table and the support plate A heater unit for heating a wafer having a circular thin film heat generating module sandwiched between,
The heat generating module includes a plurality of heat generating circuits extending in parallel to the wafer mounting surface and a heat-resistant insulating sheet sandwiching the plurality of heat generating circuits, and is defined on the wafer mounting surface by the plurality of heat generating circuits. Each of the plurality of heating zones has a temperature measuring sensor at the center position thereof, and the temperature measuring sensors are provided on the lower surface side of the wafer mounting table, and are arranged in the radial direction of the wafer mounting surface. in any of the heating zones adjacent to, the wafer heater unit is the distance of those two center positions from the center of其's heating zone more than 50% of the maximum distance to the boundary of the heating zone.
前記複数の加熱ゾーンは、円形中央部を周方向に3等分した中央部扇状加熱ゾーンと、環状周縁部を周方向に6等分した周縁部扇状加熱ゾーンと、前記円形中央部と前記環状周縁部との間の環状中間部を周方向に6等分した中間部扇状加熱ゾーンとからなる、請求項1に記載のウエハ加熱用ヒータユニット。   The plurality of heating zones include a central fan-shaped heating zone obtained by dividing the circular central part into three equal parts in the circumferential direction, a peripheral fan-shaped heating zone obtained by dividing the annular peripheral part into six equal parts in the circumferential direction, the circular central part, and the annular The heater unit for heating a wafer according to claim 1, comprising an intermediate fan-shaped heating zone obtained by dividing an annular intermediate portion between the peripheral portion and the peripheral portion into six equal parts in the circumferential direction. 前記複数の加熱ゾーンのうち周方向に隣接する加熱ゾーン同士の間及び/又は半径方向に隣接する加熱ゾーン同士の間に前記半導体ウエハのリフトピン用の挿通孔が設けられている、請求項1又は請求項2に記載のウエハ加熱用ヒータユニット。   The through holes for lift pins of the semiconductor wafer are provided between heating zones adjacent in the circumferential direction and / or between heating zones adjacent in the radial direction among the plurality of heating zones. The heater unit for heating a wafer according to claim 2.
JP2017196683A 2017-10-10 2017-10-10 Heater unit for wafer heating Active JP6593413B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017196683A JP6593413B2 (en) 2017-10-10 2017-10-10 Heater unit for wafer heating
PCT/JP2018/037503 WO2019073941A1 (en) 2017-10-10 2018-10-09 Wafer-heating heater unit
KR1020197011870A KR20190053941A (en) 2017-10-10 2018-10-09 Heater unit for wafer heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196683A JP6593413B2 (en) 2017-10-10 2017-10-10 Heater unit for wafer heating

Publications (2)

Publication Number Publication Date
JP2019071349A JP2019071349A (en) 2019-05-09
JP6593413B2 true JP6593413B2 (en) 2019-10-23

Family

ID=66441283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196683A Active JP6593413B2 (en) 2017-10-10 2017-10-10 Heater unit for wafer heating

Country Status (1)

Country Link
JP (1) JP6593413B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353209B2 (en) * 2020-02-20 2023-09-29 東京エレクトロン株式会社 dummy wafer
CN111490002B (en) * 2020-04-21 2023-06-27 錼创显示科技股份有限公司 Carrier plate structure
JP2022164494A (en) 2021-04-16 2022-10-27 住友電気工業株式会社 Heater, and wafer heating device
CN113201727B (en) * 2021-04-28 2023-02-28 錼创显示科技股份有限公司 Semiconductor wafer bearing structure and organic metal chemical vapor deposition device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981300B2 (en) * 2002-06-25 2007-09-26 京セラ株式会社 Wafer support member
JP2008066295A (en) * 2006-08-08 2008-03-21 Sumitomo Electric Ind Ltd Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device
JP2011077147A (en) * 2009-09-29 2011-04-14 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP6265841B2 (en) * 2014-06-11 2018-01-24 東京エレクトロン株式会社 Plasma processing apparatus and method of operating plasma processing apparatus

Also Published As

Publication number Publication date
JP2019071349A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6593413B2 (en) Heater unit for wafer heating
JP4950688B2 (en) Mounting device
JP2015008287A (en) Temperature controlled substrate support assembly
JP6215104B2 (en) Temperature control device
JP5381878B2 (en) Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same
JP4376070B2 (en) Heating device
JP6060889B2 (en) Heater unit for wafer heating
JP6593414B2 (en) Heater unit for wafer heating
JP6593415B2 (en) Heater unit for wafer heating
JP6288480B2 (en) Heating / cooling module
JP6760242B2 (en) Heater module
JP2007149727A (en) Wafer holder, heater unit mounting same, and wafer prober
WO2004019658A1 (en) Metal heater
WO2019073941A1 (en) Wafer-heating heater unit
JP2015039507A (en) Heating cooker
JP2004200156A (en) Metal heater
JP2014203980A (en) Wafer heater
WO2004049762A1 (en) Metal heater
US10847401B2 (en) Wafer holding apparatus and baseplate structure
JP2017212154A (en) Heater unit
JP5381879B2 (en) Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same
JP6260645B2 (en) Heater unit
JP2010244864A (en) Substrate heating structural body
JP2004193114A (en) Metal heater
JP2004079392A (en) Metal heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190509

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190509

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R150 Certificate of patent or registration of utility model

Ref document number: 6593413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250